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We have performed numerical simulations of SU(3) gauge theory coupled to Nf ¼ 2 flavors of

symmetric-representation fermions. The fermions are discretized with the tadpole-improved clover action.

Our simulations are done on lattices of length L ¼ 6, 8, and 12. In all simulation volumes we observe a

crossover from a strongly coupled confined phase to a weak-coupling deconfined phase. Degeneracies in

screening masses, plus the behavior of the pseudoscalar decay constant, indicate that the deconfined phase

is also a phase in which chiral symmetry is restored. The movement of the confinement transition as the

volume is changed is consistent with avoidance of the basin of attraction of an infrared fixed point of the

massless theory.
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I. INTRODUCTION

Many proposed extensions of the standard model in-
volve new strong-coupling mechanisms that replace the
fundamental, weakly coupled Higgs boson [1]. Among
these are technicolor [2,3] and ‘‘tumbling’’ gauge dynam-
ics [4]. The dynamics of these pictures is based on weak-
coupling ideas: a perturbative � function to evolve the
coupling constant as the energy scale falls, and most-
attractive-channel arguments for scale separation and se-
lection of the condensed channel in tumbling. Recently,
groups have begun to test these proposals with nonpertur-
bative lattice methods. Most of the studies have been of SU
(3) gauge theories with Nf > 3 fundamental flavors [5–

11], but some [12–18] have considered other gauge groups
and other representations for the fermions, where a richer
set of phenomena might exist [19–23].

Some phenomenological proposals depend on novel
features of a given gauge theory’s � function. One possi-
bility is that the � function has an infrared-attractive fixed
point (IRFP) at finite gauge coupling [24,25]. The infrared
limit of the massless theory is then scale invariant and
conformal, without confinement and without spontaneous
breaking of chiral symmetry [26,27]. Alternatively, the �
function might approach zero without actually vanishing,
so that the running coupling is nearly independent of scale
over a wide range before confinement finally sets in at large
distances. This is the scenario of ‘‘walking’’ [28,29]. The�
function of the massless theory is thus an appealing handle
for nonperturbative study [8,13].

In earlier work, we began study of the SU(3) lattice
theory with Nf ¼ 2 flavors of Wilson-clover fermions in

the sextet representation [13]. Using the background field
method (implemented in lattice work as the Schrödinger
functional [30]), we calculated a discrete analogue of the �
function on a small lattice. Contrary to perturbative esti-

mates, we discovered that the discrete � function vanishes
at a fairly weak value of the renormalized coupling. If
confirmed on larger lattices that allow extrapolation to
the continuum limit, this would constitute an IRFP, indi-
cating a conformal IR theory. The absence of spontaneous
chiral symmetry breaking means that this theory cannot be
used for technicolor [31], but perhaps it can be incorpo-
rated in a theory of ‘‘unparticles’’ [32].
Since an IRFP implies unbroken chiral symmetry, the

possibility of scale separation cannot arise. On the other
hand, if the critical coupling for chiral symmetry breaking
is reached when the beta function is still negative, the
fermions will condense, acquire mass dynamically, and
decouple from lower energy scales. Only the gluons will
remain, and the theory will run towards confinement. An
early quenched study in the sextet theory [20] found large
separation between the confinement scale and a much
higher chiral symmetry breaking scale, consistent with
the larger Casimir of the sextet representation. When dy-
namical fermions are included, lattice theories that are
similar to ours—for example, QCD with adjoint-
representation fermions—do in fact show scale separation,
in that the critical temperature for deconfinement is differ-
ent from (and lower than) the critical temperature for chiral
symmetry restoration [20,22,23]. This would imply, inter
alia, that there is no IRFP in these theories.
Even if the massless theory possesses an IRFP, however,

scale separation might reappear when one gives the fermi-
ons a small mass. Avoiding the IRFP, one can look for a
remnant of a chiral transition separated from the confine-
ment transition. Between the two transitions, one would
find an intermediate phase where the phenomenology of
broken chiral symmetry would resemble that of QCD even
though the quarks are not confined. More generally, it is
interesting to see how the putative IRFP influences the
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physics of the massive theory and whether the latter can
give evidence for or against the existence of the IRFP.

We therefore present here a complementary study, based
on straightforward calculations to determine the lattice
theory’s phase diagram and its particle spectrum [14].
The salient points among our results are: (1) We find no
scale separation, meaning that there is no intermediate
phase and that deconfinement is coincident with chiral
symmetry restoration; (2) the IRFP of the massless theory
finds support in the behavior of the deconfinement transi-
tion as the size of the lattice changes.

The outline of the paper is as follows: In Sec. II we give a
summary of our results by presenting a phase diagram of
the lattice theory. This diagram shows the critical curve
�cð�Þ where the quark mass, defined through the axial
Ward identity (AWI), vanishes; it shows as well the cross-
over/transition, associated with confinement and chiral
symmetry, brought about by finite dimensions L of the
lattice. We then proceed to a presentation of our work,
beginning with the definitions of the theory and observ-
ables in Sec. III and continuing to detailed results in
Sec. IV. We offer further discussion in Sec. V.

II. OVERVIEW

We performed simulations on lattices of various sizes
and measured both global observables—plaquette,
Polyakov loop—and spectral quantities—static potential
and hadronic correlators. If only the time dimension of
the lattice1 Nt is finite and equal to L, then ðaLÞ�1 can be
thought of as a nonzero temperature; if each of the spatial
dimensions of the lattice Ns is equal to L, then ðaLÞ3 is a
finite 3-volume.

A. The deconfinement transition

We present in Fig. 1 the phase diagram we have deter-
mined for the lattice theory in terms of the bare gauge
coupling� and the hopping parameter �. The solid curve is
�cð�Þ, where the quark mass mq vanishes (see Sec. III for

its definition). �c is, in principle, a feature of the theory in
infinite volume, though of course we have determined it on
a finite lattice.

The other (dashed) curves in Fig. 1 refer to the location
of finite-temperature transitions, from confinement at small
� to nonconfinement at large �. There is one curve for
each Nt ¼ 6, 8, and 12. Data taken on volumes N3

s � Nt ¼
123 � 6, 123 � 8, and 123 � 12 clearly show crossover
behavior from a strong-coupling confined phase to a de-
confined phase, as observed through the behavior of the
Polyakov loop. The transition curves for different Nt ap-
pear to approach the �cð�Þ curve to meet it near the same
point. The nearest we have come to this point is ð�; �Þ ¼

ð5:1; 0:169Þ, which is still below � ¼ �c. Simulation of the
theory for stronger couplings is more difficult and we have
not ventured into the �< 5:1 regime.
Degeneracies among screening masses (see below) tell

us that the deconfined phase is also a phase in which chiral
symmetry is restored. We do not find two separate phase
transitions for confinement and for chiral symmetry
breaking.
The finite-temperature transition might be a true phase

transition, rounded by the less-than-infinite spatial volume,
or it might be only a crossover. In QCD with fundamental
fermions, we expect this line to be a line of first order phase
transitions for heavy quark mass (small �), terminating in a
second order critical point and becoming only a crossover
as the quark mass falls. This is because fermions break the
center Zð3Þ symmetry, and fundamental-representation fer-
mions favor ordering the Polyakov loop along the positive
real axis. Our data, however, indicate that sextet fermions
break the center symmetry in a way that disfavors this
direction and favors argP ¼ �2�=3. An example of this
behavior is shown in Fig. 2. This means that charge con-
jugation is spontaneously broken in the high-temperature
phase. Hence, the crossover from the confined to the
deconfined phase will become a true phase transition in
the infinite volume limit.
We have marked on the �c curve the approximate loca-

tion of the IRFP found in the massless theory, as we
reported in Ref. [13]. There its location was determined
by comparing the Schrödinger functional effective cou-
pling on lattices with 44 and 84 sites. If it is a true IRFP
then its location will approach a limit for sufficiently large
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FIG. 1 (color online). Phase diagram in the ð�;�Þ plane. The
solid curve is �cð�Þ, where mq vanishes; the dashed curves are

�thð�Þ, the thermal confinement transition, for three values of Nt:
short dashes for Nt ¼ 6, long dashes for Nt ¼ 8 (lower curve)
and Nt ¼ 12 (upper curve). The star on the �c curve marks the
approximate location of the IR fixed point found in Ref. [13].
The uncertainty in �th is in the neighborhood of 0.001.

1This is distinguished from the spatial directions by the anti-
periodic boundary condition on the fermion field.
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values of L. It is the IRFP that has caused us to focus our
attention mainly on the region 5:1 � � � 6:0.

The existence of an IRFP, not its precise location, is
what is important. The location depends on the lattice
action and on the particular scheme used to define the
renormalized coupling. If the theory possesses an IRFP,
then there is a region in the space of bare coupling con-
stants that lies in its basin of attraction—a critical region.
Correlation functions computed at values of bare parame-
ters in this basin will show scaling (power law) behavior at
large distance (plus, of course, cutoff-dependent behavior
at short distance).

A quark mass breaks conformal invariance and so the
critical region can include points only on the �cð�Þ line.
Likewise, these points cannot be in the confinement phase:
confinement provides a dynamically generated infrared
scale. This means that lines of finite-temperature transi-
tions cannot intrude into the critical region. This behavior
is quite different from QCDwith a small number of flavors,
where the deconfinement transition meets the �c line at a
point that moves to ever larger � as Nt increases. Thus the
behavior of the deconfinement lines is an indirect signal for
or against the existence of scaling dynamics associated
with an IRFP. The trend seen in Fig. 1 is consistent with
the presence of such a critical region.

B. Chiral symmetry restoration

We have been able to distinguish two regions in the � <
�c plane when Nt is finite. When the coupling is strong (�
small), there is confinement and spontaneous breaking of
chiral symmetry. At weak coupling, chiral symmetry is
restored (as much as possible for Wilson fermions) and
there is no confinement.
A phase with chiral symmetry breaking has a pseudo-

scalar massmP that extrapolates to zero at zero quark mass
asm2

P �mq. This is not the same as a strict proportionality

ðamPÞ2 / ðamqÞ along a line of fixed �, because the lattice
spacing itself will change as � changes. Still, at small
quark mass the pion mass should become small compared
to all other dimensionful quantities, including the pseudo-
scalar decay constant fP. All these other quantities will be
controlled by the dynamically generated infrared scale and
will remain nonzero in the chiral limit.
In a chirally restored phase we do not expect to see this

mass hierarchy. Instead, we expect to see parity doubling:
the pseudoscalar and scalar mesons should become degen-
erate, as well as the vector and axial vector mesons. This
effect is seen in the screening masses measured in the high-
temperature phase of ordinary QCD [33]. In fact, we find
that all four channels—scalar, pseudoscalar, vector, axial
vector—are close to degenerate. This might be interpreted
as a charmoniumlike spectrum if the quarks are heavy. If it
persists as the quarks become massless then it indicates a
weak quark-antiquark interaction, perhaps one with no
bound states.
A naive expectation for a screening mass is that it

behaves as

m2
H ¼ 4

��
�

Nt

�
2 þm2

q

�
(1)

since �=Nt is the lowest Matsubara frequency associated
with antiperiodic boundary conditions in a lattice of tem-
poral length Nt. We observe all of this behavior in the
deconfined phase, and conclude that it is also a phase of
chiral symmetry restoration.
We illustrate this behavior with results from a ð12�

82Þ � 8 volume at� ¼ 5:5, Fig. 3. The points at amq > 0:8

FIG. 2. Scatter plots of real and imaginary parts of the
Polyakov loop from simulations at � ¼ 5:5, volume 84 lattices.
Top: � ¼ 0:140, in the confined phase. Bottom: � ¼ 0:150, in
the deconfined phase.
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are in the confined phase; the other points are deconfined.
Even though ðamPÞ2 appears to vary linearly with amq

down to small amq, both fP and the degeneracy pattern

point away from spontaneous chiral symmetry breaking:
All states become degenerate and afP becomes small.

III. LATTICE ACTION AND SIMULATION
DETAILS

A. Lattice action

Our lattice theory is defined by the single-plaquette
gauge action and a Wilson fermion action with added
clover term [34]. We modify the clover term’s coefficient
via tadpole improvement by setting cSW ¼ 1=u30. We adopt

the conventional self-consistent determination of the tad-
pole improvement factor, viz.,

u40 ¼ 1
3hTrUPiu0 ; (2)

where UP is the usual plaquette variable. This is the same
action that we used in Ref. [13]. In that paper we deter-
mined �c on lattices with volume 44, with Schrödinger
functional boundary conditions, and we fixed u0 according
to the space-space plaquette averages on those lattices at
� ¼ �c (see Table I). Rather than recalculate u0 at every
ð�; �Þ, we choose to define the theory at every � by fixing
u0 to take the value in Table I, irrespective of �.

B. Data sets

All simulations used the standard hybrid Monte Carlo
algorithm. The trajectories in various runs were of lengths
between 0.5 and 1.0, and the time steps ranged from 0.02
(at heavy quark masses) to 0.005 (for light masses). The
data sets at each of our ð�; �Þ values consist of 300 to 1000
trajectories, with every fifth trajectory used for
spectroscopy.

Results from five different simulation volumes are re-
ported in this work:
(i) 123 � 6 and 123 � 8 are conventional finite-

temperature lattices. We use them to find �thð�Þ
curves.

(ii) ð12� 82Þ � 8 allowed faster runs than 123 � 8 and
showed the same finite-temperature physics, though
transitions are rounded by the smaller spatial
volume.

(iii) 83 � 12 is a ‘‘zero temperature’’ lattice compared to
Nt ¼ 8. We use it to study how the spatial size L ¼ 8
intrudes on the q �q potential and on meson masses.

(iv) 124 has two roles. One is as a ‘‘zero temperature’’
lattice, as long as we stay on the strong-coupling side
of the Nt ¼ 12 confinement transition. The other
role is as a finite-temperature lattice that permits us
to observe directly the movement of the �cð�Þ curve
when Nt changes from 6 to 8 to 12. (We are well
aware that systematic thermodynamics studies re-
quire N3

s � Nt lattices with Ns � Nt, so we will be
careful not to overanalyze our results.)

We also performed exploratory runs with 84 volumes.
Dimensions of size 12 are where we determine meson

masses. If the dimension is temporal then the masses are

TABLE I. �c and u0 as determined from L ¼ 4a simulations
with Schrödinger functional boundary conditions [13]. Linear
interpolation may be used safely between � ¼ 5:0 and 5.5 and
between � ¼ 5:5 and 6.0.

� �c u0

5.0 0.1723 0.875

5.5 0.1654 0.887

6.0 0.1610 0.900

7.0 0.1536 0.916

8.0 0.1486 0.928

FIG. 3. Screening masses and fP for � ¼ 5:5 on volume ð12� 82Þ � 8. In (a) we plot the squares of the quantities, while in (b) we
plot the quantities themselves. Crosses show fP, pseudoscalars are diamonds, vectors are squares, octagons are axial vectors, and
bursts are scalars.
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conventional spectroscopic masses; if spatial then the
masses are screening masses, affected by the Matsubara
frequencies that create nonzero momentum transverse to
the meson propagation. Lattices where Nt ¼ 12 are also
where we calculate the (spatial) q �q potential from Wilson
loops.

A map showing the bare parameters of our runs is shown
in Fig. 4. We concentrated on two areas of the ð�; �Þ plane:
The upper band of points covers the area near �c, while the
lower band of points is in the vicinity of the deconfinement
transitions.

C. Meson propagators

In order to measure masses when Nt ¼ 12, we effec-
tively double Nt with a trick that has been used by several
groups for computing weak matrix elements [35–38]. This
combines periodic with antiperiodic boundary conditions
as follows. Take a valence Dirac operator with periodic
temporal boundary conditions and compute its propagator,
SpðxÞ (we assume a source at t ¼ 0 for simplicity). Take a

second valence Dirac operator with antiperiodic temporal
boundary conditions, and compute its propagator SaðxÞ.
Now add the propagators to produce

SpþaðxÞ ¼
SpðxÞ þ SaðxÞ

2
; (3)

and use this propagator to construct meson correlators, e.g.,

CpþaðtÞ ¼
Z

d3xhSpþaðxÞ�5S
y
pþaðxÞ�5i (4)

for a pseudoscalar meson. The resulting correlator will be a
hyperbolic cosine with midpoint at t ¼ Nt. (We use the
same method in measuring screening masses when Ns ¼
12.)

D. Meson masses, decay constant, and quark mass

After this, our fitting methodology is standard. We per-
form spectroscopy using quark propagators computed in
Coulomb gauge, generated from Gaussian wall sources.
We take masses from correlated fits to long temporal
ranges and use a combination of stable effective mass
fits, high confidence levels, and stability of our masses
under variation of fit range to choose a result and its
uncertainty. As a general rule, when a meson is heavy,
single-exponential fits to correlation functions work well,
but as the meson mass falls below amH � 1 we need two-
exponential fits to give a stable lightest mass.
We also measured the pseudoscalar decay constant and

the AWI quark mass. The latter is defined through

@t
X
x

hA0ðx; tÞXð0Þi ¼ 2mq

X
x

hPðx; tÞXð0Þi; (5)

where A0 ¼ �c�0�5c and P ¼ �c�5c . For consistency
with the conventions of our Schrödinger functional calcu-
lation, the derivative is taken to be the naive difference
operator @�fðxÞ ¼ ½fðxþ �̂Þ � fðx� �̂Þ�=2. (We set

a ¼ 1 in this discussion.) The source Xð0Þ is arbitrary;
for making the measurement as part of a spectroscopic
study we use one made of our Coulomb gauge Gaussian
wave functions. When it is chosen to have pseudoscalar
quantum numbers, and when we assume that a single
exponential dominates the correlator, each side of Eq. (5)
will be proportional to coshðm�ðt� 2NtÞÞ. We then extract
the quark mass by performing a three-parameter
ðZ;mP;mqÞ correlated fit to

X
x

hPðx; tÞXð0Þi ¼ Zðe�mPt þ e�mPð2Nt�tÞÞ (6)

and

X
x

hA0ðx; tÞXð0Þi ¼ � 2Zmq

sinhmP

ðe�mPt � e�mPð2Nt�tÞÞ: (7)

If we were to convert the lattice-regulated AWI quark mass
to some continuum regularization, it would require multi-
plicative renormalization. We will neglect this overall re-
normalization factor in our discussion. For Wilson
fermions, radiative effects mix the local axial current A� ¼
�c���5c with @� �c�5c . The mixing is small in perturba-

tion theory [39], so we neglect it as well.
We determine the pseudoscalar decay constant from the

matrix element of the axial vector current, mPfP ¼
h0jA0jPi. Specifically, we perform a three-parameter cor-
related fit to the correlator of a Gaussian source and sink,

FIG. 4. Map of our runs in the ð�; �Þ plane. The upper set of
points parallels the �c line in the deconfined phase. The lower set
of points populates the regions of �th lines.
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X
x

hXðx; tÞXð0Þi ¼ Z2

2mP

ðe�mPt þ e�mPð2Nt�tÞÞ; (8)

and to the correlator of a Gaussian source and an axial
current sink,

X
x

hA0ðx; tÞXð0Þi ¼ ZfP
2

ðe�mPt � e�mPð2Nt�tÞÞ: (9)

A lattice determination of a continuum decay constant is
a little involved. Because we are using a nonchiral lattice
action and a matrix element that does not precisely realize
a Ward identity, there is a lattice-to-continuum conversion
factor ZA between the lattice matrix element and a
continuum-regulated decay constant,

fcontP ¼ ZAfP: (10)

We are aware of two ways to compute ZA. One is non-
perturbative, through the RI (regularization independent)
scheme. The other is through perturbation theory. For our
exploratory study, we believe perturbation theory is ade-
quate. In the context of tadpole-improved perturbation
theory [40],

ZA ¼
�
1þ g2

16�2
C2ðRÞW

��
1� 6�

8�c

�
: (11)

C2ðRÞ is the appropriate Casimir (4=3 for fundamentals,
10=3 for sextets), W is a numerical factor (5.79 for our
tadpole-improved clover action), and the ‘‘tadpole factor’’
(1� 6�

8�c
) corrects the field renormalization of lattice

Wilson fermions compared to the continuum case.
Tadpole-improved perturbation theory is designed to pick
a scale for the coupling g2 (the so-called q� scale in its
jargon). Again for our action, q� ¼ 2:41=a. Computing the
coupling from the plaquette [g2ðq ¼ 3:41=aÞ ¼
�3 lnhTrUP=3i] and running to the desired q�, we can
estimate ZA. The bottom line is that the non-tadpole-
improvement part of ZA [everything except the ð1� 6�

8�c
Þ

factor] is essentially constant, equal to about 0.8 over our
parameter set. For a quantity which is supposed to be unity
plus perturbative corrections, the deviation is uncomfort-
ably large. If we were going to make phenomenological
use of f�—for example, to predict the technirho mass from
a lattice measurement of m�=f� in a QCD-like theory—

this would be cause for concern. Since our only interest
here is in whether fP vanishes in the chiral limit, this is
probably unimportant.

E. The �c curve

The �c curve shown in Fig. 1 (see also Table I) was
determined in [13] by demanding mq ¼ 0 on a lattice with

44 sites and Schrödinger functional boundary conditions.
The matrix elements in the AWI (5) were evaluated at t ¼
2 with the operator Xð0Þ defined through the boundary
conditions themselves. Finite-volume effects can shift

mqð�Þ and thus �cð�Þ. We check this by calculating

mqð�Þ via the spectroscopic fit on ð12� 82Þ � 8 and 83 �
12 lattices (Fig. 5). Apart from the data at strongest cou-
pling (� ¼ 5:1), the curves are quite smooth, and on ex-
trapolating to mq ¼ 0 we find a shift upward of less than

2� 10�4 in �c, roughly the thickness of the solid curve in
Fig. 1.

F. Heavy quark potential

In measuring the static potential between fundamental-
representation sources, our approach is, again, fairly stan-
dard. We extract VðrÞ from the effective masses of R� T
Wilson loops after one level of hypercubic (HYP) smearing
[41,42]. The short-distance effects of the HYP smearing
are corrected using a fit to the perturbative lattice artifacts.
With fit parameters A, B, �, and �, we write VðrÞ ¼
Vcont þ ��Vlatt, where

Vcont ¼ A

r
þ Bþ �r (12)

and

�Vlatt ¼ VpertðrÞ � 1

r
: (13)

�Vlatt is the difference between the exact lowest-order
perturbative lattice propagator and 1=r. We quote values
for the string tension a2� and the Sommer parameter r0=a
[43]. For successful determination of the potential we
demand consistent fit parameters from several different
temporal sizes of the Wilson loops—fits to T ¼ t and tþ
1 for t ¼ 3, 4, and perhaps 5, for example.

FIG. 5. AWI quark mass from ð12� 82Þ � 8 lattices. Curves
are for (right to left) � ¼ 5:1, 5.2, 5.5, 5.7, 6.0, and 7.0.
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IV. SIMULATION RESULTS

A. Identifying the deconfinement line

The straightforward way to find where the confinement
scale crosses some distance L is to find the finite-
temperature confinement transition/crossover curve for
Nt ¼ L. This we do via a conventional Polyakov loop
analysis, looking for metastability, phase coexistence, or
a rapid variation in hPi. Figure 1 shows the locations of the
confinement transitions for the three temporal sizes, Nt ¼
6, 8, and 12. We have data ranging from heavy to light
quark masses. As we approach the �c curve or make �
smaller than about 5.1, the number of conjugate gradient
steps needed to compute the fermionic force grows steeply.
Hence, we are unable to say whether the transitions ac-
tually join the �c line.

Measurements of the static potential on lattices with
large Nt agree well with Polyakov loop data. In the con-
fining phase, we use a confinement scale Rc such as the
Sommer radius r0 or 1=

ffiffiffiffi
�

p
(for string tension �) to define

a length scale. Then lattices with a spatial size L that is
large compared to Rc exhibit confinement, and those with
L & Rc do not. The ratio Rc=a tends to grow as gauge
coupling � increases and as � rises.

Examples of two fits to the potential are shown in Fig. 6.
On the left, we show results from an 83 � 12 lattice at � ¼
5:3, � ¼ 0:155. The different plotting symbols denote two
different temporal sizes of the Wilson loops. This potential
is clearly confining, with a large value of a2� and small
Sommer parameter r0=a, either of which can be used to
define Rc=a. Moving to larger � and/or � will enlarge Rc

until confinement will no longer be evident for L ¼ 8.
The right panel is from a 124 lattice at � ¼ 5:7, � ¼

0:158. The potential has clearly flattened: a2� has become
small and r0=a has grown. The different plotting symbols
show that our results are no longer independent of the
temporal size of the Wilson loop, and we are unable to
quote any number for a2� or r0=a. Here, then, even L ¼
12 cannot contain the confining region of the potential.

At very small � we move deep into the strong-coupling
phase. The Sommer parameter r0=a becomes small and the
fitter can no longer determine it. The potential is purely
linear, VðrÞ � �r. This means that, for all practical pur-
poses, there is a rather narrow region of bare parameters for
which we can determine a2� and r0=a from our simulation
volumes. This region coincides roughly with the vicinity of
the Nt ¼ 8 deconfinement transition.

B. Hadronic spectroscopy

As we have described, we use the behavior of fP and the
P, V, A, and S masses to characterize the chiral symmetry
aspects of each phase. If a decrease in the quark mass
induces a drop in mP relative to the other masses while
fP shows little variation, we call the phase chirally bro-
ken.2 If on the other hand we observe parity doubling—
degeneracy of the P and S masses, and of the V and A
masses—along with an fP that falls toward zero along with
amq, we conclude that chiral symmetry is restored.

We expect the strong-coupling phase to be a phase in
which chiral symmetry is broken [44]. We find that in this
phase amP, amV , and afP are easy to extract. As most of
our data are taken at fairly large quark masses, it is hard to
say more than that amV > amP. The P and V masses fall as
� grows. The S and A signals are poor. Their masses are
large—greater than amV—and the fits are unstable.
The P mass is not affected much by the deconfinement

transition (apart from � ¼ 5:1). Along most of the tran-
sition line, particle masses are large, mHa� 1.
The P and V masses continue to fall as � is taken closer

to �c (i.e., as amq is taken to zero). As we move into the

deconfined phase, the signals in the S and A channels
improve and their masses fall as well. All four masses—
P, S, V, and A—become nearly degenerate. At the same

FIG. 6. Examples of potentials from our data sets. On the left, the string tension is large, r0=a is not too small, and we can obtain a
good fit to VðrÞ. On the right, the string tension has become small and we cannot perform a reliable fit to VðrÞ. Left panel, 83 � 12,
� ¼ 5:3, � ¼ 0:155. Right panel, 124, � ¼ 5:7, � ¼ 0:158.

2For confirmation, we could then ask if ðmP=�Þ2 / mq=� for
some choice of scale-setting mass �; but to do this successfully
amounts to finding a curve of constant physics. See below.
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time, afP becomes much smaller than any of the meson
masses. As we mentioned above, the simplest interpreta-
tion of our data is that chiral symmetry is restored in the
deconfined phase. The fourfold degeneracy may be remi-
niscent of the quark model with a weak hyperfine interac-
tion, but another way to look at it is as a world where
quarks form no bound states at all. This, too, is character-
istic of a massless limit with exact, unbroken chiral sym-
metry [44].

We illustrate this result with several sets of spectra
(Figs. 3 and 7–11). In all cases the right panel displays a
massive quantity (in lattice units, amH) versus the AWI
quark mass amq, while the left panel displays the squared

quantity versus amq. In all graphs, crosses show the decay

constant (with tadpole factor), while the other symbols are
particle masses. We have already presented Fig. 3, data at
� ¼ 5:5 on volume ð12� 82Þ � 8. The other finite-
temperature data sets produce similar behavior. Figure 7
shows spectra from � ¼ 5:1, Fig. 8 shows spectra from
� ¼ 5:2, and Fig. 9 shows spectra from � ¼ 6:0. The � ¼
5:1 data set shows a gap in the range of mq values which

comes of the abrupt change in amq with � (see Fig. 5).

Here the points at large quark mass are confined, while in
Figs. 8 and 9 all points are in the deconfined phase. In all
these cases, the lightest Matsubara frequency is �=8 so the
minimummeson mass according to Eq. (1) would be about
0.8.
Scans of spectroscopy on 124 lattices show similar be-

havior to what we saw on the smaller lattices. Two ex-
amples are shown in Figs. 10 and 11, � ¼ 5:3 and 5.7. At
� ¼ 5:3 the three heaviest quark mass points are confined.
At � ¼ 5:7 the two heaviest mass points are confined. The
next point is on the transition and the rest are deconfined.
These are not screening masses, but measurements per-
formed in the temporal direction—ordinary spectroscopy.
We have checked screening correlators at several of these
points and they produce identical results.

C. Searches for curves of constant physics

Motivated by experience with using lattice calculations
for ordinary QCD phenomenology, we attempted to find
lines of constant physics, along which we might attempt to

FIG. 7. Screening masses and fP for � ¼ 5:1 on volume ð12� 82Þ � 8. Labels as in Fig. 3.

FIG. 8. Screening masses and fP for � ¼ 5:2 on volume ð12� 82Þ � 8. Labels as in Fig. 3.
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make continuum predictions. We were not successful in
doing this. We describe briefly what we tried to do, and
why it failed.

A curve of constant physics is a manifold of points in the
space of all bare couplings on which a dimensionless ratio

of two dimensionful parameters (with the same mass di-
mension) is a constant. For our theory, this manifold is a
line in the �, � plane. Along that line, a lattice spacing can
be defined from any dimensionful observable. (For ex-
ample, we might find a line of constant mP=mV , and along

FIG. 9. Screening masses and fP for � ¼ 6:0 on volume ð12� 82Þ � 8. Labels as in Fig. 3.

FIG. 11. Mass spectrum and fP for � ¼ 5:7 on volume 124. Labels as in Fig. 3.

FIG. 10. Mass spectrum and fP for � ¼ 5:3 on volume 124. Labels as in Fig. 3.

PHASE STRUCTURE OF SU(3) GAUGE THEORY WITH . . . PHYSICAL REVIEW D 79, 034501 (2009)

034501-9



that line, amV would give the lattice spacing, at the fixed
ratio.)

Our problem was twofold. First, we were squeezed
between short-distance artifacts at small � and finite-
volume effects at large �. The former became apparent
when the potential became essentially linear at all dis-
tances, meaning that the Sommer scale had fallen to the
neighborhood of the lattice spacing. The finite-volume
effects become apparent, of course, at the deconfinement
transition in finite temperature and at the point where the
linear potential disappears at finite spatial volume. As
mentioned above, this left us with only a narrow strip in
ð�; �Þ lying along and beneath the confinement transition
curve.

The second problem was that we have two kinds of
observables, ‘‘gluonic’’ or ‘‘confinement’’ observables
(such as r0, �, and Tc) and ‘‘mesonic’’ or ‘‘chiral’’ observ-
ables (such asmP,mV , and fP). Curves of constant physics
from confinement observables, such as lines of constant
r0

ffiffiffiffi
�

p
, simply did not look anything like curves from chiral

physics, such as lines of constant mP=mV . Evidently there
is no consistent way to define the lattice spacing in the
region in question.

V. SUMMARYAND FUTURE PROSPECTS

The two main issues addressed in this work are the
existence of separation between chiral and confinement
scales and the manifestation of a supposed infrared fixed
point in the massless theory. We have presented evidence
against the former while the latter is supported by the
behavior of the deconfinement transition curves as Nt is
changed.

Rather than seeing scale separation, we found only a
single phase boundary in the ð�; �Þ plane for any given Nt.
The weak-coupling side of this phase boundary shows
parity doubling and a smooth connection to the region
near �c, indicating that there is no obstacle on the way to
a chiral limit (or the Wilson-fermion equivalent) without
spontaneous symmetry breaking. The smoothness of fP
and its rapid decrease as �c is approached is consistent with
this picture.

We did not see a chirally broken but deconfined phase.
Our study does not, however, rule out such a phase near the
would-be meeting point of the deconfinement and �c

curves. Here we were limited by the notorious numerical
difficulties associated with unimproved Wilson-clover fer-
mions. Moreover, the lack of chiral symmetry in the
Wilson formulation (as opposed to staggered fermions
[20,22,23]) leads to the absence of a true order parameter,
such as the quark condensate, that could be extrapolated to
the massless limit. After all, all of the evidence we know
for scale separation involves measuring the condensate and
the Polyakov loop, and seeing them order at different bare
couplings.

Now let us expand on the significance of the �th curves
for the question of the IRFP. Like all lattice gauge theories,

our model possesses a strong-coupling phase with a mass
scale dictated by confinement. This region must be sepa-
rated from the basin of attraction of an IRFP because
theories in this basin are conformal in the infrared, and
thus cannot support a dynamically generated scale. This
basin, in turn, has to be a subset of the amq ¼ 0 (i.e., � ¼
�c) line, because a quark mass is a relevant coupling at a
conformal fixed point. The basin includes � ¼ 1 but it
might not extend all the way to � ¼ 0; it can end at a (UV-
attractive) critical point at some �� or at a first order bulk
transition.
At finite volume—say, infinite spatial volume but non-

zero Nt—the system undergoes a confinement phase tran-
sition or crossover; the phase boundary starts at infinite
quark mass (� ¼ 0) and extends into the diagram. Let us
suppose that it extends to an intersection with the � ¼ �c

line, so that the massless theory exhibits the phase tran-
sition as well. (The alternative is that the phase boundary
curves off towards � ¼ 0 at � < �c.) At infinite mass our
theory is a pure gauge theory so, as Nt increases, the
transition will move to ever larger �. At mq ¼ 0, however,

the transition has to remain in the confinement region of
the infinite volume theory, outside of the basin of the IRFP.
This means that the deconfinement lines for different Nt’s
have to have an accumulation point on the �c line qualita-
tively resembling the situation shown in Fig. 1. This is the
�� critical point or the first order transition that bounds the
IRFP’s basin.
A set of deconfinement lines that march up the �c line,

crossing the location of the putative IRFP, would have been
inconsistent with the existence of an IRFP. Similarly, ob-
serving chiral symmetry breaking or confinement at pa-
rameter values near the IRFP would have been another
inconsistency. Our data point the other way.
SU(2) gauge theory with Nf ¼ 2 flavors of adjoint

fermions is also a candidate for walking technicolor, and
may instead possess an IRFP [16]. This theory shares the
main features of our model. The SU(2) pure gauge theory
possesses a second order confinement transition at finite Nt

and adjoint fermions preserve the associated Z2 center
symmetry; hence, the pattern of finite-temperature transi-
tions sweeping across the phase diagram at finite simula-
tion volume is expected there, too. If the massless theory
has an IRFP, then the zero-mass limit of the confinement
transition must again terminate outside of its basin of
attraction, and the phase diagram will resemble our Fig. 1.
Wewill return to the sextet theory with a study at smaller

quark masses, which will become possible through the use
of an improved lattice action.
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