
Photoproduction of�þð1540; 1=2þÞ reexamined with new theoretical information

Seung-il Nam1,* and Hyun-Chul Kim2,†

1Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, Inha University, Incheon 402-751, Korea

(Received 9 January 2009; published 25 February 2009)

We reinvestigate the photoproduction of the exotic pentaquark baryon�þð1540; 1=2þÞ from the �N !
�K�þ reaction process within the effective Lagrangian approach, taking into account new theoretical

information on the KN� and K�N� coupling strengths from the chiral-quark-soliton model (�QSM). We

also consider the crossing-symmetric hadronic form factor, satisfying the on-shell condition as well.

Because of the sizable vector and tensor couplings for the vector kaon, gK�N� and fK�N�, which are almost

the same with the vector coupling gKN� � 0:8 for the pseudoscalar kaon, the K�-exchange contribution

plays a critical role in the photon-beam asymmetries.

DOI: 10.1103/PhysRevD.79.034031 PACS numbers: 13.60.Le, 14.20.Jn

I. INTRODUCTION

Since the LEPS collaboration announced the evidence of
the �þ [1], being motivated by Ref. [2] in which its decay
width was predicted to be very small with its mass
1540 MeV [3], it intrigued a great deal of experimental
and theoretical works on the�þ (see, for example, reviews
[4,5] for the experimental and theoretical status before
2006). However, the CLAS collaboration conducted a
series of experiments and reported eventually null results
of finding the �þ [6–9] in various reactions. Considering
the fact that these CLAS experiments were dedicated ones
with high statistics, these null results from the CLAS
experiment are remarkable and indicate that the total cross
sections for photoproductions of the �þ should be tiny. In
fact, the 95% confidence level (CL) upper limits on the
total cross sections for the �þ at 1540 MeV lie mostly in
the range of ð0:3� 0:8Þ nb [6,7,9]. In Ref. [8] the upper
limit on the �d ! �ð1520; 3=2�Þ�þ total cross section
turned out to be about 5 nb in the mass range from
1520 MeV to 1560 MeV with a 95% CL. The KEK-PS-
E522 collaboration [10] has carried out the experiment
searching for the �þ via the ��p ! K�X reaction and
found a bump at around 1530 MeV but with only ð2:5�
2:7Þ� statistical significance. Moreover, the upper limit of
the �þ-production cross section in the ��p ! K��þ
reaction was extracted to be 3:9 �b. A later experiment
at KEK (KEK-PS-E559), however, has observed no clear
peak structure for the �þ in the Kþp ! �þX reaction
[11], giving a 95% CL upper limit of 3:5 �b=sr for the
differential cross section averaged over from 2� to 22� in
the laboratory system. This negative situation is summa-
rized in the 2008 Review of Particle Physics by Wohl [12]:
‘‘The whole story—the discoveries themselves, the tidal
wave of papers by theorists and phenomenologists that
followed, and the eventual ‘‘undiscovery’’—is a curious
episode in the history of science.’’

In the meanwhile, the DIANA collaboration has contin-
ued to search for the �þ in the Kþn ! K0p reaction and
has reported a direct formation of a narrow pK0 peak with
mass of ð1537� 2Þ MeV and width of � ¼ ð0:36�
0:11Þ MeV [13]. Compared to the former measurement
by the DIANA collaboration for the �þ, the decay width
was more precisely measured in this new experiment [14],
the statistics being doubled. The SVD experiment has also
reported a narrow peak with the mass ð1523� 2stat �
3systÞ MeV in the inclusive reaction pA ! pK0

s þ X

[15,16]. Moreover, the LEPS collaboration has brought
news very recently on the evidence of the �þ [17]: The
mass of the �þ is found at ð1525� 2þ 3Þ MeV and the
statistical significance of the peak turns out to be 5:1�. The
peak position is shifted by þ3 MeV systematically due to
the minimum momentum spectator approximation
(MMSA). The differential cross section was estimated to
be ð12� 2Þ nb=sr in the photon energy ranging from
2.0 GeV to 2.4 GeV in the LEPS angular range.
Although it seems that the pentaquark baryon�þ rarely

exists according to certain experiments as explained above,
it is still theoretically necessary to understand why the�þ
is so elusive and intractable. As mentioned previously, one
of the reasons can be found in the fact that the cross
sections of the �þ photoproduction as well as of the
mesonic production are observed to be minuscule. The
origin of these tiny cross sections can be understood by
the smallness of the KN� and K�N� coupling constants,
as mentioned explicitly in Refs. [11]. A similar conclusion
was also found in Ref. [17]. Moreover, the decay width of
the �þ ! KN, observed by the DIANA collaboration,
indicates that the KN� coupling constant must be small,
as was reviewed in Ref. [18]. From the theoretical side,
Ref. [19] has shown that the tensor coupling constant for
the K�N� vertex is very small and has predicted the total
cross section for the �þ photoproduction to be around
0.2 nb even before the CLAS measurement, in which the
cross section for the�þ photoproduction was estimated to
be below ð0:3� 0:8Þ nb [6,7,9]. Azimov et al. [20] has
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evaluated the smaller value of the K�N� tensor coupling
constant, employing the vector-meson dominance with SU
(3) symmetry. The vector-coupling constant for the K�N�
vertex vanishes in SU(3) symmetry due to the generalized
Ademollo-Gatto theorem as shown in Ref. [21], in which
the vector and tensor coupling constants for the K�N�
vertex turned out to be very small within the framework of
the chiral quark-soliton model (�QSM) with SU(3) sym-
metry breaking effects taken into account: The vector
coupling constant gK�N� ¼ 0:74� 0:87 and tensor cou-
pling constant fK�N� ¼ 0:53� 1:16, respectively. In the
same theoretical framework, the KN� coupling constant
was determined to be gKN� ¼ 0:83, which leads to the
corresponding decay width of the �þ: ��!NK ¼
0:71 MeV [22]. Note that these results in the �QSM are
all derived without adjusting any parameters.

In Refs. [23–27], the photoproduction of the �þ was
investigated, based on effective Lagrangian approaches.
However, since the coupling constants and cutoff masses
were unknown both experimentally and theoretically, it
was very difficult to describe the production mechanism
of the �þ without any ambiguity. Thus, in the present
work, we want to reexamine the photoproduction of the
�þ, incorporating the KN� and K�N� coupling con-
stants and cutoff masses from Refs. [21,22]. The results
will be shown that the magnitudes of the total cross section
and differential cross section are qualitatively compatible
with those of the LEPS and CLAS data.

We sketch the structure of the present work as follows:
In Sec. II, we briefly review the coupling constants of theK
and K� exchange, which play critical roles in describing
the photoproduction of the �þ. In Sec. III, we explain the
general formalism of the effective Lagrangian method. In
Sec. IV, we present the numerical results and discuss them.
The final section is devoted to summary and conclusion.

II. COUPLING CONSTANTS AND FORM FACTORS
FOR THE K AND K� EXCHANGES FROM THE

�QSM

In this section, we briefly review the results of the
�QSM calculations. We start with the following �þ-to-
neutron transition matrix elements of the vector current
V� ¼ �c�� 1

2 ð�4 � i�5Þc and axial-vector current A� ¼
�c���5 1

2 ð�4 � i�5Þc :

h�ðp0ÞjV�ð0ÞjnðpÞi ¼ �u�ðp0Þ
�
Fn�
1 ðQ2Þ��

þ Fn�
2 ðQ2Þi���q�
M� þMn

þ Fn�
3 ðQ2Þq�
M� þMn

�
unðpÞ; (1)

h�ðp0ÞjA�ð0ÞjnðpÞi ¼ �u�ðp0Þ½Gn�
1 ðQ2Þ�� þGn�

2 ðQ2Þq�
þGn�

3 ðQ2ÞP���5unðpÞ; (2)

where u�ðnÞ denotes the spinor of the �þ (neutron) with

the corresponding mass M�ðnÞ. The Q2 stands for the

momentum transfer Q2 ¼ �q2 ¼ �ðp0 � pÞ2 and P rep-
resents the total momentum P ¼ p0 þ p. Fn�

i and Gn�
i

designate real transition form factors, related to the strong
coupling constants for the K� and K with the help of the
vector-meson dominance (VMD) [28,29] and Goldberger-
Treiman relations.
In the VMD, the vector-transition current can be ex-

pressed as theK� current by the current field identity (CFI):

V�ðxÞ ¼ �sðxÞ��uðxÞ ¼ m2
K�

fK�
K��ðxÞ; (3)

wheremK� and fK� denote, respectively, the mass of theK�
meson, mK� ¼ 892 MeV, and decay constant defined as

f2K� ¼ m2
K�

m2
�

f2�; (4)

where the decay constant f� for the rho meson can be

determined as

f2� ¼ 4�	2m�

3��0!eþe�
: (5)

Here, 	 denotes the electromagnetic fine-structure con-
stant. The fK� is determined by using the �-meson experi-
mental data with m�¼770MeV and ��0!eþe� ¼
ð7:02�0:11Þ keV [12], for which we get the values f� �
4:96 and fK� � 5:71. Then, using the CFI, we can express
the K�N� vertex in terms of the transition form factors in
Eqs. (1) and (2):

h�ðp0Þj�s��ujnðpÞi ¼ m2
K�

fK�

1

m2
K� � q2

h�ðp0ÞjK��jnðpÞi;
(6)

h�ðp0ÞjK��jnðpÞi ¼ �u�ðp0Þ
�
gK�n��

� þ fK�n�
i���q�

M� þMn

þ sK�n�q
�

M� þMn

�
unðpÞ; (7)

where the gK�n� and fK�n� denote the vector and tensor
coupling constants for the K�N� vertex, respectively. By
comparing the Lorentz structures the strong coupling con-
stants can be determined as

gK�n� ¼ fK�F�n
1 ð0Þ; fK�n� ¼ fK�F�n

2 ð0Þ: (8)

Using the generalized Goldberger-Treiman relation, we
can get the strong coupling constant gKn� for the KN�
vertex as follows:

gKn� ¼ G�n
1 ð0ÞðM� þMnÞ

2fK
; (9)

where fK � 1:2f� stands for the kaon decay constant.
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The form factors Fn�
1 ðQ2Þ, Fn�

2 ðQ2Þ, and G�n
A ðQ2Þ of

Eqs. (1) and (2) can be expressed in terms of the matrix
elements of the vector and axial-vector currents with their
time and space components decomposed in the �þ rest
frame as follows:

Gn�
E ðQ2Þ ¼

Z d�q

4�
h�ðp0ÞjV0ð0ÞjnðpÞi; (10)

Gn�
M ðQ2Þ ¼ 3Mn

Z d�q

4�

qi
ik3

iq2
h�ðp0ÞjVkð0ÞjnðpÞi; (11)

Gn�
A ðQ2Þ ¼ � 3

2q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�

E� þM�

s Z d�q

4�

� ½q� ðq� h�ðp0ÞjAð0ÞjnðpÞiÞ�z; (12)

where the electromagneticlike form factors Gn�
E and Gn�

M

are written as

Gn�
E ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þMn

2Mn

s �
Fn�
1 ðQ2Þ � Fn�

2 ðQ2Þ
M� þMn

q2

En þMn

þ Fn�
3 ðQ2Þ q0

M� þMn

�
; (13)

Gn�
M ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mn

En þMn

s
½Fn�

1 ðQ2Þ þ Fn�
2 ðQ2Þ�: (14)

Since the second and third parts in Eq. (13) turn out to be
very small, we take the following expressions as the vector
and tensor coupling constants:

gK�n� ¼ fK�G�n
E ð0Þ;

fK�n� ¼ fK� ðG�n
E ð0Þ �G�n

M ð0ÞÞ: (15)

The next step is to evaluate the form factors of Eqs. (10)
–(12) within the self-consistent �QSM. The model is
featured by the following effective low-energy partition
function with quark fields c with the number of colors Nc

and the pseudo-Goldstone boson field UðxÞ in Euclidean
space:

Z�QSM ¼
Z

DcDc yDU exp

�
�

Z
d4xc yiDðUÞc

�

¼
Z

DU expð�Seff½U�Þ; (16)

S effðUÞ ¼ �Nc Tr lniDðUÞ; (17)

where

DðUÞ ¼ �4ði=@� m̂�MU�5Þ ¼ �i@4 þ hðUÞ � �m;

(18)

�m ¼ ms � �m

3
�413�3 þ �m�msffiffiffi

3
p �4�8

¼ M1�
413�3 þM8�

4�8: (19)

The current quark mass matrix is defined as m̂ ¼
diagð �m; �m;msÞ ¼ �mþ �m. The �m designates the average
of the up and down current quark masses with isospin
symmetry assumed. The M denotes the constituent quark
mass of which the best value for the numerical results is
M ¼ 420 MeV. The pseudo-Goldstone boson field U�5 is
defined as

U�5 ¼ expði�5�
a�aÞ ¼ 1þ �5

2
Uþ 1� �5

2
Uy (20)

with U ¼ expði�a�aÞ. For the quantization, we consider
here Witten’s embedding of SU(2) soliton into SU(3):

USUð3Þ ¼ USUð2Þ 0
0 1

� �
(21)

with the SU(2) hedgehog chiral field

USUð2Þ ¼ exp½i�5n̂ 	 �PðrÞ�: (22)

Here, the PðrÞ denotes the profile function of the chiral
soliton USUð2Þ.
In order to describe the baryonic properties, we first have

to derive the profile function. It can be obtained by the
following procedure: First, we take the large Nc limit and
solve it in the saddle-point approximation, which corre-
sponds at the classical level to finding the profile function
PðrÞ in Eq. (22). Thus, the PðrÞ can be obtained by solving
numerically the classical equation of motion coming from
�Seff=�PðrÞ ¼ 0, which yields a classical soliton field Uc

constructed from a set of single quark energies En and
corresponding states jni related to the eigenvalue equation
hðUÞjni ¼ Enjni. However, the classical soliton does not
have the quantum number of the baryon states, so that we
need to project it to physical baryon states by the semi-
classical quantization of the rotational and translational
zero modes. Note that the zero modes can be treated
exactly within the functional integral formalism by intro-
ducing collective coordinates. Detailed formalisms can be
found in Refs. [30,31]. Considering the rigid rotations and
translations of the classical soliton Uc, we can express the
soliton field as

Uðx; tÞ ¼ AðtÞUcðx� zðtÞÞAyðtÞ; (23)

where AðtÞ denotes a unitary time-dependent SU(3) col-
lective orientation matrix and zðtÞ stands for the time-
dependent displacement of the center of mass of the soliton
in coordinate space.
In the �QSM, the baryon state consists of Nc valence

quarks expressed as

jBðpÞi ¼ lim
x4!�1

1ffiffiffiffi
Z

p eip4x4
Z

d3 ~xei ~p	 ~xJyBðxÞj0i (24)
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with the baryonic current:

JBðxÞ ¼ 1

Nc!
�
	1				Nc

B "i1			iNc c 	1i1ðxÞ 	 	 	 c 	Nc iNc
ðxÞ; (25)

where 	1; 	 	 	 ; 	Nc
and i1; 	 	 	 ; iNc

denote the spin-flavor

and color indices, respectively. The �
	1				Nc

B stands for the
projection operator for the corresponding baryon state.
Thus, the transition matrix elements in Eqs. (10)–(12)
can be written as the following correlation functions:

hB2ðp2ÞjJ ��ð0ÞjB1ðp1i ¼ 1

Z
lim
T!1e

�ip4
2
ðT=2Þþip4

1
ðT=2Þ

�
Z

d3 ~x0d3 ~xei ~p1	 ~x�i ~p2	 ~x0

�
Z

DUDc yDc JB0

�
T

2
; ~x0

�

� J ��ð0ÞJyB
�
�T

2
; ~x

�

� exp

�
�

Z
d4xc yiDðUÞc

�
:

(26)

We can solve Eq. (26) in the saddle-point approximation
justified in the large Nc limit, taking into account the zero-
mode quantization explained before. We consider only the
rotational 1=Nc corrections and linear ms corrections.
Thus, we expand the quark propagators in Eq. (26) with

respect to� and �m to the linear order and _Ty
zðtÞTzðtÞ to the

zeroth order.
Having carried out a tedious but straightforward calcu-

lation (see Refs. [30,31] for details), we finally can express
the baryonic matrix elements in Eqs. (10)–(12), as a
Fourier transform in terms of the corresponding quark
densities and collective wave functions of the baryons:

hB0ðp0ÞjJ �
�ð0ÞjBðpÞi ¼

Z
dA

Z
d3zeiq	z��

B0 ðAÞF �
�ðzÞ�BðAÞ;

(27)

where �ðAÞ denote the collective wavefunctions and F �
�

represents the quark densities corresponding to the current
operator J �

�. Using the collective wave functions and the
quark densities, we immediately obtain the transition vec-
tor and axial-vector form factors Gn�

E;M;A in Eqs. (10)–(12).

The corresponding results can be found in Refs. [21,22],
which are summarized in Table I. The vector coupling

constant gK�n� vanishes in the SU(3) symmetric case
because of the generalized Ademollo-Gatto theorem.
Note that even the SU(3) symmetry breaking effects from
the Hamiltonian do not contribute to the gK�n�. The value
of gK�n� with SU(3) symmetry breaking comes solely from
the wave function corrections. The coupling constants for
the proton can be obtained easily by considering isospin
factors.
Note that there is a sign difference in the coupling

constants for the neutron and proton: gK�n� ¼ �gK�p�
and the same for the fK�N� [22]. However, as shown in
the next section, since the K�-exchange contribution in the
�þ photoproduction provides a 90� phase difference from
others, these sign differences for the neutron and proton
targets do not make any difference at all in describing
physical observables.

III. AN EFFECTIVE LAGRANGIAN APPROACH

We now proceed to calculate the amplitudes for the
reaction of the �þ photoproduction, taking the results of
the coupling constants in Sec. II as numerical inputs. We
first define the relevant effective interactions to compute
the �þ photoproduction in the Born approximation. Since
the coupling constants derived from the �QSM are for the
�þ with positive parity, we assume here the parity of the
�þ to be positive,

LKN� ¼ �igKN�
���5KN þ H:c:;

LK�N� ¼ �gK�N�
����K

��N � fK�N�

M� þMN

�����@
�K��N

þ H:c:;

L�KK ¼ ieK½ð@�KyÞK � ð@�KÞKy�A� þ H:c:;

L�KK� ¼ g�KK�
����ð@�A�Þð@�KyÞK�� þ H:c:;

L�NN ¼ �eN �N

�
�� � �N

2MN

���F
��

�
N þ H:c:;

L��� ¼ �e� ��

�
�� � ��

2M�

���F
��

�
�þ H:c:; (28)

where �, N, K, and K�
� denote the fields of the �þ, the

nucleon, the pseudoscalar kaon, and the vector kaon, re-
spectively. The A� represents the photon field, whereas the

F�� the antisymmetric electromagnetic field strength. The

g�KK� designates the �KK� coupling constant that can be

determined by using the experimental data for the K� !
K� decay, which yields 0:388 GeV�1 for the neutral decay
and 0:254 GeV�1 for the charged one. The eK, eN , and e�
are unit electric charges for the kaon, nucleon, and �þ,
respectively. The �N and �� stand for the anomalous
magnetic moments of the nucleon and �þ, respectively.
Since the magnetic moment of the �þ is theoretically
known to be rather small [5,32–34], we take it to be �� �
�0:8 as in Ref. [26]. The��� is a usual antisymmetric spin

operator ��� ¼ i½��; ���=2. The MN and M� correspond

TABLE I. The results for the K�N� and KN�þ coupling
constants at Q2 ¼ 0 with and without ms corrections. The
constituent quark mass M is taken to be M ¼ 420 MeV.

ms ¼ 0 ms ¼ 180 MeV
gK�N� fK�N� gKN� gK�N� fK�N� gKN�

0 2.91 1.41 0.81 0.84 0.83
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to the nucleon and �þ masses and are taken to be 939 MeV and 1540 MeV, respectively.
Having performed straightforward manipulations, we arrive at the following invariant amplitudes for the s- and

u-channel contributions, and the K- and K�-exchange ones in the t channel as follows:

iMs ¼ �gKN� �uðp2Þ
�
eN�5

Fcð6p1 þMNÞ þ Fs 6k1
s�M2

N

6
� eQ�N

2MN

�5

Fsð6k1 þ 6p1 þMNÞ
s�M2

N

6
6k1
�
uðp1Þ;

iMu ¼ �gKN� �uðp2Þ
�
e� 6
Fcð6p2 þM�Þ � Fu6k1

u�M2
�

�5 �
eQ��

2M�

6
6k1 Fuð6p2 � 6k1 þM�Þ
u�M2

�

�5

�
uðp1Þ;

iMK
t ¼ 2eKgKN� �uðp2Þ�5

ðk2 	 
Þ
t�M2

K

uðp1ÞFc;

MK�
t ¼ ig�KK�
���� �uðp2Þ

�
gK�N�ðtÞ k

�
1 


�k�2 �
�

t�M2
K�

� fK�N�ðtÞ
2ðMN þM�Þ

k�1 

�k�2 �

� 6qt � 6qtk�1 
�k�2 ��

t�M2
K�

�
uðp1ÞF1=2

v ;

(29)

where �u and u are the Dirac spinors of�þ and the nucleon.
The four momenta p1, p2, k1, and k2 stand for those of the
nucleon, the �þ, the photon, and the kaon, respectively.
The s, u, and t represent the Mandelstam variables. Note
that in the case of the process �p ! �K0�þ, there is no
contribution from the K-exchange contribution. Moreover,
the K�-exchange contribution gives a 90� phase difference
from others as mentioned previously.

The form factors as functions of the Mandelstem varia-
bles are defined as follows [35,36]:

Fs;u;t ¼ �4

�4 þ ½ðs; u; tÞ �M2
s;u;t�2

;

Fv ¼ �4

�4 þ ðt�M2
K� Þ2 ;

(30)

where the four-dimensional cutoff mass � is chosen to be
650 MeV which is compatible with those used in the
�ð1520Þ [27] and �ð1116Þ [37] photoproductions. The
common overall form factor Fc is written as follows:

Fcðs; t; uÞ ¼ 1� ð1� FsÞð1� FuÞð1� FtÞ; (31)

which satisfies the on-shell condition and crossing symme-
try. We note that this form-factor scheme preserves the
Ward-Takahashi identity explicitly.

As for the coupling constants gK�N�, fK�N�, and gKN�,
we take the forms of Eq. (15) with the results of the �QSM.
The corresponding form factors from the �QSM can be
parametrized as follows [21]:

Gn�
E ðtÞ ¼ G0

E

�
	E�

2
E

	E�
2
E � t

�
	 þ b;

Gn�
M ðtÞ ¼ G0

M

�
	M�

2
M

	M�
2
M � t

�
	
;

(32)

where fitting parameters 	E;M, �E;M, and b are listed in

Table II. These parameters are determined by using the
results with the strange quark massms ¼ 180 MeV and the
constituent quark mass M ¼ 420 MeV.

IV. NUMERICAL RESULTS AND DISCUSSION

We are now in a position to discuss the results of the
present work. As mentioned previously, we assume that the
�þ baryon has the spin-parity quantum number, 1=2þ. In
the left panel of Fig. 1, each contribution to the total cross
section of the �n ! K��þ reaction is drawn as a function
of the photon energy E�. As shown there in Fig. 1, the

K-exchange contribution is the most dominant one,
whereas the second dominant one comes from the
K�-exchange one. The K�-exchange contribution is, how-
ever, the most dominant one near the threshold up to
around 1.8 GeV, because of which the total cross section
is raised drastically near the threshold. The u-channel
contribution is rather small and the s-channel is almost
negligible due to the present form-factor scheme that sup-
presses these channels. The K-exchange contribution
shows rather strong dependence on the photon energy
E�. As the E� increases, it starts to get enhanced.

The right panel of Fig. 1 depicts each contribution to the
differential cross section of the �n ! K��þ reaction. The
tendency of each contribution is in general similar to the
case of the total cross section, i.e. the K-exchange contri-
bution turns out to be the dominant one, as it should be.
Moreover, it has a large bump structure in the forward
direction. Beginning from the backward direction, it is
getting increased slowly. In the forward direction, it starts
to increase drastically till around cos
cm � 0:75 and falls
down sharply, which makes the K-exchange contribution

TABLE II. Relevant parameters for the electric and magnetic
vector-transition form factors derived in Eq. (32).

Gn�
E ðtÞ Gn�

M ðtÞ
G0

E 	E �E b G0
M 	M �M

0.182 9.01 0.402 �0:04 0.286 0.851 0.559
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have the bump structure. The K�-exchange contribution is
also larger in the forward direction than in the backward
direction. The u channel contributes mainly to the back-
ward direction as expected. Summing up all contributions,
we can easily see that the differential cross section is much
more enhanced in the forward direction.

A. Effects of the K� exchange
Since the present work is mainly interested in the effects

of the K�-exchange contribution, we now examine the
features of the K�-exchange contribution to the various
observable in detail. In the two upper panels of Fig. 2,
the total cross sections of the �n ! K��þ and �p !
�K0�þ reactions are drawn in the left and right panels,
respectively. The K�-exchange contribution turns out to
be almost 30% to the total cross section for the neutron
target. On the other hand, it is almost everything for the
proton target. It can be easily understood from the fact that
for the �p ! �K0�þ reaction there is no K-exchange con-
tribution that is dominant in the neutron channel.
Comparing the total cross sections for the neutron target
with the proton one, we find that the total cross section for
the neutron is about 30% larger than that for the proton one,
although they are qualitatively in a similar order & 1 nb.

In the two lower panels of Fig. 2, we show the differen-
tial cross sections for the �n ! K��þ and �p ! �K0�þ
reactions with and without the K�-exchange contribution
for three different photon energies 2.1 GeV, 2.2 GeV, and
2.3 GeV, respectively, in the left and right panels.
According to the K- and K�-exchange contributions, one

can observe the bump structures in the region & 60� for
both the neutron and proton target cases. As in the case of
the total cross sections, while the K�-exchange contribu-
tion makes the differential cross section about 10% en-
hanced for the neutron target, its effects are remarkably
large for the proton target. As the photon energy increases,
the differential cross sections also increase consistently, as
expected.
In the two upper panels of Fig. 3, we represent the

differential cross section as a function of the momentum
transfer t. The general tendency is very similar to that of
the differential cross sections shown in Fig. 2. It is worth
mentioning that the best way to examine the effects of the
K�-exchange contribution is to investigate the photon-
beam asymmetry, since the K� meson is a vector meson
which manifests magnetic meson-baryon coupling behav-
ior in the present photoprodcution process. The photon-
beam asymmetry is defined as

� ¼
�
d�

d�?
� d�

d�k

�
�

�
d�

d�?
þ d�

d�k

��1
; (33)

where the subscript ? ( k ) denotes that the polarization
vector of the incident photon is perpendicular (parallel) to
the reaction plane. The two lower panels of Fig. 3 draw the
photon-beam asymmetries for the �n ! K��þ and �p !
�K0�þ reactions in the left and right panels, respectively.
When we switch off the K�-exchange contribution, the
photon-beam asymmetry for the neutron target, starting
from the backward direction, is brought down drastically
and reaches down to almost� ¼ �1 at around 
cm ¼ 90�,

FIG. 1. Each contribution to the total and differential cross sections for the �n ! K��þ reaction. The total cross section is drawn in
the left panel, while the differential cross section for the photon energy E� ¼ 2:2 GeV is in the right panel. The solid curve stands for

the K-exchange contribution, the dashed one for the K� exchange, the dotted curve for the s channel, and the dash-dotted one for the
u-channel contributions.
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due to the electric meson-baryon coupling of the dominant
K-exchange contribution. However, when we turn on the
K�-exchange one, the photon-beam asymmetry decreases
mildly from the backward direction to the forward direc-
tion, and then it increases sharply to � ¼ 0. On the whole,
the photon-beam asymmetry is negative for the neutron
target.

When it comes to the proton target, the K�-exchange
contribution shows profound effects on the photon-beam
asymmetry. While the photon-beam asymmetry becomes
negative without the K�-exchange contribution, it turns

into being positive with it in all the regions. With the
K�-exchange contribution switched on, the photon-beam
asymmetry starts to increase from the backward direction
to the forward direction, and it goes down from around
cos
cm ¼ 0:5.

B. Effects of explicit SU(3) symmetry breaking

In Sec. II, it was mentioned that the vector coupling
constant gK�N� vanishes in the SU(3) symmetric case due
to the generalized Ademollo-Gatto theorem. Moreover, the

FIG. 2. Effects of the K� exchange on the total (upper panels) and differential (lower panels) cross sections. The left panels represent
those for the �n ! K��þ reaction, while the right panels those for the �p ! �K0�þ. The solid curves indicate those with all
contributions, whereas the dashed one those without the K� exchange. The differential cross sections are drawn for three different
photon energies E�, 2.1 GeV, 2.2 GeV, and 2.3 GeV.
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tensor coupling constant fK�N� is also very sensitive to
SU(3) symmetry breaking as shown in Table I. Thus, it is of
great interest to see the effects of SU(3) symmetry break-
ing on the�þ photoproduction. In Fig. 4, we show the total
(upper), differential (middle) cross sections, and photon-
beam asymmetries (lower) for the neutron and proton
targets in the left and right panels, respectively. Although
the values of the vector and tensor couplings for the K�N�
vertex are rather sensitive to the effects of SU(3) symmetry
breaking, all the results indicate that SU(3) symmetry
breaking does not play any significant role in describing
the �þ photoproduction. The reason can be found in the
fact that while the tensor coupling constant fK�N� is almost

three times reduced by SU(3) symmetry breaking, the
vector coupling constant gK�N� comes solely from the
wave function corrections that are also a part of the
SU(3) symmetry breaking effects. Thus, the finite value
of the gK�N� makes up for the reduction of the fK�N�, so
that the effects of SU(3) symmetry breaking turn out to be
rather small.

V. SUMMARYAND CONCLUSION

In the present work, we have investigated the�þ photo-
production, taking the new results of the chiral quark-
soliton model [21,22] into account. We first have briefly

FIG. 3. Effects of the K� exchange on the t dependences (d�=dt, upper panels) and the photon-beam asymmetries (�, lower panels).
The left panels represent those for the �n ! K��þ reaction, while the right panels those for the �p ! �K0�þ. The solid curve
indicates the case with all contributions, whereas the dashed one that without the K� exchange. The curves are drawn for three different
photon energies E�, 2.1 GeV, 2.2 GeV, and 2.3 GeV.
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FIG. 4. Effects of SU(3) symmetry breaking on the total (�, upper), differential (d�=d cos
cm, middle) cross sections, and photon-
beam asymmetries (�, lower) as functions of the photon energy E�. The left panels represent those for the �n ! K��þ reaction,

while the right panels those for the �p ! �K0�þ. The solid curve draws the total cross section with SU(3) symmetry breaking, whereas
the dashed one depicts that without it. The curves are drawn for three different photon energies E�, 2.1 GeV, 2.2 GeV, and 2.3 GeV.
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reviewed the formalism of the chiral quark-soliton model
for deriving the coupling constants and form factors for the
K�N� and KN� vertices. We made use of these coupling
constants and form factors as numerical inputs for calcu-
lating the �n ! K��þ and �p ! �K0�þ scattering
processes.

We have examined the effects of each contribution to the
total and differential cross sections. It turned out that the
K-exchange contribution is the most dominant one except
for the near-threshold region in which the K�-exchange
contributes mainly. The differential cross section has a
large bump structure in the forward direction, which is
obviously due to the K- and K�-exchange contributions.

Since it is of great importance to understand how the
K�-exchange contribution plays a role in the �þ photo-
production, we thoroughly have studied the effects of the
K�-exchange contribution in various observables for the
�n ! K��þ and �p ! �K0�þ reactions. It turned out
that the K�-exchange contribution is in general the most
dominant one in the �p ! �K0�þ reaction, since there is
no K-exchange contribution for the proton target. The
K�-exchange contribution to the �n ! K��þ reaction is
in general about 30% but to the �p ! �K0�þ reaction it is
almost everything, since the K-exchange contribution is
absent in this case. In order to see the effects of the
K�-exchange contribution, we also calculated the photon-
beam asymmetries. It was shown that with the
K�-exchange contribution the photon-beam asymmetries
are very different from those without the K�-exchange
contribution. In particular, the photon-beam asymmetry
for the proton target is changed from the negative sign to
the positive with K� exchange turned on.

The effects of SU(3) symmetry breaking are remarkable
on the coupling constants for theK�N� vertex. The vector-
coupling constant gK�N� vanishes without SU(3) symme-
try breaking, i.e. gK�N� ¼ 0. The tensor coupling constant
becomes fK�N� ¼ 2:91 that is by no means small. When
we switched on SU(3) symmetry breaking, the vector

coupling constant became finite because of the wave func-
tion corrections. Moreover, the tensor coupling constant is
reduced by about a factor of three. Thus, one may see this
large change in the coupling constants in the observables.
However, it was found that the effects of SU(3) symmetry
breaking were rather small in all observables we calculated
in the present work. It indicates that the finite value of the
vector coupling constant makes up for the reduction of the
tensor coupling constant. Thus, the effects of SU(3) sym-
metry breaking altogether turn out to be small.
Recent KEK and LEPS experiments [11,17] have drawn

a conclusion that the K�N� coupling constants must be
small, since the total cross sections turned out to be tiny for
the proton target, being rather different from the present
results. In contrast, the present results for the neutron target
are compatible with the experimental data [17]. In order to
pin down this inconsistency between the theory and experi-
ments, it is of great importance to have more high-statistics
data for various physical observable for the�þ-production
experiment [38].
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