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Dipion transitions of the subthreshold bottomonium levels �ðnSÞ ! �ðn0SÞ�� with n > n0, n ¼ 2, 3,

4 n0 ¼ 1, 2 are studied in the framework of the chiral decay Lagrangian, derived earlier. The channels B �B,

B �B� þ c:c:, B� �B� are considered in the intermediate state and realistic wave functions of �ðnSÞ, B and B�

are used in the overlap matrix elements. Imposing the Adler zero requirement on the transition matrix

element, one obtains 2d and 1d dipion spectra in reasonable agreement with experiment.
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I. INTRODUCTION

Dipion transitions of heavy quarkonia first discovered in
[1] were further experimentally studied in bottomonium
�ðnSÞ ! �ðn0SÞ��with n ¼ 2, 3, n0 ¼ 1, 2 by the CLEO
Collaboration [2–5], and for n ¼ 4, n0 ¼ 1, 2 by the
BABAR [6] and Belle Collaborations [7]. Recently a de-
tailed analysis of dipion transitions between states with
n ¼ 1, 2, 3 was done by the CLEO Collaboration [8]. On
the theoretical side the first attempt of explanation of
dipion spectra was done in [9–13] using multipole gluon
field expansion and PCAC; for a recent development of this
model see [14]. However, in this approach the natural
explanation can be given only to the ðn; n0Þ ¼ ð2; 1Þ dipion
spectrum, while other types of spectra with a double peak
need additional assumptions, such as the role of final state
interaction and � resonance [15–18], exotic �� reso-
nances [15,19–21], coupled channel effects [22,23], rela-
tivistic corrections [24], and S�D mixing [25]. The role
of the constant term was studied in [26], for a recent
development see [27,28]. In the present paper we are using
the formalism of field correlators [29] and the chiral decay
Lagrangian [30] developed for the dipion transitions in
[31,32]. In this formalism the dipion transition proceeds
via B �B, B �B�, etc. intermediate states and the total ampli-
tude consists of two terms: M ¼ a� b, where a refers to
the subsequent one-pion emission at each vertex of the type
� ! B �B, while b refers to the sequence of zero-pion and
two-pion vertices (see Fig. 1). The crucial point for the
calculation is the knowledge of the realistic wave functions
of all participants. In [31,32] the simplest simple hadronic
oscillator (SHO) form was used, fitted to the realistic rms
of a given state. In the present paper we are using the
realistic wave functions of �ðnSÞ, B and B� mesons,
calculated in [33] and being in good agreement with spec-
tra and decay constants. To simplify calculations of the
overlap matrix elements we are expanding realistic wave
functions in series of SHO functions and check accuracy of
expansion. Another improvement over results of [31,32] is

that we also consider transitions ðn; n0Þ ¼ ð4; 1Þ; ð4; 2Þ and
compare them with experiment [6,7]. On a more funda-
mental level we are considering not only spectra, but also
absolute values of widths both for dipion and for pionless
decays of the type �ðnSÞ ! B �B; B �B� þ c:c:, B� �B�. The
detailed analysis, made in the paper, reveals that pionic and
pionless decays are governed by distinct vertices, the first
one is given by the chiral decay Lagrangian (CDL) [30],
while the second one by the relativistic decay Lagrangian
(RDL), being in some sense the relativistic generalization
of the 3P0 model Lagrangian. Correspondingly we intro-

duce two reasonable physical scales, Mbr � f� �
0:1 GeV and M! � 2!, where ! is the average energy
of a light quark in the heavy-light meson (B meson), ! �
0:5 GeV. The resulting expressions are otherwise
parameter-free and allow us to predict the �� spectrum
in all transitions considered. As was already observed in
[31,32], the form of the spectrum is defined by the only real
parameter �, which was calculated in our approach with
the account of the Adler zero requirement (this require-
ment serves as a kind of renormalization condition on
amplitudes a, b). We shall use below the values of Adler
zero improved (AZI) � ¼ �AZI, obtained in [31,32] and
predict the �� spectrum as a function of total �� mass
M�� � q and angle � of �þ with respect to the initial �
direction, making also comparison to experiment. The plan
of the paper is as follows. In Sec. II general equations for
dipion and pionless amplitudes are given, taken from
[31,32], however modified as compared to [31,32] due to

FIG. 1. Diagrams for pion emission from the internal light
quark loop. Subsequent one-pion emission (a) and two-pion
emission (b).
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appearance of two mass parameters Mbr, Mw instead of
one,Mbr in [31]. We also make a correction to Eqs. (53, 55)
of [31], valid for equal mass case, to make it suitable for the
realistic case.1 In Sec. III we describe the calculation of
overlap matrix elements and expansion of realistic wave
functions. In Sec. IV the AZI procedure is exploited for
matrix elements, and we show results of calculations for
matrix elements and spectra. In Sec. V our results are
discussed in comparison with experiment. The last short
section is devoted to conclusions and perspectives.

II. THE BOTTOMONIUM DECAYAMPLITUDES

We start with the definition of Lagrangians for the light
q �q pair creation. As was derived in [30], the CDL has the
form (cf. Eq. (39) in [31]) in Euclidean space-time

L CDL ¼ �i
Z

d4x �c ðxÞMbrÛðxÞc ðxÞ (1)

where ÛðxÞ is the Nambu-Goldstone (NG) matrix

Û ¼ exp

�
i�5

’a�a

f�

�
;

’a�a ¼ ffiffiffi
2

p
�ffiffi
6

p þ �offiffi
2

p ; �þ; Kþ

��; �ffiffi
6

p � �offiffi
2

p ; K0

K�; �K0; � 2�ffiffi
6

p

0
BBBB@

1
CCCCA;

(2)

and f� ¼ 93 MeV. The Lagrangian (1) describes the q �q
pair creation with (or without) NG meson emission, and as
will be shown below, Mbr � f�.

One can recognize in (1) the scalar mass parameter Mbr

violating chiral symmetry due to scalar confinement, as
shown in [30]. To the lowest order in the pion field this
Lagrangian coincides with that of Weinberg, Manohar, and
Georgi (see [30,34] for discussion and applications).

Another type of the q �q pair creation occurs in the so-
called time-turning trajectories (ttt) of a light quark at the
boundary of the Wilson loop, when confinement ensures
area law of the loop. In this case one can introduce an
effective Lagrangian—the relativistic decay Lagrangian
(RDL) of the form

L RDL ¼ �i
Z

d4x �c ðxÞM!c ðxÞ: (3)

This Lagrangian is actually a substitute of the diagram with
a light quark loop, i.e., the diagram of Fig. 1(b) without the
right dot. Physically the confining film between the outer
and inner loop in Fig. 1(b) deflects the quark trajectory,
making it finally the time-turning trajectory, and the cu-
mulative effect of ttt is described phenomenologically by
the Lagrangian (3). Note, that as shown in Eqs. (33–38) of
[34], the sum of the diagrams of Figs. 1(a) and 1(b)

(without the right dot, i.e., with ttt) satisfies conditions of
spontaneous symmetry breaking, which implies the Alder
zero requirement (AZR). Therefore we impose the AZR on
the total amplitude, obtained from (1) and (3). As will be
seen the total amplitude satisfying the AZR withM! taken
from the decay �ð4SÞ ! B �B describes well the spectra of
�ðnSÞ ! �ðn0SÞ��. Here M! will be shown to be of the
order of 2!, where ! is the average energy of the light
quark in the B meson, ! � 0:5 GeV (see Appendix 1 of
[31] for exact values and discussion). Note, that M! �
Mbr, and for pionless decays one can neglect LCDL as
compared to LRDL: We shall use the strong decay formal-
ism developed in [31] and write the amplitude wnm for the
bottomonium transition from the state n to the state mwith
or without additional NG mesons, (cf. Eq. (48) of [31])

wnmðEÞ ¼ �
Z d3p

ð2�Þ3
X
n2;n3

Jnn2n3J
þ
mn2n3

E� En2n3ðpÞ
(4)

where � ¼ M2

Nc
, M is Mbr or M! depending on pion emis-

sion and Jnn2n3 is the overlap matrix element of the n-th

state of � and n2, n3 states of B �B or B �B� etc. For pionless
decay one has

Jnn2n3ðpÞ ¼
Z

�y123
d3q

ð2�Þ3
~�nðcpþ qÞ ~c n2ðqÞ ~c n3ðqÞ: (5)

Here c ¼ �
�þ! � 1 (� is the energy of the heavy quark

in the B meson, � � 4:83 GeV) and �y123 is the ratio of

Dirac traces, �y123 ¼ �ZffiffiffiffiffiffiffiffiffiffiffiffiffiQ
3
i¼1

�Zi

p , where the projection opera-

tors �Zi are defined in [31] and are of the order of 1, so that
for �ðnÞ ! B �B the value of �y123 reduces to the Dirac trace
of the decay matrix element, e.g., for�ðnSÞ ! B �B one has

�y 123 ffi �Z ¼ tr

�
�i

SþQ
2�

�5

S��q
2!

Sþq
2!

�5

S��Q
2�

�
(6)

with S�Q ¼ ðmQ ���4 � ipQ
i �iÞ, S�q ¼ mq �!�4 �

ipq
i �i.
In Appendix 1 of [31] and Appendix A of the present

work details of the calculation of �Zi are given.
As a result one obtains for �y123

�y 123 � �Z ¼ imQ

2�2!

�
qið2�þ!Þ � pi

!�

!þ�

�

� i

!

�
qi � pi!

2ð!þ�Þ
�
: (7)

For the one-pion emission at the decay vertex one has
instead

1The authors are grateful to Yu. S. Kalashnikova for pointing
this fact out to us.
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Jð1Þnn2n3ðp;kÞ ¼
Z

�yð�Þ123

d3q

ð2�Þ3
~�n

�
cp� k

2
þ q

�
	 ~c n2ðqÞ ~c n3ðq� kÞ: (8)

Here �yð�Þ123 has the same origin as �y123, but accounts for
one-pion emission at the vertex �ðnÞ ! ðB �B� þ c:c:Þ�,

�y ð�Þ
123 ¼ i�ik

m2
Q þ�2

2�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!�V3

p
f�

� i�ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!�V3

p
f�

: (9)

Here V3 is the 3d volume, which cancels in final ex-

pressions. Finally, expanding the factor Û in (2) to the
second order, one obtains the overlap matrix element for
the double pion emission vertex,

Jð2Þnn2n3ðp;k1;k2Þ ¼
Z

�yð��Þ123

d3q

ð2�Þ3
~�n

�
cp�K

2
þ q

�
	 ~c n2ðqÞ ~c n3ðq�KÞ: (10)

Here K denotes the sum of pion momenta, K ¼ k1 þ k2,

and with � being the isospin vector for pions �yð��Þ123 is

�y ð��Þ
123 ¼ i�1�2

f2�

�y123

½2!�ðk1ÞV32!�ðk2ÞV3
1=2
: (11)

Having defined all overlap matrix elements in wnmðEÞ,
Eq. (4), one can now express total amplitudes for processes
with or without pion emission. The width of �ðnSÞ due to
the channel B �B is given by the equation

�n ¼ �!

pBB
~MBB

4�2

Z
d�pjJnn2n3ðpÞj2; �! ¼ M2

!

Nc

:

(12)

The dipion emission amplitude consists of two terms:

wð��Þ
nm ðEÞ ¼ �

�X
k

Z d3p

ð2�Þ3
Jð1Þnn2n3ðp;k1ÞJ�ð1Þmn2n3ðp;k2Þ
E� En2n3ðpÞ � E�ðk1Þ

þ ð1 $ 2Þ

� X
n0
2
n0
3

Z d3p

ð2�Þ3
Jð2Þnn0

2
n0
3
ðp;k1;k2ÞJ�mn0

2
n0
3
ðpÞ

E� En02n
0
3
ðpÞ � Eðk1;k2Þ

�X
k00

Z d3p

ð2�Þ3
Jnn002n

00
3
ðpÞJð2Þ�

mn002n
00
3
ðp;k1;k2Þ

E� En00
2
n00
3
ðpÞ

�
:

(13)

The probability of the process �ðnÞ ! �ðn0Þ�� is ob-

tained from wð��Þ
nn0 by standard rules

dwððnÞ ! ðn0Þ��Þ ¼ jwð��Þ
nn0 ðEÞj2 V3d

3k1

ð2�Þ3
V3d

3k2

ð2�Þ3
	 2��ðEðk1;k2Þ þ En0 � EnÞ (14)

and the dipion decay width is

�ðnn0Þ
�� ¼

Z
dwððnÞ ! ðn0Þ��Þ ¼

Z
d�jMj2 (15)

where d� is the phase space factor

d� ¼ 1

32�3N2
c

ðM2 þ ðM0Þ2 � q2ÞðMþM0Þ
4M3

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�MÞ2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

�

q
dqd cos� (16)

with the notations

M � Mð�ðnÞÞ; M0 � Mð�ðn0ÞÞ; �M � M�M0;

q2 � M2
�� ¼ ðk1 þ k2Þ2 ¼ ð!1 þ!2Þ2 �K2: (17)

The amplitude M can be written accordingly to (13) as

M ¼
�
Mbr

f�

�
2
�M1 �MbrM!

f2�
�M2: (18)

At this point we still do not impose on M the Adler zero
requirement.

III. CALCULATION OF MATRIX ELEMENTS

For the wave function we use the solution of the rela-
tivistic Hamiltonian, described in [33], (for a review see the
last reference in [29]), where the only input parameters are
current quark masses, string tension and �s. As a result one
obtains the bottomonium spectrum with accuracy of the
order of 10 MeV and a good agreement with experimental
lepton widths (see Table 3 in [31]). In what follows we call
this function ‘‘the realistic wave function,’’ meaning that it
is among the best existing ones, but the point-by-point
accuracy of it is not actually known.
In this section we describe the method of calculation of

�M1,
�M2 based on the expansion of the wave function in

the full set of oscillator functions. This allows us to do

integrals in the overlap matrix elements J, Jð1Þ, Jð2Þ analyti-
cally, while the specifics of wave functions are represented
by the sequence of numbers –coefficients in the expansion,
found by the ‘‘chi squared’’ procedure, namely, for any
radial excited state wave function found in [33] we write

�ðnS; rÞ ¼ Xkmax

k¼1

cðnÞk ’kð	rÞ (19)

where ’kð	rÞ is given in Appendix A, and oscillator

parameter 	 as well as coefficients cðnÞk are obtained min-

imizing 
2. The quality of approximations for different
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kmax can be seen from Figs. 2 and 3. We also compare
realistic B meson wave functions computed in [33] with
the one-term representation (19) in Fig. 4. (Note, that the
B� wave function is the same as for the Bmeson in the first
approximation used below). Hence, keeping k ¼ 1 for B,
B� mesons, the simple overlap matrix element (5) without
�y123 is

Jð0Þn;11ðpÞ ¼
Z d3q

ð2�Þ3
XNmax

k¼1

cðnÞk ’kð	1;qþ cpÞ’2
1ð	2;qÞ

¼ e�ðp2=�ÞIn;11ðpÞ (20)

where � ¼ 2	2
1 þ 	2

2, and In;11ðpÞ is a polynomial in

powers of p2, given in Appendix A.

In a similar way one calculates Jð1Þ, Jð2Þ,

Jð1Þn;11ðp;kÞ ¼ e�ðp2=�Þ�ðk2=4	2
2
ÞIn;11ðpÞ �yð�Þ123 (21)

Jð2Þn;11ðp;k1;k2Þ ¼ e�ðp2=�Þ�ðK2=4	2
2
Þð1ÞIn;11ðpÞ~yð��Þ123 pi:

(22)

In (22) we take into account that �yð��Þ123 contains qi and pi

and therefore the result of integration, over d3q leads to the

modification of In;11ðpÞ � ð0ÞIn;11ðpÞ, In;11ðpÞ ! ð1ÞIn;11ðpÞ.
All these expressions are given in Appendix A.
Finally the matrix elementM in (18) can be rewritten as

M ¼ exp

�
�k2

1 þ k2
2

4	2
2

��
Mbr

f�

�
2
M1

� exp

�
� K2

4	2
2

�
MbrM!

f2�
M2 (23)

and M1, M2 are given by the expressions

M1 ¼ ðZ�
1Þ2½ð0ÞL�

nn0 ð!1Þ þ ð0ÞL�
nn0 ð!2Þ


þ ðZ��
1 Þ2½ð0ÞL��

nn0 ð!1Þ þ ð0ÞL��
nn0 ð!2Þ
; (24)

M2 ¼ Z2
2½ð1ÞL�

nn0 ð0Þ þ ð1ÞLnn0 ð!1 þ!2Þ

þ ðZ�

2Þ2½ð1ÞL�
nn0 ð0Þ þ ð1ÞL�

nn0 ð!1 þ!2Þ

þ ðZ��

2 Þ2½ð1ÞL��
nn0 ð0Þ þ ð1ÞL��

nn0 ð!1 þ!2Þ
: (25)

Here ðkÞLs
nn0 is the integral as in (13), and s ¼ ðÞ; �; ��

marks three channels: B �B, B �B� þ cc; B� �B� respectively;
k ¼ 0, 1. The exact form for L is

FIG. 4. The same as in Fig. 2, but for the B meson with
kmax ¼ 1.

FIG. 3. The same as in Fig. 2, but for �ð4SÞ and kmax ¼ 4.

FIG. 2. Realistic wave function of �ð2SÞ from [33] (dashed
line) and the series of oscillator functions (19) with kmax ¼ 2.
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ðkÞLs
nn0 ð!Þ ¼

Z d3p

ð2�Þ3 e
�ðp2=	2

0
Þ
ðkÞIn;11ðpÞðkÞIn0;11ðpÞð p	0

Þ2k
p2

2mBB
� ð�MðsÞ �!Þ

¼ v
Z 1

0

tkþð1=2Þdte�tðkÞIn;11ð
ffiffi
t

p
	0ÞðkÞIn0;11ð

ffiffi
t

p
	0Þ

t� tðsÞð!Þ : (26)

Here v, 	0, t
ðsÞð!Þ and �MðsÞ are given in Appendix B.

Coefficients ZðsÞ
1 and ZðsÞ

2 define the relative weight of

channels s ¼ B �B, B �B� þ c:c:, B� �B� with account of spin
and isospin; it coincides with the corresponding coeffi-
cients found in Table IV of [35]. We obtain

ðZ�
1Þ2 ¼ ðZ��

1 Þ2 ffi 1; ðZ��
2 Þ2 ¼ 7Z2

2;

ðZ�
2Þ2 ¼ 4Z2

2; Z2
2 ¼

	2
0

6!2
:

(27)

Now we can compute from ð1ÞIn;11 the decay width of the
�ðnSÞ into B �B, B �B� þ c:c:, B� �B�, etc.

From (12), taking into account that Jnn2n3ðpÞ ¼
e�ðp2=�Þð1ÞIn;n2n3ðpÞ pi

! , and hpipki ¼ 1
3�ikp

2, one obtains

�ð�ðnSÞ ! ðB �BÞðsÞÞ ¼
�
M!

2!

�
2 MðsÞ

B p3
s

6�Nc

ðZðsÞÞ2

	 e�ð2p2
s=�Þðð1ÞIn;n2n3ðpsÞÞ2 (28)

where the channel index s ¼ ðÞ for B �B, Mð�Þ
B ¼ 2MBM

�
B

MBþM�
B
and

for the s ¼ � � , decay channel is B� �B�, Mð��Þ
B ¼ M�

B,

ðZðÞÞ2 ¼ 1ðZð�ÞÞ ¼ 4, ðZð��ÞÞ2 ¼ 7.

IV. THE ADLER-ZERO IMPROVEMENT OF
MATRIX ELEMENTS

As was discussed in detail in [31] the general two-pion
amplitude, consisting of one-pion vertices as in M1 and
the two-pion vertex inM2, satisfies the Adler zero require-
ment, i.e., vanishes for ki ¼ !i ¼ 0, if these amplitudes
are imbedded in the general background not distinguishing
one- and two- pion vertices. In particular, this implies
summing up all closed channels of the type B �B. In [31]
the AZI was realized representing the amplitude M in
Eq. (23) in the form

M ¼ exp

�
�k2

1 þ k2
2

4	2
2

�
að!1; !2Þ

� exp

�
� K2

4	2
2

�
bð!1; !2Þ

a ¼
�
Mbr

f�

�
2
M1; b ¼ MbrM!

f2�
M2

(29)

and requiring that að!1 ¼ 0; !2Þ ¼ bð!1 ¼ 0;!2Þ, and
the same for vanishing k2 ¼ !2 ¼ 0.

We shall now apply the AZI procedure to our decays
under consideration, n > n0, n ¼ 4, 3, 2. Before doing that,
we introduce convenient new and universal variable x,
which is in the interval [0,1] for all transitions.

x ¼ q2 � 4m2
�

�2
; �2 ¼ ð�EÞ2 � 4m2

�: (30)

In terms of variables x, cos� the dipion decay probability
can be written as

dw��ðn; n0Þ ¼ C0�
3
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ
xþ 4m2

�

�2

vuut dx
d cos�

2

	 jMðx; cos�Þj2: (31)

Here C0 ¼ 1
32�3N2

c
¼ 1:12 � 10�4. Writing two exponents

in (29) in terms of x, cos�, one has (cf. Eq. (90) of [31])

k 2
1 þ k2

2 � �þ �cos2�

¼ �2

2

�
1� �E

M
ð1� xÞ þ xð1� xÞ

xþ 4m2
�

�2

cos2�

�

(32)

K 2 ¼ �2ð1� xÞð1� �Þ ¼ �2ð1� xÞ
�
1� �E

M

�
: (33)

As it was found in [31], the AZI amplitude (29) vanishes
for some value x ¼ �, depending on the channel ðn; n0Þ and
this value of � was calculated in [31]. Below we shall use
these values and similarly to [31] represent the amplitude
Mðx; cos�Þ as follows:

M ðx; cos�Þ ¼ Mðx ¼ �; cos�Þ þM0ðx
¼ �; cos�Þðx� �Þ þ . . . : (34)

Here the prime denotes the derivative in x. It is important
to note, that as explicit calculations show (see below), both
a and b in (29) do not depend appreciably on x, and all x
dependence in M is coming from the exponential factors.
Using (32) and (33), one arrives at the following represen-
tation for M,

M ðx; cos�Þ ¼ M1ð�; cos�Þ
�
Mbr

f�

�
2

	 �2

4	2
2

e�ð ��þ ��cos2�=4	2
2
Þðx� �Þfð�Þ;

(35)

where �� ¼ �ðx ¼ �Þ, �� ¼ �ðx ¼ �Þ and fð�Þ appears
due to derivatives in x of (32) and (33)

fðxÞ ¼ 1þ �E

2M
� cos2�

x2 þ ð1� 2xÞ 4m2
�

�2

2ðxþ 4m2
�

�2 Þ2
: (36)

Thus all calculations of the dipion spectra in the AZI
scheme reduce to the calculation of M1 given in Eq. (24),

BOTTOMONIUM DIPION TRANSITIONS PHYSICAL REVIEW D 79, 034024 (2009)

034024-5



at some intermediate point x ¼ �, and subsequent integra-
tions as in Eq. (31). The values of � and � for all tran-
sitions are given in Tables I and II.

This procedure refers to all ðn; n0Þ transitions of our set,
except for the (3,2) transition. In the latter case the value of
� ¼ �AZI found in [31] is large and negative, � ffi �3 and
expansion (34) does not make sense for x in the physical
interval [0,1]. Therefore one can instead explicitly com-
pute M1 and M2 in (23) as given by (24) and (25) and

insert M! ¼ ffiffiffi
2

p
! � 0:8 GeV (to be checked below by

pionless decays). Computed in this way amplitudes M1,

M2, � and resulting values of �ðn;n0Þ
�� ¼ R

dw��ðn; n0Þ are
given in the Table I.

We turn now to the dipion spectra as functions of x
and cos�. For the AZI decay amplitudes for the
processes ðn; n0Þ ¼ ð2; 1Þ; ð3; 1Þ; ð4; 1Þ; ð4; 2Þ one can use
the form (36); however for the 2d plots in x, cos� one
should take into account that� depends on cos�. Indeed, in
the general AZI form of the dipion decays’ amplitude (30)
one can see that the first exponent on the right-hand side
depends on cos� (cf. Eq. (33)), hence vanishing of M
occurs at some x ¼ ~�ðcos�Þ, where

~�ðcos�Þ ¼ �� �cos2� ¼ �� 1

2

ð1� �Þ�cos2�
�þ 4m2

�

�2

: (37)

Correspondingly, one should replace in (36) � by ~�
given in (37), however this amounts to a small correction
for all four transitions under investigation.

The amplitude Mðx; cos�Þ can be expanded in a com-
plete set of polynomials in the region 0 � x � 1, �1 �
cos� � 1. One can write for this purpose a product of

orthonormal polynomials �pnðxÞplðzÞ, where �pnðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2x� 1Þ, plðzÞ ¼

ffiffiffiffiffiffiffiffi
2lþ1
2

q
PlðzÞ, and PkðuÞ is the

Legendre polynomial, so that

dw

dqd cos�
¼ �2C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp jMj2

¼ X1
n;l¼0

anl �pnðxÞplðcos�Þ (38)

anl ¼
Z 1

0
dx

Z þ1

�1
dz

dw

dqd cos�
�pnðxÞplðzÞ: (39)

Tables III, IV, V, VI, and VII of coefficients anl for our
Mðx; cos�Þ computed according to Eq. (39) with � ! ~�
are given in Appendix B.

V. RESULTS AND DISCUSSION

Let us reiterate the approximations and assumptions
made in the derivation of our formalism. We note that
pions can be emitted by heavy quarkonia only from inter-
nal light quark loops, which immediately implies that the
intermediate states directly produced by (1) and (3) can be
only B �B, Bs

�Bs or their excitations. We introduced two q �q
vertices with or without accompanying pions and take
minimal number of vertices for each process, since addi-
tional vertices yield a small correction, e.g., creating q �q�
first by the q �q vertexM! and then creating the pion due to
the B� ! B� vertex with the width �� yields a correction
Oð��=!Þ 
 1; an additional �� �qq vertex yields the cor-

TABLE I. Parameters of ðn; n0Þ transitions and resulting widths ���ðn; n0Þ in comparison with �exp taken from [36].

ðn; n0Þ 2,1 3,1 3,2 4,1 4,2

�, GeV 0.483 0.85 0.174 1.083 0.479

�2, GeV2 0.234 0.721 0.03 1.172 0.229

M1, GeV
�1 �1:56 0.592 �1:66 �0:452 0.688

M2, GeV
�1 �0:122 �0:116 �0:322 �0:0199 �0:354

� 0 0.56 �2:7 0.3 0.61

�=ðMbr

f�
Þ4 (keV) 0.132 0.195 0.311 0.552 0.0071

�exp (keV) 6 0.56 0.9 <2 <6

FIG. 5. Dipion spectrum dw
dq as a function of x for (2,1) and

(3,1) transitions.
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rection Mbr=! 
 1. Starting from (1) and (3), one can
derive effective vertices ���ð�;!Þ, etc. We have not
considered those leaving it for future development.
Finally, we have retained the lowest states B �B, B �B� þ
c:c:, B� �B� and neglect higher excitations. We expect that
inclusion of higher excited states yields renormalization of
our verticesMbr andM!, which are only fitting parameters,
the same for all processes. For the shape of the spectra the
crucial point is the relative renormalization of amplitudes a
and b in (29) and this is fixed by the AZI procedure. As will
be seen from our results, our theoretical predictions are in
reasonable agreement with experiment.

We start with the B �Bwidths, which define our only input
parameters Mbr and M!. As shown in (30), for the
�ð4SÞ ! B �B decay one can write

�4SðB �BÞ ¼
�
M!

2!

�
2
0:0033jJð4ÞBBðpÞj2 GeV (40)

where Jð4ÞBBðpÞ ¼ expð� p2

� Þð1ÞI411ðpÞ, and � ¼ 2	2
1 þ 	2

2

and the overlap integral I411 is known from the wave
functions of �ð4SÞ and B meson, which are fitted by
oscillator functions with 	1 and 	2 respectively. Here

FIG. 6. Dipion spectrum dw
dq as a function of cos� for the (2,1)

and (3,1) transitions.
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FIG. 7 (color online). The 2d dipion spectrum d2wð2;1Þ
dqd cos� as a

function of x, cos� for the (21) transition.
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FIG. 8 (color online). The same as in Fig. 7, but for the (3,1)
transition.

FIG. 9. The same as in Fig. 5, but for the (3,2) transition.
Numbers on the curves (6,3) and (10) refer to the value of ratio
M!

Mbr
used in Eq. (18).
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p ¼ 0:33 GeV is the Bmeson momentum. Approximating
the �ð4SÞwave function with 4 and 15 oscillator functions
one obtains Jð4ÞBBð0:33Þ ¼ �0:8434 and�3:63 respectively,

which yields �4SðB �BÞ
ðM!
2! Þ2 ¼ 2:4 MeV and 44 MeV.

This sensitivity of �4S to the wave functions is typical
for all results of total width, both with pion emission and
without. One can exploit this fact and invert the procedure
to find the Swave function (e.g., position of zeros) from the
values of widths.2 As it is, we consider the 15-term ap-

proximation for the�ð4SÞwave function good enough (see
Fig. 3 for comparison) and can defineM! comparing �theor

with �expð�ð4SÞ ! B �BÞ ¼ ð20:5� 2:5Þ MeV [36], which

yields M!

2! ’ 0:68 or M! � 0:8 GeV with an accuracy of

�10%. However, the accuracy of the wave function cal-
culation in [33] and its simulation by oscillator functions is
not well known, and to be on the safe side, we conclude
thatM! � 2! as an order of magnitude estimate. We now
turn to the total dipion widths ���ðnn0Þ given in Table I.

FIG. 10. The same as in Fig. 9, but for dw
d cos� the (3,2) transition.
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COSTETA

FIG. 11 (color online). The same as in Fig. 7, but for the (3,2)
transition and M!

Mbr
¼ 10.

FIG. 12. The same as in Fig. 5, but for the (4,1) and (4,2)
transitions.

FIG. 13. The same as in Fig. 6, but for the (4,1) and (4,2)
transitions.2The authors are grateful to M.V. Danilov for this suggestion
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Comparing two last lines in the table for �theor and �exp one

can see that one gets a correct order of magnitude for �theor

ðMbr
f�

Þ4 ,

so that the factor ðMbr

f�
Þ4 can be taken in the interval 1 �

ðMbr

f�
Þ4 � 6, i.e., 1 � Mbr

f�
� 1:45. A large discrepancy for

�ð21Þ in Table I possibly is due to poor approximation of
the �ð2SÞ wave function.

In this way we are supporting our assumption that string
decay with and without pion emission is governed by two
different scale parameters, Mbr and M!, which differ by 1
order of magnitude,M! � ð6� 10ÞMbr. Moreover each of
the parameters is defined by its dynamical mechanism:
M! � 2! due to time-turning trajectories, and Mbr � f�
due to chiral decay Lagrangian.

Now we turn to the dipion spectra. For each transition
ðnn0Þ we show in Figs. 5–15 three spectra: dw

dq ,
dw

d cos� and
d2w

dqd cos� , where the 1d spectra are integrated over another

variable. For comparison the existing experimental spectra
are given in Figs. 16–18, taken from [6–8] with theoretical
curves from [31,32] where � is independent of cos�.
One can see a general qualitative and semiquantitative

agreement between theoretical and experimental spectra.
One should stress again that while the total dipion width is
sensitive to the form of wave functions, the qualitative
form of the spectrum is defined by the value of � � ~�,
which accumulates the information on overlap matrix ele-
ments and stabilized when the AZI condition is imposed.
The case of the (3.2) transition has a special feature of
low available phase space, and therefore the spectrum as
function of x is defined mostly by the phase space factor
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COSTETA
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1
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FIG. 14 (color online). The same as in Fig. 7, but for the (4,1)
transition.
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FIG. 15 (color online). The same as in Fig. 7, but for the (4,2)
transition.

FIG. 16 (color online). Comparison of data from [6] with
parametrization (35) (broken line).

FIG. 17 (color online). Comparison of data from [8] with
parametrization (35) (broken line).
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½xð1� xÞ
1=2, while dependence on cos� is also weak due
to small �2 ¼ 0:03 GeV2.

Thus all features of spectra and total widths can be
understood in terms of the formalism, presented in
[31,32] and in this paper above. Note, that our more
refined analysis in the present paper has required two
important changes as compared with the formalism
in [31,32]. First, two independent decay scales Mbr

and M! are introduced and estimated here in contrast to

the only parameter Mbr in [31,32]. Second, the cor-
rection was introduced in the P-wave vertex, viz. �y123 in
Eq. (7), which decreases the effective value of this vertex.
However, in the AZI form the P-wave vertices (the
amplitude M2 in (23)) are derived from the Adler zero
condition, as in (29) and (35), and the resulting form of
the total AZI amplitude is the same as in [31,32] (with
additional weak cos� dependence in ~�ðcos�Þ neglected
there).

FIG. 18 (color online). Comparison of data from [6] with parametrization (35) and parameter � from Table I (dashed line) (from
[31].
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VI. CONCLUSIONS AND OUTLOOK

We have derived the amplitudes, spectra and total widths
of dipion emission in all subthreshold processes �ðnSÞ !
�ðn0SÞ��, with n ¼ 2, 3, 4 and n0 ¼ 1, 2. We have shown
that the formalism of pair creation, based on two effective
Lagrangians, CDL and RDL with two mass parameters,
Mbr and M! respectively, can successfully describe the
experimentally found spectra. Moreover, it was shown
that two distinct values of widths, �nSðB �BÞ ¼
Oð10 MeVÞ and ���ðnn0Þ ¼ Oð1 keVÞ, can be explained
by much different scales of M! � 2! ¼ 0ð1 GeVÞ and
Mbr � f� ¼ 0ð100 MeVÞ. Fixing in this way M! and
Mbr one obtains parameter-free one- and two-dimensional
spectra in good qualitative and semiquantitative agreement
with experimental data.

The application of this formalism to the case of �ð5SÞ
states and dipion transitions to �ð2SÞ,�ð1SÞ is straightfor-
ward and is also successful [37]. The main difference is
that the 5S state is above the BB, BB� þ c:c:, B�B� thresh-
olds and hence the amplitudes M1, M2 acquire large
imaginary parts, which strongly deform the spectra and
are affected by final state �� interaction.

Another direct application of the formalism to the one-
pion or � transitions is clearly visible and is done in [38].
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APPENDIX A: CALCULATION OF THE
COEFFICIENT �y123 IN EQ. (5)

General formalism for the calculation of the overlap
matrix elements and, in particular, of the factor �y123 in
(5) is given in Appendix 1 of [31]. Here we present the
corrected form, where all relative momenta are properly
defined. One starts with the calculation of the trace, Eq. (6),
which gives (cf. Eq. (52) of [31]).

�Z ¼ imQ

2�!

�
pqi � p �qi þ !

2�
ðPQi

� P �QiÞ þO

�
1

�2

��
:

(A1)

For the ðQ �qÞÞ system one can define total and relative
momenta as

P 1 ¼ pQ þ p �q; q1 ¼
! �qpQ ��Qp �q

! �q þ�Q

(A2)

and the same for the ð �QqÞ system.

P 2 ¼ p �Q þ pq; q2 ¼
!qp �Q �� �Qpq

!q þ� �Q

: (A3)

In the total c.m. system P1 ¼ p, P2 ¼ �p and

p �q ¼ �q1 þ !

!þ�
p (A4)

p q ¼ �q2 � !

!þ�
p; pQ ¼ p� p �q;

p �Q ¼ �p� pq:
(A5)

Finally one obtains from (A1), taking into account that
q2 ¼ �q1 � �q,

�y 123 � �Zi ¼
imQ

2�2!

�
qið2�þ!Þ � pi

!�

!þ�

�
: (A6)

The appearance of the term OðqiÞ in (A6) leads to the
change of the result of integration over d3q in Eq. (5) as

compared to the standard integral ð0ÞIn;11ðpÞ, given in

(A16). Separating the factor pi

! , one arrives at the expres-

sion

ð1ÞJn;11ðpÞ ¼
Z

�y123ðp; qÞ d3q

ð2�Þ3 c ðnS;qþ pÞc 2
HLðqÞ

¼ ipi

!

X
k

cðnÞk ak

�
� 2

�þ!

�
!

2
þ�

	2
2

�n

�

þ 8	2
1	

2
2@

�2
ny@f

2

�
�

�
�ðk� 1Þ; 3

2
; f2

�
: (A7)

Here ak, 	1, 	2, �n, y are defined in Appendix B, and

cðnÞk are coefficients of expansion of c ðnS;qÞ over oscil-
lator functions (see Appendix B for more details).
The SHO basis functions f’kð	rÞg can be written as

’kð	; rÞ ¼ ck
H2k�1ð	rÞ

	r
e�ðð	rÞ2=2Þ: (A8)

With the normalization condition
R
’kðzÞ’k0 ðzÞd3z ¼

�kk0 and coefficients

ck ¼ 1

ð22k�3=2ð2k� 1Þ!Þ1=2 : (A9)

One can write Hermite polynomials in (A8) as

H2n�1ðxÞ
x

¼ ð�1Þn�12
ð2n� 1Þ!
ðn� 1Þ! �

�
�ðn� 1Þ; 3

2
; x2

�
(A10)

where

�ð�;�; x2Þ ¼ 1þ �

�

x2

1!
þ �ð�þ 1Þ

�ð�þ 1Þ
ðx2Þ2
2!

þ . . . : (A11)

Any radial excited state nS, n ¼ 1; 2; 3; . . . can be ex-
panded as
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c ðnS;	; rÞ ¼ X1
k¼1

cðnÞk ’kð	rÞ; (A12)

the overlap matrix element can be written as

Jn;1;1ðpÞ �
Z d3q

ð2�Þ3 c ðnS;qþ pÞc 2
HLð1S;qÞ (A13)

where the heavy-light meson wave function is

c HLðn0S;	2; rÞ ¼
X
k

�cðn
0Þ

k ’kð	2; rÞ (A14)

Jn;1;1ðpÞ ¼
X

kðk1;k2Þ
cðnÞk �cð1Þk1

�cð1Þk2

Z d3q

ð2�Þ3 ’kð	1;qþ pÞ

	 ’k1ð	2;qÞ’k2ð	2;qÞ (A15)

Z d3q

ð2�Þ3 ’nð	1;qþ pÞ’1ð	2;qÞ’1ð	2;qÞ

¼ e�ðp2=�Þð0ÞIn;1;1ðpÞ ¼ e�ðp2=�Þ~cnð�1Þn�12
ð2n� 1Þ!
ðn� 1Þ!

	�

�
�ðn� 1Þ; 3

2
; f2

�
yn�1

ð2 ffiffiffiffi
�

p Þ3
�
2	2

1	
2
2

�n

�
3=2

; (A16)

where

�n ¼ 2	2
1 þ 	2

2; y ¼ 2	2
1 � 	2

2

2	2
1 þ 	2

2

; f ¼ 2p	1

�n
ffiffiffi
y

p ;

~cn ¼
�
2�

	1

�
3=2 ð2 ffiffiffiffi

�
p

=	2Þ3
ð22n�3=2ð2n� 1Þ!Þ1=2

APPENDIX B: COEFFICIENTS OF THE OVERLAP
INTEGRALS ðkÞLðsÞ

nn0 ð!Þ
For the given intermediate state s ¼ ðÞ; �; �� thresholds

Es are 2MB, MB þMB� , 2MB� respectively, and one can

define �MðsÞ ¼ Es �M, where M is the mass of �ðnSÞ.
The resulting values of �MðsÞ

nn0 are given below in Table II.

We also assemble here some formulas for the quantities
appearing in Eqs. (25) and (26). Namely,

v � 2 ~MðsÞ	0

ð2�Þ2 ; 	2
0 ¼

�n�n0

�n þ�n0
;

�n ¼ 2	2
1 þ 	2

2; �n0 ¼ 2ð	0
1Þ2 þ 	2

2;

(B1)

where 	1, 	
0
1 are oscillator parameters found from the

fitting of realistic ðnSÞ, ðn0SÞ wave functions with a series
of oscillator wave functions. Both	1 and	

0
1 depend on the

number kmax of functions kept in the series.

~M ðsÞ ¼ 1

2
MB;

MBMB�

MB þMB�
;

1

2
M�

B for s ¼ ðÞ; �; ��;
(B2)

tðsÞð!Þ ¼ 2 ~MðsÞ

	2
0

ð�MðsÞ �!Þ; s ¼ ðÞ; �; � � : (B3)

Other useful relations are

k21 þ k22 ¼ �þ �cos2�

¼ �2

2

�
1��E

M
ð1� xÞ þ xð1� xÞ

xþ 0:08
�2

cos2�

�
(B4)

ðk1 þ k2Þ2 ¼ �2ð1� xÞ
�
1��E

M

�
(B5)

!1;2 ¼ �E

2
��2ð1� xÞ

4M
��

2

�
1� �E

2M

�

	
�
xð1� xÞ
xþ 0:08

�2

�
1=2

cos�: (B6)

APPENDIX C: COEFFICIENTS OF THE 2D
EXPANSION OF THE PROBABILITY

As is given in (38) and (39), the full probability dw
dqd cos�

can be expanded in products of polynomials

dw

dqd cos�
¼ Xnmax;lmax

n;l¼0

aln �pnðxÞplðcos�Þ (C1)

with

TABLE II. Values of the mass parameter in (23)–(26).

ðn=n0Þ 21 31 32 41 42

� (GeV) 0.483 0.85 0.174 1.083 0.479

�2 GeV2 0234 0.721 0.03 1.172 0.229

�E, GeV 0.56 0.895 0.332 1.12 0.556

�Mnn0 GeV �0:54 �0:205 �0:205 0.02 0.02

�M�
nn0 GeV �0:58 �0:25 �0:25 �0:026 �0:026

�M��
nn0 GeV �0:625 �0:295 �0:295 �0:072 �0:072
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�p nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2x� 1Þ; plðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

s
PlðzÞ:
(C2)

The coefficients anl calculated for dw
dqd cos� in (38), for

transitions ðn; n0Þ ¼ ð2; 1Þ; ð3; 1Þ; ð4; 1Þ; ð4; 2Þ are given be-
low together with anl for the (3,2) transition, calculated as
in (23). Note that aln � 0 for odd l.

TABLE IV. The same as in Table III for the transition (3,1).

n
0 1 2 3 4

l

0 0.2054341 �0:0268913 0.1136786 0.0082049 �0:0731623
2 �0:0739902 0.0651164 �0:0402644 �0:0209861 0.0284658

4 0.0145838 �0:0245765 0.0033265 0.0089023 �0:0048144

TABLE V. The same as in Table III for the transition (3,2).

n
0 1 2 3 4

l

0 4.4761992 0.1298668 �1:2300728 �0:0479114 �0:1895183
2 �0:0037809 �0:0002265 0.0005379 0.0001151 0.0003569

4 �0:0248627 �0:0007194 0.0068405 0.0002649 0.0010495

TABLE III. The coefficients aln defined as in (C1) for the transition (2,1).

n
0 1 2 3 4

l

0 0.3890825 0.2707011 �0:0407149 �0:0996852 �0:0427755
2 �0:1300538 �0:0895548 0.0148794 0.0335517 0.0138329

4 0.0109938 0.0072973 �0:0016296 �0:0029011 �0:0010309

TABLE VII. The same as in Table III for the transition (4,2).

n
0 1 2 3 4

l

0 0.0165037 �0:0083040 0.0080081 0.0029911 �0:0055958
2 �0:0063807 0.0055190 �0:0024492 �0:0020172 0.0019898

4 0.0010072 �0:0012899 0.0000858 0.0004939 �0:0002193

TABLE VI. The same as in Table III for the transition (4,1).

n
0 1 2 3 4

l

0 0.6245209 0.5257702 0.0810291 �0:1920402 �0:1252025
2 �0:0786476 �0:0707901 �0:0530417 0.0376144 0.0335737

4 �0:0212058 �0:0278274 0.0141198 0.0064219 �0:0028386
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