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We analyze the electromagnetic pion and kaon form factor by including radiative and higher-twist

effects within the framework of resummed perturbative QCD in the spacelike region. We focus on the

transition from the perturbative to nonperturbative behavior in the phenomenological intermediate-energy

regime. Using a modified ‘‘kT’’ factorization scheme with transverse degrees of freedom, we evaluate the

nonperturbative soft contributions as distinct from the hard contributions, ensuring no double counting via

the Ward identity at Q2 ¼ 0. The soft contributions are obtained via local quark-hadron duality, while the

hard contributions rest on the well-known collinear factorization theorem using model wave functions

with modified Brodsky-Huang-Lepage–type ansatz and distribution amplitudes derived from light-cone

QCD sum rules. Our analysis shows that the perturbative hard part prevails for large Q2 beyond

50–100 GeV2, while for low and moderate momentum transfers below 10–16 GeV2, the soft contribu-

tions dominate over the hard part. Thus, we demonstrate the importance of including the soft contributions

for explaining the experimental form-factor data.
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I. INTRODUCTION

During the past decade, QCD-oriented studies have been
shifting steadily toward exclusive channels. For a long time
the electromagnetic structure of pions has been subjected
to numerous experimental and theoretical investigations
through the study of electroproduction reactions.
Extensive experimental studies of pion electroproduction
reactions like ep ! e�þn or en ! e��p have been car-
ried out in the past at CERN, Cornell, DESY, and, more
recently, at JLab [1–8]. Since the mid-1990s, kaon electro-
production reactions like Að�;KÞYB and Aðe; e0KÞYB (A is
the target, Y the produced hyperon, and B the recoil) have
also attracted renewed interest in nuclear physics at both
experimental [9,10] and theoretical [11,12] levels. The
main ingredients for the description of electromagnetically
induced kaon production are embedded in the so-called
Chew, Goldberger, Low, and Nambu (CGLN) scattering
amplitudes. In the case of the longitudinal component of
the electron induced unpolarized differential cross section,
the t-channel diagram dominates and (in certain kinematic
conditions) can be factorized [9,13] as �L ¼ k �
F ðQ2ÞGðWÞH ðtÞ, where k is a kinematic factor, and F ,
G, and H are functions of the 4-momentum transfer
squared Q2 of the virtual photon, the invariant mass W,
and the Mandelstam variable t, respectively. The function
F ðQ2Þ implicitly contains the information about the elec-
tromagnetic form factor of the kaon. Note that F ðQ2Þ is
not the actual form factor, but rather a complicated func-
tion from which the form factor can be extracted using,
e.g., Chew-Low extrapolation and deconvolution algo-
rithms. A precise knowledge of the form factor is of

fundamental importance for a realistic and accurate de-
scription of exclusive reaction mechanisms, and it plays a
key role in understanding the interplay between perturba-
tive and nonperturbative physics at intermediate energies.
Moreover, the study of form factors provides direct insight
into the electromagnetic structures and charge distributions
of hadrons as they couple with photons.
To date, the electromagnetic kaon form factor is very

poorly known and only measured at very low Q2 (below
0:2 GeV2) [14,15]. The status for the (quasifree) Lambda
(�) and Sigma (�) hyperons is even worse; i.e., there are
simply no available experimental data. Basic quantities
like the strong coupling constants gK�N and gK�N derived
from purely hadronic processes or theoretical considera-
tions are not well established and must be considered
adjustable. Recently, however, there appeared quite large
and precise data sets on photo-production of kaons from
the SAPHIR (ELSA) [16], CLAS (CEBAF) [17], and
LEPS (SPring8) [18] collaborations. There is also new
data on electroproduction of positive kaons from experi-
ment E98-108 at CEBAF which are being analyzed at the
moment.
Keeping in mind the increasing accuracy of experimen-

tal data, an accurate theoretical description of the electro-
magnetic form factors of pseudoscalar charged mesons at
intermediate energies is of primal importance. To our
knowledge, especially for the kaon, there are very few
theoretical works in this direction [19–22]. In this paper,
in addition to the pion form factor, we analyze the kaon
form factor for a broad range of spacelike momentum
transfers. Our framework is based on resummed perturba-
tive light-cone QCD formalism [23,24], unlike conven-
tional approaches like ‘‘asymptotic’’ and lattice QCD or
from sum rules that rely on many unchecked hypotheses.
The experimental results could then be used to extract the
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various distribution amplitudes (DAs) [25–42] used in the
above formulation. Of course, only a handful of experi-
mental hadron electroproduction data points are presently
available to make definitive statements on the validity of
different theoretical approaches. Since in almost all cases
the corresponding data points are merely concentrated in
the very low-energy region (Q2 < 1 GeV2), perturbative
QCD (pQCD) has limited predictive power due to the
rapidly growing magnitude of the strong coupling, as Q2

tends to zero. Despite the existing plethora of literature on
the predictions of electromagnetic meson form factors
based on various approaches (see e.g., Refs. [22–24,40–
73] for the pion and Refs. [19–22] for kaon form factors, to
give a highly incomplete list of references), to date there is
a considerable amount of debate as to their exact behavior
in the phenomenological low and moderate energies in the
range Q2 � 4–50 GeV2. Nevertheless, we try to give our
assessment to the existing scenario and try to explain the
experimental data first for the pion form factor, where
statistics are far more decent as compared to that of the
kaon. Then we extend our analysis to the kaon form factor,
where experimental data are still too limited for any mean-
ingful comparison. Hopefully, with the planned 12 GeV
upgrade proposal of the CEBAF experiment (at JLab) in
the near future, studies of intermediate-energy QCD can
prove to be fruitful.

The standard asymptotic QCD is known to make suc-
cessful predictions of many phenomena like dimensional
scaling, helicities, color transparency, etc. for exclusive
processes, asQ2 tends to infinity [48,71–74]. The approach
relies on the so-called collinear factorization theorem
[72,73] which provides an outstanding way of isolating
the partonic part accessible to pQCD from the nonpertur-
bative parts. The basic ingredients are as follows: (a) the
hadron DA�, which encodes the nonperturbative informa-
tion regarding the momentum distribution of the constitu-
ent ‘‘near’’ on-shell valence partons collinear to the hadron
and also features of the QCD vacuum structure as ex-
pressed through the quark condensates [75–77], and (b) a
scattering kernel TH, describing the hard scattering of
‘‘far’’ off-shell valence partons. The overall amplitude of
the exclusive process is then given by the convolution � �
TH ��. However, the application of pQCD to exclusive
processes at intermediate momentum transfers or phenom-
enologically accessible energies (e.g., at CEBAF) has been
the subject of severe controversies and criticisms [70,78–
86]. It is widely anticipated that nonperturbative effects
arising from soft gluon exchanges or from endpoint con-
tributions to phenomenologically acceptable wave func-
tions (or DAs) dominate and may severely preclude the
predictability of pQCD. Hence, in this paper we use a
modified ‘‘resummed’’ pQCD formalism (as proposed in
Refs. [23,24]) which is believed to largely enhance the
predictability of pQCD in a self-consistent way at inter-
mediate energies. The central issue here is the inclusion of

transverse momentum kT dependence that necessitates the
inclusion of a Sudakov suppression factor. The purpose of
this Sudakov factor is to organize the large double loga-
rithms of the type �sln

2kT , arising at all orders due to the
overlap of soft and collinear contributions of radiative
gluon loop corrections. Such a resummation effectively
suppresses the nonperturbative contributions at large en-
ergies. However, this still may not be effective enough
when we talk about Q2 down to a few GeV2. These facts
are in agreement with some of the recent findings, reported
in Refs. [63–65] for the pion form factor, and also in the
context of B systems [87].
In this paper, we emphasize the importance of including

two distinct contributions to exclusive quantities for ob-
taining good agreement with experimental data at low and
moderate energies: first, the nonfactorizable soft contribu-
tions which are not calculable within the perturbative
framework, and second, the power suppressed corrections
from nonleading twist structures (twist-3) determining the
preasymptotic behavior. In other words, the electromag-
netic form factor FMðQ2Þ for a charged mesonM should be
written as

FMðQ2Þ ¼ Fsoft
M ðQ2Þ þ Fhard

M ðQ2Þ; (1)

where Fhard
M ðQ2Þ is the factorizable part computable in

pQCD and Fsoft
M ðQ2Þ is the nonfactorizable soft part. The

soft contributions to the form factors can be calculated
using phenomenological quark models, either incorporat-
ing transverse structure (momentum) dependence of the
hadron wave functions (see, e.g., Refs. [61,79,81,82,88]) or
from QCD sum rules via local duality (see, e.g., Refs. [49–
52,62,89].) In the present paper, we follow the latter ap-
proach. We also focus on the presence of nonperturbative
enhancements arising from kinematic endpoint regions of
the scattering kernel which tend to invalidate collinear
factorization. For our calculations, we use model twist-2
and twist-3 light-cone wave functions incorporating trans-
verse degrees of freedom, where the collinear DAs are
derived from QCD sum rules [35–39]. Naively, the twist-
3 contributions to the form factor are expected to be small
compared to leading (twist-2) contributions, as they have a
relative 1=Q2 suppression. On the contrary, the existing
literature, either using model or asymptotic DAs
[26,28,29,58,63,65], shows large twist-3 corrections to
the pion form factor which even overshoot the twist-2
contributions in a wide range of low and intermediate
energies. This is also confirmed in our analysis and is in
fact more enhanced for the kaon form factor. To this end,
our analysis shows good agreement with the existing pion
data, and in addition we prove the consistency of our
results by adopting a scheme of analytization of the run-
ning strong coupling [61,62,90,91] that removes the ex-
plicit Landau singularity at Q2 ¼ �2

QCD by a minimum

power correction in the UV regime.
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The paper is organized as follows: In Sec. II, we briefly
discuss the idea of factorization and review the basic
definitions of the twist-2 and twist-3 pseudoscalar meson
DAs and their renormalization evolutions. Section III deals
with the theoretical framework involved in calculating the
spacelike electromagnetic form factor. Here, we recall the
predictions of classic asymptotic QCD for large Q2 ! 1
and how one needs to modify pQCD with collinear as well
as ‘‘kT’’ factorization schemes, including Sudakov effects
at intermediate energies. In Sec. IV, we provide the details
of our numerical results for the pion form factor and
compare them with the available experimental data. We
also give a preliminary prediction for the kaon form factor,
despite the lack of available experimental data for com-
parison in the desired phenomenological regime. Finally,
Sec. V contains our summary and conclusions. The appen-
dixes contain a compendium of relevant formulas used in
our analysis.

II. FACTORIZATION AND DISTRIBUTION
AMPLITUDES

The parton model of describing exclusive processes in
QCD inherently rests on the so-called frozen approxima-
tion [71–73]. At high energies, exclusive scattering ampli-
tudes are dominated by hadronic Fock states with
essentially valence quark configurations ( �qq in mesons).
While the relative velocities of the participating hadrons
are located close to the null plane, the internal hadron ‘‘-
quantum-binding’’ processes are highly time-dilated with
respect to the exclusive reaction time scales in the rest
frames of the remaining hadrons. This effectively freezes
the hadronic internal degrees of freedom as seen by the
other hadrons. This incoherence between the long-distance
intrahadronic binding processes and the short-distance in-
terhadronic scattering reaction is the very motivation for
the idea of factorization. Thus, the hadrons may be con-
sidered to be consisting of definite valence quark states
denoted by a DA of leading twist �. The collinear facto-
rization formula is then used to express exclusive quanti-
ties like the form factors as a convolution using the DAs:

FMðQ2Þ ¼
Z 1

0
dxdy�inðx;�2

FÞTHðx; y;Q2; �2
F; �

2
RÞ

��outðy;�2
FÞ þ � � � ; (2)

where Q2 ¼ �2Pin � Pout. Here, Pin and Pout are, respec-
tively, the ingoing and outgoing hadron momenta, x and y
are the longitudinal momentum fractions of the nearly on-
shell valence quarks, �R is the renormalization scale, and
�F is the factorization scale which is defined as the scale
below which the QCD dynamics are nonperturbative and
remain implicitly encoded within the DAs, while the dy-
namics above are perturbative and must be retained in the
hard kernel TH. The ellipses in the above equation repre-
sent contributions from higher order Fock states and sub-
leading twists which are all suppressed by inverse powers

of Q2. In addition, they also include the nonfactorizable
soft contributions. Formally, the definition of the leading
twist-2 DA for pseudoscalar mesons (e.g., ��) can be
given in a process- and frame-independent manner
[35,36,71–73] in terms of matrix elements of a nonlocal
light-ray operator along a certain lightlike direction
z�ðz2 ¼ 0Þ:
h0j �uðzÞ½z;�z����5dð�zÞj��ðPÞi

¼ iP�

Z 1

0
dxei�ðzpÞ�2;�ðx;�2

FÞ; � ¼ 2x� 1; (3)

with the path-ordering (P ) Wilson line in terms of the
gluon ‘‘connection’’ along the straight line joining z and
�z along the null plane which is given by

½z;�z� ¼ P
�
igs

Z z

�z
dy�A�ðyÞ

�
; (4)

where P2
� ¼ m2

� and p� is a lightlike vector,

p� ¼ P� � 1

2
z�

m2
�

Pz
: (5)

The local limit z ! 0 gives the normalization condition at
an arbitrary scale �,Z 1

0
�2;�ðx;�2Þdx ¼ f�

2
ffiffiffiffiffiffiffiffiffi
2Nc

p (6)

with the pion decay constant, f� � 131 MeV, defined by

h0j �uð0Þ���5dð0Þj��ðPÞi ¼ if�P�: (7)

The leading twist-2 DA �2;�ðx;�2Þ can be expressed as a

conformal series expansion over Gegenbauer polynomials

C3=2
2n :

�2;�ðx;�2Þ ¼ 3f�ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ
�
1þ X1

n¼1

a�2nð�2ÞC3=2
2n ð�Þ

�
;

(8)

where

�ðasÞ
2;�ðxÞ ¼ �2;�ðx;�2 ! 1Þ ¼ 3f�ffiffiffiffiffiffiffiffiffi

2Nc

p xð1� xÞ (9)

is generally referred to as the asymptotic DA. The
Gegenbauer moments a�2n represent the nonperturbative
inputs encoding the long-distance dynamics and may be
obtained, e.g., via lattice QCD calculations or QCD sum
rules. The renormalization group (RG) equation for
�2;�ðx; �2Þ is known as the Efremov-Radyushkin-

Brodsky-Lepage (ER-BL) equation [71–73],

�2 d

d�2
�2;�ðx;�2Þ ¼

Z 1

0
dyVðx; y;�sð�2ÞÞ�2;�ðy;�2Þ

(10)

with the integral kernel Vðx; y;�sÞ to leading order in �s

given by
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V0ðx; y;�sÞ ¼ CF
�s

2�

�
1� x

1� y

�
1þ 1

x� y

�
�ðx� yÞ

þ x

y

�
1þ 1

y� x

�
�ðy� xÞ

�
þ
; (11)

where the ‘‘þ’’ distribution is defined as

½Vðx; y;�sÞ�þ ¼ Vðx; y;�sÞ � 	ðx� yÞ
Z 1

0
dtVðt; y;�sÞ:

(12)

Solving the above set of equations yields the multiplicative
renormalization formula for moments a�n to leading-
logarithmic accuracy,

anð�2Þ ¼ L�ð0Þ
n =
0anð�2

0Þ; (13)

where L ¼ �sð�2Þ=�sð�2
0Þ and 
0 ¼ ð11Nc � 2NfÞ=12,

while the lowest order anomalous dimensions are given by

�ð0Þ
n ¼ CF

�
c ðnþ 2Þ þ c ð1Þ � 3

4
� 1

2ðnþ 1Þðnþ 2Þ
�
(14)

with the logarithmic derivative of the Gamma function
c ðzÞ ¼ �0ðzÞ=�ðzÞ. Note that for the pion all odd moments
a�n¼1;3;5��� vanish due to isospin symmetry. In contrast, the

kaon DAs have nonzero values for the odd moments,
signifying flavor-SU(3) violation effects. Hence, the
twist-2 DA for the kaon (e.g., K�) is given by the expan-
sion

�2;Kðx;�2Þ ¼ 3fKffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ
�
1þ X1

n¼1

aKn ð�2ÞC3=2
n ð�Þ

�
;

(15)

Z 1

0
�2;Kðx;�2Þdx ¼ fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ; (16)

where the kaon decay constant fK � 1:22f� [25] is de-
fined by

h0j �uð0Þ���5sð0ÞjK�ðPÞi ¼ ifKP�: (17)

Since the Gegenbauer moments are multiplicatively renor-
malizable with growing anomalous dimensions, for a suf-
ficiently large renormalization scale a finite number of
moments are relevant, despite the fact that the higher order
moments have large uncertainties in their present determi-
nation. Hence, in all practical calculations, the series ex-
pansions of the DAs are truncated only to the first few
moments. In this paper, we have adopted a model for the
twist-2 DAs in truncating up to the second moment, as was
done in Refs. [36,38].

For the charged pseudoscalar mesons at the twist-3 level,
there are two 2-particle DAs and one 3-particle DA. Here,
we only give the formal definitions of the 2-particle DAs
that we need in our analysis. For the charged pion (e.g.,

��), they are defined by [35]

h0j �uðzÞi�5dð�zÞj��ðPÞi ¼ ��

Z 1

0
dxei�ðzpÞ�p

3;�ðx;�2Þ;

h0j �uðzÞ��
�5dð�zÞj��ðPÞi ¼ � i

3
��ðP�z
 � P
z�Þ

�
Z 1

0
dxei�ðzpÞ��

3;�ðx;�2Þ
(18)

with �� ¼ m2
�=ðmu þmdÞ and similarly for the charged

kaon (e.g., K�) [38]:

h0j �uðzÞi�5sð�zÞjK�ðPÞi ¼ �K

Z 1

0
dxei�ðzpÞ�p

3;Kðx;�2Þ;

h0j �uðzÞ��
�5sð�zÞjK�ðPÞi ¼ � i

3
�KðP�z
 � P
z�Þ

�
Z 1

0
dxei�ðzpÞ��

3;Kðx;�2Þ
(19)

with �K ¼ m2
K=ðmu þmsÞ. Note that the gauge-link fac-

tors [Wilson line (4)] in the matrix elements are to be
implicitly understood. The twist-3 DAs have the following
asymptotic forms:

�pðasÞ
3;M ðxÞ ¼ fM

4
ffiffiffiffiffiffiffiffiffi
2Nc

p ; ��ðasÞ
3;M ðxÞ ¼ 3fM

2
ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ;

M ¼ ��; K� (20)

with the normalization conditionZ 1

0
�p;�

3;Mðx;�2Þ ¼ fM
4

ffiffiffiffiffiffiffiffiffi
2Nc

p : (21)

For our analysis, we use the 2-particle twist-3 DAs from
Refs. [36,38] defined at the scale � ¼ 1 GeV. As a matter
of bookkeeping, we explicitly provide the relevant formu-
las for the charged pion and kaon DAs in Appendix A.

III. SPACELIKE ELECTROMAGNETIC FORM
FACTOR

The electromagnetic form factor is considered an im-
portant observable for studying the onset of the perturba-
tive regime in exclusive processes. For large Q2, the
asymptotic scaling behavior FMðQ2Þ � 1=Q2 follows
from the well-known dimensional ‘‘quark counting,’’ while
for small Q2, the behavior is well described by the vector
meson dominance (VMD) model [43–45] and is given by

FMðQ2Þ � 1

1þQ2=�2
VDM

; Q2 	 �2
VDM; (22)

where �VDM � 750 MeV is a reasonable cutoff mass
scale, showing no obvious trace of pQCD scaling behavior
where no high-energy cutoff exists. Hence, a thorough
understanding of this transition (from nonperturbative to
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perturbative) behavior is of crucial importance in QCD for
understanding the very nature of strong interactions and in
providing a vivid picture of the underlying quark-gluon
substructure of the mesons.

For a charged mesonM (e.g.,��,K�), the form factor is
specified by the following matrix element:

ðP0 þ PÞ�FMðQ2Þ ¼ hMðP0ÞjJ�ð0ÞjMðPÞi;
J� ¼ X

f

ef �qf��qf; (23)

where J� is the electromagnetic current with quark qf of

flavor f and charge ef. In this paper, we shall only consider

spacelike momentum transfers, i.e., q2 ¼ ðP0 � PÞ2 ¼
�Q2. Neglecting the meson masses, we consider the
‘‘brick wall’’ frame where the incoming particle with 4-
momentum P in the z direction recoils with 4-momentum
P0 in the�z direction after interacting with the hard photon

‘‘wall.’’ In the light-cone formalism, P ¼ ðQ=
ffiffiffi
2

p
; 0; 0TÞ

and P0 ¼ ð0; Q=
ffiffiffi
2

p
; 0TÞ.

A. Hard contributions in pQCD

The hard contributions to the form factor are calculated
using the collinear factorization formula, Eq. (2), where the
hard scattering kernel TH at the scale � ¼ �F ¼ �R is
given to the leading order in �s by

THðx; y;Q2; �2Þ ¼ 16�CF�sð�2Þ
�
2

3

1

xyQ2
þ 1

3

� 1

ð1� xÞð1� yÞQ2

�
; (24)

where in QCD the value of the Casimir operator in the
fundamental representation of SU(3) is CF ¼ ðN2

c �
1Þ=2Nc ¼ 4=3. The factorization formula then yields the
classic pQCD expression for the meson form factor at
�2 ¼ Q2 :

Fhard
M ðQ2Þ ¼ 16�CF�sðQ2Þ

Q2

��������
Z 1

0
dx

�2;Mðx;Q2Þ
x

��������2

: (25)

Note that using the asymptotic twist-2 DA �ðasÞ
2;MðxÞ, one

obtains the familiar 1=Q2 scaling behavior for Q2 ! 1,

Fhard
M ðQ2Þ ¼ 8��sðQ2Þf2M

Q2
: (26)

The principal motivation of the modified resummed pQCD
is the elimination of large logarithms in the hard kernel that
arise from radiative gluon loop corrections. One way of
doing this is by the introduction of intrinsic transverse
momenta dependence of the constituent partons, giving
rise to a Sudakov suppression due to certain partial resum-
mation of transverse terms, as mentioned earlier in the
Introduction. Including the transverse momenta of the
two valence quarks within the meson, the tree-level hard
kernel TH in momentum space is written as

THðx; y;Q2;k1T;k2T; �
2Þ

¼ 16�CF�sð�2ÞxQ2

ðxQ2 þ k2
1TÞðxyQ2 þ ðk1T � k2TÞ2Þ

; (27)

where the transverse momentum dependence now sets the
factorization scale. Then the modified factorization for-
mula in the transverse impact parameter representation is
given by

Fhard
M ðQ2Þ ¼

Z 1

0
dxdy

Z d2b1
ð2�Þ2

d2b2
ð2�Þ2 P 2;Mðx; b1; P;�Þ

� ~THðx; y;Q; b1; b2; �ÞP 2;Mðy; b2; P0; �Þ;
(28)

where the modified DA P 2;Mðxi; bi; Pi; �Þ absorbs the

large infrared logarithms into the Sudakov exponent Si
[23] (including also the evolution of the DA from the
factorization scale 1=bi to the scale �):

P 2;Mðxi; bi; Pi ’ Q;�Þ ¼ exp½�SiðXQ; bi; �Þ� ~P 2;Mðxi; bi; 1=biÞ;
SiðXQ; bi; �Þ ¼ sðxiQ; 1=biÞ þ sðð1� xiÞQ; 1=biÞ þ 2

Z �

1=bi

d ��

��
�qð�sð ��2ÞÞ;

sðXQ; 1=biÞ ¼
Z XQ=

ffiffi
2

p

1=bi

d�

�

�
ln

�
XQffiffiffi
2

p
�

�
Að�sð�2ÞÞ þBð�sð�2ÞÞ

�
; (29)

where 1=b1, 1=b2 set the factorization scales in the transverse impact configuration. In the above equations, the quark
anomalous dimension is given by �qð�sÞ ¼ ��s=�, and the ‘‘cusp’’ anomalous dimensions A and B, to one-loop
accuracy, are given by

A ð�sð�2ÞÞ ¼ CF
�sð�2Þ

�
þ

��
67

27
� �2

9

�
Nc � 10

27
Nf þ 8

3

0 ln

�
e�E

2

���
�sð�2Þ

�

�
2
;

Bð�sð�2ÞÞ ¼ 2

3

�sð�2Þ
�

ln

�
e2�E�1

2

� (30)
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where the MS running coupling to two-loop accuracy in
standard perturbation theory is given by

�sð�2Þ
�

¼ 1


0 lnð�2=�2
QCDÞ

� 
1 lnðlnð�2=�2
QCDÞÞ


3
0ln

2ð�2=�2
QCDÞ

(31)

with 
0 ¼ ð11Nc � 2NfÞ=12 ¼ 9=4 and 
1 ¼
ð51Nc � 19NfÞ=24 ¼ 4 for Nc ¼ Nf ¼ 3. Note that the
above-modified factorization calls for introducing a scale
hierarchy XQ> 1=bi >�QCD [where X ¼ xi; ð1� xiÞ,
x1 ¼ x, and x2 ¼ y] to separate the distinct contributions
from the perturbative and nonperturbative kinematic re-
gions without the possibility of ‘‘double counting.’’ Note
that there exist other schemes of defining the running
coupling involving power corrections, restoring the ex-
plicit Landau singularity and the analyticity at Q2 ¼ 0
(see, e.g., Refs. [90,91] and also Sec. IV for details).

At low momentum transfers, the modified infrared-free
DAs are often approximated with constituent quark masses
which are different from the actual masses of the current
quarks and usually chosen close to the intrinsic transverse
scale �QCD of the hadron structure, i.e., between 200 and

500 MeV. These quark masses, which effectively parame-
trize the QCD vacuum effects, are also used to suppress
possible endpoint effects. Hence, we have

~P 2;Mðxi; bi; 1=biÞ ’ ~P 2;Mðxi; bi; 1=bi;MqÞ (32)

which could be expressed in terms of the full momentum-
space light-cone wave function �2;M (which also includes

the transverse momentum distribution of the constituent
bound state partons):

~P 2;Mðxi; bi; 1=bi;MqÞ

¼
Z
k2
iT
ð1=biÞ2

d2kiT

16�3
�2;Mðxi;kiT ; 1=bi;MqÞ: (33)

To model the intrinsic transverse momentum dependence
of the meson wave functions, we use the Brodsky-Huang-
Lepage (BHL) Gaussian prescription [82,88]:

�2;Mðxi;kiT; 1=bi;MqÞ ¼ �2;Mðxi; 1=biÞ�ðxi;kiT;MqÞ
(34)

with

�2;Mðxi; 1=biÞ ¼ A2;M�2;Mðxi; 1=biÞ; (35)

�ðxi;kiT ;MqÞ¼
16�2
2

2;M

xið1�xiÞ exp
�
� 
2

2;M

xið1�xiÞðk
2
iTþM2

qÞ
�
;

(36)

assuming equal masses of the two constituent quarks
within the meson. The parameters A2;M, 
2;M, and Mq

are fixed using phenomenological constraints. The above

integration then yields the full modified wave function in
the impact representation:

~P 2;Mðxi; bi; 1=bi;MqÞ ¼ A2;M�2;Mðxi; 1=biÞ

� exp

�
� 
2

2;MM
2
q

xið1� xiÞ
�

� exp

�
�b2i xið1� xiÞ

4
2
2;M

�
: (37)

Including the RG evolution equation for the hard kernel,

~THðx; y;Q; b1; b2; �Þ ¼ exp

�
�4

Z t

�

d ��

��
�qð�sð ��2ÞÞ

�
� ~THðx; y;Q; b1; b2; tÞ; (38)

where

t ¼ maxð ffiffiffiffiffi
xy

p
Q; 1=b1; 1=b2Þ; (39)

one arrives at the ‘‘double-b’’ factorization formula for the
meson form factor at the twist-2 level [59]:

Fðt¼2Þ
M ðQ2Þ ¼ 16�Q2CF

Z 1

0
xdxdy

Z 1

0
b1db1b2db2�sðtÞ

� ~P 2;Mðx; b1; 1=b1;MqÞ
� ~P 2;Mðy; bi; 1=b2;MqÞHðx; y;Q; b1; b2Þ
� exp½�Sðx; y; b1; b2; QÞ� (40)

with

Hðx; y;Q;b1; b2Þ ¼ K0ð ffiffiffiffiffi
xy

p
Qb2Þ½�ðb1 � b2ÞK0ð

ffiffiffi
x

p
Qb1Þ

� I0ð
ffiffiffi
x

p
Qb2Þ þ �ðb2 � b1ÞK0ð

ffiffiffi
x

p
Qb2Þ

� I0ð
ffiffiffi
x

p
Qb1Þ�: (41)

K0 and I0 are modified Bessel functions, and the full
Sudakov exponent is given by

Sðx; y; b1; b2; QÞ ¼ X2
i¼1

�
sðxiQ; 1=biÞ þ sðð1� xiÞQ; 1=biÞ

þ 2
Z t

1=bi

d ��

��
�qð�sð ��2ÞÞ

�
: (42)

For completeness, the expression for the full Sudakov
factor sðXQ; 1=biÞ, up to next-to-leading logarithm accu-
racy, is given in Appendix B. The expression slightly
differs from the result given in Ref. [92], but numerically
this difference is insignificant at our working accuracy.
Note that this difference was first observed in Ref. [61].
To include the subleading twist-3 corrections to the form

factor, the hard scattering kernel gets slightly modified as
compared to the twist-2 case which turns out to be [58]
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Tðt¼3Þ
H ðx; y;Q2;k1T;k2T;�

2Þ ¼ 64�CF�sð�2Þx
ðxQ2 þ k2

1TÞðxyQ2 þ ðk1T � k2TÞ2Þ
: (43)

Applying the momentum projection operator [93,94]

MM
�
 ¼ i

�
P6 �5�2;M ��M�5

�
�p

3;M � i���n
� �n�

��0
3;M

6
þ i���P

�
��

3;M

6

@

@kT�

��
�


(44)

on the bilocal matrix element with quark flavors f1 and f2 (f1;2 ¼ u, d, s),

h0j �qf1ðzÞqf2ð�zÞjMðPÞi�
 ¼ i
Z 1

0
dx

Z
d2kTe

i�ðzpÞ
�
P6 �5�2;M ��M�5

�
�p

3;M � ���P
�z�

��
3;M

6

��
�


; (45)

where ��0
3;Mðx;kT;1=b;MqÞ¼@��

3;Mðx;kT;1=b;MqÞ=@x, n ¼ ð1; 0; 0TÞ is the unit vector in the ‘‘þ’’ direction, �n ¼
ð0; 1; 0TÞ is the unit vector in the ‘‘�’’ direction, � ¼ 2x� 1 and �M ¼ m2

M=ðmqf1
þmqf2

Þ, one obtains the final formula
for a hard meson form factor up to twist-3 corrections given by [63,65]

Fhard
M ðQ2Þ ¼ Fðt¼2Þ

M ðQ2Þ þFðt¼3Þ
M ðQ2Þ

¼ 32�Q2CF
Z 1

0
dxdy

Z 1

0
b1db1b2db2�sðtÞ

�
x

2
~P 2;Mðx;b1;1=b1;MqÞ ~P 2;Mðy;b2;1=b2;MqÞ

þ�2
M

Q2
ð �x ~P p

3;Mðx;b1;1=b1;MqÞ ~P p
3;Mðy;b2;1=b2;MqÞ þ ð1þ xÞ

6
~P p
3;Mðx;b1;1=b1;MqÞ ~P�0

3;Mðy;b2;1=b2;MqÞ

þ 1

2
~P p
3;Mðx;b1;1=b1;MqÞ ~P�

3;Mðy;b2;1=b2;MqÞÞ
�
Hðx; y;Q;b1; b2Þ

Y2
i¼1

StðxiÞStð �xiÞexp½�Sðx; y;b1; b2;QÞ�;

�xi ¼ 1� xi: (46)

Here, we have assumed a similar Gaussian ansatz in the
transverse momentum distribution of the modified twist-3
wave functions:

~P p
3;Mðxi; bi; 1=bi;MqÞ ¼ Ap

3;M�
p
3;Mðxi; 1=biÞ

� exp

�
�ð
p

3;MÞ2M2
q

xið1� xiÞ
�

� exp

�
�b2i xið1� xiÞ

4ð
p
3;MÞ2

�
;

~P�
3;Mðxi; bi; 1=bi;MqÞ ¼ A�

3;M�
�
3;Mðxi; 1=biÞ

� exp

�
�ð
�

3;MÞ2M2
q

xið1� xiÞ
�

� exp

�
�b2i xið1� xiÞ

4ð
�
3;MÞ2

�
:

The hard kernel H and the Sudakov exponent S are given
by Eqs. (41) and (42), respectively. The above formula is
used to evaluate the pion and kaon hard form factors using
the twist-2 DAs, Eqs. (8) and (15), respectively, and twist-3
DAs provided in Appendix A. The StðxiÞ are jet functions,
defined as eikonalized matrix elements of quark fields
attached by a Wilson line, arising from another kinematic
resummation scheme called the threshold resummation, as
introduced in Refs. [95,96]. The modified treatment of the
collinear factorization prescription works reasonably well

for the twist-2 case, but for the twist-3 case, the Sudakov
suppression factor may still not be effective enough in
shielding the nonperturbative enhancements due to end-
point singularities. These are kinematic singularities of the
scattering amplitude when the longitudinal momentum
fraction x of the valence partons (quarks) goes to 0, 1.
Therefore, in addition there is a need to sum up the col-
linear double logarithms of the type �sln

2x to all orders,
which are then collected into these jet functions. The exact
form of StðxiÞ involves a one-parameter integration, but for
the sake of numerical calculations, it is convenient to take
the simple parametrization, as proposed in Refs. [95,96]:

StðxiÞ ¼ 21þ2c�ð3=2þ cÞffiffiffiffi
�

p
�ð1þ cÞ ½xið1� xiÞ�c; (48)

where the parameter c � 0:3 for light pseudoscalar mesons
like the pion and kaon. The jet functions vanish at the
endpoints and modify the endpoint behavior of the DAs,
providing enough suppression to damp the artificial effect
of endpoint singularities.

B. Soft contributions via local duality

The perturbative predictions for the pion form factor are
known to be relatively small for phenomenological low
momentum transfers (Q2 
 10 GeV2) [49–
51,70,79,84,86], as is also evident from our analysis in
the next section. Clearly, there is the need for including
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nonfactorizable soft contributions to explain the experi-
mental data. The factorization ansatz, Eq. (2), holds for
large momentum transfers under the assumption that only
the contributions from valence parton states dominate. This
approximation no longer holds true at small momenta
when contributions from higher Fock states with more
than valence partons become significant. In addition, there
could be nonperturbative enhancements from the so-called
Feynman mechanism, which corresponds to selecting a
hadronic configuration in which one of the valence partons
carries almost the entire hadron momenta. Unfortunately,
due to the complexity of soft QCD processes, there are no
unambiguous ways to calculate these contributions analyti-
cally using the parton picture and Feynman diagrammatics,
other than using theoretical models for the DAs. In this
paper, we follow the local duality (LD) approach from
QCD sum rules as in Ref. [62], where the same problem
is addressed without a direct reference to DAs. In this
section, we simply use the result for the soft form factor
derived in the LD approach:

Fsoft
M ðQ2Þ ¼ FLD

M ðQ2Þ ¼ 1� 1þ 6s0ðQ2Þ=Q2

ð1þ 4s0ðQ2Þ=Q2Þ3=2 : (49)

The duality interval s0 encodes the nonperturbative infor-
mation about higher excited states and continuum contri-
butions and is given by

s0ðQ2Þ ¼ 4�2f2M=

�
1þ �sðQ2Þ

�

�
: (50)

Expanding in inverse powers of Q gives Fsoft
M ðQ2Þ � 1=Q4

for large Q2 and is thus expected to be subleading com-
pared to the leading perturbative contribution from Eq.
(26). Nevertheless, at low and moderate momentum trans-
fers the soft contributions turn out to be very significant in
obtaining a good agreement with the experimental data.
This fact is clearly revealed in our analysis in the next
section.

Next we add together the hard and the soft contributions
to obtain the total contributions to the electromagnetic
form factor FMðQ2Þ. Here, it is necessary to ensure that
the respective contributions lie within their domains of
validity to minimize the possibility of double counting.
This technique, as introduced in Ref. [62], employs gauge
invariance that protects the value FMð0Þ ¼ 1, through the
vector Ward identity relating a 3-point Green function to a
2-point Green function at zero momentum transfer, i.e.,
FLD
M ðQ2 ¼ 0Þ ¼ 1. This implies that Fhard

M ðQ2 ¼ 0Þ ¼ 0. A
‘‘smooth’’ transition from the hard to the soft behavior is
then ensured by a matching ansatz from the large Q2

behavior [arising from Fhard
M ðQ2Þ] to the low Q2 behavior

[arising from Fsoft
M ðQ2Þ]. This can be done by introducing a

mass scale M0 which in the LD approach should be iden-
tified with the threshold M2

0 ¼ 2s0. The twist-2 part of the

hard form factor Fðt¼2Þ
M ðQ2Þ is then modified following

Ref. [62],

Fðt¼2Þ
M ðQ2Þ !

�
Q2

2s0ðQ2Þ þQ2

�
2
Fðt¼2Þ
M ðQ2Þ: (51)

However, for the twist-3 case, the ‘‘matching function’’
�ðzÞ ¼ 1=ð1þ zÞ2, with z ¼ Q2=M2

0, is insufficient to

ensure the Ward identity at Q2 ¼ 0. To correct for the
singular (� 1=Q4) behavior, we make a similar modifica-
tion of the twist-3 part via the replacement

Fðt¼3Þ
M ðQ2Þ ¼ ~Fðt¼3Þ

M ðQ2ÞM
4
0

Q4
! ~Fðt¼3Þ

M ðQ2Þ M4
0

M4
0 þQ4

(52)

with the choice of the matching function ~�ðzÞ ¼ 1=ð1þ
z2Þ2. This yields the Ward identity corrected twist-3 part:

Fðt¼3Þ
M ðQ2Þ !

�
Q4

4s20ðQ2Þ þQ4

�
2
Fðt¼3Þ
M ðQ2Þ: (53)

Finally, we arrive at our expression for the total electro-
magnetic form factor for a charged meson Mð��; K�Þ,
valid for all values of Q2; it is given by

FMðQ2Þ ¼ 1� 1þ 6s0ðQ2Þ=Q2

ð1þ 4s0ðQ2Þ=Q2Þ3=2

þ
�

Q2

2s0ðQ2Þ þQ2

�
2
Fðt¼2Þ
M ðQ2Þ

þ
�

Q4

4s20ðQ2Þ þQ4

�
2
Fðt¼3Þ
M ðQ2Þ; (54)

where Fðt¼2Þ
M ðQ2Þ and Fðt¼3Þ

M ðQ2Þ are given by Eqs. (40) and
(46), respectively.

IV. NUMERICAL RESULTS

At first, we need to determine the pion and kaon
Gaussian parameters A2;M, A

p
3;M, A

�
3;M and 
2;M, 


p
3;M,


�
3;M for the twist-2 and twist-3 light-cone wave functions,

respectively. For the pion, they are obtained from two
constraints: first, by virtue of the leptonic decay � !
���, we have the condition

Z 1

0
dx

Z d2kT

16�3
��ðx;kT;Mu;dÞ ¼ f�

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ; (55)

leading to

A�

Z 1

0
dx��ðxÞ exp

�
�
2

�M2
u;d

xð1� xÞ
�
¼ f�

2
ffiffiffi
6

p ; (56)

and second, from �0 ! ��, we have the condition

Z 1

0
dx��ðx;kT ¼ 0;Mu;dÞ ¼

ffiffiffiffiffiffiffiffiffi
2Nc

p
f�

; (57)

which implies
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16A�

2
��

2
Z 1

0
dx

��ðxÞ
xð1� xÞ exp

�
�
2

�M2
u;d

xð1� xÞ
�
¼

ffiffiffi
6

p
f�

;

(58)

where we use the constituent quark mass Mu;d ¼
0:33 GeV for both the u and d valence quarks in the
pion. In the case of the kaon, first from the leptonic decay
K ! ���, we have the constraint

AK

Z 1

0
dx�KðxÞ exp

�
�
2

K

�
M2

s

x
þM2

u;d

1� x

��
¼ fK

2
ffiffiffi
6

p :

(59)

As for the second constraint, no straightforward condition
like Eq. (57) could be obtained for the kaon. On the other
hand, by virtue of SU(3) isospin symmetry, it is reasonable
to make an assumption that for the kaon the average
transverse momentum squared of the valence partons de-
fined by

hk2
TiK ¼

R
dx

R
d2kTjk2

Tjj�Kðx;kT;Mu;d;sÞj2R
dx

R
d2kTj�Kðx;kT;Mu;d;sÞj2

(60)

has about the same value as in the case of the pion. We have
checked that for both the twist-2 and twist-3 pion wave

functions hk2
Ti1=2� � 0:35 GeV. This yields our second

condition for determining the wave function parameters:

ð0:35Þ2 � 1

2
2
K

R
1
0 dx�

2
KðxÞ exp½�2
2

KðM
2
s

x þ M2
u;d

1�x Þ�R
1
0 dx

�2
KðxÞ

xð1�xÞ exp½�2
2
KðM

2
s

x þ M2
u;d

1�x Þ�
;

(61)

where Ms ¼ 0:45 GeV is used as the constituent s-quark
mass and the full light-cone kaon wave function is given by

�Kðx;kT;Mu;d;sÞ ¼ 16�2
2
KAK

xð1� xÞ �KðxÞ

� exp

�
�
2

K

�
k2
T þM2

s

x

þ k2
T þM2

u;d

1� x

��
(62)

with x being the longitudinal momentum fraction of the s
quark. For our numerical analysis we use typical ‘‘double-
humped’’ type [71–73] DAs ��;Kðx;�2Þ, derived in the

framework of QCD sum rules [35,36,38]. Note that we
have considered Nc ¼ 3 in the expressions for the DAs. In
Figs. 1 and 2, we display the twist-2 and twist-3 light-cone
wave functions for the pion and kaon, respectively, along
with their corresponding asymptotic wave functions. Note
that the plots exclude the normalization factors of 1

2
ffiffi
6

p and
1

4
ffiffi
6

p for the individual DAs to facilitate comparison with one

another. All the DAs are defined at the scale �0 ¼ 1 GeV.
The twist-2 and twist-3 DA input parameters are taken
from Table 3 of Ref. [38], which we again provide in

Table I along with the rest of the input parameters for the
wave functions. Note that for the kaon we have shown both
types of wave functions, i.e., with and without including
the G-parity-breaking terms.
In Refs. [35,36,38], the DAs were assumed to obey the

equations of motion (EOM) of on-shell quarks for which
�M ¼ m2

M=ðmq þmq;sÞ � 1:7 GeV was used. This is not

strictly correct, since the quarks are not exactly on shell but
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FIG. 1 (color online). Twist-2 light-cone wave functions for
(a) the pion ~P 2;� and (b) the kaon ~P 2;K (solid lines), along with

the wave functions corresponding to the respective asymptotic
DAs (dashed lines). The DAs are defined at the scale �0 ¼
1 GeV.
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FIG. 2 (color online). Two-particle twist-3 light-cone wave
functions for the pions (a) ~P p

3;� and (b) ~P�
3;� and for the kaons

(c) ~P p
3;K and (d) ~P�

3;K with G-parity-even terms (solid lines),

along with the wave functions corresponding to the respective
asymptotic DAs (long dashed lines). For the kaon, the twist-3
wave functions including G-parity-odd terms are also shown
(dotted lines). The DAs are defined at the scale �0 ¼ 1 GeV.
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instead confined within the hadrons. We therefore prefer
using a ‘‘chiral-enhancement’’ parameter �3Mð1 GeVÞ �
�� � �K, instead of �M, in both the DAs and also the
expression for the hard form factor, Eq. (46). Its numerical
value is fixed by fitting the total form factor, Eq. (54), to the
available ‘‘world data’’ for the pion [1–8]. Note that in this
fitting procedure only the asymptotic forms of the twist-2
and twist-3 DAs [Eqs. (9) and (20)] were used in the pion
wave functions. The running behavior �3Mð�Þ is then later
introduced while calculating the form factors whose RG
behavior is assumed to be the same as that of �M (see
Appendix A). In other words, this amounts to the replace-
ment �2

M ! �3Mð1=b1Þ�3Mð1=b2Þ in Eq. (46). In addition,
as the bulk of the world pion data is concentrated in the
very low-energy region where the usual running coupling
rapidly diverges, we also use an analytic prescription for
the QCD running coupling to prove our results. The ana-
lytic scheme was suggested originally in Ref. [91] for
calculating the pion form factor and further developed in
Refs. [61,62] for next-to-leading order (NLO) calculations.
Here, the central idea is the removal of the explicit Landau
singularity present in perturbation theory, rendering the
coupling constant IR stable and reducing the IR sensitivity
of perturbatively calculated hadronic observables. The
scheme is also known to display higher loop stability.
Now, the usual two-loop running coupling, Eq. (31), in
standard pQCD can be approximately expressed via the
Lambert W�1 function

�sð�2Þ
�

¼ �
0


1

�
1þW�1

�
� 
2

0


1e

��2
QCD

�2

����1
: (63)

The extension of the above formula in analytic perturbation
theory is too complicated to be evaluated exactly, and
instead there is an alternate approximate expression in

the MS scheme, as suggested in Ref. [90]:

�an;approx
s ð�2Þ

�
¼ 1


0

�
1

l
þ 1

1� expðlÞ
�
; (64)

l ¼ ln

�
�2

�2
an

�
þ 
1


2
0

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2

�
�2

�2
an

�
þ 4�2

s
; (65)

where �an in the analytic scheme is the analog of �QCD in

the usual perturbation theory and is chosen to be around
0.4 GeV for Nf ¼ 3. We use this formula for the analytic

coupling in our calculations. The simple one-parameter
fitting of the total form factor to the experimental data
gives the best fit values of 1.2 GeV and 1.4 GeV for the
usual and analytic QCD coupling schemes, respectively.
Here, we choose the average value �3M ¼ 1:3 GeV for
both the schemes, and generously consider the resulting
difference from the phenomenological value of 1.7 GeV to
contribute to the theoretical error, i.e., �0:4 GeV. Note
that the fitting takes into account the individual error bars
of the data points.
Finally, following Ref. [96] the Sudakov suppression

factor expð�sðXQ; 1=bÞÞ is set to unity for a small trans-
verse separation ‘‘b’’ between the valence quarks, i.e.,

whenever b <
ffiffiffi
2

p
=ðXQÞ. Also, to avoid probing into cer-

tain kinematic regions where expð�SÞmay become greater
than unity, causing an enhancement instead of a suppres-
sion, expð�SÞ is set to 1 for S < 0.

A. The pion form factor

Using the DAs in Appendix A, we evaluated the total
electromagnetic form factor for the pion, Eq. (54), using
both the usual two-loop QCD running coupling, Eq. (31),
and the analytical prescription, Eq. (64). Figure 3 shows
our results for the total form factor, along with the experi-
mental ‘‘world data’’ [1–8] for the pion. The plots corre-
spond to �QCD ¼ 0:2 GeV and �an ¼ 0:4 GeV,
respectively. It appears that the full twist-3 calculations
improve the agreement with experimental data to a much
better extent at intermediate energies down to around
1–2 GeV2 than for the twist-2 case. Note that in the usual
perturbative scheme, as Q2 ! 0 the total form factor be-
comes very unpredictable and starts oscillating between

TABLE I. Various input hadronic parameters for twist-2 and twist-3 light-cone wave functions
at �0 ¼ 1 GeV.

�� At �0 ¼ 1 GeV K� At �0 ¼ 1 GeV Units

� � � � � � mu;d 5:6� 1:6 [38] MeV

� � � � � � ms 137� 27 [38] MeV

Mu;d 0.33 Mu;d 0.33 GeV

� � � � � � Ms 0.45 GeV

m� 139 mK 493 MeV

a�1 0 aK1 0:06� 0:03 [38] � � �
a�2 0:25� 0:15 [38] aK2 0:25� 0:15 [38] � � �
f� 131 fK 1:22jf�j [25] MeV

f3� 0:0045� 0:0015 [38] f3K 0:0045� 0:0015 [38] GeV2

!3� �1:5� 0:7 [38] !3K �1:2� 0:7 [38] � � �

3� 0 
3K 1:6� 0:4 [38] � � �
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large values although F�ðQ2 ¼ 0Þ ¼ 1, satisfying the
Ward identity. This clearly signals the breakdown of per-
turbation theory at such small momentum transfers.

To study the contributions of endpoint effects and to
distinguish individual soft and hard contributions, it is
more useful to study the variation of the scaled pion form
factor Q2F� with Q2. In Fig. 4, we show the individual
contributions of the twist-2 and twist-3 power corrections
to the scaled hard pion form factor over a wide range of
momentum transfers for the usual QCD coupling. Clearly,
the twist-3 contributions are seen to be significantly larger
than the leading twist-2 counterparts at low momentum
transfers, supporting the claims made in
[26,28,29,58,63,65]. In fact, it is interesting to see the
endpoint enhancement in the twist-3 amplitudes much
more explicitly if one rather considered only the collinear
DAs to calculate the form factors in the usual perturbation
theory, without considering the full transverse momentum
dependence (e.g., the BHL ansatz) in the meson wave
functions, as originally done in Ref. [96]. In other words,

one simply makes the replacement ~PMðxÞ ! �MðxÞ in
calculating the hard form factor. The inclusion of the
transverse momenta and constituent quark masses in the
wave function provides a natural cutoff for the soft and
endpoint enhancements. Similar behavior can also be ob-
served in the analytic case where the enhancement being
less expressed has not been displayed in this work. These
facts suggest that the modified collinear factorization
scheme, including explicit transverse degrees of freedom
with Sudakov suppression, which works well for the twist-
2 case is not very effective at the twist-3 level in shielding
such artificial nonperturbative enhancements at low mo-
menta. To improve this situation, especially for the results
obtained in the usual perturbative scheme, we use thresh-
old resummation which, along with Sudakov suppression,

provides large damping of the endpoint effects in the twist-
3 amplitude. The twist-2 part, on the other hand, remains
mostly unaltered, if not slightly enhanced due to the thresh-
old resummation, especially in the low-energy region. Note
that in this respect the use of threshold resummation in the
analytic scheme is somewhat redundant and has little effect
on both the twist corrections. Finally, as expected, one
observes that the twist-3 corrections fall off rapidly with
increasing Q2 and, beyond a certain point, fall below the
twist-2 corrections. At asymptotically large momentum
transfers, only the twist-2 contributions are expected to
dominate.
Our final results for the scaled pion form factor are

summarized in Figs. 5 and 6. We use both the usual and
the analytic QCD running couplings and compare our
results with the available experimental pion data with
increasing error bars towards intermediate energies. The
individual soft and hard contributions along with the total
contribution are shown. Clearly, contrary to the earlier
claims made in Ref. [59], the twist-2 hard form factor is
far too small in the phenomenologically accessible region
to explain the data. One must therefore look for other
possibilities like nonperturbative higher-twist effects and
soft contributions. Interestingly, it is seen that the soft
dynamics largely dominate the low-energy region below
10–16 GeV2 but rapidly fall off in the asymptotic region.
The contributions from the twist-3 corrections turn out to
be significantly large in the moderate range of energies
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FIG. 4 (color online). Twist-2 (long dashed lines) and twist-3
(solid lines) corrections to the scaled hard pion form factor with
the usual QCD running coupling. Plots (a) and (b) are obtained
using BHL ansatz, while (c) and (d) are obtained with ~PMðxÞ !
�MðxÞ. Also, plots (a) and (c) do not include threshold resum-
mation in the hard contributions, which are included in (b) and
(d). The soft corrections (short dashed lines) are also shown.
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FIG. 3 (color online). The total electromagnetic pion form
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by the solid lines, with (a) the usual QCD running coupling and
(b) the analytical QCD running coupling. The world pion data
are taken from Refs. [1–8].
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below 100 GeV2, but eventually the hard twist-2 contribu-
tions solely determine the asymptotic trend beyond Q2 �
100–150 GeV2.

As evident from the figures, the total scaled pion form
factor (solid lines) up to twist-3 corrections displays an
obvious improvement of the overall agreement with ex-
perimental data compared to the twist-2 scaled form factor
(dashed lines). To some extent, it is somewhat surprising to
see that, in combination with the soft contributions, the
modified resummed pQCD with the usual QCD coupling
could work so well as low as Q2 � 0:25 GeV2, far lower
than previously envisaged. To this end, we display the
results in the analytic scheme to confirm our results. The
analytical prescription is known to reduce the scheme and
renormalization scale dependence, largely increasing the
stability of solutions [62]. Accordingly, there is some con-
fidence in our displayed results. The results obtained in

both schemes not only show a striking similarity even at
sufficiently low momentum transfers, but they also show a
good agreement with the available pion form-factor data.
However, whether or not such an agreement is merely
accidental is a matter of debate. There may still be sub-
stantial subleading contributions, e.g., from a full NLO
calculation in the strong QCD coupling constant including
subleading twists and intrinsic transverse momenta for the
hard scattering kernel and the DAs, or from higher order
Fock states and helicity components in the light-cone DAs.
Note that a NLO calculation in the strong QCD coupling
constant was done in Ref. [61] where the corrections to the
twist-2 pion form factor were found to be quite large. A full
NLO calculation for subleading twists, including also the
transverse momentum dependence, is, however, still miss-
ing. In Ref. [64], contributions of higher helicity states
were found to lower the total pion form factor significantly.
Hence, without systematically taking all of these effects
into account, which is beyond the scope of the paper, no
definitive statement can be made as to how well our results
agree with the data. Moreover, the available data them-
selves have very low statistics at intermediate energy and
are plagued by large uncertainties. It is therefore difficult to
give a proper theoretical error estimate of our results, when
the asymptotic formalism is itself largely unreliable in the
region of our interest. What we have done in this paper is a
combination of model and pQCD calculations. It may thus
be worth using the estimates for the ranges over which the
input parameters of the DAs, namely, ��ð�3�Þ, f3�, !3�,
and a�2 , vary (given in Tables I and II), in computing our
theoretical error. In addition, we allow a variation of
�0:05 GeV for both �QCD and �an. We used a Monte
Carlo technique to generate a Gaussian ‘‘1�’’ spread of
the scaled form factor for variousQ2 values about a central
mean. The error estimate displayed in Fig. 7 shows our
maximum theoretical error to be about 10% for the usual
QCD coupling and somewhat less for the analytic
coupling.
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FIG. 6 (color online). Scaled total electromagnetic form factor
for the pion with (a) the usual QCD running coupling and (b) the
analytical running coupling over a wider range of intermediate
energies. The solid line represents the full twist-3 result (softþ
twist-2þ twist-3), the long dashed lines represent the full twist-
2 result (softþ twist-2), and the soft corrections are indicated by
the short dashed lines. The world pion data are taken from
Refs. [1–8].
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FIG. 5 (color online). Scaled total electromagnetic form factor
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the short dashed lines. The world pion data are taken from
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B. The kaon form factor

We conclude the section on the numerical analysis by
displaying our predictions for the kaon form factor, apply-
ing the same techniques as for the case of the pion form
factor. The twist-2 and twist-3 light-cone wave functions
for the kaon have the general form in the transverse b space
given by

~P Kðx; b; 1=b;Mu;d;sÞ ¼ AK�Kðx; 1=bÞ

� exp

�
�b2xð1� xÞ

4
2
K

�

� exp

�
�
2

K

�
M2

s

x
þM2

u;d

1� x

��
;

(66)

where we used the twist-3 chiral-enhancement parameter
�3K ¼ 1:3 GeV and the experimental estimate for the kaon

decay constant fK � 1:22f� [25]. Here, we also take
�QCD ¼ 0:2 GeV and �an ¼ 0:4 GeV for the respective

running couplings in the MS scheme. The results are

TABLE II. Various determined hadronic parameters for twist-2 and twist-3 light-cone wave functions at �0 ¼ 1 GeV. The numbers
in the parentheses correspond to values for the asymptotic wave functions.

�� G (even) K� G (even) G (evenþ odd) Units

A2;� 1:69ð1:66Þas A2;K 2:06ð2:07Þas 2:06ð2:07Þas � � �
Ap
3;� 3:76ð3:59Þas Ap

3;K 4:40ð4:56Þas 4:35ð4:56Þas � � �
A�
3;� 3:37ð3:33Þas A�

3;K 4:16ð4:14Þas 4:06ð4:14Þas � � �
ð
2;�Þ2 0:76ð0:87Þas ð
2;KÞ2 0:78ð0:89Þas 0:78ð0:89Þas GeV�2

ð
p
3;�Þ2 0:62ð0:74Þas ð
p

3;KÞ2 0:70ð0:79Þas 0:65ð0:79Þas GeV�2

ð
�
3;�Þ2 0:81ð0:87Þas ð
�

3;KÞ2 0:88ð0:89Þas 0:84ð0:89Þas GeV�2

�fit
3� 1:3� 0:4 �fit

3K 1:3� 0:4 1:3� 0:4 GeV
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summarized in Fig. 8 for intermediate energies. The solid
line represents the total scaled form factor in each case.
Here, our results for the kaon form factor must be consid-
ered preliminary. Because of the complete absence of
experimental data at intermediate energies, we are unable
to make any meaningful phenomenological comparison.
The presently available kaon data have very poor statistics
and have hardly been measured above 0:2 GeV2. Hence,
we do not show the experimental data points in the form-
factor plots. With the availability of better quality data in
the future, there could be plenty of room for further im-
provements, for instance, the extension of the above results
to include a full NLO calculation for subleading twists or
higher helicity and Fock state contributions.

V. DISCUSSION AND CONCLUSION

For the past two decades the electromagnetic meson
form factors have been the subject of intensive theoretical
and experimental scrutiny, and yet there is still not a
universally accepted framework for their description.
Presently, reliable experimental data are available only
for the pions which are entirely concentrated at very low
energies with very poor statistics at intermediate energies.
The low-energy part of the data is best explained by the
standard VMDmodel, showing no apparent trace of pQCD
behavior, which is expected only at very high energies.
Very many attempts have been made to predict the onset of
the perturbative behavior for the pion form factor. The
modified or resummed valence pQCD with factorization
appears to show some attractive features to enable pQCD
calculations to be valid in a self-consistent way even at
very moderate energies. Whether this is true will only be
confirmed when data with better statistics at higher mo-
mentum transfers become available in the future. At the
same time, the onset of the perturbative behavior being
very slow, it is still unclear whether the leading order
perturbative calculations could be expected to be precise
even at the highest accessible energies. In this paper, with
the help of (a) the double-humped-type DAs and (b) the
modified transverse (kT) factorization scheme, incorporat-
ing both Sudakov suppression and threshold resummation,
we got rid of nonperturbative endpoint enhancements. This
enlarges the scope of applicability of resummed pQCD,
independent of the coupling scheme, to a much wider
range of intermediate energies, if not down to a few
GeVs, as demonstrated in this paper. By a simple adjust-
ment of only the chiral-enhancement parameter �3�, a
good agreement with the experimental data was obtained.

As for the scaled pion form factor, we found that the
leading order pQCD contributions potentially undermine
the agreement with the available low-energy data and are
only trustworthy in the hard-energy regime: even from a
very conservative point of view, Q2 should be bigger than
4 GeV2. At low momentum transfers, the nonperturbative

contributions dominate, being larger than the hard (twist-2)
contributions at least by a factor of 2. In fact, below
4 GeV2, 60%–70% of the available data are already ac-
counted for by the soft contributions. In addition, we also
needed the twist-3 power corrections to explain the remain-
ing discrepancy. However, at larger energies (say, Q2 >
50–100 GeV2), both the soft and the twist-3 contributions
rapidly fall off, and eventually the twist-2 form factor
dominates asymptotically. Similar conclusions, albeit
being preliminary, are drawn for the kaon form factor,
although it seems that the onset of the perturbative behav-
ior occurs at slightly larger momentum transfers than for
the case of the pion. Of course, as we mentioned earlier, we
still need to investigate the nature of the contributions that
may arise from a full systematic NLO calculation with
subleading twists and intrinsic transverse momenta, or
from the inclusion of higher helicity and Fock states.
With the availability of better quality data in the future,
such analyses may be necessary to make definite
conclusions.
In summary, although the quality of present experimen-

tal form-factor data does not allow a definitive conclusion,
one can expect that the nonperturbative soft contributions
and higher-twist power corrections to the form factors play
an important role at phenomenologically accessible mo-
mentum transfers. Thus, more work needs to be done on
both the theoretical and experimental sides to obtain more
conclusive results and push the frontiers of our knowledge
on confinement dynamics to the study of higher order and
nonperturbative contributions to exclusive processes.
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APPENDIX A: TWO-PARTICLE TWIST-3
DISTRIBUTION AMPLITUDES

The twist-3 DAs are obtained by an expansion over
conformal spins. At next-to-leading order, the 2-particle
DAs �p

3;M and ��
3;M [including meson-mass corrections

that break chiral symmetry at Oðms þmqÞ in the SU(3)

case while preserving G-parity] are given in terms of the

Gegenbauer polynomials C1=2
n and C3=2

n , respectively
[35,36], as
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�p
3;Mðx;�2Þ ¼ fM

4
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
30�3Mð�2Þ � 5

2
�2
Mð�2Þ

�
C1=2
2 ð�Þ

þ
�
�3�3Mð�2Þ!3Mð�2Þ � 27

20
�2
Mð�2Þ � 81

10
�2
Mð�2ÞaM2 ð�2Þ

�
C1=2
4 ð�Þ

�
;

��
3;Mðx;�2Þ ¼ 3fM

2
ffiffiffiffiffiffiffiffiffi
2Nc

p xð1� xÞ
�
1þ

�
5�3Mð�2Þ � 1

2
�3Mð�2Þ!3Mð�2Þ � 7

20
�2
Mð�2Þ � 3

5
�2
Mð�2ÞaM2 ð�2Þ

�
C3=2
2 ð�Þ

�
(A1)

with

�3M ¼ f3M
fM

1

�M

; �M ¼ mM

�M

; M ¼ ��; K� (A2)

where the nonperturbative parameters f3M and !3M, respectively, are defined by the following matrix elements of local
twist-3 operators:

h0j �qf1����5gsG�
qf2 jMðPÞi ¼ if3MðP�P�g�
 � P�P�g�
 � P
P�g�� þ P
P�g��Þ;

h0j �qf1��
�5½iD
; gsG�
�qf2 � ð3=7Þi@
 �qf1��
�5gsG�
qf2 jMðPÞi ¼ 3

14
if3MP�P
P�!3M;

(A3)

where G�
 is the gluon field tensor. The LO scale dependence of various twist-3 parameters is given by

�Mð�2Þ ¼ L�ð0Þ
3;q �q

=
0�Mð�2
0Þ; �ð0Þ

3;q �q ¼ 1; �Mð�2Þ ¼ L�ð0Þ
3;�

=
0�Mð�2
0Þ;

�ð0Þ
3;� ¼ ��ð0Þ

3;q �q ¼ �1; �3Mð�2Þ ¼ L�ð0Þ
3;�

=
0�3Mð�2
0Þ; �ð0Þ

3;� ¼ 4

3
CF þ 1

4
CA; !3Mð�2Þ ¼ L�ð0Þ

3;!
=
0!3Mð�2

0Þ;

�ð0Þ
3;! ¼ � 7

24
CF þ 7

12
CA; aM2 ð�2Þ ¼ L�ð0Þ

2
=
0aM2 ð�2

0Þ; �ð0Þ
2 ¼ 25

24
CF; (A4)

where L ¼ �sð�2Þ=�sð�2
0Þ, CF ¼ ðN2

c � 1Þ=2Nc, CA ¼ Nc, and �0 � 1 GeV.
We have also considered the 2-particle twist-3 kaon DAs �p

3;K and ��
3;K, as given in [38], which not only include a

complete set of meson-mass corrections but also G-parity-breaking terms of Oðms �mqÞ:

�p
3;Kðx;�2Þ ¼ fK

4
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ 3�Kþð1þ 6aK2 Þ � 9�K�aK1 þ

�
27

2
�KþaK1 � �K�

�
3

2
þ 27aK2

��
C1=2
1 ð�Þ

þ ð30�3K þ 15�KþaK2 � 3�K�aK1 ÞC1=2
2 ð�Þ þ

�
10�3K
3K � 9

2
�K�aK2

�
C1=2
3 ð�Þ � 3�3K!3KC

1=2
4 ð�Þ

þ 3

2
ð�Kþ þ �K�Þð1� 3aK1 þ 6aK2 Þ lnxþ

3

2
ð�Kþ � �K�Þð1þ 3aK1 þ 6aK2 Þ lnð1� xÞ

�
; (A5)

��
3;Kðx;�2Þ ¼ 3fK
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ffiffiffiffiffiffiffiffiffi
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p xð1� xÞ
�
1þ 3

2
�Kþ þ 15�KþaK2 � 15
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þ
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1� �þ

�
(A6)

with

�3K ¼ f3K
fK

1

�K

; �Kþ ¼ ðms þmqÞ2
m2

K

; and �K� ¼ m2
s �m2

q

m2
K

: (A7)

Note that the expression for ��
3;Kðx;�2Þ is normalized to unity with an extra factor of 1=ð1� �þÞ, compared to that given

in [38]. The nonperturbative parameters f3K, !3K, and 
3K are defined (e.g., K�) by
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h0j �u����5gsG�
sjK�ðPÞi ¼ if3KðP�P�g�
 � P�P�g�
 � P
P�g�� þ P
P�g��Þ;

h0j �u��
�5½iD
; gsG�
�s� ð3=7Þi@
 �u��
�5gsG�
sjK�ðPÞi ¼ 3

14
if3KP�P
P�!3K;

h0j �uiDQ 
��
�5gsG�
s� �u��
�5gsG�
i ~D
sjK�ðPÞi ¼ 1

7
if3KP�P
P�
3K;

(A8)

where in the chiral limit the renormalization group equations at LO give

�Kð�2Þ ¼ L�ð0Þ
3;�

=
0�Kð�2
0Þ; �ð0Þ

3;� ¼ ��ð0Þ
3;q �q ¼ �1; �Kþð�2Þ ¼ L

�ð0Þ
3;�þ=
0�Kþð�2

0Þ; �ð0Þ
3;�þ ¼ 2�ð0Þ

3;q �q ¼ 2;

�K�ð�2Þ ¼ L�ð0Þ
3;��=
0�K�ð�2

0Þ; �ð0Þ
3;�� ¼ 2�ð0Þ

3;q �q ¼ 2; f3Kð�2Þ ¼ L�ð0Þ
3;f

=
0f3Kð�2
0Þ; �ð0Þ

3;f ¼ 7
12 CF þ 1

4 CA;

!3Kð�2Þ ¼ L�ð0Þ
3;!

=
0!3Kð�2
0Þ; �ð0Þ

3;! ¼ � 7

24
CF þ 7

12
CA; 
3Kð�2Þ ¼ L�ð0Þ

3;

=
0
3Kð�2

0Þ; �ð0Þ
3;
 ¼ 19

48
CF;

aK1 ð�2Þ ¼ L�ð0Þ
1
=
0aK1 ð�2

0Þ; �ð0Þ
1 ¼ 2

3
CF; aK2 ð�2Þ ¼ L�ð0Þ

2
=
0aK2 ð�2

0Þ; �ð0Þ
2 ¼ 25

24
CF: (A9)

But since the strange quark is massive, there is operator mixing of the ones in Eq. (A8) with that of twist-2 operators and
the resulting LO renormalization group equations give the following scale dependence of the various twist-3 parameters:

f3Kð�2Þ ¼ L55=ð36
0Þf3Kð�2
0Þ þ

2

19
ðL1=
0 � L55=ð36
0ÞÞ½fKms�ð�2

0Þ þ
6

65
ðL55=ð36
0Þ � L17=ð9
0ÞÞ½fKmsa

K
1 �ð�2

0Þ;

½f3K!3K�ð�2Þ ¼ L26=ð9
0Þ½f3K!3K�ð�2
0Þ þ

1

170
ðL1=
0 � L26=ð9
0ÞÞ½fKms�ð�2

0Þ þ
1

10
ðL17=ð9
0Þ � L26=ð9
0ÞÞ½fKmsa

K
1 �ð�2

0Þ

þ 2

15
ðL43=ð18
0Þ � L26=ð9
0ÞÞ½fKmsa

K
2 �ð�2

0Þ;

½f3K
3K�ð�2Þ ¼ L37=ð18
0Þ½f3K
3K�ð�2
0Þ �

14

67
ðL1=
0 � L37=ð18
0ÞÞ½fKms�ð�2

0Þ þ
14

5
ðL17=ð9
0Þ � L37=ð18
0ÞÞ½fKmsa

K
1 �ð�2

0Þ

� 4

11
ðL43=ð18
0Þ � L37=ð18
0ÞÞ½fKmsa

K
2 �ð�2

0Þ: (A10)

Finally, we present the various Gegenbauer polynomials used in the above formulas:

C1=2
1 ð�Þ ¼ �; C1=2

2 ð�Þ ¼ 1
2ð3�2 � 1Þ; C1=2

3 ð�Þ ¼ 1
2�ð5�2 � 3Þ; C1=2

4 ð�Þ ¼ 1
8ð35�4 � 30�2 þ 3Þ;

C3=2
0 ð�Þ ¼ 1; C3=2

1 ð�Þ ¼ 3�; C3=2
2 ð�Þ ¼ 3

2ð5�2 � 1Þ; C3=2
3 ð�Þ ¼ 5

2�ð7�2 � 3Þ:
(A11)

APPENDIX B: CALCULATION OF THE SUDAKOV EXPONENT

The full expression of the Sudakov suppression factor Sðx; y; b1; b2; QÞ is given by

Sðx; y; b1; b2; QÞ ¼ sðxQ; b1Þ þ sðyQ; b2Þ þ sðð1� xÞQ; b1Þ þ sðð1� yÞQ; b2Þ � 1


0

ln

�
t̂

�b̂1

�
� 1


0

ln

�
t̂

�b̂2

�

þ 
1


3
0

�
1þ lnð�2b̂1Þ

�2b̂1
� 1þ lnð2t̂Þ

2t̂

�
þ 
1


3
0

�
1þ lnð�2b̂2Þ

�2b̂2
� 1þ lnð2t̂Þ

2t̂

�
; (B1)

where
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sðXQ;1=bÞ ¼Að1Þ

2
0

q̂ ln

�
q̂

�b̂

�
þAð2Þ

4
2
0

�
q̂

�b̂
� 1

�
�Að1Þ

2
0

ðb̂þ q̂Þ �
�
4Að1Þ
1

16
3
0

q̂þ 2Að1Þ
1

16
3
0

ln

�
1

2
e2�E�1

��

�
�
1þ lnð�2b̂Þ

�b̂
� 1þ lnð2q̂Þ

q̂

�
�

�
Að2Þ

4
2
0

�Að1Þ

4
0

ln

�
1

2
e2�E�1

��
ln

�
q̂

�b̂

�
� 4Að1Þ
1

32
3
0

�
ln2ð�2b̂Þ � ln2ð2q̂Þ

�

þ 2Að2Þ
1

8
4
0

�
1þ lnð�2b̂Þ

�b̂
� 1þ lnð2q̂Þ

q̂

�
� 2Að2Þ
1

8
4
0

q̂

�
1þ 2 lnð�2b̂Þ

ð�2b̂Þ2 � 1þ 2 lnð2q̂Þ
ð2q̂Þ2

�

� 4Að2Þ
2
1

64
6
0

�
1þ 2 lnð�2b̂Þ þ 2ln2ð�2b̂Þ

ð�2b̂Þ2 � 1þ 2 lnð2q̂Þ þ 2ln2ð2q̂Þ
ð2q̂Þ2

�

þ 4Að2Þ
2
1

8
6
0

q̂

� 2
27þ 2

9 lnð�2b̂Þ þ 1
3 ln

2ð�2b̂Þ
ð�2b̂Þ3 �

2
27þ 2

9 lnð2q̂Þ þ 1
3 ln

2ð2q̂Þ
ð2q̂Þ3

�
: (B2)

In the above formulas,

t̂ ¼ ln

�
t

�QCD

�
; t ¼ maxð ffiffiffiffiffi

xy
p

Q; 1=b1; 1=b2Þ; b̂ ¼ lnðb�QCDÞ; q̂ ¼ ln

�
XQffiffiffi
2

p
�QCD

�
;

X ¼ x; y; ð1� xÞ or ð1� yÞ; Að1Þ ¼ CF ¼ 4

3
; Að2Þ ¼

�
67

27
� �2

9

�
Nc � 10

27
Nf þ 8

3

0 ln

�
e�E

2

�
:

(B3)
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