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In the deconfinement phase of quenched SUð2Þ Yang-Mills theory the spectrum and localization

properties of the eigenmodes of the overlap Dirac operator with antiperiodic boundary conditions are

strongly dependent on the sign of the average Polyakov loop, hLi. For hLi> 0 a gap appears with only a

few, highly localized topological zero and near-zero modes separated from the rest of the spectrum.

Instead of a gap, for hLi< 0 a high spectral density of relatively delocalized near-zero modes is observed.

In an ensemble of positive hLi, the same difference of the spectrum appears under a change of fermionic

boundary conditions. We argue that this effect and other properties of near-zero modes can be explained

through the asymmetric properties and the different abundance of dyons and antidyons—topological

objects also known to appear, however, in a symmetric form, in the confinement phase at T < Tc as

constituents of calorons with maximally nontrivial holonomy.

DOI: 10.1103/PhysRevD.79.034506 PACS numbers: 11.15.Ha, 11.10.Wx

I. INTRODUCTION

The study of topological objects at nonzero temperature
on the basis of smeared SUð2Þ lattice fields [1] has sug-
gested the following picture of the topological content of
SUð2Þ lattice gauge theory. At low temperatures topologi-
cal objects are represented by nondissociated calorons with
maximally nontrivial holonomy [2–4]. (See also Ref. [5].)
With increasing temperature their composite nature be-
comes recognizable. They start to dissociate into dyons
of topological charge �1=2. Approaching the critical tem-
perature Tc (of the deconfining phase transition) from
below, approximately 50% of the calorons become disso-
ciated, retaining their symmetric properties. Above the
critical temperature, a nonzero expectation value of the

averaged Polyakov loop hLi � hPð ~xÞi, where Pð ~xÞ means
the 3-space average of the local values Pð ~xÞ, is realized,
apart from tunnelings changing the sign of �P which are
suppressed in large volumes. In the result there appears an
asymmetry of dyons with peaked values of the local
Polyakov loop Pð ~xÞ differing in sign: light dyons with the
local Polyakov loop of same sign as hLi become the most
abundant topological objects, while heavy dyons (and even
more nondissociated calorons) are suppressed.

For the confinement phase, Diakonov and Petrov [6]
have developed a confining dyon gas picture. Although it
is a model either for purely self-dual (or anti–self-dual)
constituents, it explains all essential features of that phase.
For the numerical success it is important that both self-dual
and anti–self-dual gases cooperate without interaction.
This attractive model is, however, difficult to substantiate
in lattice simulations because at low temperature the
distances between caloron constituents are hard to be
resolved.

Whether dissociated [6] or undissociated bound in cal-
orons [7], dyons and antidyons in the confinement phase
with hLi ¼ 0 are completely symmetric concerning the
abundance between all four sorts of constituents: self-
dual dyons M, L (with positive topological charge, i.e.
equal-sign electric and magnetic charge) forming calorons
and anti–self-dual antidyons �M, �L (with negative topologi-
cal charge, i.e. opposite-sign electric and magnetic charge)
forming anticalorons. This nomenclature was coined by
Diakonov and Petrov [8] in a paper where they considered
the role of these Bogomol’nyi-Prasad-Sommerfield [9]
dyons not in nonsupersymmetric Yang-Mills theory but
in N ¼ 1 supersymmetric SUð2Þ Yang-Mills theory.
What do we actually know about single caloron solu-

tions? The semiclassical amplitude for SUð2Þ calorons has
been calculated in Ref. [10]. There it has been shown that
they are stable above Tc � �QCD for holonomy jhLij>
0:787597. This actually leaves the room open for a dyon
gas model as sketched above to describe the confined
phase, but it was not meant as an argument that the decon-
fined phase would be correctly described as a gas of
‘‘atomic’’ calorons and anticalorons.
A naive picture, assuming that undissociated calorons

dominate the deconfined phase, would associate the onset
of confinement with the dissociation of calorons. The high-
temperature phase would be a gas of calorons in their
undissociated form, with a radius decreasing with rising
T and adapted in shape to the respective hLi. This point of
view was taken in Ref. [7] as far as the deconfined phase
was considered and found to disagree with the lattice
observations. It ignores the possibility that the emerging
nonzero value of the average Polyakov loop generates an
enormous asymmetry between (anti-) dyons with a local
Polyakov loop Pð ~xÞ (in the center of their action or topo-
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logical charge lumps) having different sign. If they were
not necessarily bound in a caloron, ‘‘light dyons’’ with a
peak value of the Polyakov loop Pð ~xÞ equal in sign to hLi
could become the most abundant objects carrying only a
small amount of topological charge, while ‘‘heavy dyons’’
with a local Polyakov loop Pð ~xÞ opposite in sign to
hLi could be heavily suppressed while carrying a
relatively large topological charge close to jQj ¼ 1.

Indeed, the higher action Sheavy ¼ 16�2

g2
ð12 �!Þ [if hLi ¼

cosð2�!Þ> 0] of the heavy dyons would be a natural
explanation of their statistical suppression compared to

light dyons with their lower action Slight ¼ 16�2

g2
! (see

Sec. II for definition of !).
The analysis of topological objects by means of overlap

fermions has confirmed the observations made for smeared
lattice fields at the temperature of the thermal phase tran-
sition [11]. Since that time, an extended and model-
independent investigation of overlap fermion spectra for
SUð2Þ below and above Tc (up to T ¼ 2 Tc) was per-
formed [12]. The fermionic eigenmodes (and their spectral
density) show some striking peculiarities above Tc that our
dyonic picture of the topological content of SUð2Þ lattice
gauge theory seems to be able to explain. In the time since
our paper [11] was written, our own analysis of topological
objects by means of overlap fermions has progressed and
concentrated on the high-temperature phase, not only on
properties of individual overlap modes, but also on the
possibility to extract [13] topological properties of the
gauge field. In this paper we present the analysis of topo-
logical clusters above Tc which again requires to use the
UV filtered definition of the topological density. In this
respect, the present work is a direct continuation of the
previous one on calorons and dyons at the thermal phase
transition [11]. The knowledge of the spectral density and
localization properties of individual modes, now detailed
for both signs of hLi for fixed, antiperiodic temporal
boundary conditions [12] or—vice versa—depending on
the temporal boundary conditions for fixed hLi> 0 as
considered in this paper,1 corroborates the interpretation
of the present cluster results that has emerged in the
meantime.

In our previous work [11] concentrating on topological
clusters we considered SUð2Þ gluodynamics on 203 � 6
lattice using the tree-level improved Symanzik action at
�imp ¼ 3:25 corresponding to the thermal phase transition.

Here we use a lattice of size 203 � 4 at the same �imp, i.e.

we are studying gluodynamics at a temperature T ¼
1:5 Tc. Our analysis is based on 67 equilibrium configura-
tions. For each configuration we have obtained the 20
lowest eigenmodes of the Dirac operator.

The paper is organized as follows: in Sec. II we analyze
the properties of overlap fermion spectra above Tc as found
in this paper and in Ref. [12] on the basis of the dyonic
picture of the topological content of SUð2Þ lattice gauge
theory. In Sec. III we discuss the reason for the enormous
difference in localization [12] of the eigenmodes in the gap
region between the two types of boundary conditions or
between the two signs of the average Polyakov loop,
respectively. In Sec. IV we investigate topological clusters
and their respective degree of (anti-)self-duality following
the idea of Ref. [14] by constructing the topological charge
density and the field strength tensor [13] in an UV filtered
way from the lowest fermion eigenmodes. In Sec. V addi-
tional dyonic signatures of topological objects are pre-
sented, as those connected to the profiles of fermion
modes, those connected to the monopole content of topo-
logical clusters and those related to the profiles of the
Polyakov loop throughout the clusters. Finally, we con-
clude in Sec. VI.

II. OVERLAP FERMION SPECTRA

The classical caloron solution with nontrivial holonomy
consists of two dyons with oppositely peaked values of the
local Polyakov loop Pð ~xÞ. This local field assumes a value
equal to 1 or �1 [3] inside the constituents. The coinci-
dence of the eigenvalues of the holonomy matrix is the
definition of a monopole. For the caloron solution the
overlap Dirac operator with periodic boundary conditions
has a zero mode localized on the dyon with positive central
Polyakov loop while the operator with antiperiodic bound-
ary conditions has a zero mode localized on the dyon with
negative central Polyakov loop [15,16]. Whether the zero
mode jumps from one dyon to another when the boundary
conditions are changed [17] depends only on the degree of
separation between the constituents (dissociation). Even
within a nonseparated lump of action the zero mode is able
to oscillate inside the lump under a change of boundary
conditions.
A pair of dyon and antidyon with a same sign of the

central Polyakov loop values Pð ~x1Þ and Pð ~x2Þ cannot con-
stitute a classical solution. For field configuration having
only topological objects of this type the Dirac operator has
no exact zero mode because the total topological charge is
zero. If both Pð ~xiÞ> 0 or both<0, the Dirac operator with
periodic (antiperiodic) boundary conditions has two near-
zero modes which tend to become zero modes (of opposite
chirality) only in the limit of infinite dyon-antidyon sepa-
ration. This can be seen in Fig. 1, where the spectrum for an
artificially constructed dyon-antidyon pair is shown. A
similar pair has been obtained from generic lattice con-
figurations by overimproved cooling in Ref. [18] and
shown in Fig. 11 therein.
Now let us compare the fermion spectrum for such an

artificial dyon-antidyon pair with those of equilibrium
Monte Carlo configuration in the deconfined phase of

1It is clear that for the Dirac operator spectrum changing sign
of the averaged Polyakov loop is equivalent to changing bound-
ary conditions from antiperiodic boundary conditions to periodic
boundary conditions.
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pure SUð2Þ lattice gauge theory. This is shown in Fig. 2 for
periodic boundary conditions and antiperiodic boundary
conditions. The Monte Carlo configuration is a typical
configuration from a sample with Polyakov loop hLi> 0.
It can be seen from Fig. 2 that the spectra for periodic
boundary conditions and antiperiodic boundary conditions
are very different. For periodic boundary conditions the
spectrum has no gap while for antiperiodic boundary con-
ditions there is a wide gap. Guided by the similarity
between Figs. 1(c) and 2 we can propose the following
explanation of this difference. In the case of configurations
with hLi> 0 light dyon-antidyon pairs with a Polyakov

line peaking at Pð ~xÞ ¼ þ1 appear in a large number and
give rise to numerous near-zero modes in the spectrum of
the Dirac operator with periodic boundary conditions. This
eliminates the spectral gap completely, while in the case of
the Dirac operator with antiperiodic boundary conditions
only heavy dyon-antidyon pairs can produce near-zero
modes, and such pairs are rare. This is reflected by the
known fact of a gap opening for the case of antiperiodic
boundary conditions. In fact, in equilibrium configurations
there is a small number of (exceptional) near-zero modes
seen. This has been first discovered in [19] and recently
confirmed in [12]. With increasing temperature, they be-

FIG. 1 (color online). (a) The gluonic topological charge density and (b) the local Polyakov loop for an artificially constructed dyon-
antidyon pair. The spectrum (c) for overlap fermions with periodic (left) and antiperiodic (right) boundary conditions (restricted to 20
modes). Inside the circle around the origin the plot is 10 times magnified. The fermionic topological charge density from these 20
lowest modes is shown for periodic (d) and antiperiodic (e) boundary conditions. The latter choice is blind for these constituents.
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come more and more separated from the rest of the spec-
trum (bulk) by the emerging gap and are decreasing in
multiplicity [12].

We identify the number of near-zero modes nnzm (Nnzm)
found for periodic (antiperiodic) boundary conditions
(both with hLi> 0) with the number of light (heavy)
dyon-antidyon pairs. The ratio of nnzm=Nnzm can be esti-
mated from Fig. 3 where the spectra of 20 lowest eigen-
modes are shown for both boundary conditions. Choosing
the cut on near-zero modes as jIm�j< 0:05=a �
100 MeV shown on the Fig. 3 by the vertical dashed line
we get nnzm=Nnzm � 15. This number cannot be exact
because in the case of periodic boundary conditions near-
zero modes are not clearly separated by a gap from the rest
of the spectrum (the bulk). Therefore some of the modes
counted in nnzm might actually belong to the bulk.With this
reservation in mind, one could conclude from the observed
in Ref. [12] increasing with temperature spectral density of
the periodic Dirac operator that the ratio nnzm=Nnzm is also
increasing with temperature.

An alternative estimate for the number of light dyon-
antidyon pairs, nnzm, can be made using the following
observation. In a dilute gas of light and heavy dyons2

each object independently contributes to the square of the
topological charge Q2 such that the sum over all configu-
rations can be presented by

X
Q2 ¼ q2nþ ð1� jqjÞ2N; (1)

where n ¼ nzm þ nnzm is the total number of zero and
near-zero modes for the Dirac operator with periodic
boundary conditions, i.e. the total number of light dyons
summed over all configurations, and N ¼ Nzm þ Nnzm is
the total number of zero and near-zero modes for the Dirac
operator with antiperiodic boundary conditions, i.e. the
total number of heavy dyons summed over all configura-
tions. Thereby, jqj is a fractional topological charge of a
light dyon and the complement 1� jqj that of a heavy
dyon. We remind that we are discussing an ensemble with
positive averaged Polyakov loop hLi> 0 which is actually
the case for the configurations analyzed in the present
paper. For our set of 67 configurations we find that

P
Q2 ¼

78, Nzm ¼ 52, Nnzm ¼ 30, and nzm ¼ 54. We estimate the
ratio between the topological charges of light and heavy
dyons by the formula

jqj ¼ 2! (2)

known from the analytical caloron solution:

jqj:ð1� jqjÞ ¼ !:ð1=2�!Þ; (3)

where ! is the parameter of holonomy H ¼ cosð2�!Þ,
and we identify the holonomy H with the value of the
average Polyakov loop hLi � 0:3. We obtain jqj � 0:4 and
nnzm � 250. Another estimate is based on the number
jqj � 0:3 that correspond to the maximum of the heavy
dyon mass distribution 1� jqj � 0:7 (see Sec. V). Then
nnzm � 360. These give a ratio 8:3< nnzm=Nnzm < 12 in
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FIG. 3 (color online). Overlap fermion spectra for periodic
(thick [black] histogram) and for antiperiodic (thin [red] histo-
gram) boundary conditions obtained from 67 equilibrium
Monte Carlo configuration (all with positive averaged
Polyakov loop) in the deconfined phase. Shown are (20� 67�
54) periodic nonzero modes and (20� 67� 52) antiperiodic
nonzero modes. The vertical dashed line shows the cut on
near-zero modes, see the text for explanation.
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FIG. 2 (color online). Periodic (left) and antiperiodic (right)
overlap fermion spectra (including 20 modes) for one typical
equilibrium Monte Carlo configuration created in the deconfined
phase with a positive average Polyakov loop hLi> 0.

2In the following ‘‘dyon’’ will be used without difference for
carriers of positive and negative topological charge.
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acceptable agreement with the value 15 obtained above
comparing the number of low lying modes below 100MeV
(see Fig. 3), especially if one takes into account that we
could have overestimated the number nnzm of light nonzero
modes in the case of periodic boundary conditions.

III. LOCALIZATION OF EIGENMODES

Next we turn to the issue of localization. This is a very
natural question to ask in an investigation of the fermionic
spectrum and eigenmodes. It turns out, that—adopting the
view in terms of topological charge clusters—we can also
contribute to the understanding of the strong dependence of
the localization of zero and near-zero eigenmodes on the
boundary conditions that was discovered in [12].

We find that for zero modes, the average inverse partici-
pation ratio (IPR) of antiperiodic zero modes is equal to
110, while the IPR of periodic zero modes is equal to 4.75.
For positive hLi—as in our case—the stronger localization
of antiperiodic zero modes compared to periodic ones is
easy to understand in the dyonic picture of the deconfined
phase.

Each zero mode out of our Nzm ¼ 52 antiperiodic zero
modes is accompanied on average by Nnzm=ð2NzmÞ � 0:3
pairs of antiperiodic near-zero modes, whereas the corre-
sponding ratio for periodic boundary conditions according
to the actual number nzm ¼ 54 of periodic zero modes
requires to extract from (1) the number of periodic near-
zero modes. Assuming jqj � 0:4 the ratio is obtained as
nnzm=ð2nzmÞ � 2:3. According to our dyonic picture we
can say that an antiperiodic zero mode is spread out on
average over 1:3 ¼ 1þ 0:3 identical (i.e. with the same
sign of topological charge) heavy dyons, while a periodic
zero mode is spread out on average over 3:3 ¼ 1þ 2:3
identical light dyons. Moreover, taking into account that
the radii of light and heavy dyons are different and follow,
correspondingly to a caloron formula, the proportionality
rule r:R ¼ ð1� jqjÞ:jqj � 1:5, we shall expect that an
antiperiodic zero mode is ð3:31:3Þ � ð1:5Þ3 � 9 times more

localized than a periodic zero mode. Repeating this esti-
mate assuming jqj � 0:3 the above localization ratio is
replaced by 43. The actual ratio of the average IPR between
antiperiodic zero modes and periodic zero modes for our
ensemble, 110=4:75, is halfway between the two estimates.

In Ref. [12] a tendency has been found that the local-
ization of antiperiodic zero modes together with hLi> 0 is
increasing with increasing temperature, while the localiza-
tion of antiperiodic zero modes in the presence of hLi< 0
or, equivalently, periodic zero modes in the presence of
hLi> 0, is decreasing with increasing temperature. This
qualitatively corresponds to the dyonic picture where the
number ratio between heavy and light objects (dyons and
antidyons) decreases and the size ratio between light and
heavy objects increases with increasing temperature. This
tendency is incorporated in the results obtained here by the
temperature dependence of ! and q.

The properties of the above mentioned M, L, �M, and �L
dyons and antidyons are summarized with respect to the
dependence on ! in Table I.

IV. TOPOLOGICAL CLUSTERS

Now let us turn to the properties of clusters with respect
to the UV filtered definition of the topological charge
density. We remind the reader that we are considering
here an ensemble of lattice configurations with average
Polyakov loop hLi> 0. The fermionic definition [20] has
an UV filtered variant [21,22]. Both have an a priori
ambiguity with respect to the fermionic boundary condi-
tions:

qðbÞ�cut
ðxÞ ¼ � X

j�bj��cut

�
1� �b

2

�
c ðbÞy

�b
ðxÞ�5c

ðbÞ
�b
ðxÞ; (4)

with b ¼ p denoting periodic and b ¼ a denoting anti-
periodic temporal boundary conditions. Although the total
topological charge given by the number of zero modes is
not affected by the boundary condition as long as some
smoothness properties of the gauge field are fulfilled [11],
we find that the filtered density function really depends on
the boundary condition b. This has allowed us in Ref. [11]
to investigate the dyonic vs caloron structure for T & Tc by
measuring the amount of displacement of constituents with
different sign of Pð ~xÞ.
For the high-temperature phase, we adopt one more

difference in our procedure, depending on the type of
boundary conditions. In the case of periodic boundary
conditions we include all the 20 lowest modes which we
computed. As discussed above, in this case the near-zero
modes cannot be strictly separated from the bulk of the
spectrum. In the case of antiperiodic boundary conditions,
however, we include only the zero and near-zero modes in
the definition (4) because they can be separated without
any ambiguity from the bulk.
The antiperiodic boundary condition highlights the

heavy constituents with negative local Polyakov loop,
whereas the periodic boundary condition emphasizes the
complementary light constituents with positive local
Polyakov loop. In the same way as in Ref. [11] we now

TABLE I. Local Polyakov loop P, sign of topological charge
Q, electric (e), and magnetic (m) charge of dyons and antidyons.
Action and size are given for positive external Polyakov loop

hPð ~xÞi ¼ cosð2�!Þ> 0.

Type P Q e m Action / Size /
M þ1 >0 � � ! ð1=2�!Þ
L �1 >0 � � ð1=2�!Þ !
�M þ1 <0 � � ! ð1=2�!Þ
�L �1 <0 � � ð1=2�!Þ !
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define clusters of topological charge as connected sets of
lattice sites where the absolute value of topological charge
density exceeds some cut, jqðxÞj> qcut ¼ 1

5maxxðjqðxÞjÞ.
The density qðxÞ ¼ qðbÞ�cut

ðxÞ is the adopted version of UV

filtered topological density defined by the respective selec-
tion of the modes.3

Furthermore, we have constructed from the fermionic
modes the field strength tensor [23]

cTFa
��ðxÞ ¼

X
j�bj��cut

�bc
ðbÞy
�b

ðxÞ����
ac ðbÞ

�b
ðxÞ; (5)

where cT ¼ 0:0883 [24] has been calculated for the full
spectrum. For Fa

�� on the left-hand side of Eq. (5) we have

omitted the labels b and �cut in order to avoid clumsy
formulas in what follows.

The topological charge densities defined by (4) on one
hand and by the field strength tensor on the other, through

the scalar product ~Ea � ~Ba of electric and magnetic field
strength,

qFðxÞ ¼ 1

32�2
Fa
��ðxÞ ~Fa

��ðxÞ; (6)

differ for truncated sums over modes like in our case by
many orders of magnitude. However, if suitably rescaled,
the density (6) closely follows the density (4). Figure 4
shows this for an on-axis sequence of lattice sites in one
particular configuration studied with periodic boundary
conditions and taking all 20 modes into account. A rescal-
ing factor r has been found by minimizing the quantity

�2 ¼ ðqðbÞ�cut
ðxÞ � r � qFðxÞÞ2; (7)

where the bar means averaging over all lattice sites. We
found that the parameter r is of the order Oð108Þ. For the
particular configuration presented in Fig. 4 we have found

the deviation � � 0:04maxxjqðbÞ�cut
ðxÞj, i.e. it amounts to

only a few percent of the maximal density.
In order to focus on the dyonic nature of the topological

objects detected by the respective number of modes, we
tested the degree of (anti–)self-duality [14] of the topo-
logical clusters as mapped out by the topological density
(4). Site by site we considered the quantity

R ¼ 4

�
arctan

Fa
�� � Fa

�� � Fa
�� � ~Fa

��

Fa
�� � Fa

�� þ Fa
�� � ~Fa

��

� 1: (8)

Analogously to studies of the local chirality of fermionic
modes, this quantity equals to�1 (þ 1) for a strictly self-
dual (anti–self-dual) field strength tensor. The distribution
of this quantity for all lattice sites on one hand and re-

stricted to the interior of the topological charge clusters on
the other is shown in Fig. 5. The case of periodic boundary
conditions, where the near-zero modes cannot be clearly
separated from the background, is presented in the left
panels of Fig. 5: the interior of the topological charge
clusters (shown left below) is indeed preferentially self-
dual or anti–self-dual. In contrast, taking all lattice sites
into account (shown left above), the distribution with
respect to the degree of (anti–)self-duality can hardly be
distinguished from that obtained for a random assignment.
This random reference case is represented by the thick
(red) line in the left panels of Fig. 5. The random construc-
tion consists of replacing Fa

�� � ~Fa
�� by a random number q

sampled from the interval [� s, þs] with s ¼ Fa
�� � Fa

��.

In the case of antiperiodic boundary conditions we are
able to unambiguously restrict ourselves to the zero and
near-zero modes in the construction of (4) and (5). From
the right panels of Fig. 5 it becomes obvious now why we
associate these modes to the heavy dyons (again irrespec-
tive of the sign of the topological charge density). Their
contributions to (4) and (5) form what we can call ‘‘self-
dual and anti–self-dual heavy dyons.’’ If the construction is
limited to these modes the obtained field strength is con-
strained to be either self-dual or anti–self-dual, irrespective
of whether we consider all lattice sites (shown right above)
or only the interior of the clusters of sufficiently large
topological charge density compared to the maximal den-
sity (shown right below). This is expressed by the fact that
the right panels of Fig. 5 both collapse to a sum of 	
functions at R ¼ �1 and R ¼ þ1. The height of the peaks
reflects the ratio of positive and negative topological
charges summed over the ensemble. For this case all
Nzm þ Nnzm ¼ 52þ 30 ¼ 82 heavy zero and near-zero
modes are in one-to-one correspondence to the observed
clusters of topological charge.

8250 8300
-0.004

-0.002

0

0.002

0.004

FIG. 4 (color online). The topological charge density qðpÞ�cut
ðxÞ

(thin line) and the rescaled topological charge density qFðpÞ�cut
ðxÞ

(thick line) for subsequent lattice sites along the x-axis in a
typical lattice configuration.

3The tail of the topological charge distribution with jqðxÞj<
1
5 maxxðjqðxÞjÞ is part of the volume where we expect the field
strength tensor to deviate strongly from being self-dual or anti–-
self-dual.
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V. PROFILES OF NEAR-ZERO AND ZERO MODES

Last but not least we consider more in detail the shapes
of the 82 heavy zero and nonzero fermionic modes in
comparison to analytical results available for dyons [15].
Analytically, from the caloron solution, the profile of a zero
mode localized on one of the constituent dyons is known to
depend on two parameters of the caloron: the holonomy
parameter ! that defines the ‘‘mass’’ fraction of the con-
stituent (also the fractional topological charge) as mh ¼
1� 2! and the distance d from the center of the accom-
panying complementary constituent with a mass fraction
ml ¼ 2!. Both parameters influence the nonstaticity of
zero mode. The parameters ! and d were found for every
lattice zero and near-zero mode using the following
procedure.

We evaluated the summed scalar density 
ðt; ~xÞ of all
zero and nonzero modes. There was a number of clusters of

this density exactly equal to the number of zero and near-
zero modes. First in each cluster the absolute maximum
was found at ~xmax:


max ¼ max
t

max
~x


ðt; ~xÞ: (9)

Then in the same spatial point ~xmax the minimum with
respect to t was determined:


min ¼ min
t

ðt; ~xmaxÞ: (10)

From the analytical expression for the zero mode of a one-
caloron solution [15] the maximum (9) and the minimum
values (10) of its scalar density can be derived and ex-
pressed as functions of parameters ! and d. Using these
functions we determined the parameters from the values of

max and 
min observed for the individual maxima of the
scalar density that are considered as being related to exact
zero modes or to zero modes that are mixed to form the
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FIG. 5 (color online). Histograms with respect to the (anti–)self-duality R (8) of all lattice sites (upper row) and within the interior of
topological charge clusters (bottom row). Left column: the 20 lowest modes with periodic boundary conditions have been used for the
construction of the UV filtered topological density (4) and the UV filtered field strength tensor (5). Right column: only zero and near-
zero modes (below the gap) for antiperiodic boundary conditions have been used in constructing the UV filtered quantities. In this case
the reconstructed field strength in all sites is either self-dual or anti–self-dual, whether they belong to topological clusters (with more
than 1=5 of the maximal density) or not. The thick (red) line shows the histograms referring to a random assignment of R (see text).
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pairs on near-zero modes. In this way we have obtained the
distribution of the 82 antiperiodic (‘‘heavy’’) fermionic
modes over their mass fraction mh. The corresponding
histogram is presented in Fig. 6. Note that for most of the
distribution mh > 0:5, and that the maximum is located at
about 0.7 which approximately reconfirms the value mh ¼
0:6 obtained in Sec. II under the assumption that the
holonomy is given by hLi. The typical profile of a fermi-
onic mode, represented by its scalar density taken at t ¼
tmax, x ¼ xmax, and y ¼ ymax as a function of z is shown in
Fig. 7 together with the best-fitting profile of the analyti-
cally given scalar density of a fermion zero mode.

A more complete description of the dyonic structure of
the topological objects found with the help of periodic and
antiperiodic fermionic modes can be given in terms of
gluonic observables. From the analytical solution we
know that dyons are magnetic monopoles and that the
Polyakov loop is peaked with a positive sign of Pð ~xÞ if
the dyon supports a periodic fermion zero mode and with a
negative sign of Pð ~xÞ if the dyon supports an antiperiodic
fermion zero mode [2,15]. The gluonic configurations of
the present investigation have been subject to smearing as
described in Ref. [11], by 10 steps of APE smearing [25].
We made sure that this procedure does not change the low
lying spectrum of overlap fermions. After smearing the
Abelian magnetic monopole content and the Polyakov loop
profile of the topological clusters have been recorded.
Clusters with static Abelian monopoles occupy about 3%
of the lattice volume and contain about 50% of all timelike
Abelian monopole links. They have peaked values of the
Polyakov loop correlated in sign with the fermionic bound-
ary condition, in total agreement with the required
dyon properties. These clusters are recorded in Fig. 8 in
the form of a scatter plot with respect to the maximal value
of the topological charge density and the extremal value of
the local Polyakov loop Pð ~xÞ inside the cluster (both in-
cluding the sign). One can see that all heavy dyon
clusters, denoted by triangles, have negative Pð ~xÞ and
relatively large values of the maximal topological charge
density. The points representing light dyon clusters are
concentrated with their Pð ~xÞ close to þ1 with a maximal
topological charge density (here in terms of the gluonic
topological charge density) not exceeding jqLðxÞj ¼ 0:01.
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FIG. 6. The distribution of the fractional action (modulus of
topological charge) concentrated in heavy dyons, in our simula-
tion represented by the 82 zero and near-zero modes for anti-
periodic boundary conditions. Our ensemble has positive
average Polyakov loop hLi> 0.
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FIG. 7 (color online). The scalar density profile (one-
dimensional cut) of a zero mode representing one of the 82
heavy dyons (solid line) fitted by the analytical expression for
the scalar density of a dyon’s fermion zero mode (dashed line).
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FIG. 8 (color online). Clusters containing static monopoles are
shown in a scatter plot with respect to the extremal value of the
topological charge density and the peak value of the local
Polyakov line (inside the clusters, including the sign). Circles
correspond to clusters found by periodic fermions (light dyons),
triangles correspond to clusters found by antiperiodic fermions
(heavy dyons).
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VI. CONCLUSIONS

We presented in this paper new evidence for the dyonic
nature of the topological fluctuations, this time for the
deconfinement phase of SUð2Þ lattice gauge theory. We
show that the dyonic picture suggests an explanation of the
strong difference in the spectrum of the overlap Dirac
operator with periodic and antiperiodic boundary condi-
tions, which is the only explanation given to this phe-
nomena so far. Furthermore, we show that the
abundances of near-zero modes, the localization properties
of zero modes and near-zero modes, the (anti–)self-duality
properties of topological clusters, the profiles of fermionic
modes, the monopole content, and the Polyakov loop
profiles of topological clusters are in reasonable agreement
with the dyonic picture of the topological objects in the
‘‘vacuum’’ above Tc, where light dyons (and light antidy-
ons) are most abundant and heavy dyons (and heavy anti-
dyons) are suppressed. All of these topological clusters
have properties known from the asymmetric caloron solu-
tion with only slightly nontrivial holonomy. Maximally
nontrivial holonomy is realized only in the confinement

phase, with a full symmetry between all types of dyons and
antidyons. We have considered, in particular, a temperature
T ¼ 1:5 Tc where the average Polyakov loop determines
the deviation from both limits of trivial and maximally
nontrivial holonomy.We expect that at higher temperatures
the asymmetry between light and heavy (anti-) dyons in the
vacuumwill further increase. Asymptotically, the topologi-
cal objects in the vacuum will be exclusively light dyons
and antidyons appearing in equal number.

ACKNOWLEDGMENTS

This work was partly supported by DFG Grant No. 436
RUS 113/739/0-2 together with RFBR-DFG Grant No. 06-
02-04010. V.G. B. and B.V.M. appreciate the hospitality
of the group of M.M.-P. at Humboldt University, and
E.-M. I. appreciates the hospitality of the Theory group at
the Karl-Franzens University. V. G. B. acknowledges sup-
port from grants RFBR 08-02-00661 and RFBR-7-02-
00237a. E.-M. I. acknowledges support from DFG (FOR
465/Mu932/2). We thank Falk Bruckmann and Christof
Gattringer for comments on a draft version of this paper.

[1] E.-M. Ilgenfritz, B. V. Martemyanov, M. Müller-
Preussker, and A. I. Veselov, Phys. Rev. D 73, 094509
(2006).

[2] T. C. Kraan and P. van Baal, Phys. Lett. B 435, 389 (1998).
[3] T. C. Kraan and P. van Baal, Nucl. Phys. B533, 627 (1998).
[4] K. Lee and C. Lu, Phys. Rev. D 58, 025011 (1998).
[5] R. C. Brower, D. Chen, J.W. Negele, K. Orginos, and C.-I.

Tan, Nucl. Phys. B, Proc. Suppl. 73, 557 (1999).
[6] D. Diakonov and V. Petrov, Phys. Rev. D 76, 056001

(2007).
[7] P. Gerhold, E.-M. Ilgenfritz, and M. Müller-Preussker,

Nucl. Phys. B760, 1 (2007).
[8] D. Diakonov and V. Petrov, Phys. Rev. D 67, 105007

(2003).
[9] M.K. Prasad and C.M. Sommerfield, Phys. Rev. Lett. 35,

760 (1975); E. B. Bogomol’nyi, Yad. Fiz. 24, 861 (1976)
[Sov. J. Nucl. Phys. 24, 449 (1976)].

[10] D. Diakonov, N. Gromov, V. Petrov, and S. Slizovskiy,
Phys. Rev. D 70, 036003 (2004).

[11] V. G. Bornyakov, E.-M. Ilgenfritz, B. V. Martemyanov,
S.M. Morozov, M. Müller-Preussker, and A. I. Veselov,
Phys. Rev. D 76, 054505 (2007).

[12] V. G. Bornyakov, E. V. Luschevskaya, S.M. Morozov,
M. I. Polikarpov, E.-M. Ilgenfritz, and M. Müller-
Preussker, arXiv:0807.1980.

[13] E.-M. Ilgenfritz, K. Koller, Y. Koma, G. Schierholz, T.

Streuer, and V. Weinberg, Phys. Rev. D 76, 034506 (2007).
[14] C. Gattringer, Phys. Rev. Lett. 88, 221601 (2002).
[15] M. Garcia Perez, A. Gonzalez-Arroyo, C. Pena, and P. van

Baal, Phys. Rev. D 60, 031901(R) (1999).
[16] M.N. Chernodub, T. C. Kraan, and P. van Baal, Nucl.

Phys. Proc. Suppl. 83, 556 (2000).
[17] C. Gattringer and S. Schaefer, Nucl. Phys. B654, 30

(2003).
[18] F. Bruckmann, E.-M. Ilgenfritz, B.V. Martemyanov, and

P. van Baal, Phys. Rev. D 70, 105013 (2004).
[19] R. G. Edwards, U.M. Heller, J. E. Kiskis, and R.

Narayanan, Phys. Rev. D 61, 074504 (2000).
[20] F. Niedermayer, Nucl. Phys. B, Proc. Suppl. 73, 105

(1999).
[21] I. Horvath, S. J. Dong, T. Draper, F. X. Lee, K.-F. Liu, J. B.

Zhang, and H. B. Thacker, Nucl. Phys. B, Proc. Suppl.
119, 688 (2003).

[22] I. Horvath, S. J. Dong, T. Draper, F. X. Lee, K.-F. Liu,
N. Mathur, H. B. Thacker, and J. B. Zhang, Phys. Rev. D
68, 114505 (2003).

[23] K.-F. Liu, A. Alexandru, and I. Horvath, Phys. Lett. B 659,
773 (2008).

[24] A. Alexandru, I. Horvath, and K.-F. Liu, Phys. Rev. D 78,
085002 (2008).

[25] T. DeGrand, A. Hasenfratz, and T.G. Kovacs, Nucl. Phys.
B520, 301 (1998).

DYONIC PICTURE OF TOPOLOGICAL OBJECTS IN THE . . . PHYSICAL REVIEW D 79, 034506 (2009)

034506-9


