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Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present

a calculation of the first few moments of the leading-twist nucleon DAwithin lattice QCD. In addition we

deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the

latter quantities are also responsible for proton decay in grand unified theories. Our lattice evaluation

makes use of gauge field configurations generated with two flavors of clover fermions. The relevant

operators are renormalized nonperturbatively with the final results given in the MS scheme. We find that

the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes

claimed in the literature.
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I. INTRODUCTION

The notion of baryon distribution amplitudes (DAs)
refers to the valence component of the Bethe-Salpeter
wave function at small transverse separations and is central
for the theory of hard exclusive reactions involving bary-
ons [1–9]. As usual for a field theory, extraction of the
asymptotic behavior (in our case for vanishing transverse
separation) introduces divergences that can be studied by
the renormalization-group (RG) method. The distribution
amplitude ’ thus becomes a function of the three quark
momentum fractions xi and the scale that serves as a UV
cutoff in the allowed transverse momenta. Solving the
corresponding RG equations in leading logarithmic accu-
racy [10,11] one is led to the expansion

’ðxi; �2Þ ¼ 120x1x2x3
X1
n¼0

Xn
l¼0

cnlð�0ÞPnlðxiÞ

�
�
�sð�Þ
�sð�0Þ

�
�nl=�0

: (1)

The summation goes over all multiplicatively renormaliz-
able operators built of three quarks and n derivatives and
�0 is the first coefficient of the beta function. The poly-
nomials PnlðxiÞ and anomalous dimensions �nl are ob-
tained by diagonalizing the mixing matrix for the three-
quark operators

ðDk1þqÞðDk2þqÞðDk3þqÞ; k1 þ k2 þ k3 ¼ n;

and the cnlð�0Þ are the corresponding (nonperturbative)
matrix elements.
The theory of nucleon DAs has reached a certain degree

of maturity. In particular the scale dependence is well
understood [12,13] and it reveals important symmetries
of the quantum theory that are not seen at the level of the
QCD Lagrangian [14]. At the same time, they are much
less studied as compared to the usual parton distributions.
One reason is that the approach to the perturbative facto-
rization regime in hard reactions appears to be slow. There
is overwhelming evidence that, e.g., electromagnetic and
transition form factors at currently available momentum
transfers of the order of a few GeV2 [15–18] receive large
nonfactorizable contributions from large transverse dis-
tances, usually referred to as soft (Feynman) or end point
contributions, and possibly from higher-twist corrections.
This is indicated, for example, by the fact that the helicity
selection rules are strongly violated. Another reason is that
nucleon DAs enter physical observables in a rather com-
plicated way through convolution integrals, integrated with
smooth functions of the momentum fractions. This makes
an experimental determination of the DAs pointwise in xi
very difficult. A qualitative picture suggested by QCD sum
rule calculations is that the valence quark with the spin
parallel to that of the proton carries most of its momentum
[8,9,19]. It is timely to make this picture quantitative;
lattice QCD ist best suited for this purpose [20–22], allow-
ing us to evaluate nonperturbative hadronic matrix ele-
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ments of local operators that enter the expansion in (1) in a
fully controllable fashion, at least in principle.

In this work we report on the calculation of the first few
moments of the leading-twist nucleon DA and also the
normalization of the next-to-leading (twist-four) DAs
[23] using two dynamical flavors of clover fermions. The
reason why we also consider higher-twist DAs is that they
enter the calculation of the helicity-violating Pauli form
factor of the nucleon in perturbative QCD [24] and also the
calculation of the soft (end point) corrections to the form
factors in the framework of the light-cone sum rule ap-
proach [25,26]. Their knowledge is imperative for a QCD
description of exclusive reactions in the JLAB energy
range. It turns out that the same matrix elements are
responsible for proton decay in grand unified theories
(GUTs), so they are also interesting in a broader physics
context. A short presentation of our main results has al-
ready been given in Refs. [27,28].

The paper is organized as follows. Section II contains a
brief review of the general framework and definitions of
the specific quantities that will be calculated. We focus on
the relations to local matrix elements including those that
are relevant for proton decay.

In Sec. III we explain the lattice approach to the calcu-
lation of the matrix elements. The advantages of this
method come at the cost of reduced symmetry due to the
discretization of space-time. This leads to additional (un-
wanted) operator mixing as compared to the continuum,
which has to be reduced as much as possible by a suitable
choice of the operator basis. In particular, mixing with
lower-dimensional operators is dangerous. The theoretical
basis for the corresponding analysis is the classification of
operators according to irreducible representations of the
relevant lattice symmetry group. For quark-antiquark op-
erators such a classification has been worked out in
Ref. [29], while the analogous classification for the three-
quark operators needed here is treated in Refs. [30,31].

Section IV is devoted to the presentation of the numeri-
cal results for the matrix elements. We apply two different
methods to analyze the data. The first one, which we refer
to as unconstrained, is used to determine the normalization
constants and to check the consistency of our results for
higher moments. In the second method we use the momen-
tum conservation as an additional constraint. This allows
us to improve the accuracy of our results for the higher
moments.

In Sec. V we construct a model for the leading-twist DA,
presenting our results in form of the canonical expansion
Eq. (1), and compare it with other models in the literature.
The final Sec. VI is reserved for a summary and
conclusions.

Some further technical details are presented in the
Appendices, in particular, the relations between the local
operators relevant for leading-twist DAs of spin-1=2 bary-
ons and the irreducible three-quark operators. We also
present here the bare lattice results.

II. GENERAL FRAMEWORK

A. Leading twist

The leading-twist proton DA can be defined [32,33]
from a matrix element of a gauge-invariant nonlocal
three-quark operator:

h0jua0� ðz1Þub0� ðz2Þdc0� ðz3ÞUa0aðz1; z0ÞUb0bðz2; z0Þ
�Ub0bðz3; z0Þ�abcjpi

¼ fN
4
fðp6 CÞ��ð�5NÞ�VðzipÞ þ ðp6 �5CÞ��N�AðzipÞ

þ ði���p
�CÞ��ð���5NÞ�TðzipÞg þ . . . (2)

Here��� ¼ i
2 ½��; ���,C is the charge conjugation matrix,

jpi is a proton state with momentum p, and N is the proton
spinor; ellipses stand for the higher-twist contributions. All
interquark separations are assumed to be lightlike, e.g.,
uðz1Þ denotes the u-quark field at the space point z1n
with n2 ¼ 0, and Uðzn; z0Þ denotes the non-Abelian phase
factor (lightlike Wilson line)

Uðzn;z0Þ�Pexp

�
ig
Z 1

0
dtðzn�z0Þn�A�ðtznþð1� tÞz0Þ

�
:

(3)

Because of the light-cone kinematics, the matrix element
does not depend on z0 and the phase factors can be elim-
inated by choosing a suitable gauge.
The invariant functions V, A, and T can be presented in

the form

VðzipÞ �
Z
½dx� exp

�
�i

X
xiziðp � nÞ

�
VðxiÞ; (4)

and similarly for A and T, where the integration measure is
defined as

Z
½dx� �

Z 1

0
dx1dx2dx3�ð1� x1 � x2 � x3Þ: (5)

The variables xi have the meaning of the longitudinal
momentum fractions carried by the three quarks in the
proton, 0 � xi � 1 and

P
xi ¼ 1.

The identity of the two u-quarks in (2) implies the
following symmetry properties [33]

Vðx1; x2; x3Þ ¼ Vðx2; x1; x3Þ;
Aðx1; x2; x3Þ ¼ �Aðx2; x1; x3Þ;
Tðx1; x2; x3Þ ¼ Tðx2; x1; x3Þ:

(6)

In addition, the requirement that the proton has isospin 1=2
yields the relation

2Tðx1; x2; x3Þ ¼ ½V � A�ðx1; x3; x2Þ � ½V � A�ðx2; x3; x1Þ
(7)

so that all three invariant functions can be expressed in
terms of a single DA ’ defined as
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’ðx1; x2; x3Þ ¼ Vðx1; x2; x3Þ � Aðx1; x2; x3Þ: (8)

The normalization convention is such that

Z
½dx�’ðx1; x2; x3Þ ¼ 1: (9)

The definition in (2) is equivalent to the following form of
the proton state [9,33]

jp; "i ¼ fN
Z ½dx�’ðxiÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24x1x2x3

p fju"ðx1Þu#ðx2Þd"ðx3Þi

� ju"ðx1Þd#ðx2Þu"ðx3Þig; (10)

where the arrows indicate the helicities and the standard
relativistic normalization for the states and Dirac spinors is
implied.

Moments of DAs are defined as

Vlmn ¼
Z 1

0
½dx�xl1xm2 xn3Vðx1; x2; x3Þ (11)

and similarly for the other functions. They can be related to
matrix elements of the local operators

V 	�l �m �n

 ð0Þ � V 	ð�1����lÞð�1����mÞð�1����nÞ


 ð0Þ
¼ �abc½ilD�1 . . .D�luð0Þ�a�ðC�	Þ��

�½imD�1 . . .D�muð0Þ�b�
�½inD�1 . . .D�nð�5dð0ÞÞ�c
; (12)

A 	�l �m �n

 ð0Þ � A	ð�1����lÞð�1����mÞð�1����nÞ


 ð0Þ
¼ �abc½ðilD�1 . . .D�luð0Þ�a�ðC�	�5Þ��

�½imD�1 . . .D�muð0Þ�b�
�½inD�1 . . .D�ndð0Þ�c
; (13)

T 	�l �m �n

 ð0Þ � T 	ð�1����lÞð�1����mÞð�1����nÞ


 ð0Þ
¼ �abc½ilD�1 . . .D�luð0Þ�a�ðCð�i��	ÞÞ��

� ½imD�1 . . .D�muð0Þ�b�
� ½inD�1 . . .D�nð���5dð0ÞÞ�c
 (14)

by

PLTWh0jV 	�l �m �n

 ð0Þjpi ¼ �fNV

lmnp	p
�lp �mp �nN
ðpÞ;

(15)

PLTWh0jA	�l �m �n

 ð0Þjpi ¼ �fNA

lmnp	p
�lp �mp �nN
ðpÞ;

(16)

PLTWh0jT 	�l �m �n

 ð0Þjpi ¼ 2fNT

lmnp	p
�lp �mp �nN
ðpÞ: (17)

In the following we refer to these local operators as DA
operators in order to distinguish them from three-quark
operators with a general spinor index structure. The multi-

index �l �m �n with �l � �1 . . .�l (and similarly for �m and �n)
denotes the Lorentz structure given by the covariant de-
rivatives D� ¼ @� � igA� on the right-hand side of Eqs.

(12)–(14). The indices l, m, n (without bars) are the total
number of derivatives acting on the first, second, and third
quark, respectively. A certain moment, e.g., Vlmn, is related

to several operators V	�l �m �n

 which differ only by their

Lorentz indices. Therefore the moments Vlmn, Almn, and
Tlmn on the right-hand side of Eqs. (15)–(17) can be
calculated from different operators with same number of
derivatives acting on the quark fields. The index 	 corre-
sponds to the uncontracted Lorentz index of the gamma
matrices in the operators. The leading-twist projection,
PLTW , can be achieved, e.g., by symmetrization in
Lorentz indices and subtraction of traces. Our approach
for handling the reduced symmetry of the discretized
space-time properly is described in Sec. III.
The symmetry relations (6) are translated into similar

relations for the moments:

Vlmn ¼ Vmln; Almn ¼ �Amln; Tlmn ¼ Tmln:

(18)

For further use we define the combination

lmn ¼ 1

3
ðVlmn � Almn þ 2TlnmÞ: (19)

Taking into account the isospin relation (7), the moments
of V, A, T can be restored from the moments of  by

Tlmn ¼ 1

2
ðlnm þmnlÞ; (20)

Vlmn ¼ 1

2
ð2lmn þ 2mln �nlm �nmlÞ; (21)

Almn ¼ 1

2
ð�2lmn þ 2mln �nlm þnmlÞ: (22)

The conventional proton DA ’ðxiÞ (8) is given in terms of
ðxiÞ as
’ðx1; x2; x3Þ ¼ 2ðx1; x2; x3Þ �ðx3; x2; x1Þ;

’lmn ¼ 2lmn �nml: (23)

Because of momentum conservation (x1 þ x2 þ x3 ¼ 1)
there are additional relations between lower and higher
moments:

lmn ¼ ðlþ1Þmn þlðmþ1Þn þlmðnþ1Þ: (24)

In particular this implies

1 ¼ 000 ¼ 100 þ010 þ001

¼ 200 þ020 þ002 þ 2ð011 þ101 þ110Þ ¼ . . .

(25)
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B. Next-to-leading twist operators and proton decay

In general, there exist three independent next-to-leading
(twist-four) three-quark DAs, cf. Ref. [23]. In this work we
only consider their normalization, which is related to the
contributions of local operators without derivatives. Thus
the problem is simplified considerably since the general
Lorentz decomposition of the relevant matrix element in-
volves only four structures:

4h0j�abcua�ð0Þub�ð0Þdc�ð0Þjpi
¼ V0

1 ðp6 CÞ��ð�5NÞ� þ V0
3mNð��CÞ��ð���5NÞ�

þ T0
1ðp�i���CÞ��ð���5NÞ�

þ T0
3mNð���CÞ��ð����5NÞ�; (26)

where mN is the nucleon mass and we have used the same
notation as in [23]. The leading-twist-three constants V0

1

and T0
1 correspond to fNV

000 and fNT
000 in our notation,

Eqs. (15) and (17), and are equal. The two additional
constants, V0

3 and T0
3 , correspond to subleading twist-four

contributions. The combinations �1 ¼ V0
1 � 4V0

3 and �2 ¼
6ðV0

1 � 4T0
3Þ are often arising in QCD sum rule calcula-

tions. They describe the nucleon coupling to the two
independent local operators

L 
ð0Þ ¼ �abc½uaTð0ÞC�	ubð0Þ� � ð�5�	d
cð0ÞÞ
; (27)

M 
ð0Þ ¼ �abc½uaTð0ÞC���ubð0Þ� � ð�5���d
cð0ÞÞ
;

(28)

which have been introduced in [34,35], respectively. Their
matrix elements are given by

h0jL
ð0Þjpi ¼ �1mNN
; (29)

h0jM
ð0Þjpi ¼ �2mNN
: (30)

Separating the components of different helicity, one can
write

L 
 ¼ 4ð�RUL � �LURÞ
; (31)

M 
 ¼ 8ð�RUR � �LULÞ
; (32)

where �L ¼ ð1� �5Þ=2, �R ¼ ð1þ �5Þ=2 are the left-
and right-handed projectors and

U L=R

 ¼ �abcua
½ð�L=Ru

bÞTC�L=Rd
c�: (33)

The Fierz identity implies

�abc½uaTð0ÞC��ubð0Þ�ð�5��d
cð0ÞÞ


¼ 2�abcð�½uaTð0ÞC�5d
bð0Þ�ucð0Þ


þ ½uaTð0ÞCdbð0Þ�ð�5u
cð0ÞÞ
Þ; (34)

�abc½uaTð0ÞC���ubð0Þ�ð�5���d
cð0ÞÞ


¼ 4�abcð½uaTð0ÞC�5d
bð0Þ�ucð0Þ


þ ½uaTð0ÞCdbð0Þ�ð�5u
cð0ÞÞ
Þ: (35)

Thus we get

mNð2�1 þ �2ÞNðpÞ ¼ 8h0j�abcðuaTCdbÞ�5u
cjpi; (36)

where, as it can be shown, the matrix element on the right-
hand side vanishes in the nonrelativistic limit.
The operators (27) and (28) appear also in the low-

energy effective action of generic GUT models, and their
matrix elements h�jLjpi and h�jMjpi give rise to proton
decay. These matrix elements, in turn, can be related to the
constants defined in (29) and (30), using soft pion theorems
or, what is the same, leading order in chiral perturbation
theory [36–40].
To this end one introduces two low-energy constants �

and � which extend the usual three-flavor baryon chiral
Lagrangian. They are defined by

h0jð�LURÞ
ð0Þjpi ¼ ��ð�LNÞ
;
h0jð�RULÞ
ð0Þjpi ¼ �ð�RNÞ
;

(37)

h0jð�LULÞ
ð0Þjpi ¼ ��ð�LNÞ
;
h0jð�RURÞ
ð0Þjpi ¼ �ð�RNÞ
:

(38)

Because of (31) and (32) one obtains � ¼ mN�1=4 and
� ¼ mN�2=8. The knowledge of these two constants al-
lows one to estimate nucleon-to-pion decay matrix ele-
ments. Using the notation of Ref. [41] the relevant
factors in the decay amplitude for the proton to �0 decay
(cf. Figure 1) have the form

WRL
0 ðp ! �0Þ ¼ �ffiffiffi

2
p

f
ð1þ gAÞ; (39)

WLL
0 ðp ! �0Þ ¼ �ffiffiffi

2
p

f
ð1þ gAÞ; (40)

where f is the tree level pion decay constant normalized
such that the experimental value is f� ’ 131 MeV and gA
is the axial charge.

e+p

π 0

e+pp

π 0

FIG. 1. Diagrams contributing to the nucleon decay amplitude p ! �0 þ eþ.
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III. DETAILS OF THE LATTICE CALCULATION

In this section we discuss the techniques used and the
details of the lattice calculation. From now on we work in
Euclidean space. In order to define the Euclidean counter-
parts of the operators Eqs. (12)–(14), (27), (28), and (33)
we interpret the Dirac matrices and coordinates as being
Euclidean. For our Euclidean Dirac matrices see
Appendix A. The expressions on the right-hand-side of
Eqs. (12)–(14), (27), and (28) are then modified accord-
ingly. In the first part of this section we summarize the
general features of our approach. The following parts con-
tain the description of the calculation of matrix elements
relevant for leading and next-to-leading twist DAs.

A. General features

To be as flexible as possible in our calculation we have
adopted a two-stage approach in the evaluation of the
correlators. In the first step we have calculated correlators
of the form

C
�l �m �n
���
 ¼ h�abc½D�1

. . .D�l
uðxÞ�a�½D�1

. . .D�m
uðxÞ�b�

� ½D�1 . . .D�n
dðxÞ�c�N ðyÞ
i; (41)

with lþmþ n � 2. As interpolating operator for the
proton we have used

N 
 ¼ �abc½uaTC�5d
b�uc
: (42)

Because of the presence of two u-quarks in the three-quark

operator, C �m �l �n
���
 can be reconstructed from C

�l �m �n
���
 by an

appropriate interchange of Dirac indices.
In the second step the general three-quark operator from

Eq. (41) was used to calculate the matrix elements for the
different quantities we discussed before. The general form

of the correlation functions we compute at this stage reads
after projection onto momentum ~p:

hO
ðt; ~pÞN 
0 ð0; ~pÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

p
2Eð ~pÞ

X
s

h0jO
ð0Þjp; siN
0 ðp; sÞ

� expð�Eð ~pÞtÞ: (43)

Here contributions of excited states have been neglected
and the dependence of the nucleon states and spinors on the
spin vector s has been made explicit. For the energy Eð ~pÞ
we use the continuum expression Eð ~pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ~p2
q

. We

have checked that this dispersion relation is fulfilled well
within errors (see, e.g., Fig. 2), so we had to fit only the
mass in the exponential. The correlator in Eq. (43) can be
directly constructed from the general correlation function
(41). The matrix element on the right-hand side is the
quantity we want to determine. Thus we have also to
calculate the normalization constant ZNð ~pÞ, which can be
extracted from the usual two-point nucleon correlator

CNð ~pÞ � ð�þÞ
0
hN 
ðt; ~pÞN 
0 ð0; ~pÞi

¼ ZNð ~pÞmN þ Eð ~pÞ
Eð ~pÞ expð�Eð ~pÞtÞ (44)

with the positive parity projection �þ ¼ ð1þ �4Þ=2. In the
evaluation of the correlator in Eq. (41) the overlap of the
nucleon interpolator with the nucleon state is improved by
Jacobi smearing at the source while the sink is not smeared
since we want to evaluate local matrix elements. Thus the
nucleon correlator in Eq. (44) cannot be extracted from the
general three-quark nucleon correlator (41) but must be
computed separately with Jacobi smeared sink and source.
The normalization constant ZNð ~pÞ could be removed by

considering the ratio

(a) (b)

FIG. 2 (color online). Effective energy plots for different nucleon momenta at � ¼ 5:40 and � ¼ 0:13610 for the nucleon correlator
(a) and the distribution amplitude correlators (b), where we have averaged over all available correlators. The black circles were
obtained at zero nucleon momentum, the red squares and blue diamonds correspond to ~p2 ¼ ð2�=LÞ2 and ~p2 ¼ 2ð2�=LÞ2,
respectively. The lowest black line shows the nucleon mass as obtained by direct calculation. The middle red and the top blue line
correspond to energies E2

eff ¼ m2
eff þ ~p2 with ~p2 ¼ ð2�=LÞ2 and ~p2 ¼ 2ð2�=LÞ2, respectively.
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ðð�þÞ
0
hO
ðtÞN 
0 ð0ÞiÞ2
ð�þÞ
0
hN 
ðtÞN 
0 ð0Þi

: (45)

However, as we will see later, the location of the effective
mass plateaus is different for the two correlators, presum-
ably due to the different smearings on the sink, spoiling
this simple approach. Thus instead of calculating the ratio
we perform a correlated fit to the two correlators in the
range of the corresponding effective mass plateaus.

Up to now we did not take into account that our calcu-
lations are performed on a space-time lattice. This leads to
reduced symmetry compared to the continuum. Because of
this symmetry reduction we expect additional operator
mixings which are not present in the continuum. In par-
ticular, we can have mixing with lower-dimensional op-
erators. Thus a systematic analysis and careful choice of
the operators used is mandatory. In [31] a complete clas-
sification with respect to the spinorial extension of the
hypercubic group Hð4Þ for all three-quark operators with-
out derivatives is presented. For operators with one and two
derivatives the classification is worked out for the leading-
twist case. These results enable us to derive operators with
‘‘good’’ mixing properties, good in the sense that they do
not mix with lower-dimensional operators. They belong to
definite irreducible representations of the spinorial exten-
sion of Hð4Þ and are most easily constructed in the Weyl
representation of the Dirac matrices. Therefore we also
work in this representation.

In Table I we give an overview of the irreducible mul-
tiplets of operators taken from Table 4.1 in [31], with a

modified notation adapted to our needs, e.g., operator Bð2Þ
1;i

corresponds to OðiÞ
DD1 in [31] and similarly for the others.

The next-to-leading twist operators (27) and (28) lie com-

pletely within the 

4
1 representation with mass dimension

9=2. The operators relevant for the leading-twist DAs
belong to other multiplets. As operators without derivatives
in the 
8 representation do not have an overlap with the
nucleon, the relevant operators with good mixing proper-

ties lie in 

12
1 , 


12
2 , and 


4
2 for zero, one and two derivatives,

respectively. Rewriting these irreducible operators in terms
of the DA operators defined in (12)–(14) allows us to
choose those that are suited for lattice calculations. The
ensuing relations for leading-twist spin-1=2 baryon DAs
are summarized in Appendix B. In the following we give
some details for these operators.
Initially, the irreducible operators in [31] have a general

flavor content. Considering the case of two derivatives as
an example we have operators of the type

����
�� D�D��

abcfa�g
b
�h

c
�; (46)

where ����
�� is a tensor projecting the operator to a certain

irreducible representation. As it is not important for the
construction of irreducibly transforming operators on
which of the quarks the derivatives act, the different pos-
sibilities fall into the same irreducible representation. The
proton operators are then recovered by the identification

f ! u; g ! u; h ! d; (47)

and subsequent projection onto isospin 1=2, which is done
by combining properly different multiplets. This procedure
differs somewhat from the approach adopted in Ref. [31],
but it leads to equivalent results.
The operators used in our calculation have to be renor-

malized. In [42,43] the required renormalization matrices
were calculated nonperturbatively on the lattice imposing
an RI0-MOM-like renormalization condition. Using con-
tinuum perturbation theory and the renormalization group

the results were converted to the MS scheme at a scale of
4 GeV2. Note that in this procedure the mixing with ‘‘total
derivatives’’ is automatically taken into account. The scale
at which our renormalization condition is imposed is taken
to be 20 GeV2, and the systematic uncertainty is estimated
by varying this scale between 10 GeV2 and 40 GeV2.

B. Moments of the leading-twist DA

1. 0th moment

Using the representation 

12
1 and the relations to the DA

operators given in Appendix B we construct three quad-

TABLE I. Overview of irreducibly transforming multiplets of three-quark operators sorted by their mass dimension (number of
derivatives) taken from [31] with a notation adapted to our needs. Since for the classification it is not important on which quarks the
derivatives act, only the sum lþmþ n is given as a superscript. The subscript gives the numbering of the operators according to the
numbering convention in [31]. The first number corresponds to the lower index of [31] while the second number corresponds to the
upper index in [31] labelling different operators within one multiplet (cf. Table 4.1 in [31]). In the first column we give also the
representations in the notation of [31] where the superscript denotes the dimension.

d ¼ 9=2 (0 derivatives) d ¼ 11=2 (1 derivative) d ¼ 13=2 (2 derivatives)



4
1 Bð0Þ

1;i , B
ð0Þ
2;i , B

ð0Þ
3;i , B

ð0Þ
4;i , B

ð0Þ
5;i Bð2Þ

1;i , B
ð2Þ
2;i , B

ð2Þ
3;i



4
2 Bð2Þ

4;i , B
ð2Þ
5;i , B

ð2Þ
6;i


8 Bð0Þ
6;i Bð1Þ

1;i Bð2Þ
7;i , B

ð2Þ
8;i , B

ð2Þ
9;i



12
1 Bð0Þ

7;i , B
ð0Þ
8;i , B

ð0Þ
9;i Bð1Þ

2;i , B
ð1Þ
3;i , B

ð1Þ
4;i Bð2Þ

10;i, B
ð2Þ
11;i, B

ð2Þ
12;i, B

ð2Þ
13;i



12
2 Bð1Þ

5;i , B
ð1Þ
6;i , B

ð1Þ
7;i , B

ð1Þ
8;i Bð2Þ

14;i, B
ð2Þ
15;i, B

ð2Þ
16;i, B

ð2Þ
17;i, B

ð2Þ
18;i
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ruplets of operators with isospin 1=2 from the 12 irreduc-
ible three-quark operators, which can be used to calculate
fN:

O 000
A;0 ¼ 4

3

�B000
8;6 þ B000

9;6

B000
8;1 � B000

9;1

�B000
8;12 þ B000

9;12

B000
8;7 � B000

9;7

0
BBBB@

1
CCCCA;

O000
B;0 ¼ 4

3

�B000
8;4 þ B000

9;4

B000
8;3 � B000

9;3

�B000
8;10 þ B000

9;10

B000
8;9 � B000

9;9

0
BBB@

1
CCCA;

O000
C;0 ¼ 4

ffiffiffi
2

p
3

B000
8;2 � B000

9;2

�B000
8;5 þ B000

9;5

B000
8;8 � B000

9;8

�B000
8;11 þ B000

9;11

0
BBB@

1
CCCA:

(48)

The three-quark operatorsO on the left-hand side have also
a Dirac index which we do not give explicitly here. The
relations to the DA operators given in Appendix B yield
then

h0jO000
A;0 jpi ¼ fNðip1�1 � ip2�2ÞNðpÞ; (49)

h0jO000
B;0 jpi ¼ fNðip3�3 þ Eð ~pÞ�4ÞNðpÞ; (50)

h0jO000
C;0 jpi ¼ fNðip1�1 þ ip2�2 � ip3�3

þ Eð ~pÞ�4ÞNðpÞ: (51)

The operators O000
B;0 and O000

C;0 are most suitable for our

calculation since O000
A;0 would require nonzero spatial mo-

menta in the 1 or 2 direction, which would increase the
statistical noise. Thus, in order to determine fN , we evalu-

ate finally only the following two correlators at ~p ¼ ~0:

C000
B;0 � hð�4O000

B;0 ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ fN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q Eð ~pÞðmN þ Eð ~pÞÞ þ p2
3

Eð ~pÞ expð�Eð ~pÞtÞ;
(52)

C000
C;0 � hð�4O000

C;0ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ fN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q Eð ~pÞðmN þ Eð ~pÞÞ þ p2
1 þ p2

2 � p2
3

Eð ~pÞ
� expð�Eð ~pÞtÞ: (53)

2. 1st moments

We use the irreducible operators with one derivative
from Appendix B to construct operators for the calculation
of the first moments of the proton DA,

O lmn
A;1 ¼ 4

ffiffiffi
2

p
3

Blmn
6;1 � Blnm

7;1

�Blmn
6;2 þ Blnm

7;2

�Blmn
6;7 þ Blnm

7;7

Blmn
6;8 � Blnm

7;8

0
BBBB@

1
CCCCA;

Olmn
B;1 ¼ 4

ffiffiffi
2

p
3

Blmn
6;3 � Blnm

7;3

�Blmn
6;4 þ Blnm

7;4

�Blmn
6;9 þ Blnm

7;9

Blmn
6;10 � Blnm

7;10

0
BBB@

1
CCCA;

Olmn
C;1 ¼ 4

3

Blmn
6;6 � Blnm

7;6

Blmn
6;5 � Blnm

7;5

�Blmn
6;12 þ Blnm

7;12

�Blmn
6;11 þ Blnm

7;11

0
BBB@

1
CCCA;

(54)

where the superscript lmn with lþmþ n ¼ 1 and non-
negative integers l, m, n indicates on which fields the
derivative acts. The matrix elements of these operators
are then

h0jOlmn
A;1 jpi ¼ fN

lmn½ðp1�1 � p2�2Þðip3�3 � Eð ~pÞ�4Þ
� 2ip1p2�1�2�NðpÞ; (55)

h0jOlmn
B;1 jpi ¼ fN

lmn½ðp1�1 þ p2�2Þðip3�3 þ Eð ~pÞ�4Þ
� 2p3Eð ~pÞ�3�4�NðpÞ; (56)

h0jOlmn
C;1 jpi ¼ fN

lmnð�p1�1 þ p2�2Þðip3�3

þ Eð ~pÞ�4ÞNðpÞ; (57)

where again a Dirac index is implied for the three-quark
operators O. Unlike the case of the 0th moment all opera-
tors require at least one nonzero component of the spatial
momentum. Hence using all operators available in this case
we evaluate the correlators

Clmn
A;1 � hð�4�1Olmn

A;1 ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ �fN
lmn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q
p1

Eð ~pÞðmN þEð ~pÞÞ þ 2p2
2 �p2

3

Eð ~pÞ
� expð�Eð ~pÞtÞ; (58)

Clmn
B;1 � hð�4�1Olmn

B;1 ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ fN
lmn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q
p1

Eð ~pÞðmN þ Eð ~pÞÞ þ p2
3

Eð ~pÞ
� expð�Eð ~pÞtÞ; (59)

Clmn
C;1 � hð�4�1Olmn

C;1 ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ �fN
lmn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q
p1

Eð ~pÞðmN þ Eð ~pÞÞ þ p2
3

Eð ~pÞ
� expð�Eð ~pÞtÞ (60)

to determine the first moments 100, 010, and 001.
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3. 2nd moments

The calculation of the second moments requires the use

of the four-dimensional irreducible representation 

4
2 to

avoid mixing with lower-dimensional operators.
Unfortunately, this decreases also the number of possible
operators. Using the irreducible three-quark operators with
two derivatives and the relations to the DA operators from
Appendix B we construct

O lmn
2

:¼ 4

3
ffiffiffi
3

p
Blnm

6;4 �Blmn
5;4

Blnm
6;3 �Blmn

5;3

Blnm
6;2 �Blmn

5;2

Blnm
6;1 �Blmn

5;1

0
BBBB@

1
CCCCA; (61)

where now lþmþ n ¼ 2 with l, m, and n nonnegative
integers. The corresponding matrix element is given by

h0jOlmn
2 jpi ¼ fN

lmn½p1p2�1�2ðip3�3 þ Eð ~pÞ�4Þ
þ ip3Eð ~pÞ�3�4ðip1�1 � ip2�2Þ�NðpÞ

(62)

and the second moments are determined from

Clmn
2 � hð�2�3�4Olmn

2 ðt; ~pÞÞ
ðN ð0; ~pÞÞ
0 ð�þÞ
0
i

¼ �fN
lmn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZNð ~pÞ

q
p2p3

Eð ~pÞðmN þ Eð ~pÞÞ þ p2
1

Eð ~pÞ
� expð�Eð ~pÞtÞ: (63)

C. Next-to-leading twist DAs

For the higher-twist DAs we consider only the operators
without derivatives. If we write the operators in Eqs. (27),
(28), and (33) with general flavor content,

L 
ð0Þ ¼ �abc½faTð0ÞC�	g
bð0Þ� � ð�5�	h

cð0ÞÞ
; (64)

M 
ð0Þ ¼ �abc½faTð0ÞC���g
bð0Þ� � ð�5���h

cð0ÞÞ
;
(65)

U L=R

 ð0Þ ¼ �abc½ð�L=Rg

bÞTð0ÞC�L=Rh
cð0Þ� � fa
ð0Þ;

(66)

we can express them in terms of the irreducible three-quark
operators as

L ¼ ffiffiffi
8

p
Blmn

3;1 þBlmn
4;1

Blmn
3;2 þBlmn

4;2

Blmn
3;3 þBlmn

4;3

Blmn
3;4 þBlmn

4;4

0
BBB@

1
CCCA; M¼ ffiffiffiffiffiffi

96
p

Blmn
2;1

Blmn
2;2

Blmn
2;3

Blmn
2;4

0
BBB@

1
CCCA (67)

and

�RUL � �LUR ¼ ffiffiffi
2

p
Blmn

3;1

Blmn
3;2

Blmn
3;3

Blmn
3;4

0
BBB@

1
CCCA;

�LUL � �RUR ¼
ffiffiffiffiffiffiffiffi
2=3

p Blmn
1;1 �Blmn

2;1

Blmn
1;2 �Blmn

2;2

Blmn
1;3 �Blmn

2;3

Blmn
1;4 �Blmn

2;4

0
BBB@

1
CCCA:

(68)

After the identification f ! u, g ! u, and h ! d we
restore the proton operators in (27), (28), and (33).

IV. NUMERICAL RESULTS

We have evaluated our correlators on the QCDSF/DIK
configurations generated with two flavors of clover fermi-
ons at two different � values summarized in Table II. For
� ¼ 5:29 we have used two different lattice sizes, 243 �
48 and 163 � 32, each at three different quark masses. For
� ¼ 5:40we have evaluated the correlators at five different
quark masses on 243 � 48 lattices. The lattice spacing has
been set via the Sommer parameter r0 ¼ 0:467 fm [44,45].
As far as possible we have also checked that the depen-
dence of the final results on the fitting procedures discussed
below is only very mild and the deviations are consistent
with the present statistical errors.

A. General discussion

As already anticipated we can reduce the noise by
combining different momenta and/or different operators.
However, calculating the general three-quark operator for
many momenta turned out to be too expensive. Hence the
general correlators (41), and therefore also the correlators
for DA operators, were evaluated only for a minimal set of
momenta.
To extract the nucleon wave function normalization

constant fN we have fitted the correlator

C000
0 ¼ 1

2
ðC000

B;0 þ C000
C;0Þ; (69)

where we have averaged over the two possible correlators

at ~p ¼ ~0. Similarly, for the first moments we have used

Clmn
1 ¼ 1

3
ðClmn

A;1 þ Clmn
B;1 þ Clmn

C;1 Þ; (70)

with lþmþ n ¼ 1 and ~p ¼ ð2�=L; 0; 0Þ, where L is the
spatial extent of our lattice. For the second moment we
have only one correlator, hence no averaging is possible
and we have evaluated it for ~p ¼ ð0; 2�=L; 2�=LÞ.
To determine the normalization constant ZNð ~pÞ we had

also to evaluate the usual nucleon correlator. As the addi-
tional smearing on the sink introduces additional noise, in

particular, for ~p � ~0, we have improved the signal by using
different momenta in the nucleon correlator. For the 163 �
32 lattices we have worked with
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C1
N ¼ 1

3
ðCNð2�=L; 0; 0Þ þ CNð0; 2�=L; 0Þ

þ CNð0; 0; 2�=LÞÞ (71)

and

C2
N ¼ 1

3
ðCNð0; 2�=L; 2�=LÞ þ CNð2�=L; 0; 2�=LÞ

þ CNð2�=L; 2�=L; 0ÞÞ; (72)

while for the 243 � 48 lattices we have used a larger
number of momenta:

C1
N ¼ 1

3
ðCNð2�=L; 0; 0Þ þ CNð0; 2�=L; 0Þ

þ CNð0; 0; 2�=LÞÞ; (73)

C2
N ¼ 1

6
ðCNð0; 2�=L; 2�=LÞ þ CNð0;�2�=L; 2�=LÞ

þ CNð2�=L; 0; 2�=LÞ þ CNð2�=L; 0;�2�=LÞ
þ CNð2�=L; 2�=L; 0Þ þ CNð2�=L;�2�=L; 0ÞÞ:

(74)

As already mentioned, the location of the effective mass
plateaus for the nucleon correlator differs from that for the
other correlators as exemplified in Fig. 2. Thus, instead of
calculating the ratios of the correlators we have performed
a joint fit. As all correlators are evaluated on the same
gauge configuration we should also take into account all
possible statistical correlations. We have employed two
different fitting procedures with different possibilities for
incorporating the correlations:

PC: The first possibility is to fit every moment of the DA
separately, e.g., for fN

100 we fit the correlators C100
1 and

C1
N simultaneously and incorporate the correlations of both

correlators and those between different time-slices.
However, since we want to extract 100 and not fN

100

we should in principle also consider the correlation with
C000. Because of the omission of these additional correla-
tions we call this procedure ‘‘partially correlated’’.

FC: For the second possibility we have estimated the full
cross correlation matrix and call this method therefore
‘‘fully correlated’’. In this case we fit simultaneously the
correlators for the zeroth, first and second moment as well
as the nucleon correlator with the same modulus of the
momentum.

Both methods have some common disadvantages. In
order to extract the moments we have to perform multi-
parameter fits which involve nucleon mass, different nor-

malization constants and the moments. The second
disadvantage is the required knowledge of the smeared-
smeared nucleon correlator for nonzero spatial momenta,
which introduces additional noise. This requirement can be
avoided if we consider ratios of the correlators, which are
equal to ratios of moments:

lþmþ n ¼ 1: Rlmn ¼ lmn

S1
¼ Clmn

1

CS;1

;

S1 ¼ 100 þ010 þ001;

CS;1 ¼ C100
1 þ C010

1 þ C001
1 ; (75)

lþmþ n¼ 2: Rlmn ¼lmn

S2
¼ Clmn

2

CS;2

;

S2 ¼ 2ð011 þ101 þ110Þ þ200 þ020 þ002;

CS;2 ¼ 2ðC011
2 þC101

2 þC110
2 Þ þC200

2 þC020
2 þC002

2 :

(76)

Now we need additional input to determine the normaliza-
tion of the momentslmn with lþmþ n � 1. This can be
obtained by using the constraint (25). Thus, we require,
e.g., for the first moments that the renormalized moments
satisfy X

ij

Zij
lat
j ¼ 1; (77)

where lat
i are the unrenormalized lattice values

lat
1

:¼ 100; lat
2

:¼ 010; lat
3

:¼ 001 (78)

and Z is the renormalization matrix. This leads immedi-
ately to a constraint for the ratios Rlat

i ¼ lat
i =

P
j

lat
j :

X
i

lat
i ¼ 1P

ij
ZijR

lat
j

: (79)

As in this case we use explicitly the constraint (25) we call
this analysis method ‘‘constrained’’. The calculation of the
ratios Rlmn does not suffer from the disadvantages men-
tioned above. Fitting these ratios to a constant we can reach
a much higher precision compared to the unconstrained
method discussed before. In Fig. 3 we present some of
these ratios obtained on one of the ensembles with � ¼
5:40. They exhibit longer and less noisy plateaus compared
to the correlators in Fig. 2.
The lattice results are obtained at nonphysical quark

masses and we have to extrapolate them to the physical
point. To our knowledge there are no calculations in chiral

TABLE II. The set of lattices used in our calculation. The scale was set via the Sommer parameter r0 ¼ 0:467 fm.

� � m� [GeV] volume a [fm] L [fm]

5.29 0.1340, 0.1350, 0.1359 1.411, 1.029, 0.587 163 � 32 0.08 1.28

5.29 0.1355, 0.1359, 0.1362 0.800, 0.587, 0.383 243 � 48 0.08 1.92

5.40 0.135, 0.1356, 0.1361, 0.13625, 0.1364 1.183, 0.856, 0.648, 0.559, 0.421 243 � 48 0.07 1.68
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perturbation theory to guide our extrapolation. Therefore
we have to rely on the behavior of our data and extrapolate
them linearly to the physical point. To estimate the system-
atic uncertainty of this chiral extrapolation we have per-
formed also an extrapolation including a quadratic term.
The systematic uncertainty is then taken to be the differ-
ence of the two results.

In the following we present the results of the constrained
and unconstrained analysis methods discussed before in

the MS scheme at 4 GeV2 while the raw lattice results are
summarized in Appendix C. Using the unconstrained
analysis we obtain the normalization constants of the
DAs and test how good the constraint in (24) is satisfied.
Better results with smaller errors for the higher moments of
the leading-twist DA are then obtained from the con-
strained analysis.

B. Unconstrained analysis

In Table III we present the results for the different
constants which are associated with operators without
derivatives: the nucleon wave function normalization con-
stant fN and the next-to-leading twist normalization con-
stants �1 and �2. Our results confirm the relative signs of
fN , �1 and �2 calculated in [23,46]. Furthermore we ob-
servemNð2�1 þ �2Þ=8 ¼ �þ � � 0 as in [41,47]. This is
expected since due to (36) 2�1 þ �2 vanishes in the non-
relativistic limit and is known to be small at small quark
masses [48].

Our results for the nucleon wave function normalization
constant fN exhibit a clearly nonlinear behavior as a func-
tion of m2

�. However, the dimensionless ratio fN=m
2
N is

approximately linear [see Fig. 4(a)] and it has the addi-
tional advantage that it does not suffer from the uncertainty
in setting the scale on the lattice. The chiral behavior of �1

and �2 is less clear and we have performed two different
chiral extrapolations for these quantities. First we have
extrapolated the constants �i linearly to the physical point
and then we have applied the same procedure to the ratios
�i=mN . The linear fit looks more favorable for the ratios

�i=mN [see Fig. 4(b)]. Thus we take the results from this fit
as our final values, but for comparison we also give the
results from the other extrapolation. In contrast to [41,47]
we do not observe linear behavior for mN�i as a function
the quark mass. However, our results from the linear
extrapolation of �i=mN are compatible within the errors
with those in [41,47].
We have determined the moment combinations ’lmn ¼

2lmn �nml also directly and not from the results for
lmn, using the PC fitting procedure. Thus we had also to
compute fN within this approach. We have also determined
�i using this analysis method. The results are presented in
Table IV. The correlators for higher moments entering the
FC fitting procedure seem to favor slightly larger nucleon
masses, while the PC analysis leads to somewhat higher
values of the normalization constants. We consider the
values for the normalization constants obtained within
the PC analysis to be more reliable as they are not per-
turbed by the noisier correlators for the higher moments.
As expected, the nonzero spatial momenta make the

results for the first moments noisier than for operators
without derivatives. The renormalized results for the mo-
ments100,010, and001 show clearly the deviation from
the asymptotic case with 100 ¼ 010 ¼ 001 ¼ 1=3. As
the relative differences of these moments describe the
deviation from the symmetric case, they are of particular
interest in phenomenological applications. Thus we have
also determined these differences directly and the bare
results from the PC analysis are given in Appendix C.
Although these results show a significant deviation from
the symmetric case, the errors are large and do not allow
reasonable quantitative conclusions. To illustrate these we
show in Fig. 5(a) the most important asymmetry 100 �
010 normalized by the sum S1 so that we can compare this
later directly with the results from the constrained analysis.
However, the results for the moments are less affected by
the noise as shown on the example of100 in Fig. 5(b) also
normalized by S1.
We have checked our results by calculating the sums S1

and S2 according to Eqs. (75) and (76). The results for the
bare and renormalized sums are shown Fig. 6. For the
renormalized moments the constraint (24) is fulfilled
very well indicating the consistency of our results. Of
course the statistical and systematic errors for the case of
two derivatives in the operators are higher. Nevertheless,
the results still allow us to see the asymmetries. Because of
the large errors we give these only for the bare results in
Appendix C.

C. Constrained analysis of higher moments

In the last section we have seen that the unconstrained
analysis of our data gives us results consistent with theo-
retical constraint (25). However, better estimates of mo-
ments and, in particular, of asymmetries can be obtained
from the correlator ratios Rlmn. Indeed, the values extracted

FIG. 3 (color online). Plateaus of correlator ratios R100 (black
diamonds) and R200 (blue squares) for � ¼ 5:40 and � ¼ 0:1361
together with the corresponding fit values and the associated
error bands.
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(a) (b)

FIG. 4 (color online). Linear chiral extrapolation for fN=m
2
N (a) and �i=mN (b) with the 1,2 and 3 sigma error bands.

TABLE III. Chirally extrapolated results from the FC analysis for normalization constants and the moments lmn at � ¼ 5:40 and
� ¼ 5:29 in the MS renormalization scheme at 4 GeV2. The first error is the combined statistical error of the moments and
renormalization matrices. The second (third) errors are the systematic uncertainties due to the chiral extrapolation (renormalization).

� 5.40 5.29

fN=m
2
N � 103 3.486(60)(56)(60) 3.290(62)(100)(72)

��1=mN � 103 ½GeV� 40.64(65)(194)(110) 41.24(72)(200)(128)

��1 � 103 ½GeV2� 49.84(95)(290)(135) 52.47(104)(135)(164)

�2=mN � 103 ½GeV� 80.17(131)(396)(218) 82.08(146)(452)(254)

�2 � 103 ½GeV2� 98.53(189)(601)(268) 105.12(209)(250)(324)

100 0.3457(75)(89)(3) 0.3530(62)(132)(7)

010 0.3124(81)(128)(4) 0.3176(62)(108)(2)

001 0.3142(77)(100)(4) 0.3283(62)(68)(4)

011 0.0838(73)(266)(44) 0.0851(61)(1)(44)

101 0.1121(92)(250)(58) 0.1020(66)(179)(68)

110 0.1051(67)(6)(4) 0.0979(54)(5)(9)

200 0.1523(106)(699)(129) 0.1639(86)(216)(114)

020 0.1268(97)(153)(98) 0.1277(79)(1)(76)

002 0.1398(99)(45)(128) 0.1473(84)(40)(111)

TABLE IV. Chirally extrapolated PC results for normalization constants and the moments ’lmn at � ¼ 5:40 and � ¼ 5:29 in theMS
renormalization scheme at 4 GeV2. The first error is the combined statistical error of the moments and renormalization matrices. The
second (third) errors are the systematic uncertainties due to the chiral extrapolation (renormalization). Note that only the values for
’lml can be directly compared with the values for lml in Table III.

� 5.40 5.29

fN=m
2
N � 103 3.672(78)(90)(63) 3.538(79)(283)(77)

��1=mN � 103 ½GeV� 42.19(81)(86)(115) 45.07(92)(315)(140)

�2=mN � 103 ½GeV� 82.91(171)(18)(225) 86.90(87)(641)(261)

’100 0.3871(313)(528)(4) 0.3903(204)(464)(12)

’010 ¼ 010 0.3150(226)(290)(720) 0.3298(159)(118)(608)

’001 0.3155(272)(453)(2) 0.3277(190)(270)(5)

’011 0.0712(180)(127)(92) 0.0827(137)(103)(92)

’101 ¼ 101 0.1091(112)(138)(64) 0.1176(105)(171)(64)

’110 0.1266(178)(82)(40) 0.1069(137)(103)(49)

’200 0.1879(250)(942)(135) 0.1709(184)(569)(121)

’020 ¼ 020 0.1275(149)(105)(108) 0.1261(117)(78)(75)

’002 0.1357(233)(375)(135) 0.1249(193)(296)(109)
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from the ratios (summarized in Table V) have smaller
errors than those from the unconstrained analysis. The
main reasons for this improvement are that we do not
have to determine the energy Eð ~pÞ and normalization
constant ZNð ~pÞ for nonzero spatial momenta as both drop
out in the constrained analysis. This reduces also the
statistical noise as the nucleon correlator with smeared
source and sink is not involved anymore in the data
analysis.

The normalization constants fN and �i in Table V were
determined by performing a joint fit of all relevant corre-
lators. This approach is equivalent to the FC analysis
method. However, as the correlators with higher mo-
menta are not involved the obtained results have smaller
errors compared to the FC analysis. Our values for � ¼
�0:0091	 0:0002st 	 0:0003sys and � ¼ 0:0090	
0:0002st 	 0:0003sys obtained from �i=mN at � ¼ 5:40

(see Table V) are consistent within the errors with the
recent results � ¼ �0:0112	 0:0012st 	 0:0022sys and

� ¼ 0:00120	 0:0013st 	 0:0023sys from simulations

with 2þ 1 flavors of domain-wall fermions [47].
In principle one can calculate similar ratios for correla-

tors involving

’lmn ¼ Vlmn � Almn

instead of using

lmn ¼ ðVlmn � Almn þ 2TlnmÞ=3:
However, this leads to statistical errors which are about 3
times larger.
To illustrate the dependence of R100 on the pion mass we

present in Figs. 7(a) and 7(b) linear and quadratic chiral
extrapolations of this quantity. As R010 exhibits a similar
behavior, but with opposite slope, the deviation from a
linear dependence is amplified in the asymmetry R100 �

(a) (b)

FIG. 5 (color online). Chiral extrapolation of the asymmetry ð100 �010Þ=S1 (a) from PC results and the ratio100=S1 (b) from FC
results. We have normalized the values by S1 so that we are able to compare these directly with the plots in the constrained analysis in
Fig. 7.

(a) (b)

FIG. 6 (color online). The bare (solid black line with statistical error band) and renormalized (blue diamonds) sum of the first
moments (a) and second moments (b) according to Eq. (24) as obtained from the FC analysis. The smaller errors for the renormalized
values are purely statistical, while the larger ones include the systematical error due to the chiral extrapolation. The three different
points were obtained from three different renormalization scales � in the RI0-MOM scheme to estimate the systematic uncertainty due
to the renormalization. The theoretical constraint (25) that the sum should be exactly equal to one is fulfilled in both cases.
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TABLE V. The results for lmn and the relevant asymmetries as obtained from the chirally extrapolated ratios Rlmn in the MS
renormalization scheme at 4 GeV2. The values marked by a star were used in the analysis of the corresponding asymmetries to
determine the overall normalization. The first error is the combined statistical error of the moments and renormalization matrices
dominated by the statistical uncertainties of the moments. The second (third) errors are the systematic uncertainties due to the chiral
extrapolation (renormalization).

� 5.40 5.29

fN=m
2
N � 103 3.573(69)(33)(61) 3.392(68)(178)(74)

��1=mN � 103 ½GeV� 41.29(74)(45)(113) 42.32(81)(277)(133)

�2=mN � 103 ½GeV� 81.27(149)(90)(221) 83.90(167)(599)(261)

100 0.3638(11)(68)(3) 0.3549(11)(61)(2)

010 ¼ ’010 0.3023(10)(42)(5) 0.3100(10)(73)(1)

001? 0.3339(9)(26)(2) 0.3351(9)(11)(2)

100 �001 0.0300(23)(93)(1) 0.0199(23)(46)(4)

001 �010 0.0313(17)(12)(7) 0.0251(16)(84)(2)

011 0.0724(18)(82)(70) 0.0863(23)(97)(74)

101 ¼ ’101 0.1136(17)(32)(21) 0.1135(23)(3)(33)

110? 0.0937(16)(3)(38) 0.0953(21)(58)(31)

200 0.1629(28)(7)(68) 0.1508(38)(213)(64)

020? ¼ ’020 0.1289(27)(37)(51) 0.1207(32)(43)(56)

002 0.1488(32)(77)(73) 0.1385(36)(47)(64)

110 �011 0.0211(27)(78)(32) 0.0075(33)(69)(44)

101 �110 0.0204(21)(134)(50) 0.0172(29)(82)(57)

200 �020 0.0321(33)(69)(55) 0.0335(43)(26)(78)

002 �020 0.0193(24)(32)(42) 0.0170(36)(8)(56)

(a) (b)

(c) (d)

FIG. 7 (color online). The effect of different chiral extrapolations is demonstrated in the case of R100 where in (a) a linear fit is
performed and in (b) a quadratic one. In the lower plots we show the chiral extrapolation of the asymmetry R100 � R010 (c) and the sum
R100 þ R010 (d). All the plots contain also one, two and three sigma error bands of the corresponding fits.
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R010 [Fig. 7(c)]. On the other hand, this leads to linear
behavior of R100 þ R010 [Fig. 7(d)]. Thus, due to momen-
tum conservation one expects also linear behavior for R001,
which is indeed observed in our data. Of course deviations
from linear behavior are also possible for all other mo-
ments. However, they seem to be smaller than present
statistical errors. Comparing the chiral extrapolations in
Fig. 5(a) to Fig. 7(c) and in Fig. 5(b) to Fig. 7(a) reveals the
increased accuracy of the constrained analysis.

This increase of accuracy is even more important for
higher moments. From Figs. 8(a) and 8(b) it is obvious that
the improvement for the second moments allows us not
only to determine the moments but also the more interest-
ing asymmetries. Even more, with the help of the con-
straints (24) the moments 200, 020, and 002 can be
calculated from the other second moments and the first
moments. Our results are fully consistent with the direct
determination. This approach can be particularly advanta-
geous in the calculation of the third moments as one can
then dispense with the evaluation of 300, 030, and 003.

Our data do not allow us to perform a continuum
extrapolation. However, the fact that the � ¼ 5:29 and
� ¼ 5:40 results are compatible with each other indicates
that its effect would be small. Thus we take the data from
our finer lattice (� ¼ 5:40) as our final numbers. For
convenience we summarize in Table VI the corresponding
moments ’lmn at two different renormalization scales as
obtained from the � ¼ 5:40 results in Table V. The change
of scales has been performed in the one-loop approxima-
tion with �MS ¼ 226 MeV. For this purpose the moments

lmn, being not multiplicatively renormalizable, had to be
expressed as linear combinations of quantities that are
multiplicatively renormalizable, at least in the one-loop
approximation, i.e., the coefficients cnl to be introduced
in the next section. Their values (and hence also the values
of the moments lmn at the new scale) depend somewhat
on the set of moments lmn that are used as an input. We
employed here the set 1 of moments defined in the follow-
ing section.

(a) (b)

FIG. 8 (color online). Linear chiral extrapolation of the second moment ratio R110 (a) and of the asymmetry R200 � R020 (b) as
obtained from the constrained analysis with one, two and three sigma error bands of the corresponding fits.

TABLE VI. Moments ’lmn as obtained from the independent subset 010, 001, 110, 200 and 020 at � ¼ 5:40 in Table V at two
different scales �2 ¼ 4 GeV2 and �2 ¼ 1 GeV2 in the MS renormalization scheme.

Asymptotic �2 ¼ 4 GeV2 �2 ¼ 1 GeV2

fN � 103 ½GeV2� - 3.144(61)(83) 3.234(63)(86)

��1 � 103 ½GeV2� - 38.72(76)(148) 35.57(65)(136)

�2 � 103 ½GeV2� - 76.23(139)(291) 70.02(128)(268)

’100 1
3 � 0:333 0.3936(34)(126) 0.3999(37)(139)

’010 1
3 � 0:333 0.3023(10)(47) 0.2986(11)(52)

’001 1
3 � 0:333 0.3041(29)(96) 0.3015(32)(106)

’200 1
7 � 0:143 0.1788(53)(179) 0.1816(64)(212)

’020 1
7 � 0:143 0.1289(27)(88) 0.1281(32)(106)

’002 1
7 � 0:143 0.1310(95)(324) 0.1311(113)(382)

’011 2
21 � 0:095 0.0659(74)(266) 0.0613(89)(319)

’101 2
21 � 0:095 0.1072(35)(128) 0.1091(41)(152)

’110 2
21 � 0:095 0.1076(56)(182) 0.1092(67)(219)
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V. MODELLING THE NUCLEON DISTRIBUTION
AMPLITUDE

Since the available nonperturbative information on the
nucleon DA comes in the form of a few first moments, it is
tempting to choose a model which is polynomial in mo-
mentum fractions at the reference scale �0. A natural
choice corresponds to the (truncated) expansion in contri-
butions of multiplicatively renormalizable (to leading or-
der) operators of increasing dimension [12,49]:

’ðxi;�2Þ¼120x1x2x3
XN
n¼0

Xn
l¼0

cnlPnlðxiÞ
�
�sð�Þ
�sð�0Þ

�
�nl=�0

:

(80)

Here the first subscript, n ¼ 0; . . . ; N, is the total number
of covariant derivatives in the corresponding operator and
simultaneously the order of the polynomial PnlðxiÞ. The
second subscript, l ¼ 0; . . . ; n, enumerates independent
local operators of the same dimension D ¼ nþ 3. In this

way the scale dependence becomes particularly simple and
the functional form is preserved under renormalization in
one-loop accuracy. In addition, thanks to the conformal
symmetry of the QCD Lagrangian, the polynomials PnlðxiÞ
are mutually orthogonal with respect to the SLð2;RÞ scalar
product Z

½dx�x1x2x3PmkðxiÞPnlðxiÞ / �mn�kl: (81)

By this reason, the set of moments lmn, lþmþ n � 2,
calculated in this work is sufficient to determine uniquely
all coefficients in (80) up to N ¼ 2, i.e., to second order in
the quark momentum fractions. Contributions of higher
order polynomials correspond to higher dimension opera-
tors and can be added when the corresponding information
becomes available.
In the literature there seems to be no standard conven-

tion for the normalization of the polynomials PnlðxiÞ so we
choose the simplest expressions (cf. [12,49]):

’ðx1; x2; x3; �2Þ ¼ 120x1x2x3f1þ c10ð�0Þðx1 � 2x2 þ x3ÞL8=3�0 þ c11ð�0Þðx1 � x3ÞL20=9�0

þ c20ð�0Þ½1þ 7ðx2 � 2x1x3 � 2x22Þ�L14=3�0 þ c21ð�0Þð1� 4x2Þðx1 � x3ÞL40=9�0

þ c22ð�0Þ½3� 9x2 þ 8x22 � 12x1x3�L32=9�0g; (82)

where

L � �sð�Þ
�sð�0Þ ; �0 ¼ 11� 2

3
nF: (83)

The scale dependence of the normalization constant is to
this accuracy

fNð�Þ ¼ fNð�0ÞL2=3�0 : (84)

The coefficients cnl, l � n, are given in terms of the
moments lmn as

c10 ¼ 7

2
ð3ð100 þ001Þ � 2Þ; (85)

c11 ¼ 63

2
ð100 �001Þ; (86)

c20 ¼ �126

5
ð200 þ002 þ 3101Þ þ 18

5
ð4þ c10Þ; (87)

c21 ¼ 378ð200 �002Þ � 9c11; (88)

c22 ¼ 126

5
ð2200 þ 2002 þ101Þ � 21

5
ð4þ c10Þ: (89)

Note that for N ¼ 2 there are five independent coefficients
cnl, which is also the number of independent moments
lmn for lþmþ n � 2 due to the constraints (24). In
the above expressions we have chosen 100, 001, 101,
200, and 002 to be the independent subset.

Our final results for the coefficients cnl at the renormal-
ization scale �2 ¼ 4 GeV2 as obtained from the � ¼ 5:40
moments presented in Table V are collected in Table VII.
As the central values for the moments lmn with lþmþ
n ¼ 2 do not fulfill the constraint (24) exactly, the values of

c20, c21, c22 depend on the set of moments lmn that are
used as an input. To illustrate this effect, we show two sets
of the coefficients obtained from 101, 200, 002 (set 1)
and 101, 011, 110 (set 2). The difference between the
two sets is, of course, part of the uncertainty of the calcu-
lation. We estimate the overall uncertainty to be about 30%
for c10, c11, of order 50% for c20, c21 and a factor of 2 for
c22.
The resulting shape of the nucleon DA is illustrated in

Fig. 9. The asymptotic DA corresponding to the leading
term in the expansion (82) is shown in Fig. 9(a). It is totally
symmetric in the three quark momentum fractions. The
model obtained by adding the terms proportional to c10 and
c11 is presented in Fig. 9(b). Compared to the asymptotic
case, the maximum is shifted towards larger values of x1
indicating that the first quark carries a larger fraction of the
proton momentum. Finally, for the plots in Figs. 9(c) and 9
(d) we add contributions of the second order polynomials
(n ¼ 2), using the coefficients c20, c21, c22 from the first
and the second set in Table VII, respectively. The differ-
ence is in fact not too large and the effect is the same in
both cases: The maximum is smeared out forming two
local maxima and one local minimum. While the model
function from set 2 exhibits an approximate symmetry
’ðx1; x2; x3Þ � ’ðx1; x3; x2Þ, this property is less obvious
in the case of set 1. However, the general pattern is
preserved.
Whether the change in the shape of the DA caused by

adding the second-order polynomials is of phenomenologi-
cal significance can only be investigated in a dedicated
study, which goes beyond the scope of this work. Note,
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however, that in full analogy to usual quantum mechanics,
the quality of an approximation to the wave function has to
be measured with respect to the scalar product of the
appropriate Hilbert space, in our case Eq. (81), and not
pointwise in, e.g., the momentum fraction representation.

In Fig. 10 we show ’ðxiÞ at x3 ¼ 0:5 as a function of
x1ðx2Þ together with the statistical error in order to give an
impression of the corresponding uncertainty. The effect of
choosing different subsets of lmn with lþmþ n ¼ 2 is
demonstrated in Fig. 11 where we plot the difference of
’ðxiÞ for set 1 and set 2.

VI. SUMMARYAND CONCLUSIONS

We have evaluated the first few moments of the leading-
twist nucleon DA in lattice QCD. Along with these mo-
ments we have determined the nucleon couplings to local

TABLE VII. Central values of the coefficients cnl in the ex-
pansion (82) at the renormalization scale �2 ¼ 4 GeV2 as
obtained from the � ¼ 5:40 moments presented in Table V.

Set 1 Set 2

c10 0.326 0.326

c11 0.940 0.940

c20 �0:872 �0:687
c21 �3:130 �5:210
c22 0.405 0.036

FIG. 9 (color online). Barycentric contour plot of the leading-twist distribution amplitude ’ðx1; x2; x3; �2Þ in the limit of Q2 ¼
�2 ! 1 (a) and at �2 ¼ 4GeV2 (b–d) using expansion (80) as obtained from the � ¼ 5:40 moments presented in Table V. The
asymmetry caused by the first moments only (N ¼ 1) is illustrated in (b), while in (c–d) we took into account also the second moments
(N ¼ 2). In (c) we have used set 1 and in (d) set 2 as described in the text. The lines of constant x1, x2, and x3 are parallel to the sides of
the triangle labeled by x2, x3, and x1, respectively.

FIG. 10 (color online). The model function ’ðxiÞ at x3 ¼ 0:5
with its statistical uncertainty.
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subleading (twist-four) operators. The required correlators
have been computed on gauge field configurations gener-
ated by the QCDSF/DIK collaborations using two dynami-
cal flavors of clover fermions. The necessary renormal-
ization matrices have been calculated nonperturbatively,
including the mixing with operators containing total
derivatives.

We have worked with two different gauge couplings
corresponding to � ¼ 5:29 and � ¼ 5:40. For the lattice
sizes and quark masses see Table II. As our final numbers
we take the data from our finer lattice (� ¼ 5:40). The
results for the moments of the leading-twist DA at two
different renormalization scales are presented in Table VI.
The corresponding coefficients in the expansion of the DA
in a basis of orthogonal polynomials are given in Table VII.
Truncating this expansion at the second order, we obtain a
model of the DA which is plotted in Fig. 9. Our error
estimates include statistic and known sources of systematic
uncertainties, but still have to be considered with some
caution. The largest uncertainty is caused by the chiral
extrapolation. We expect that it will be reduced in the
relatively near future when simulations with smaller pion
masses on larger lattices become available.

Our value for the coupling fN , which determines the
normalization of the leading-twist nucleon DA, appears to
be approximately 40% below the corresponding QCD sum
rule estimates [8,9,19]. If confirmed, this result would deal
yet another blow at the hopes to calculate the nucleon
magnetic form factor at realistic momentum transfers
within perturbative QCD. At the same time, the twist-
four couplings �1 and �2, which are related to the normal-
ization of subleading twist-four DAs, turn out to be in
agreement with other estimates. These constants are rele-
vant, e.g., for the description of form factors involving a
helicity flip within perturbative QCD [24] and also for soft
(end point) corrections to the form factors in the light-cone

sum rule approach [25,50]. The same constants enter the
effective baryon chiral Lagrangian and can be used to
estimate the proton life time within GUT models.
The results we have obtained for the first moments of the

nucleon DA are consistent with the conventional picture
that the valence u-quark with helicity parallel to that of the
proton carries the largest fraction of its momentum, but the
effect seems to be less pronounced compared to the corre-
sponding QCD sum rule calculations [8,9,19]. Our num-
bers, however, are compatible with those extracted from
the fits to the electromagnetic proton form factors within
the light-cone sum rule approach [50].
Our calculation of the second moments of the DA in-

dicates the presence of considerable second-order contri-
butions in the expansion in terms of orthogonal
polynomials. Qualitatively, these contributions smear out
the maximum forming two local maxima and one local
minimum [see Figs. 9(c) and 9(d)]. The investigation of the
phenomenological consequences of these and other fea-
tures of our model DA, such as the approximate symmetry
’ðx1; x2; x3Þ � ’ðx1; x3; x2Þ, requires a dedicated study,
which goes beyond the scope of the present work and
will be presented elsewhere.
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APPENDIX A: DIRAC MATRICES IN WEYL
REPRESENTATION

We have used the following representation of the
Euclidean Dirac matrices:

�1 ¼

0 0 0 i

0 0 i 0

0 �i 0 0

�i 0 0 0

0
BBBBB@

1
CCCCCA; �2 ¼

0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA;

�3 ¼

0 0 i 0

0 0 0 �i

�i 0 0 0

0 i 0 0

0
BBBBB@

1
CCCCCA; �4 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA (A1)

with

FIG. 11 (color online). Systematic uncertainty due to the
choice of the independent subsets of lmn with lþmþ n ¼ 2
(for details see text). The lines of constant x1, x2, and x3 are
parallel to the sides of the triangle labeled by x2, x3, and x1,
respectively.
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�5 ¼ �1�2�3�4 ¼
�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA;

��� ¼ i

2
ð���� � ����Þ:

(A2)

The charge conjugation matrix has been chosen as

C ¼ �2�4: (A3)

APPENDIX B: OPERATOR RELATIONS FOR
LEADING-TWIST DISTRIBUTION AMPLITUDES

In the following we give the relations between the
operators whose matrix elements define moments of the
leading-twist DA of spin-1=2 baryons (DA operators) and
the irreducible operators that appear in the general group-
theoretical classification in [31]. The relations are written
for general quark flavors f, g, h; the proton case is obtained
by the replacement f, g!u, h!d, and the appropriate
symmetrization to single out the contribution of isospin
1=2.

The total symmetrization in space-time indices denoted
by the curly brackets, e.g.,

V f23g ¼ 1

2!
ðV 23 þV 32Þ

reflects the leading-twist projection. For example, the mo-
ment V001 is calculated from

1

2!
�abcð½fð0Þ�a�ðC�2Þ��½gð0Þ�b�½iD3ð�5hð0ÞÞ�c

þ ½fð0Þ�a�ðC�3Þ��½gð0Þ�b�½iD2ð�5hð0ÞÞ�c
Þ: (B1)

In the notation used below, it is not indicated explicitly on
which quark the derivatives act in the operators on the
right-hand side. However, it is always implied that the
positions of the derivatives are the same on both sides of
the equations.

1. 0th moment

ðB000
9;6 ;�B000

9;1 ;�B000
9;12;B

000
9;7 Þ¼

1

4
ð�3�4½�2T 1þ�1T 2�Þ;

(B2)

ðB000
9;4 ;�B000

9;3 ;�B000
9;10;B

000
9;9 Þ ¼

1

4
ð�1�2½�4T 3 þ �3T 4�Þ;

(B3)

ðB000
9;2 ;�B000

9;5 ;�B000
9;8 ;B

000
9;11Þ ¼

1

4
ffiffiffi
2

p ð�1�2½�4T 3 ��3T 4�

þ�3�4½�1T 2 ��2T 1�Þ:
(B4)

TheB000
7;i (B000

8;i ) operators from the symmetry class�þþ
ðþ�þÞ are obtained from the above operators by replac-
ing T on the right-hand side by V þA (V �A).

2. 1st moments

ðBlmn
7;1 ;�Blmn

7;2 ;B
lmn
7;7 ;�Blmn

7;8 Þ
¼ 1

4
ffiffiffi
2

p ð2�4�3T f12g þ �4�2T f13g þ �2�3T f14g

þ �4�1T f23g þ �1�3T f24gÞ; (B5)

ðBlmn
7;3 ;�Blmn

7;4 ;B
lmn
7;9 ;�Blmn

7;10Þ
¼ 1

4
ffiffiffi
2

p ð2�1�2T f34g þ �4�2T f13g þ �3�2T f14g

þ �1�4T f23g þ �1�3T f24gÞ; (B6)

ðBlmn
7;6 ;B

lmn
7;5 ;B

lmn
7;12;B

lmn
7;11Þ ¼

1

4
ð�2�4T f13g þ �2�3T f14g

þ �1�4T f23g þ �1�3T f24gÞ:
(B7)

The Blmn
5;i (Blmn

6;i ) operators from the symmetry class D�
þþ ðDþ�þÞ are obtained from the above operators by
replacingT on the right-hand side byV þA (V �A).

3. 2nd moments

ð�Blmn
6;4 ;�Blmn

6;3 ;B
lmn
6;2 ;B

lmn
6;1 Þ

¼
ffiffiffi
3

p
4

ð�4T f123g þ �3T f124g þ �2T f134g þ �1T f234gÞ
(B8)

TheBlmn
4;i (Blmn

5;i ) operators from the symmetry classDD�
þþ ðDDþ�þÞ are obtained from the above operators by
replacingT on the right-hand side byV þA (V �A).

APPENDIX C: RAW LATTICE RESULTS

In this appendix we collect the results of the linear (in
m2

�) extrapolation of our bare lattice data. The errors given
are purely statistical.
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TABLE VIII. Linear extrapolations of FC (unconstrained) results to the physical point using all available lattice ensembles (all) and
243 � 48 lattices only (24) for � ¼ 5:29. The �2=d:o:f refers to the linear chiral extrapolation.

� ¼ 5:29 � ¼ 5:40
all 24 all

# �2=d:o:f # �2=d:o:f # �2=d:o:f

fN=m
2
N � 103 4.088(77) 6.563 4.53(14) 0.555 4.287(74) 0.658

��1=mN � 103 ½GeV� 60.80(106) 19.31 69.28(176) 6.209 59.40(95) 1.060

��1 � 103 ½GeV2� 77.33(149) 18.46 82.24(209) 3.484 72.86(135) 1.901

�2=mN � 103 ½GeV� 129.76(214) 19.98 141.53(360) 4.928 119.16(191) 1.498

�2 � 103 ½GeV2� 158.00(315) 18.31 168.30(428) 2.388 146.48(270) 2.716

100 0.2987(49) 1.125 0.315(10) 0.033 0.2939(59) 1.384

010 0.2746(48) 0.768 0.263(11) 0.765 0.2719(62) 0.335

001 0.2840(48) 1.566 0.271(11) 2.555 0.2740(60) 0.972

011 0.0647(37) 0.276 0.0633(87) 0.711 0.0646(44) 1.831

101 0.0606(39) 0.821 0.067(12) 0.744 0.0688(55) 1.057

110 0.0651(32) 0.712 0.0592(79) 0.445 0.0707(39) 0.610

200 0.1149(54) 2.367 0.146(14) 0.597 0.1126(68) 5.534

020 0.0922(50) 0.717 0.096(12) 1.908 0.0949(61) 0.288

002 0.1067(54) 0.944 0.108(13) 2.729 0.1060(64) 0.114

TABLE IX. Linear extrapolations of PC (unconstrained) results to the physical point using all available lattice ensembles (all) and
243 � 48 lattices only (24) for � ¼ 5:29. The �2=d:o:f refers to the linear chiral extrapolation.

� ¼ 5:29 � ¼ 5:40
all 24 all

# �2=d:o:f # �2=d:o:f # �2=d:o:f

fN=m
2
N � 103 4.396(99) 2.417 4.67(19) 1.208 4.517(96) 0.342

V100 ¼ V010 0.308(13) 0.416 0.298(35) 0.027 0.298(19) 0.966

A100 ¼ �A010 0.0133(40) 2.495 0.046(13) 0.038 0.0196(64) 0.960

T100 ¼ T010 0.307(12) 0.425 0.297(25) 0.263 0.300(16) 0.483

’100 0.324(16) 0.352 0.360(49) 0.001 0.323(24) 0.777

’010 ¼ 010 ¼ T001 0.286(12) 1.636 0.248(26) 0.550 0.276(17) 0.446

’001 ¼ V001 0.289(15) 1.892 0.229(37) 1.532 0.280(21) 0.399

100 �010 0.0194(49) 2.230 0.054(15) 0.056 0.0258(77) 0.928

100 �001 0.0076(39) 2.017 0.036(14) 1.011 0.0129(66) 1.291

001 �010 0.0114(41) 0.679 0.016(13) 1.719 0.0144(66) 2.118

V011 ¼ V101 0.0698(56) 0.197 0.072(17) 0.228 0.0676(69) 0.260

A011 ¼ �A101 �0:0006ð49Þ 0.038 0.000(15) 0.004 0.0022(60) 1.063

T011 ¼ T101 0.0689(44) 0.395 0.068(12) 0.035 0.0707(54) 0.580

’011 0.0709(85) 0.068 0.076(27) 0.061 0.064(11) 0.533

’101 ¼ 101 ¼ T110 0.0699(62) 0.428 0.071(18) 0.135 0.0673(67) 0.504

’110 ¼ V110 0.0637(79) 0.149 0.064(24) 0.101 0.077(10) 0.049

101 �011 0.0012(62) 0.068 0.006(19) 0.023 0.0005(73) 1.711

011 �110 0.0025(45) 0.048 0.004(15) 0.096 �0:0042ð62Þ 0.246

101 �110 �0:0001ð47Þ 0.155 0.005(17) 0.383 �0:0036ð62Þ 0.627

V200 ¼ V020 0.1059(78) 0.557 0.129(22) 0.015 0.115(10) 2.034

A020 ¼ �A200 0.0132(59) 0.698 0.036(18) 0.131 0.0195(81) 1.812

T200 ¼ T020 0.1108(79) 0.576 0.119(19) 1.336 0.1203(89) 1.450

’200 0.117(12) 0.739 0.165(37) 0.006 0.134(16) 2.305

’020 ¼ 020 ¼ T002 0.0913(73) 0.261 0.097(19) 0.590 0.0963(93) 0.646

’002 ¼ V002 0.096(12) 0.724 0.066(35) 1.320 0.106(15) 0.279

200 �020 0.0206(68) 0.406 0.039(21) 0.001 0.0300(97) 1.864

200 �002 0.0060(61) 0.847 0.032(20) 0.601 0.0092(83) 1.380

002 �020 0.0114(55) 0.291 0.005(19) 0.757 0.0215(80) 0.438
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