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We propose a model forDþ ! �þ���þ decays following experimental results which indicate that the

two-pion interaction in the S wave is dominated by the scalar resonances f0ð600Þ=� and f0ð980Þ. The
weak decay amplitude for Dþ ! R�þ, where R is a resonance that subsequently decays into �þ��, is
constructed in a factorization approach. In the S wave, we implement the strong decay R ! �þ�� by

means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire

kinematically allowed mass range m2
�� from threshold to about 3 GeV2. In order to reproduce the

experimental Dalitz plot for Dþ ! �þ���þ, we include contributions beyond the S wave. For the P

wave, dominated by the �ð770Þ0, we use a Breit-Wigner description. Higher waves are accounted for by

using the usual isobar prescription for the f2ð1270Þ and �ð1450Þ0. The major achievement is a good

reproduction of the experimental m2
�� distribution, and of the partial as well as the total Dþ ! �þ���þ

branching ratios. Our values are generally smaller than the experimental ones. We discuss this short-

coming and, as a by-product, we predict a value for the poorly known D ! � transition form factor at

q2 ¼ m2
�.
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I. INTRODUCTION

In 2001, the E791 Collaboration found very strong
evidence for a light and broad scalar-isoscalar resonance
inDþ ! �þ���þ decays [1], confirming the existence of
the f0ð600Þ (also referred to as the �). This pioneering
work was soon followed by the authentication of another
elusive scalar, the K�

0ð800Þ (or �), in Dþ ! K��þ�þ [2].

In the past, several analyses of �� scattering data already
claimed the presence of the � in the form of a pole close to
threshold and with a large imaginary part [3–5]. However,
its manifestation in scattering is subtle and one can con-
sider the E791 experiment as the first solid empirical
evidence for this resonance. The understanding of this
pole in �� scattering has improved considerably thanks
to chiral perturbation theory (ChPT) [6] and to dispersion
relations, namely, Roy’s equations [7] (for recent works
see, for instance, [8–10]). In 2006, the � pole was obtained
from a theoretical analysis combining these two ingre-
dients and yielding the accurate result

ffiffiffiffiffi
s�

p ¼ ð441þ18
�16 �

i272þ9
�12:5Þ MeV [11]. Furthermore, in the last few years,

experimental evidences for the� in other processes such as
J=c ! !�þ�� [12] and, notably, from new analyses of
Dþ ! �þ���þ decays [13,14] have been published.

Thus, at present, one can safely state that the � is the
lightest resonance in the hadronic spectrum.
However, in spite of all theoretical progress, a compre-

hensive description of the reactionDþ ! �þ���þ is still
to be accomplished. The reasons are twofold. First, the
c-quark mass lies in an intermediate range of energy,
between the realm of light quarks (u, d and s) and that of
heavy quarks (b and t). Although, on the one hand, decays
of light mesons such as the kaon can be treated within the
framework of ChPT and, on the other, decays of the B can
be calculated within QCD factorization [15], heavy quark
effective theory [16] and soft collinear effective theory
[17], no such rigorous framework exists for the D.
Second, one deals with a three-body final state which
renders a full treatment of mesonic final state interactions
(FSIs) most involved.
In the search of a more sound theoretical framework to

treat this type of reaction, experimentalists usually fit the
Dalitz plot for the three-body decay with the isobar model.
Schematically, the model consists of a trial amplitude of
the form

M ¼ �NRe
i�NR þXn

i¼1

�ie
i�iAi; (1)

where the first term on the right-hand side corresponds to a
nonresonant background and the sum runs over all the n
resonances that contribute to the decay. In Eq. (1), the
parameters �i and �i are real constants and the subampli-
tudes Ai (depending on invariant masses), whose main
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ingredients are relativistic Breit-Wigner functions (BWs),
represent the propagation and decay of each resonance. In
the course of the analysis, E791 discovered that the usual
set of �� resonances was not sufficient to yield a good fit
and, therefore, the addition of a new BW was required.
Leaving its mass and width free to float, an improvement
of the least square function �2 was obtained with the
parameter values m� ¼ ð478þ24�23 � 17Þ MeV and �� ¼
ð324þ42�41 � 21Þ MeV. These values, however, depend

strongly on the specific BW chosen to fit the Dalitz plot
and, in the literature, one finds various choices of BW
propagators. Moreover, this simple description for a very
broad resonance close to a threshold, like the �, has many
deficiencies that are discussed, for instance, in Ref. [18].

On the theoretical side, a possible way of improving
Eq. (1) consists in replacing the BW functions with ex-
pressions based on the knowledge of scattering amplitudes.
This procedure respects unitarity and reveals the relation
between scattering and production experiments. Using a
description of the S-wave two-body FSIs within a unita-
rized ChPT framework [19], Oller has proposed, in
Ref. [18], a modified version of Eq. (1). Albeit successful,
this model does not tackle the weak vertex of the reaction
and, consequently, the constants �i and �i in Eq. (1)
remain fit parameters.

Motivated by the study of CP violation, more detailed
versions of Eq. (1) were produced in the context of three-
body hadronic B decays, in which both the weak and strong
interactions are treated: B ! ��� was considered in
Refs. [20,21] whereas B ! K�� and B ! K �KK were
treated in Refs. [22–24]. In these works, the weak decay
is evaluated with the help of the effective weak
Hamiltonian within QCD factorization whereas the had-
ronic FSIs are taken into account by means of unitary K�
and �� form factors constrained by scattering data and
ChPT. These models confront data very well and are
precisely the basis of the approach we follow in the present
work. Our main purpose is to test the description of �þ��
pairs in a relative S-wave state in Dþ ! �þ���þ.

The decay amplitude for Dþ ! �þ���þ is con-
structed as follows. We assume that the three-body decay
is always mediated by a resonance R as suggested by
experimental analyses [1,13,14]. Then, for the �þ�� pairs
in an S-wave state, denoted hereafter ð�þ��ÞS, we factor-
ize the decay amplitude Dþ ! R�þ using the effective
weak Hamiltonian within naı̈ve factorization. Afterwards,
the three-body ð�þ��ÞS�þ final state is constructed from
the intermediate R�þ state employing the �� scalar form
factors introduced in Ref. [22]. This ensures that our
description of FSIs is unitary and includes the coupling
to the K �K state. The form factor is based on the experi-
mental scattering phase shifts ��� and �K �K previously
studied in Ref. [5]. As usual, we work within the quasi-
two-body approximation in which interactions of the re-
maining �þ with the ð�þ��ÞS pair are neglected. This

procedure is repeated for �þ�� in a Pwave, which is well
approximated by the �ð770Þ0 resonance. Finally, two
higher mass resonances, the f2ð1270Þ and the �ð1450Þ0,
are included phenomenologically using the isobar model.
Our final amplitude is then fitted to the signal function
employed by the E791 Collaboration [1]; this comparison
is carried out following a scheme presented in Ref. [18].
The present paper completes the description briefly

reported in Ref. [25] and is organized as follows. In
Sec. II, we discuss the effective weak Hamiltonian and
the weak amplitudes employed in our description for the S
and P waves. The construction of the three-body final state
is presented in Sec. III, results for our fits are displayed in
Sec. IVand a summary and discussions are given in Sec. V.

II. WEAK AMPLITUDES

Our phenomenological description of weak decays in-
volving S- or P-wave resonances is based on the effective
weak Hamiltonian H eff , which is obtained by integrating
out the heavy degrees of freedom of the standard model
(SM) Lagrangian. The Hamiltonian is written as an opera-
tor product expansion (OPE) and reads

H �C¼1
eff ¼ GFffiffiffi

2
p X

i

VCKMCið	ÞÔið	Þ þ H:c:; (2)

where GF ¼ 1:16637ð1Þ � 10�5 GeV�2 [26] is the Fermi
decay constant, VCKM are products of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, Cið	Þ are Wilson co-

efficients and Ôið	Þ local operators entering the OPE.
Furthermore, 	 is the renormalization scale which, in our

case, is taken to be of order mc. The operators Ôið	Þ
represent the local four-quark weak interaction in the
effective theory while Cið	Þ describe the hard- or short-
distance physics and are calculated perturbatively in the
full theory, in this case the SM. The contributions of all
particles with massm>	 ¼ mc, such as the heavier b and
t quarks and the W bosons, are included in Cið	Þ.
In the present case, we need to consider the Cabibbo

suppressed transition c ! du �d. Consequently, the tree
level matrix elements are governed by the coefficient
Vtree
CKM ¼ VcdV

�
ud � 
d which, in Wolfenstein’s parametri-

zation [27], is of Oð
Þ, where 
 ¼ 0:2257 [26]. In princi-
ple, our amplitudes receive contributions from strong
penguins as well but, using the unitarity of the CKM
matrix, one sees that these are governed by VP

CKM ¼
VcbV

�
ub, which is of Oð
5Þ. Thus, penguin amplitudes are

strongly CKM suppressed and can safely be neglected.
This suppression contrasts with the situation found in
analogous B decays where, since one explores a different
sector of the CKM matrix, penguin operators give rise to
sizable contributions [20].
Taking into account only tree operators, the matrix

element of H eff for the decay Dþ ! R�þ can be written
as
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hR�þjH eff jDþi ¼ GFffiffiffi
2

p 
d

X2
i¼1

Cið	ÞhR�þjÔijDþið	Þ;

(3)

where the operators Ô1 and Ô2 are given by

Ô1 ¼ �d��ð1� �5Þc �u��ð1� �5Þd;
Ô2 ¼ �u��ð1� �5Þc �d��ð1� �5Þd:

(4)

To deal with the matrix element hR�þjÔijDþið	Þ of
Eq. (3), we assume that factorization at leading order (in
�QCD=mc and �s) holds:

hR�þjH eff jDþi ¼ GFffiffiffi
2

p 
d½a1ð	Þh�þj �u��ð1� �5Þdj0i

� hRj �d��ð1� �5ÞcjDþi
þ a2ð	ÞhRj �d��ð1� �5Þdj0i
� h�þj �u��ð1� �5ÞcjDþi�: (5)

In this context, the new coefficients a1ð	Þ and a2ð	Þwhich
arise are expressed in terms of the Wilson coefficients
C1ð	Þ and C2ð	Þ and of the number of colors Nc ¼ 3 as

a1ð	Þ ¼ C1ð	Þ þ 1

Nc

C2ð	Þ;

a2ð	Þ ¼ C2ð	Þ þ 1

Nc

C1ð	Þ:
(6)

We then have products of nonperturbative hadronic matrix
elements that assume a decomposition in terms of Lorentz
invariant form factors. At this point, a remark is in order.
Since mc is smaller than mb by roughly a factor of 3,
nonfactorizable contributions of order �QCD=mc are larger

than in B decays. Hence, the factorization approximation
may be less reliable for D physics. Factorization, however,
was applied successfully to two-body D decays in the
seminal papers by Bauer, Stech and Wirbel [28]. Later, it
was used in the 1980s [29] and 1990s [30] to describe
three-body hadronic D decays and, more recently, in 2001,
Dib and Rosenfeld [31] have used the factorization ap-
proximation to treat the Dþ ! ��þ decay in order to
obtain, from the then novel E791 data, the ��� coupling
and the form factor for the transition D ! �. Finally, the
transition D ! f0ð980Þ was recently studied employing
the same factorization scheme [32]. Thus, in spite of the
complications introduced by the c mass scale, this ap-
proach is a reasonable starting point for a phenomenologi-
cal analysis. Moreover, it enables the description to benefit
from the treatment of mesonic FSIs developed in the con-
text of B decays.1

A. Dþ ! ��þ and Dþ ! f0ð980Þ�þ decays

From the available experimental analyses it has become
clear that the �� S wave gives the most important con-
tribution to the decay Dþ ! �þ���þ. The � was found
to account for almost 50% of the decays whereas the
f0ð980Þ accounts only for about 6% [1]. This picture
remains unchanged with the more recent analyses of
FOCUS [13] and CLEO [14] (see Table III for the values
extracted from these papers). In addition, there are indica-
tions for a sizable component arising from the higher mass
scalar resonances f0ð1370Þ and f0ð1500Þ, although the data
analyses are not conclusive. The E791 analysis includes
only one state, the f0ð1370Þ, whereas the CLEO
Collaboration claims that both are necessary to yield a
good fit within the isobar model. In our model, the � and
the f0ð980Þ enter explicitly in the amplitude while one
higher mass state close to 1500 MeV is accounted for as
a pole in the ð�þ��ÞS form factor, discussed in Sec. III.
The exact nature of scalar mesons, i.e. whether their

wave function is dominated by �qq or �q2q2 states, or even
glueballs, is not yet elucidated. In the case of the �, the
situation is even more obscure, since the issue of whether it
is a preexisting quark state or dynamically generated by the
strong S-wave �� interactions is still under debate.
Therefore, the inclusion of the � in our amplitude is far
from obvious. On the other hand, we know that the � is an
isoscalar state and no indications of a strange quark com-
ponent in its wave function exists. Thus, we assign to the �
the minimal quark content compatible with these two facts,

namely, ðu �uþ d �dÞ= ffiffiffi
2

p
. Concerning the quark content of

the f0ð980Þ, it is well established that it has a non-
negligible strange component. Higher Fock states, e.g.
�q2q2 and �q2q2g, may also be important to achieve a
comprehensive description of its wave function.2 In the
context of heavy meson decays, however, there are indica-
tions that the �qq component should be dominant [35].
Here, we consider the f0ð980Þ as pure �qq while allowing
for an admixture of s�s:

f0 ¼ 1ffiffiffi
2

p ðu �uþ d �dÞ sin
mix þ s�s cos
mix; (7)

where 
mix is the mixing angle. With these definitions, we
can compute the weak amplitude for Dþ ! ��þ and
Dþ ! f0ð980Þ�þ decays.
The matrix elements hRj �q�	ð1� �5Þqj0i, where R ¼ �

or f0ð980Þ and q ¼ u, d or s, vanish by C invariance.
Hence, the decay amplitude has no a2 contribution [see
Eq. (5)]. The annihilation topology is likely to be neglected
since it contains form factors of light mesons evaluated at
high momentum (q2 ¼ m2

D) [31]. The weak amplitude is
then purely proportional to a1. Finally, we note that, in the
next section, we construct the three-body final state from
the intermediate ��þ and f0�

þ states with the help of the

1This is the reason why we do not adopt the effective mesonic
Lagrangian of Refs. [33,34]. 2For a more complete discussion see Ref. [32].
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�� scalar form factor, thereby properly taking into ac-
count the strong FSIs in this channel.

The relevant form factor for the transition D ! �, de-
noted by FD!�

0 ðq2Þ, is defined as3

q	h�ðpÞj �d�	ð1� �5ÞcjDþðPDÞi
¼ �iðm2

D �m2
�Þ ~FD!�

0 ðq2Þ; (8)

where q2 ¼ ðPD � pÞ2 and ~FD!�
0 ðq2Þ ¼ FD!�

0 ðq2Þ= ffiffiffi
2

p
.

Furthermore, with the usual decomposition one has

h�þðpÞj �u�	ð1� �5Þdj0i ¼ if�p
	: (9)

It is then straightforward, once factorization has been
applied, to write the amplitude for Dþ ! ��þ with the
help of Eq. (5):

AðD ! ��þÞ ¼ h��þjH effjDþi
¼ GFffiffiffi

2
p 
da1ðmcÞf�ðm2

D �m2
�Þ ~FD!�

0 ðm2
�Þ:

(10)

This expression coincides with the one found in Ref. [31]
and can easily be compared with the amplitude for B !
�� from Ref. [20] as well. However, one should note that

in Refs. [20,31], the normalization factor 1=
ffiffiffi
2

p
is not

included in the � wave function. Finally, we have com-
puted the strong penguin contributions to Eq. (10) and we
have checked explicitly that they can be neglected due to
CKM suppression.

For the decayDþ ! f0ð980Þ�þ we obtain the following
result:

AðDþ!f0�
þÞ¼GFffiffiffi

2
p 
da1ðmcÞf�ðm2

D�m2
f0
Þ ~FD!f0

0 ðm2
�Þ;

(11)

where we have defined

~F D!f0
0 ðm2

�Þ ¼ sin
mixffiffiffi
2

p FD!f0
0 ðm2

�Þ: (12)

B. Dþ ! �ð770Þ0�þ decay

The evaluation of the amplitude AðDþ ! �ð770Þ0�þÞ
from Eq. (5) is quite analogous to the previous ones except
that the contribution of the color suppressed tree diagram

does not vanish. The quark content in this case is �0 ¼
ðu �u� d �dÞ= ffiffiffi

2
p

[for simplicity we denote by �0 the

�ð770Þ0]. In the color allowed term we need to consider
the transition D ! � which can be parametrized in terms
of form factors using the general P ! V amplitude, where
P and V represent a pseudoscalar and a vector meson,
respectively:

q	hVðpVÞjjV	 � jA	jPðpPÞi ¼ �i2mVð�� � qÞAP!V
0 ðq2Þ:

(13)

Here q ¼ pP � pV , �
� is the vector meson polarization.

Furthermore, jV	 and jA	 represent bilinear vector and axial-

vector quark currents, respectively. In the color suppressed
topology, we need the transition D ! � obtained from the
general P1 ! P2 transition

hP2ðp0
PÞjjV	 � jA	jP1ðpPÞi

¼
�
ðpP þ p0

PÞ	 �m2
1 �m2

2

q2
q	

�

� F1ðq2Þ þm2
1 �m2

2

q2
q	F0ðq2Þ: (14)

We define the vector decay constant as

hVjjV	j0i ¼ mVfV�
�
	; (15)

where we have included the factor mV to have a decay
constant fV with the dimension of energy.4 With these
definitions the result reads

A ðDþ ! �0�þÞ ¼ �2ð�� � qÞ�0; (16)

where

�0 ¼ GF

2

dm�½a1ðmcÞf�AD!�

0 ðm2
�Þ

þ a2ðmcÞf�FD!�
1 ðm2

�Þ�; (17)

and q ¼ ðPD � p�Þ ¼ p�. The minus sign in Eq. (16)

arises from the fact that the d �d component of the �0 is
the one that intervenes. This result has the same structure
as the one found in Ref. [20] for the B� ! �0�� decay.

III. HADRONIC FINAL STATE INTERACTIONS

In this section we describe the construction of the three-
pion final state from the weak amplitudes [Eqs. (10), (11),
and (16)]. This is done in order to take into account the
FSIs and the three-body phase space. By FSIs, we mean the
mesonic interactions in the final state after hadronization.
It is important to define the kinematics we employ. We

are considering the generic amplitude M � MðDþ !
�þ���þÞ with four-momenta labeled as follows:

DþðpDÞ ! �þðp1Þ��ðp�Þ�þðp2Þ: (18)
3Throughout this paper, we employ the decompositions and

definitions of Refs. [20,21] for the hadronic form factors, unless
otherwise stated. 4This last definition is not the same as in Refs. [20,21].
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Since in the final state we have two identical �þ, the
amplitude has to be symmetric under the exchange p1 $
p2. What is more, in order to work with a Lorentz invariant
Dalitz plot, it is convenient to define three invariant com-
binations of momenta:

s ¼ ðp1 þ p2Þ2; t ¼ ðp� þ p1Þ2;
u ¼ ðp� þ p2Þ2:

(19)

They correspond to the usual Mandelstam variables with

sþ tþ u ¼ m2
D þ 3m2

�� ; (20)

so that only two of them are independent. Resonances
occur only in the t and u channels since there are no
isospin 2 resonances. We denote byARðu; tÞ the amplitude
for a decay mediated by a resonance R in the u channel.
The final symmetric result MRðu; tÞ is hence obtained by
summing

M Rðu; tÞ ¼ ARðu; tÞ þARðt; uÞ: (21)

A. S wave

The FSIs are taken into account by means of the ��
scalar form factor. This method was introduced in Ref. [36]
and was later applied toB ! ��� decays in the vicinity of
the � pole in Ref. [20] using the form factors obtained in
the context of unitarized ChPT [19]. In Refs. [22,23] a
similar description was used to describe the f0ð980Þ in
B ! ��K and B ! K �KK employing a different set of
form factors that rely on a previous analysis of �� and
K �K scattering data [5]. These form factors are unitary and
contain both the �� and K �K channels. Here, we briefly
summarize the model since all the details can be found in
Ref. [20] and in the appendix of Ref. [23].

The two-pion scalar form factor �nðxÞ that is relevant to
our work is defined as [36]

h0j �nnj�ðpÞ�ðp0Þi ¼ ffiffiffi
2

p
B0�

nðxÞ; (22)

where �nn ¼ ð �uuþ �ddÞ= ffiffiffi
2

p
, B0 is proportional to quark

condensate B0 ¼ �h0j �qqj0i=f2� and x ¼ ðpþ p0Þ2. Since
we want to describe Dþ ! �þ���þ and we have defined
in Eq. (10) the amplitude for the transitionDþ ! ��þ, we
need to introduce a function ����ðxÞ that describes the �
propagation and decay,5 i.e. the final state interactions. The
full amplitude Dþ ! ��þ ! ð�þ��ÞS�þ is given by

A �ðu; tÞ ¼ AðDþ ! ��þÞ����ðuÞ:
The � ! ð�þ��ÞS decay is described without resorting to
BW expressions. It can be obtained from the complex
conjugate of Eq. (22) assuming that, close to the � pole,
this resonance gives the dominant contribution to �nðxÞ.
We have [20]

����ðxÞ ¼
ffiffiffi
2

3

s
B0

h�j �nnj0i�
n�ðxÞ ¼ ���

n�ðxÞ: (23)

The normalization constant

�� ¼
ffiffiffi
2

3

s
B0

h�j �nnj0i (24)

is, in principle, unknown as it depends on the matrix
element h�j �nnj0i.
To further clarify the meaning of ����ðxÞ, it is conve-

nient to consider its analogue in a BW framework

�BW
���ðxÞ ¼ g���

m2
� � x� im��ðxÞ

; (25)

where g��� is the coupling between the � and the pions.
We can obtain an estimate for �� comparing expressions
(23) and (25) at x ¼ m2

�. We obtain

��j�n�ðm2
�Þj ¼ g���

m��ðm2
�Þ

: (26)

We take the central values m� ¼ 478 MeV and �� ¼
324 MeV from the E791 fit and use g��� ¼ 2:52 GeV
[37]. This yields, with the form factor of Ref. [22],

�� � 29 GeV�1: (27)

From the weak amplitude given in Eq. (10) and from the
expression of ����ðxÞ the amplitude for Dþ ! ��þ !
ð�þ��ÞS�þ reads

A�ðu; tÞ ¼ GFffiffiffi
2

p 
da1ðmcÞf�ðm2
Dþ �m2

�Þ

� ~FD!�
0 ðm2

�Þ���
n�ðuÞ; (28)

where the t dependence is implicit. Similarly for the inter-
mediate resonance f0ð980Þ, one has

Af0ðu; tÞ ¼
GFffiffiffi
2

p 
da1ðmcÞf�ðm2
Dþ �m2

f0
Þ

� ~F
D!f0
0 ðm2

�Þ�f0�
n�ðuÞ: (29)

For the weak decay amplitude we make use of Eq. (11) and
one should note that the normalization, denoted �f0 , which

by virtue of Eq. (26) is proportional to the coupling gf0��,

differs from the one found in Eq. (28).
Thus far, we have considered only a small energy range

around the resonance poles. In other works, this prescrip-
tion for the S wave was always used only within a limited
region of the spectrum [20,22]. We want, however, to
describe the whole Dalitz plot for Dþ ! �þ���þ where
the �� invariant mass ranges from 2m�� <

ffiffiffi
s

p
< ðmDþ �

m��Þ, i.e. between 280–1700MeV. To this aim, an ansatz is
required to provide us with an expression for the entire S
wave. Since the amplitudes (28) and (29) are both propor-
tional to �n�ðuÞ, we propose the following amplitude for
the S wave:5����ðxÞ corresponds to ����ðxÞ of Ref. [20].
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A Sðu; tÞ ¼ GFffiffiffi
2

p 
da1ðmcÞf�ðm2
Dþ � uÞ�eff�

n�ðuÞ: (30)

In the last equation, �eff is a new normalization constant
that encompasses all the form factors and normalizations
for the scalar resonances. In addition, we have replaced the
terms ðm2

Dþ �m2
RÞ by ðm2

Dþ � uÞ; this u dependence sup-

presses the contribution of higher mass resonances [22]. It
is not easy to obtain a good estimate for �eff since it
receives contributions from all the scalar-isoscalar states.
The following lower bound of �eff results from Eqs. (28)–
(30) from the f0ð980Þ which is a well established reso-
nance. Indeed, we have

�eff >
sin
mixffiffiffi

2
p F

D!f0
0 ðm2

�Þ�f0 :

Using ~FD!f0
0 ðm2

�Þ ¼ 0:215, the average value from the two

models of Ref. [32], and �f0 ¼ 28:9 GeV�1 [23] one then

gets the estimate

�eff > 6:2 GeV�1: (31)

From Eqs. (21) and (30) we can construct our final
expression for the Dþ ! ð�þ��ÞS�þ amplitude:

M Sðu; tÞ ¼ GFffiffiffi
2

p 
da1ðmcÞf��eff½ðm2
Dþ � uÞ�n�ðuÞ

þ ðm2
Dþ � tÞ�n�ðtÞ�: (32)

The last expression has only one parameter that can be
considered as unknown: �eff . As far as �

n�ðxÞ is concerned,
with x ¼ u; t, we employ the form factor of Ref. [22]. It is
unitary and takes into account the coupling to the K �K
channel.6 This form factor is obtained within an on-shell
approximation and can be written explicitly in terms of the
S-wave scattering phase shifts ���ðxÞ and �K �KðxÞ as

�n�ðxÞ ¼ 1

2

�
Rn
��ðxÞð1þ �ðxÞe2i���ðxÞÞ � iRn

K �K
ðxÞ

�
ffiffiffiffiffi
k2
k1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ðxÞ

q
ei½���ðxÞþ�K �KðxÞ�

�
; (33)

where �ðxÞ is the inelasticity for �� scattering, k1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=4�m2

�

p
and k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=4�m2

K

q
. For ���ðxÞ, �K �KðxÞ

and �ðxÞ, we employ the results of Ref. [5]. In addition,
Eq. (33) depends on the production functions Rn

��ðxÞ and
Rn
K �K

ðxÞ introduced in Ref. [36], which result from a match-

ing to the ChPT expansion of �nðxÞ. In practice, these
functions can simply be written as Rn

i ðxÞ ¼ ci þ dix. The
real coefficients ci and di, which depend on the low energy
constants of ChPT, were determined in Ref. [36] and
updated in Ref. [38]. However, the validity of the produc-
tion functions beyond 	1:2 GeV is not guaranteed. To
circumvent this problem, we introduce in our form factor
a cutoff xcut above which we saturate the Rn

i ðxÞ, namely,

Rn
i ðxÞ ¼

�
ci þ dix for x < xcut;
ci þ dixcut for x > xcut:

(34)

This procedure does not affect the unitarity of the form
factor but, of course, it introduces an additional parameter
xcut in the model. Our fits are done for different values of
xcut in order to carefully ascertain the dependence on this
parameter.

B. P wave

The construction of the three-pion final state from the
intermediate �0�þ state is similar to that done for the S
wave. However, in the case of the �0 it is not crucial to
employ the vector form factor of the pion to describe the
FSIs. Since the �0 is a relatively narrow resonance, far
from threshold, that strongly dominates the corresponding
form factor, the BW description gives a good approxima-
tion. From the coupling of the �0 to the pair �þ�� defined
as h�þðqþÞ��ðq�Þj�0i ¼ g�ðq� � qþÞ [20] and with the

use of Eq. (16) we have

A �0ðu; tÞ ¼ �0ðt� sÞ����ðuÞ; (35)

where �0 is given in Eq. (17) and s, t and u are defined in
Eq. (19). The factor ðt� sÞ comes from the sum over the
polarizations of the �0 and the function����ðuÞ is defined
by

����ðuÞ ¼
g�

m2
� � u� im���ðuÞ

: (36)

For the running width ��ðuÞ we take the usual relativistic

prescription

��ðuÞ ¼
m�ffiffiffi
u

p �tot
�

�
pðuÞ
pðm2

�Þ
�
3
; (37)

6In a two-coupled channel ð��;K �KÞ description of the final
state interactions for Dþ decays, the FSIs are incorporated in the
form factor via the following unitary equation system [Eq. (11)
of Ref. [22]]:

�n�
i ðxÞ ¼ Rn

i ðxÞ þ
X2
j¼1

hkijRn
j ðxÞGjðxÞTijðxÞjkji;

where jkii and jkji represent the wave functions of two mesons
in the momentum space and the indices i; j ¼ 1; 2 refer to the
�� and K �K channels, respectively. The matrix T is the two-body
scattering matrix and the functions GjðxÞ are the free Green’s
functions. With this definition, the form factor of Eq. (33)
corresponds to �n�

1 ðxÞ. The driving terms entering in these
equations are given by production functions Rn

i ðxÞ representing
the meson-meson formation from q �q pairs. Further details can be
found in Ref. [22].
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where pðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=4�m2

�

p
and �tot

� is the total decay

width. The final expression for the amplitude of the decay
mediated by the �0 is then

M �0ðu; tÞ ¼ �0½ðt� sÞ����ðuÞ þ ðu� sÞ����ðtÞ�:
(38)

IV. RESULTS

A. Parameter values

Since the experimental situation of the Pwave in Dþ !
�0�þ is less controversial than that for the S wave, this
channel can be used to ascertain the quality of the model.
With Eq. (38) we can calculate the branching ratio for the
Dþ ! �0�þ decay and compare it to the experimental
average [26]

BPDGðDþ ! �0�þ; �0 ! �þ��Þ ¼ ð8:2� 1:5Þ � 10�4:

For the numerical input needed we take a1ðmcÞ ¼ 1:15
[39], a2ðmcÞ ¼ �0:25 [39], f� ¼ 130:4 MeV [26], f� ¼
0:209 GeV [23], FD!�

1 ðm2
�Þ ¼ 0:8 [40], AD!�

0 ðm2
�Þ �

A
D!�
0 ð0Þ ¼ 0:75 [41], and g� ¼ 5:8 [20]. Using the stan-

dard formula for the three-body decay rate [26] and taking
into account the symmetry factor 1=2 we have, using
Eq. (38),

B ðDþ ! �0�þ; �0 ! �þ��Þ ¼ 8:63� 10�4: (39)

Our branching ratio is rather sensitive to the value of the

form factor A
D!�
0 ðm2

�Þ which has an uncertainty of about

20% at q2 ¼ 0 [41]. Therefore, the theoretical error asso-
ciated with our result is large. However, since the central
values for the parameters yield a result in agreement with
the experimental average, we keep these values. Thus, the
amplitude M�0ðu; tÞ serves as a benchmark to the deter-

mination of the other parameters of our model.

B. Fits to E791 signal function

Since we do not have the real data at our disposal, the fit
procedure consists in reproducing the E791 signal function
and comparing our model to it. To this aim, we closely
follow the method of Ref. [18]. Aitala et al. in Ref. [1] used
in their best fit the trial amplitude Eq. (1) with six reso-
nances, namely, the �, the f0ð980Þ and f0ð1370Þ whose
quantum numbers are IGðJPÞ ¼ 0þð0þÞ, the �ð770Þ0 and
�ð1450Þ0 with 1þð1�Þ and, finally the f2ð1270Þ with
0þð2þÞ. Let us recall that the amplitude has also a complex
constant �NRe

i�NR identified with the nonresonant back-
ground. With these ingredients, the signal function can be
written

ME791ðu; tÞ ¼ �NRe
i�NR

þX6
i¼1

�ie
i�i½AE791

i ðu; tÞ þAE791
i ðt; uÞ�;

(40)

where the individual amplitudes AE791
i ðu; tÞ are modeled

as

A E791
i ðu; tÞ ¼ FJ

DðuÞ � FJ
i ðuÞ ��J

i ðu; tÞ � BWiðuÞ:
(41)

In the last expression, FJ
DðuÞ and FJ

i ðuÞ are Blatt-
Weisskopf damping factors that depend on the spin J of
the resonance,�J

i ðu; tÞ are angular factors and BWiðuÞ are
the Breit-Wigner propagators. The full expressions for
these functions are rather lengthy and can be found in the
original paper [1] or, more detailed, in Ref. [18]. From
Eq. (40), and employing the fit results for �i and �i [1] as
well as the values for masses and widths used by the E791
Collaboration we are able to reproduce the signal function.
Then, we generate a Dalitz plot with points separated by
0.05 GeVand normalize this plot to the number of observed
signal events, 1124. Since the Dalitz plot is symmetric
under u $ t it is sufficient to fit only half of the plot.
Our complete amplitude for the S wave is given by

Eq. (32) and the decay mediated by the �0 is described
by Eq. (38). With only these two contributions, however, it
is not possible to achieve a reasonable reproduction of the
E791 signal function. We have to include the two other
resonances that give sizable contributions to the fit: the
f2ð1270Þ and the �ð1450Þ (denoted for simplicity by f2 and
�0, respectively). This is done with the help of the isobar
model, using the same expressions as those of [1]. We
leave free, in our fit, the corresponding magnitudes �f2

and ��0 and phases �f2 and ��0 . The final amplitude for

the decay Dþ ! �þ���þ reads then

M ðu; tÞ ¼ MSðu; tÞ þM�0ðu; tÞ þM�0 ðu; tÞ
þMf2ðu; tÞ; (42)

where MSðu; tÞ is given by Eq. (32) and M�0ðu; tÞ by

Eq. (38). For M�0 ðu; tÞ we use

M �0 ðu; tÞ ¼ ��0ei��0 ½AE791
�0 ðu; tÞ þAE791

�0 ðt; uÞ�; (43)

where the explicit form of A�0 is given in Eq. (41).

Analogously, for Mf2ðu; tÞ we use

M f2ðu; tÞ ¼ �f2e
i�f2 ½AE791

f2
ðu; tÞ þAE791

f2
ðt; uÞ�: (44)

We shall refer to this model as ‘‘model A.’’
The amplitude equation (42) receives contributions from

five different resonances. These are the three scalars �,
f0ð980Þ and f0ð1500Þ that appear as poles in our S-wave
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form factor Eq. (33) [22], the P-wave resonances �ð770Þ
and �ð1450Þ and the D wave represented by the f2ð1270Þ.
Note that we do not include a nonresonant (NR) amplitude.
The necessity for such an amplitude is controversial. The
E791 Collaboration has shown that the inclusion of the �
reduces the contribution of the NR background to less than
10%. More recently, the CLEO Collaboration did not find
any significant evidence for the NR amplitude and an upper
limit of 3.5% was established [14]. In addition, the NR
amplitude can be energy dependent and the simple com-
plex constant evenly spread over the whole phase space
may be an unreliable model. Most importantly, the ��
scalar form factor �n�ðxÞ already includes the NR contri-
butions to �� scattering which could generate a double
counting of the background.

Only five free parameters occur in Eq. (42). Four of them
(�f2 , �f2 , ��0 and ��0) arise from the isobar model de-

scription of the f2ð1270Þ and �ð1450Þ. The fifth is the real
constant �eff introduced in Eq. (30). Therefore, the relative
weak phase of the Swave with respect to the �0 is fixed, as
well as the strong phases. In Table I we display the results
for fits to the E791 signal function. For the functions
Rn
��ðxÞ and Rn

K �K
ðxÞ of Eq. (33) we use the updated values

obtained in Ref. [38]. We show the results for three fits in
which we vary the value of the cutoff xcut introduced in
Eq. (34). The fit parameters do not depend much on xcut.

When quoting final values, we take the fit with
ffiffiffiffiffiffiffiffi
xcut

p ¼
1:2 GeV and include an uncertainty due to the dependence
on this cutoff. In Fig. 1 we show both the E791 signal
function and the result of the fit with

ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:2 GeV
displayed as Dalitz plots. The projection of these two
functions is compared in Fig. 2.
Concerning the parameters of the fit, from Table I we see

that the normalization constant for the S wave, �eff , is well
determined and confirms our expectations derived in
Eq. (31). The magnitudes of the f2ð1270Þ and of the
�ð1450Þ are well constrained by the fit as well. On the
other hand, the phases for these higher mass resonances are
not well determined. Finally, since Mf2ðu; tÞ and

M�0 ðu; tÞ in our amplitude equation (42) are exactly the

same as in the function we are fitting to, namely, Eq. (40),
the interpretation of the �2=d:o:f: as a measurement of the
quality of the fit is not reliable.
From Figs. 1 and 2, one sees that the main discrepancy in

the fit comes from the � region. This is most probably due
to the off-shell effects that are not included in the form
factor given by Eq. (33). The omission of these effects in
����ðxÞ may lead to an underestimation of the � peak
[42]. The model gives a much better description of the �0

and the f0ð980Þ peaks, both very prominent in the projec-
tion. In the higher energy region, where the f2ð1270Þ the
�ð1450Þ and higher mass scalar states are present, our

TABLE I. Fits of model A, Eq. (42), to E791 signal function Eq. (40). Uncertainties are solely statistical.

ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:0 GeV
ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:2 GeV
ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:4 GeV

�eff [GeV
�1] 6:5� 0:3 6:1� 0:3 6:0� 0:3

�f2 � 105 (4:7� 0:5) (4:2� 0:4) (4:2� 0:4)
�f2 (rd) �6:03� 0:18 �6:11� 0:20 �6:18� 0:20
�0
� � 106 (2:2� 0:8) (2:6� 0:7) (3:0� 0:6)

��0 (rd) �0:57� 0:27 �0:30� 0:20 �0:31� 0:17
�2=d:o:f: 0.20 0.22 0.22

FIG. 1. Dalitz plot representation of the signal function employed by E791, Eq. (40), (left-hand side), same representation for the
fitted amplitude given in Eq. (42) with the parameters of Table I for

ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:2 GeV (right-hand side).
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description is reasonable, although not as good as in the �0

and f0ð980Þ region.
C. D ! � transition form factor

It is desirable to extract the form factors for the transi-
tion Dþ ! ��þ and Dþ ! f0ð980Þ�þ from the fit. The
continuous description of the Swave, however, renders this
extraction difficult since the form factors are embedded in
�eff . Nevertheless, we advance here a model which aims at

determining FD!�
0 ðm2

�Þ and FD!f0
0 ðm2

�Þ. We then need to

separate the � and f0ð980Þ contributions in the S wave.
The drawback is however a nonunified description of
ð�þ��ÞS.

For energies within the elastic domain, x < 4m2
K, the

form factor of Eq. (33) is proportional to cos���ðxÞ [22].
Thus, it has a zero at the point x0 where ���ðx0Þ ¼ �=2.
Numerically, from the analysis of Ref. [5], we have x0 �
ð0:828 GeVÞ2. We split our S-wave amplitude at this point
and consider that for energies x < x0 the ð�þ��ÞS is
dominated by the transition D ! � and hence described
by Eq. (28), whereas for x > x0 the dominant transition is
D ! f0ð980Þ given by Eq. (29). In practice, we substitute
Eq. (30) by Eq. (28) when x < x0 and by Eq. (29) when
x > x0. We shall refer to this modified version of the model
as ‘‘model B.’’

With this modification, we can now consider the prod-

ucts ��
~FD!�
0 ðm2

�Þ and �f0
~F
D!f0
0 ðm2

�Þ from Eqs. (28) and

(29) as free parameters of the fit. The results of the fit are
shown in Table II. The calculated uncertainties take into
account the three possible sources: statistics, changing the
set of Rn

i ðxÞ and varying xcut. The dominant error in the

case of ��
~FD!�
0 ðm2

�Þ and �f0
~FD!f0
0 ðm2

�Þ comes from the

two different sets of Rn
i ðxÞ functions that we have at our

disposal from Refs. [36,38]. This procedure is conserva-
tive, since it probably yields an overestimation of the
theoretical error. The central values are obtained from the
most recent determination of Ref. [38]. In this fit, statistical
uncertainties are larger due to the additional parameter of
the model indicating that, within the present experimental
constraints, model B is somehow overparametrized as
compared to model A. Since the plots for this model are
similar to Figs. 1 and 2 we refrain from displaying them
here.
Let us now use the results of Table II to obtain the

transition form factor for D ! �. In order to disentangle
the product ��

~FD!�
0 ðm2

�Þ we calculate �� from Eq. (26).
Gardner and Meißner gave �� ¼ 20 GeV�1 in Ref. [20]
while employing the production functions Rn

i ðxÞ from
Ref. [38], we get �� � 22 GeV�1. From Eq. (26) one
sees that �� depends on quantities that are not well known
such as �� and m� and we shall take these values as an
indication. Nevertheless, with our value one obtains

~F D!�
0 ðm2

�Þ ¼ 0:38� 0:06: (45)

This result is to be compared to 0:79� 0:15 from Ref. [31],
0:57� 0:09 from Ref. [43] and 0:42� 0:05 from Ref. [44]
which is however evaluated at q2 ¼ 0. Our value is com-
patible with the last one, but smaller than those of
Refs. [31,43]. More detailed discussions on the form factor
~FD!�
0 ðm2

�Þ are beyond the scope of this work.
Concerning the f0ð980Þ, we use the recent determination

of FD!f0
0 ðm2

�Þ from the phenomenological analysis of

Ref. [32] in order to estimate �f0 . The latter can be

compared with the values from Refs. [22,23] to check the
consistency of both approaches. From Ref. [32] we have
~F
D!f0
0 ðm2

�Þ ¼ 0:215, and, with the result for the product

�f0
~F
D!f0
0 ðm2

�Þ obtained in the fit, this yields

�f0 ¼ 26� 9 GeV�1: (46)

This result agrees within uncertainties with the ones em-
ployed in B decays: �f0 ¼ 23:5 GeV�1 and �f0 ¼
33:5 GeV�1 in the two models of Ref. [22] and �f0 ¼
28:9 GeV�1 in Ref. [23]. This comparison is to be done
with care since one always has the product of the normal-
ization �f0 and the transition form factors. Therefore,

smaller values for �f0 can be compensated by larger

form factors.
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FIG. 2 (color online). Projection of the signal function of the
E791 Collaboration (full dots) and the result of the fit (model A)
for the parameters given in Table I with

ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:2 GeV.

TABLE II. Fit of model B with
ffiffiffiffiffiffiffiffi
xcut

p ¼ 1:2 GeV to E791
signal function Eq. (40). Uncertainties include all the possible
sources (see text).

��
~FD!�
0 ðm2

�Þ ð8:4� 1:4Þ GeV�1

�f0
~F
D!f0
0 ðm2

�Þ ð5:6� 1:9Þ GeV�1

�f2 � 105 5:3� 0:8
�f2 (rd) �6:5� 0:4
��0 � 106 2:1� 0:9
��0 (rd) �0:2� 0:6

�2=d:o:f: 0.21
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V. SUMMARYAND DISCUSSIONS

It is elucidative to quantify the weight of the different
contributions in our model and compare them with other
results in the literature. This is usually done through the fit
fractions, defined for a given contribution R as

fR ¼
R
D dudtjMRðu; tÞj2R
D dudtjP

i
Miðu; tÞj2

; (47)

where D indicates that the integrals are to be performed
over the whole Dalitz plot. The fit fractions give an idea of
how important a given resonance or partial wave is to the
total decay amplitude. The sum of the fit fractions does not
necessarily add up to one due to interference effects.
However, one expects that this sum should not deviate
widely from unity. In Table III we compare the fit fractions
of models A and B with those of other works as well as
with the values quoted by the PDG [26]. In our fit fractions
we included the uncertainty from

ffiffiffiffiffiffiffiffi
xcut

p
as well as that

arising from the use of different sets of Rn
i ðxÞ from

Refs. [36,38].
To clarify the content of Table III, one should remark

that the E791 Collaboration employed the isobar model
[1], as already commented. Note that from the CLEO
analyses [14], we only quote the isobar model results.
FOCUS has performed an analysis where the S wave is
described continuously by means of a K matrix previously
determined from �� scattering data [13]. This model,
therefore, is the closest to ours since both are based on
�� scattering analyses and share the on-shell approxima-
tion. Oller’s results [18], based on a description of FSIs
obtained in the context of unitarized ChPT [19], also rely
on previous analysis of �� scattering and include off-shell
effects. In his model, the nonresonant amplitude is kept
and, although the resemblance to E791 data is striking, the
price to pay is a huge interference that makes the sum of fit
fractions to be 186% with 108% of �� S wave in the final
state. Finally, we do not sum the fit fractions from the PDG
[26] since they come from many different analyses. Our

results are in general agreement with the others. The S
wave is within the experimental results and the sum of the
fit fractions of our models is very reasonable.
The CLEO Collaboration has performed an analysis

where two models based on the �� scattering T matrix
were applied [14]. The model of Schechter (nonisobar
model, and chiral Lagrangian with 7 parameters) has simi-
lar fit fractions to our results although the coupling to the
K �K channel is not included in the model. The model of
Achasov (isobar model with 12 parameters) produces re-
sults closest to [18] with large interference effects. The
ð�þ��ÞS has a fit fraction of about 70% and the total sum
is roughly 140%.
Since we have performed an analysis that starts from the

weak vertex, we can calculate the total branching ratio for
the decay Dþ ! �þ���þ using the fit results for the
parameters of the models. This gives

model A: BðDþ ! �þ���þÞ ¼ ð2:2þ0:7
�0:5Þ � 10�3;

modelB: BðDþ ! �þ���þÞ ¼ ð2:5þ0:4
�0:3Þ � 10�3;

(48)

whose central values are smaller than the experimental
average [26]

B PDGðDþ ! �þ���þÞ ¼ ð3:21� 0:19Þ � 10�3: (49)

The results are, however, coherent with the fact that we
miss a part of the contribution in the � region. Concerning
this discrepancy, one can advance some hypothesis. As
already stated, this is likely due to the off-shell effects
that are not considered in our form factor. Another possible
cause for the less prominent � peak and, consequently, for
the smaller branching ratio are three-body final state inter-
actions. There are indications of three-body effects in
Dþ ! K��þ�� coming from a new analysis technique
where the S wave is treated bin by bin in an almost model-
independent way [45,46]. The K� S-wave phase thus
obtained is considerably different from the K� scattering
results and this has been interpreted as an indication of

TABLE III. Fit fractions (in %) from E791 [1], FOCUS [13], CLEO (isobar model) [14], Oller [18], PDG [26] and models A and B.
The uncertainties have been summed quadratically. Results marked with an asterisk are the sum of all S-wave contributions and are
extrapolated from the original works. From Ref. [18] we included the 6% of K �K ! ð��ÞS in the ð��ÞS fit fraction.

E791 FOCUS CLEO Oller PDG Mod. A Mod. B

� 46:3� 9:2 � � � 41:8� 2:9 � � � 42:2� 2:7 � � � � � �
NR 7:8� 7:8 � � � <3:5 17 <3:5 � � � � � �
f0ð980Þ 6:2� 1:4 � � � 4:1� 0:9 � � � 4:8� 1:0 � � � � � �
f0ð1370Þ 2:3� 1:7 � � � 2:6� 1:9 3 2:4� 1:3 � � � � � �
f0ð1500Þ � � � � � � 3:4� 1:3 � � � 3:4� 1:3 � � � � � �
ð�þ��ÞS ð63� 12Þ� 56:0� 3:9 ð51:9� 3:8Þ� 108 56� 4 50:4� 2:7 56:6� 5:2
�ð770Þ 33:6� 3:9 30:8� 3:9 20:0� 2:5 36 25� 4 40� 4 34:4� 0:4
f2ð1270Þ 19:4� 2:5 11:7� 1:9 18:2� 2:7 21 15:4� 2:5 8:6� 2:1 11:8� 0:8
�ð1450Þ 0:7� 0:8 � � � <2:4 1 <2:4 1:5� 0:6 0:8� 0:4P

ifi 116.3 98.5 90.1 186 � � � 100.2 103.6
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genuine three-body effects [47]. To our knowledge, this
type of analysis has never been done for Dþ ! �þ���þ
but, in principle, three-body effects could also be important
in this case.

In conclusion, given the relative simplicity of our model,
the small number of parameters and the fixed phases
between the Swave and the �0, the model is able to provide
a fair description of the experimental data for Dþ !
�þ���þ within a unitary approach for the �� final state
interactions. Among many possible improvements to this
work, one can think of introducing P-wave form factors to
describe the �ð770Þ0 and the �ð1450Þ0.
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