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2Dipartamento di Fisica Teorica, Università di Torino, Italy
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We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering.

The standard class, which saturates at the black-disk limit includes the standard eikonal representation,

while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the

U matrix. It is shown that the basic properties of these schemes are independent of the functional form

used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar

properties. A common form of unitarization is proposed interpolating between both classes. The

correspondence with different nonlinear equations are also briefly examined.

DOI: 10.1103/PhysRevD.79.034033 PACS numbers: 13.85.�t, 11.55.�m, 11.55.Bq, 13.85.Dz

I. INTRODUCTION

At low energies, hadron scattering can be described by
one-Reggeon exchange terms. But as the Pomeron term(s)
grow(s) with energy, these exchanges will eventually vio-
late unitarity. To see this, one can switch to partial waves
[1], or to the representation in impact parameter b. As s
grows, one needs to sum many partial waves with l�
jbj ffiffiffi

s
p ! 1. The summation over l then becomes an inte-

gration over b.
The partial wave Gðs;bÞ has two regimes. First of all, it

can reach maximum inelasticity. In this case, Gðs;bÞ ¼ 1,
and half of the interactions are inelastic. The center of the
protons then becomes black, and multiple exchanges, i.e.
cuts in the complex J plane, become important. Second,
the partial wave can later reach the full unitarity limit
Gðs;bÞ ¼ 2.

The maximum inelasticity limit may be reached in pp or
�pp scattering a little above the Tevatron energy [2], so that
one expects cuts to be important in the description of soft
interactions at the CERN LHC. The inclusion of these goes
under the name of unitarization. It is a formidable task to
calculate the contribution of cuts, as not only multiple
Pomeron exchanges must be calculated, but also multiple
Pomeron vertices.

Different schemes have been proposed, and we want to
show in this paper that the general properties of the am-
plitude do not heavily depend on the scheme, but rather on
what assumes for the inelastic contribution at high energy.
We shall limit ourselves to two popular schemes: the
eikonal and the U matrix, and show that simple extensions
of each lead to similar properties.

In Sec. I, we remind the reader of the simple require-
ments coming from unitarity, and examine in Sec. II the

two schemes. In Sec. III, we show that it is possible to
obtain the properties of the eikonal by extending the
U-matrix scheme, whereas in Sec. IV, we show the reverse,
i.e. that one can extend the eikonal to mimic the behavior
of the U matrix, at least for physical amplitudes.

II. UNITARITY

At high energy, we can start with the elastic scattering
amplitude aðs; tÞ, related to the elastic cross section though

d�

dt
¼ 1

16�s2
jaðs; tÞj2: (1)

One can then Fourier transform a to b space

Gðs;bÞ ¼
Z d2�

ð2�Þ2
aðs; tÞ
2s

ei��b; (2)

which leads to the expressions

�tot ¼ 2
Z

d2b ImGðs;bÞ; (3)

�el ¼
Z

d2bjGðs;bÞj2; (4)

where we have assumed that the spin-flip contribution to
the elastic cross section is negligible, which is not guaran-
teed, e.g. in pp or �pp scattering. One can then write the
square of the S-matrix density Sðs;bÞ ¼ 1þ iGðs;bÞ as

jSðs;bÞj2 ¼ 1� 2 ImGðs;bÞ þ jGðs;bÞj2: (5)

Unitarity demands that jSðbÞj2j � 1, the difference coming
from inelastic channels:

�inðs;bÞ ¼ 1� jSðs;bÞj2 � 0: (6)

There are several ways to represent the unit circle. First
of all, one can map the upper complex plane into a circle
via a complex exponential

*J.R.Cudell@ulg.ac.be
†predazzi@to.infn.it
‡selugin@theor.jinr.ru

PHYSICAL REVIEW D 79, 034033 (2009)

1550-7998=2009=79(3)=034033(6) 034033-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.034033


Sðs;bÞ ¼ expðizðs;bÞÞ with Imzðs;bÞ � 0: (7)

This maps in fact an infinite number of strips with 2n� <
Rezðs;bÞ< 2ðnþ 1Þ� each onto the unit circle.

It is also possible to use a one-to-one map through a
Möbius transform and write

Sðs;bÞ ¼ 1þ iz0ðs;bÞ
1� iz0ðs;bÞ ; with Imz0ðs;bÞ � 0: (8)

Other representations are possible, but we shall concentrate
on these two in the following section.

III. UNITARIZATION

The physical amplitude lies within the unitarity circle,
so that the associated S matrix can always be represented
by Eqs. (7) and (8). The unitarization scheme comes in
once one identifies z or z0 with the one-Reggeon exchange
amplitude. One then considers (7) and (8) as series expan-
sions in n-Reggeon exchanges, so that their first term must
give 1þ i�ðs; bÞ.

Indeed, if one writes the one-Reggeon exchange ampli-
tude as �ðs;bÞ, then assuming z ¼ � in (7) leads to the
well-known eikonal representation

Gðs;bÞ ¼ ið1� expði�ðs;bÞÞ: (9)

This scheme can be derived in QED and other field theories
[3–6] or in potential theory [7]. It can be extended to
include diffractive channels [8]. It leads at asymptotic
energies (s ! 1) to the limit �el=�inel ¼ 1, i.e. to maxi-
mum inelasticity.

The other unitarization scheme considered here is the
U-matrix representation [9–11] where one identifies z0 in
(8) with �ðs;bÞ=2, to match the one-Reggeon exchange:

Gðs;bÞ ¼ �ðs;bÞ
1� i�ðs;bÞ=2 : (10)

In this scheme, Sðs;bÞ tends to �1 when s ! 1 and b is
finite, so that the inelastic partial wave �inðs;bÞ tends to 0:
the ratio �el=�inel vanishes asymptotically.

Both schemes have the same development at second
order in �, and differ only in the rest of the series.

It must be noted however that the resummation must
lead to an amplitude within the unitarity circle, but there is
no reason to assume that it maps the entire complex plane
to the circle. Hence, one can easily extend both schemes
through a change in the strength of successive scatterings.
This gives the extended eikonal schemes [12–14]

Gðs;bÞ ¼ i

!
ð1� expði!�ðs;bÞÞ (11)

and the extended U-matrix schemes

Gðs;bÞ ¼ �ðs;bÞ
1� i!0�ðs;bÞ : (12)

It is straightforward to check that using! � 1 or!0 � 1=2
maps any amplitude � into the unitarity circle.
We shall now show that the various possibilities can be

grouped into two wide classes of unitarization schemes,
and that the exact form matters little.

IV. SHADOWING

As we have seen, the eikonal predicts that at high energy
the inelastic component of the cross section will be maxi-
mal, �in ¼ 1. This in turn leads to jSð1;bÞj ¼ 0 and
Gð1;bÞ ¼ i. To reach this regime via an extended U
matrix, one needs to choose !0 ¼ 1 in (12).
The inelasticity will then be

�inðs;bÞ ¼ 2 Im�ðs;bÞ þ j�ðs;bÞj2
1þ 2 Im�ðs;bÞ þ j�ðs;bÞj2 : (13)

It can easily be seen that s ! 1 leads to �inel=�el ! 1 and
�el=�tot ! 1=2.
Differently stated, this extended U-matrix representa-

tion has the standard black-disk limit.

FIG. 1. Inelasticity for the eikonal and extended U matrix atffiffiffi
s

p ¼ 1:8 TeV (upper figure) and
ffiffiffi
s

p ¼ 14 TeV (lower figure).
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Throughout this paper, we shall use as an example of
one-Reggeon exchange amplitude a hard Pomeron term,
with a parametrization

�ðs; bÞ ¼
� ffiffiffi

s
p

1500 GeV

�
0:9

expð�b2=9Þ
�
ðiþ tan

�
0:45�

2

��
:

(14)

This amplitude reaches the black-disk limit at 1500 GeV,
similar to the model of Ref. [15], and has a dependence in t
similar to that of pp scattering. We also neglect the effect
of shrinkage, which is small for a hard Pomeron.

In Fig. 1, one can compare the inelasticity in the case of
the eikonal and in that of the extended U matrix. One
clearly sees that the generic features of both schemes are
very close.

The extended U matrix and the eikonal scheme are
different representations of a wider class of unitarization
procedures with a standard black-disk limit. Indeed, we
can extend (12) to

Gðs;bÞ ¼ i

�
1� 1

ð1� i�ðs;bÞ=�Þ�
�
: (15)

If � ¼ 1 this form leads to the extended U matrix while,
for � ! 1, we obtain the standard eikonal. When � varies
from 1 to 1, we obtain different forms of unitarization
which all lead to a black-disk limit, and the amplitude G
does not change anymore once it has reached its maximum
value. In Fig. 2, we show the inelasticity �ðs;bÞ for differ-
ent values of �, again in the case of the hard Pomeron input
of Eq. (14).
It may be worth pointing out that Eq. (15) can also lead

to a noninteracting theory in the limit � ! 0, as in this case
Gðs;bÞ ! 0.

V. FULL UNITARITY LIMIT

The standard U-matrix scheme (10) was intensively ex-
plored in [11] in the partial-wave language. In the impact
parameter representation, the properties of theUmatrix are
explored in [16].
For a purely imaginary one-Reggeon exchange, when

Im�ðs;bÞ goes from 0 to 1, the S matrix varies in the
interval ½�1;þ1�, and the amplitude G goes from 0 to 2i.
Hence in this case the full unitarity limit can be reached.
This form of unitarization leads to unusual properties at

superhigh energies as was shown in [16]. In this represen-
tation

�elðsÞ ¼ 4
Z 1

0

j �ðs;bÞ2 j2
j1� ið�ðs;bÞ2 Þj2 db (16)

and

�inelðsÞ ¼ 4
Z 1

0
Im

� ð�ðs;bÞ2 Þ
½1� ið�ðs;bÞ2 Þ�2

�
db: (17)

so that, when Im�ðs;bÞ ! 1, one gets �inel=�tot ! 0 and
�el=�tot ! 1.
It is often considered [17] that these properties are

intrinsic to the Möbius projection of � onto the unitarity
circle. We want to show now that, in fact, extended eiko-
nals can lead to the same properties for the unitarized
amplitude.
We have seen that choosing !> 1 in (11) guarantees

that any amplitude would be unitarized. However, one
must be concerned with the physical amplitude, and it is
not needed to map the whole complex plane into the
unitarity circle. This means that for some specific choices
of one-Reggeon exchange �, one can extend the range of
values of !, and restrict oneself to part of the complex �
plane. Unitarity, in this case, leads to the condition

cosð!Re�Þ � e�!Im� � ð2!� 1Þe!Im�

2ð1�!Þ : (18)

So we see that for !< 1=2, the second term of the nu-
FIG. 2. Inelasticity �inðs;bÞ for various values of �, for

ffiffiffi
s

p ¼
1:8 TeV (upper line) and

ffiffiffi
s

p ¼ 14 TeV (lower line).
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merator will guarantee the inequality for sufficiently large
Im�.

We show in Fig. 3 the region allowed in the case ! ¼
0:525 together with a curve showing the amplitude
corresponding to the exchange of one hard Pomeron with
intercept 1.45. This is of course an extreme curve, corre-
sponding to a ratio Re�=Im� of 0.73. Any physical ampli-
tude will include softer intercepts, and will lie above the
hard Pomeron line. So we see that, in practice, eikonals can
be extended to values of ! between 1=2 and 1.

But at high energy, such eikonals have all the basic
properties of the U-matrix unitarization. For instance, the
inelasticity reaches the asymptotic value

�in ! 2!� 1

!2
as s ! 1 (19)

which is close to 0 for ! close to 1=2.
Our calculations for�inðs; bÞ in the cases of theUmatrix

and of the extended eikonal are shown in Fig. 4. We see that
both solutions have the same behavior in s and b, but also
that the extended eikonal has sharper antishadowing
properties.

Hence, the peculiar asymptotic properties of (17) are not
unique to theU matrix (10). The extended eikonal (11) has
a similar asymptotic behavior for ! between 1=2 and 1.

Again, we can find a scheme that interpolates between
these two forms [18]:

Gðs; bÞ ¼ i

!

�
1� 1

ð1� i!�ðs; bÞ=�Þ�
�
: (20)

If � ¼ 1 this form coincides with the standard U-matrix
representation for! ¼ 1=2. If, on the contrary, we let � !
1, we recover the extended form of the eikonal represen-
tation. Hence, when � varies from 1 to 1, and ! � 1=2,

we obtain different forms of unitarization belonging to a
wide class with the similar asymptotic properties, which
we shall examine more closely in the next section.

VI. COMPARISON OF THE BORN TERMS

Another way to make the unitarization schemes lead to
similar results is to use different inputs for z in (8) or (7).
We can solve the equation

i

!
ð1� expði!�eÞ ¼ �u

1� i!0�u

: (21)

to find which Born term in the U-matrix representation
would give results similar to those of the eikonal. Writing
�u ¼ �R

u þ i�I
u and �e ¼ �R

e þ i�I
e, we obtain

2!�I
e ¼ log

� ðj�uj2!02 þ 2�I
u!

0 þ 1

j�uj2ð!�!0Þ2 � 2�I
uð!�!0Þ þ 1

�
;

(22)

FIG. 3. The allowed region (in white) for amplitudes � to be
unitarized by an extended eikonal with ! ¼ 0:525, together with
the line corresponding to a hard Pomeron amplitude with inter-
cept 1.45.

FIG. 4. Antishadowing effects in extended eikonal and
U-matrix schemes, for

ffiffiffi
s

p ¼ 1:8 TeV (upper figure) and
ffiffiffi
s

p ¼
14 TeV (lower figure).
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tanð!�R
e Þ ¼ �R

u!

j�uj2!0ð!0 �!Þ þ �I
uð2!0 �!Þ þ 1

:

(23)

This simplifies to a particularly simple expression in the
case of a purely imaginary �u:

!�I
e ¼ log

��������
�I
u!

0 þ 1

1� �I
uð!�!0Þ

�������� (24)

and the real part goes from 0 to !�R
e ¼ � if ð!�!0Þ�I

u

crosses 1. This relation is clearly discontinuous if ! � !0.
We illustrate this in Fig. 5 in the case ! ¼ 1 (eikonal) and
!0 ¼ 1=2 (U matrix). At low energy, the phases are ap-
proximately the same. But at high energy when �I

uðs; bÞ !
2, �e has a discontinuity: its imaginary part goes to infinity,
and its real part jumps by i�. On the other hand, the
extended U matrix does not lead to such a singularity if
!0 ¼ 1.

VII. NONLINEAR EQUATIONS

All previous schemes can be recast as nonlinear equa-
tions, which may be reminiscent of those obtained in QCD
from gluon saturation.

The simplest way [19] to get these is first to take the
derivative of G with respect to � in (11) and (12):

dG

d�
¼ 1þ i!G (25)

in the eikonal case, and

dG

d�
¼ ð1þ i!0GÞ2 (26)

for the U matrix. To make a tentative connection with
saturation, we shall consider a purely imaginary Born
term, and we shall write G ¼ ig. Assuming � ¼ ig0x

��,
we can write the above equations as an evolution in y ¼

logð1=xÞ at fixed b:

dg

dy
¼ �

!
logð1�!gÞð1�!gÞ: (27)

in the eikonal case and

dg

dy
¼ �gð1�!0gÞ (28)

for the U matrix.
We see that the U-matrix schemes lead to equations

which look more natural than the corresponding ones in
the eikonal case, as it is hard to imagine how saturation
would lead to a log containing the amplitude.
One can further generalize these equation to reproduce

Eqs. (15) and (20). The corresponding nonlinear equation
will be

dg

dy
¼ ��

!
ð1� ð1� gÞ1=�Þð1�!gÞ: (29)

It is easily seen that when � ¼ 1 we obtain the nonlinear
equation for the U matrix. In the case ! ¼ 1 Eq. (28)
amounts to the standard logistic equation, and leads to
the extended U-matrix unitarization scheme.

FIG. 5. The relation between the Born terms of the U-matrix
scheme and of the eikonal scheme, in the case of a purely
imaginary �u. The real part of !�e is discontinuous and goes
from 0 to i� at �u ¼ 2.

FIG. 6. The behavior of Gðs;b ¼ 0Þ from (20) for various
choices of � and !.
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VII. CONCLUSION

In this paper, we presented two new unitarization
schemes which generalize the usual eikonal and
U-matrix unitarization schemes. We showed that they be-
long to two wide classes which cannot be mapped analyti-
cally one onto the other. We showed however that it is
possible to build a more general scheme which interpolates
between the two.

The basic behavior ofGðs;bÞ as a function of s is mostly
constrained by the value of! (or!0), but not by the details
of the unitarizing map. To illustrate this point, we show in
Fig. 6 the behavior of Gðs;b ¼ 0Þ in our interpolating
scheme (20), for � ¼ 9 (close to an eikonal) and for � ¼
1 (U matrix), for ! ¼ 1 or 1=2. Clearly, the large-s be-
havior of the amplitude is controlled by !, and not by �.

So the question of the asymptotic behavior of the elastic
amplitude remains open. It is possible to build an infinite
number of schemes in which the amplitude will saturate at
the black-disk limit, but there also exists an infinite number

of schemes in which it will exceed it and eventually
converge to the full unitarity limit.
Up to now we do not have a decisive argument to choose

one class of unitarization over the other. One possibility
would be to fit the existing data to determine � and !. It is
however known that this is possible in eikonal schemes, so
that it is unlikely that the constraints will be very stringent.
However, the prediction for the total pp cross section in
these two classes of unitarization have large differences
(see, for example [15,20]) for the LHC energy region, and
hence we may know soon which is realized.
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