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Based on the approach of the vector form factor Fþ
B!�;Kðq2Þ in our previous papers, we extend the

calculation of the radiative corrections to the B ! P (P stands �, K, and all light pseudoscalar mesons)

scalar and tensor form factors F0;T
B!Pðq2Þ with chiral current in the light-cone sum rules (LCSRs). The

most uncertain twist-3 contributions to the B ! P form factors can be naturally eliminated through

a properly designed correlator. We present the next-leading-order formulas of Fþ;0;T
B!P ðq2Þ with the b-quark

pole mass that is universal. It has been shown that our results are simpler and less uncertain under the

same parameter regions since we only need to calculate the next-leading order on the twist-2 part

from the obtained LCSR. Second, we obtain fþ;0
B!�ð0Þ ¼ 0:260þ0:059

�0:040, f
T
B!�ð0Þ ¼ 0:276þ0:052

�0:039, f
þ;0
B!Kð0Þ ¼

0:334þ0:094
�0:069, and fTB!Kð0Þ ¼ 0:379þ0:092

�0:077 at q2 ¼ 0 and the SUfð3Þ-breaking effects are discussed too.
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I. INTRODUCTION

The form factors of heavy-to-light transitions at large
and intermediate energies are among the most important
applications of QCD light-cone sum rule (LCSR), since the
validity of the LCSR approach is restricted to the large
meson energy (EP � �QCD) via the relation q2 ¼ m2

B �
2mBEP. In literature there are several approaches to calcu-
late the B ! light meson transition form factors in addi-
tion to the QCD LCSR approach, such as the lattice QCD
technique and the perturbative QCD (PQCD) approach.
These approaches are complementary to each other, since
they are adaptable in different energy regions, and by
combining the results from these three methods, one may
obtain a full understanding of the B ! light meson tran-
sition form factors in its whole physical region [1–4]. Since
the LCSR is restricted to small and moderate q2, a better
LCSR shall present a better connection to both the PQCD
and the lattice QCD results, and then a better understand-
ing of these form factors.

How to ‘‘design’’ a proper correlator for these heavy-to-
light form factors is a tricky problem. If the correlator is
chosen properly, one can simplify the LCSR greatly. As for
the B ! light pseudoscalar mesons, the commonly
adopted correlators are usually defined as

��
�ðp; qÞ ¼ i

Z
d4xeiq�xhPðpÞj

� Tf �qðxÞ��bðxÞ; �bð0Þimb�5q
0ð0Þgj0i (1)

and

�T
�ðp; qÞ ¼ i

Z
d4xeiq�xhPðpÞj

� Tf �qðxÞi���q
�bðxÞ; �bð0Þimb�5q

0ð0Þgj0i; (2)

where qðxÞ and q0ð0Þ stand for the light quark fields that
form the pseudoscalar mesons. By taking such conven-
tional correlation functions, it has been found that the
main uncertainties in estimation of the B ! P form factors
come from the different twist structures of pion/kaon wave
functions, and most importantly, the twist-2 and twist-3
contributions should be treated on equal footing [5–7].
Thus, one has to calculate both the twist-2 and twist-3
contributions up to one-loop accuracy in order to obtain a
consistent one-loop estimation of the form factors.
On the other hand, by taking proper chiral currents into

the correlator, one can directly eliminate the most uncer-
tain twist-3 terms, and then only needs to calculate the
twist-2 contribution to next-to-leading order (NLO) accu-
racy [8–10]. At the present, the vector form factors
fþB!�;Kðq2Þ have been calculated with the chiral current

in the LCSR up to NLO [3,9]. It can be found that the scalar

and penguin form factors f0;TB!�;Kðq2Þ shall be important in

due cases, e.g. the penguin form factors shall give sizable
contributions to B ! Plþl� or B ! K�� [11]. So it is
interesting to extend the previous study to all the B ! P
(P stands for �, K, and all light pseudoscalar mesons)

transition form factors fþ;0;T
B!P ðq2Þ with the chiral current

in the LCSR up to one-loop accuracy. Furthermore, it may
also be interesting to know to what degree the different
choices of correlator shall affect the final LCSRs, which is
another purpose of the present paper.
The paper is organized as follows. In Sec. II, we present

the calculation technology to obtain the LCSRs for the
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B ! P transition form factors fþ;0;T
B!P ðq2Þ with chiral cur-

rents, where the SUfð3Þ-breaking effects for the kaonic

case will be explained in due places. Numerical results and
discussions are presented in Sec. III, where the uncertain-
ties of form factors under the present LCSRs shall be
discussed. The comparison with other approaches will be
presented in Sec. IV. Section V is reserved for a summary.

II. CALCULATION TECHNOLOGY FOR THE
B ! P TRANSITION FORM FACTORS WITH

PROPER CHIRAL CURRENTS

A. A definition of fþ;0;T
B!P

Based on the previous calculation about the transition
form factor B ! �=K, we present the formulas for the

B ! P transition form factors for generality such that these
formulas can also be conveniently extended for other light
pseudoscalar form factors like B ! � and B ! �0 form
factors. With default, we adopt the chiral limit p2

P ¼ m2
P ¼

0, but point out how to include the SUfð3Þ-breaking effects
for the B ! K form factors in due places, i.e. the dominant
SUfð3Þ-breaking effects will be discussed with the newly

obtained K meson distribution amplitudes [12]. The had-
ronic matrix elements for the B ! P transition form fac-
tors are parametrized as

hPðpPÞj �q0��bj �BðpBÞi ¼ fþB!Pðq2Þ
�
P� � P � q

q2
q�

�
þ f0B!Pðq2Þ

P � q
q2

q�

¼ 2fþB!Pðq2Þp�
P þ ½fþB!Pðq2Þ þ f�B!Pðq2Þ�q�; hPðpPÞj �q0i���q

�bj �BðpBÞi

¼ fTB!Pðq2Þ
mB þmP

½P � qq� � q2P�� (3)

with P representing the pseudoscalar, P� ¼ ðpB þ pPÞ�, q� ¼ ðpB � pPÞ�, and fþB!Pðq2Þ, f0B!Pðq2Þ, fTB!Pðq2Þ stand for
the vector, scalar, and tensor form factors, respectively. It can be found that the scalar form factor f0B!Pðq2Þ satisfies the
following relation:

f0B!Pðq2Þ ¼ fþB!Pðq2Þ þ
q2

m2
B �m2

P

f�B!Pðq2Þ: (4)

As for the LCSR calculation, different to the conventional choice of the correlation functions as shown in
Eqs. (1) and (2), we choose the following chiral currents in the correlation functions:

��
�ðp; qÞ ¼ i

Z
d4xeiq�xhPðpÞjTf �qðxÞ��ð1þ �5ÞbðxÞ; �bð0Þimbð1þ �5Þq0ð0Þgj0i;

¼ �þðq2; ðpþ qÞ2Þp� þ��ðq2; ðpþ qÞ2Þq�; (5)

�T
�ðp; qÞ ¼ i

Z
d4xeiq�xhPðpÞjTf �qðxÞi���q

�ð1þ �5ÞbðxÞ; �bð0Þimbð1� �5Þq0ð0Þgj0i;
¼ �Tðq2; ðpþ qÞ2Þ½ðP � qÞq� � q2P��; (6)

where P ¼ pþ 2q.

We calculate the form factors fþ;0;T
B!P ðq2Þ following the

same calculation technology as described in Refs. [3,9],
where the vector form factors fþB!�;Kðq2Þ have been calcu-
lated. For such purposes, we first give a simple extension to
fþB!Pðq2Þ in the large spacelike momentum regions ðpþ
qÞ2 �m2

b � 0 and q2 � m2
b for the momentum transfer,

which correspond to the small light-cone distance x2 	 0
and are required by the validity of operator product expan-

sion (OPE). Then, we present the newly obtained results
for the scalar and tensor form factors.

B. A simple extension to fþ
B!P within LCSR

The vacuum-to-meson matrix elements in terms of the
pseudoscalar’s LC distribution amplitudes (DAs) of differ-
ent twist can be expanded by contracting the b-quark fields
with the help of the full b-quark propagator within the
background field:
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h0jTbðxÞ �bð0Þj0i ¼ i
Z d4k

ð2�Þ4 e
�ikx k6 þm

k2 �m2
b

� igs
Z d4k

ð2�Þ4 e
�ikx

�
Z 1

0
dv

�
1

2

mþ k6
ðk2 �m2

bÞ2
G��ðvxÞ��� � 1

k2 �m2
b

vx�G
��ðvxÞ��

�
; (7)

where only the free propagator and the one-gluon terms are retained,G�� stands for the background gluonic field strength,
and gs denotes the strong coupling constant. The invariant amplitudes �þ can be obtained by substituting the b-quark
propagator and the corresponding LC wave functions, and completing the integrations over x and k.

The OPE results for the invariant amplitudes �þ can be represented as a sum of LO and NLO parts:

�þðq2; ðpþ qÞ2Þ ¼ �þ
0 ðq2; ðpþ qÞ2Þ þ �sCF

4�
�þ

1 ðq2; ðpþ qÞ2Þ; (8)

where �þ
0 ðq2; ðpþ qÞ2Þ and �þ

1 ðq2; ðpþ qÞ2Þ stands for the LO and the NLO contributions, respectively. As for the LO
invariant amplitude, we obtain

�þ
0 ðq2; ðpþ qÞ2Þ ¼ 2fPm

2
b

�Z 1

0

du

u

’PðuÞ
�

�
Z 1

0

du

u3
m2

b

2�3
�4PðuÞ þ

Z 1

0

du

u�2
G4PðuÞ

þ
Z 1

0
dv

Z
D�i

2�4Pð�iÞ þ 2 ~�4Pð�iÞ ��4Pð�iÞ � ~�4Pð�iÞ
�2ð�1 þ v�3Þ2

�
; (9)

where the parameters are defined as � ¼ s� ðpþ qÞ2
(s ¼ ½q2 þ ðm2

b � q2Þ=u�), G4PðuÞ ¼ �R
u
0 dvc 4PðvÞ,

and D�i ¼ d�1d�2d�3	ð1� �1 � �2 � �3Þ. Here ’P

is the twist-2 LC wave function, and �PðuÞ, c 4PðuÞ,
�4Pð�iÞ, ~�4Pð�iÞ, �4Pð�iÞ, and ~�4Pð�iÞ are twist-4 LC
wave functions defined in the same way as the pionic case
that have been defined in Ref. [12], whose explicit forms
are put in the Appendix. It is found that only the twist-2 and
twist-4 contributions are contained in the above expres-
sions, and the twist-3 terms are rightly eliminated by taking
the present adopted chiral currents within the correlators.

Since the most uncertain twist-3 contributions are elim-
inated and the twist-4 contribution itself is quite small, we

only need to consider the NLO correction to the twist-2
terms. The NLO invariant amplitude �þ

1 for the twist-2
contribution can be written in the following factorized
form:

�þ
1 ðq2; ðpþ qÞ2Þ ¼ �fP

Z 1

0
duTþ

1 ðq2; ðpþ qÞ2; uÞ’PðuÞ;
(10)

where by taking mb to be the b-quark pole mass, the NLO
hard scattering amplitudes Tþ

1 can be written as

Tþ
1 ðr1; r2; uÞ ¼

6

1� 


�
2� ln

m2
b

�2

�
� 4

1� 

½2Gð
Þ �Gðr1Þ �Gðr2Þ�

þ 4

ðr1 � r2Þ2
�
1� r2

u
½Gð
Þ �Gðr1Þ� þ 1� r1

�u
½Gð
Þ �Gðr2Þ�

�
þ 2


þ ð1� 
Þ lnð1� 
Þ

2

� 4

1� 


ð1� r2Þ lnð1� r2Þ
r2

� 4


� r2

�ð1� 
Þ lnð1� 
Þ



� ð1� r2Þ lnð1� r2Þ
r2

�
; (11)

with

�u ¼ 1� u;


 ¼ ½r1 þ uðr2 � r1Þ � uð1� uÞM2
P=m

2
b�;

Li2ðxÞ ¼ �
Z x

0

dt

t
lnð1� tÞ;

Gð
Þ ¼ Li2ð
Þ þ ln2ð1� 
Þ � lnð1� 
Þ
�
1� ln

m2
b

�2

�
;

(12)

where the dilogarithm function Li2ðxÞ ¼ �R
x
0
dt
t lnð1� tÞ,

r1 ¼ q2=m2
b, and r2 ¼ ðpþ qÞ2=m2

b.
Next, the QCD LCSR for fþB!Pðq2Þ can be schematically

written as

fBf
þ
B!Pðq2Þ ¼

1

2m2
B

Z s0

m2
b

eðm2
B�sÞ=M2

� ½
þ
T2ðs; q2Þ þ 
þ

T4ðq2Þ�ds; (13)

where 
þ
T2ðs; q2Þ is the contribution from the twist-2 DA
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and 
þ
T4ðq2Þ is for twist-4 DA, fB is the B-meson decay

constant. The Borel parameter M2 and the continuum
threshold s0 are determined such that the resulting form
factor does not depend too much on the precise values of
these parameters; in addition the continuum contribution,
which is the part of the dispersive integral from s0 to1 that

has been subtracted from both sides of the equation, should
not be too large, e.g. less than 30% of the total dispersive
integral.
As for the LO twist-2 and twist-4 contributions, we

obtain

fBf
þ
B!Pðq2ÞjLO ¼ m2

bfP
m2

B

em
2
B=M

2

�Z 1

4
due�f½m2

b
� �uðq2�um2

PÞ�=ðuM2Þg
�
’PðuÞ
u

þG4PðuÞ
uM2

�m2
b�4PðuÞ
4u3M4

�

þ
Z 1

0
dv

Z
D�i

�ð�1 þ v�3 � �Þ
ð�1 þ v�3Þ2M2

e�fm2
b
�ð1��1�v�3Þ½q2�ð�1þv�3Þm2

PÞ�g=½M2ð�1þv�3Þ�

� ½2�4Pð�iÞ þ 2 ~�4Pð�iÞ ��4Pð�iÞ � ~�4Pð�iÞ�
�
; (14)

where 4 ¼ ðm2
b � q2Þ=ðs0 � q2Þ for MP ¼ 0; 4 ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � q2 �M2

PÞ2 þ 4M2
Pðm2

b � q2Þ
q

� ðs0 � q2 �M2
PÞ�=ð2M2

PÞ for
MP � 0.

As for the NLO twist-2 contribution, it is convenient to write the NLO 
þ
T2ðs; q2Þ in the following form:


þ
T2ðs; q2ÞjNLO ¼ � fP

�

�
�sCF

4�

�Z 1

0
du�Pðu;�Þ ImTþ

1

�
q2

m2
b

;
s

m2
b

; u;�

�
; (15)

where

1

4�
ImsT

þ
1 ¼ �ð1�
Þ

�
L2ðr2Þ

� 1

��������þ
þ 1� r1
ðr2 � r1Þðr2 �
ÞL1ðr2Þ� r2 � 1

ðr2 �
Þr2
�

þ�ð
� 1Þ
�
L2ðr2Þ� 2L1ð
Þ


� 1

��������þ
þ 1� r1
ðr2 � r1Þðr2 �
ÞL1ðr2Þþ 1þ
� r1 � r2

ðr1 �
Þðr2 �
ÞL1ð
Þþ 1

2


�
1� 1



� 2

r2

��

þ	ð
� 1Þ
��

ln
r2 � 1

1� r1

�
2 �

�
1� r2
r2

þ lnr2

�
ln
ðr2 � 1Þ2
1� r1

� 3

2
ln

�
m2

b

�2

�
þLi2ðr1Þ� 3Li2ð1� r2Þþ 3��2

2

�
;

(16)

for the case of r1 < 1 and r2 > 1. The operation “þ ” is
defined by

Z
d
fð
Þ 1

1� 


��������þ
¼

Z
d
½fð
Þ � fð1Þ� 1

1� 

: (17)

The two functions L1ðxÞ ¼ ln½ðx�1Þ2
x ðm2

b=�
2Þ� � 1 and

L2ðxÞ ¼ ln½ðx�1Þ2
x ðm2

b=�
2Þ� � 1

x are introduced to make
the formulas short. The above formulas are derived in the
Feynman gauge and by regularizing both the ultraviolet
and collinear divergences by the standard dimensional
regularization in the MS scheme.

C. Calculation of f0;T
B!P within LCSR

For convenience, we calculate the combined function
f�B!Pðq2Þ ¼ ½fþB!Pðq2Þ þ f�B!Pðq2Þ� first and then derive

f0B!P with the help of Eq. (4). The OPE results for the
needed invariant amplitudes ��;T can be represented as a
sum of LO and NLO parts:

��;Tðq2; ðpþ qÞ2Þ ¼ ��;T
0 ðq2; ðpþ qÞ2Þ

þ �sCF

4�
��;T

1 ðq2; ðpþ qÞ2Þ; (18)

where ��;T
0 ðq2; ðpþ qÞ2Þ and ��;T

1 ðq2; ðpþ qÞ2Þ stand

for the LO and NLO contributions, respectively. As for
the LO invariant amplitudes, we obtain

��
0 ðq2; ðpþ qÞ2Þ ¼ 2fPm

2
b

Z 1

0

du

u2
1

�2
G4PðuÞ; (19)
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�T
0 ðq2; ðpþ qÞ2Þ ¼ 2mbfP

�Z 1

0

du

u

’PðuÞ
�

�
Z 1

0

1

4u2�2

�
1þ 2m2

b

u�

�
�4PðuÞ

þ
Z 1

0
dv

Z
D�i

2�4Pð�iÞ � ð1� 2vÞ�4Pð�iÞ þ 2ð1� 2vÞ ~�4Pð�iÞ � ~�4Pð�iÞ
�2ð�1 þ v�3Þ2

�
: (20)

Similar to the case of�þ
0 ðq2; ðpþ qÞ2Þ, one may also observe that only the twist-2 and twist-4 contributions are contained

in the above expressions, and the twist-3 terms are rightly eliminated by taking the present adopted chiral currents within
the correlators. The NLO invariant amplitude ��;T

1 for the twist-2 contribution can be written in the following factorized
form:

��;T
1 ðq2; ðpþ qÞ2Þ ¼ �fP

Z 1

0
duT�;T

1 ðq2; ðpþ qÞ2; uÞ’PðuÞ; (21)

where by taking mb to be the b-quark pole mass, we have

T�
1 ðr1; r2; uÞ ¼

2ðr1 � r2Þ½r1 þ ð1� r1Þ lnð1� r1Þ�
r21ð1� 
Þ þ 2ð1� r1Þðr1 þ r2Þ lnð1� r1Þ

r21ðr1 � 
Þ þ 4ð1� r2Þ lnð1� r2Þ
r2ð
� r2Þ

� 2ð1� 
Þðr2 þ 
Þ lnð1� 
Þ
uð
� r2Þ
2

þ 2ðr1 � r2Þ
r1


(22)

and

TT
1 ðr1; r2; uÞ ¼

4

1� 


�
3� 2 ln

m2
b

�2

�
� 4

1� 

½2Gð
Þ �Gðr1Þ �Gðr2Þ�

� 4

ðr1 � r2Þ2
�
1� r2

u
½Gðr1Þ �Gð
Þ� þ 1� r1

�u
½Gðr2Þ �Gð
Þ�

�

� 4

1� 


�
1� r2
r2

lnð1� r2Þ � 1� r1
r1

lnð1� r1Þ
�
þ 4

�
1� r1

r1ð
� r1Þ
�
ln

�
1� r1
1� 


�

� 4

�
1� r2

ð
� r2Þr2
�
ln

�
1� r2
1� 


�
� 2

�

þ lnð1� 
Þ


2

�
þ

��4r1 þ 2r2r1 þ 4r2
r1r2


�
lnð1� 
Þ: (23)

Schematically, the QCD LCSRs for f�;TB!P can be written as

fBf
�
B!Pðq2Þ ¼

1

m2
B

Z s0

m2
b

eðm2
B�sÞ=M2½
�

T2ðs; q2Þ þ 
�
T4ðq2Þ�ds; (24)

fBf
T
B!Pðq2Þ ¼

mB þmP

2m2
B

Z s0

m2
b

eðm2
B�sÞ=M2½
T

T2ðs; q2Þ þ 
T
T4ðq2Þ�ds: (25)

As for the LO twist-2 and twist-4 contributions, with the help of Eqs. (19) and (20), we obtain

fBf
�
B!Pðq2ÞjLO ¼ 2m2

bfP
m2

B

em
2
B=M

2
Z 1

4
due�½m2

b
� �uðq2�um2

PÞ�=ðuM2Þ
�
G4PðuÞ
u2M2

�
; (26)

fBf
T
B!Pðq2ÞjLO ¼ ðmB þmPÞmbfP

m2
B

em
2
B=M

2

�Z 1

4
due�½m2

b
� �uðq2�um2

PÞ�=ðuM2Þ
�
’PðuÞ
u

��4PðuÞ
4u2M2

�
1þ m2

b

uM2

��

þ
Z 1

0
dv

Z
D�i

�ð�1 þ v�3 � �Þ
ð�1 þ v�3Þ2M2

e�fm2
b
�ð1��1�v�3Þ½q2�ð�1þv�3Þm2

PÞ�g=½M2ð�1þv�3Þ�

� ½2�4Pð�iÞ � ð1� 2vÞ�4�ð�iÞ þ 2ð1� 2vÞ ~�4Pð�iÞ � ~�4Pð�iÞ�
�
: (27)

From the above equations, we immediately obtain the relations among f�;T
B!Pðq2Þ at the LO and up to the twist-3 accuracy,

i.e.
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f�B!Pðq2Þ ¼ �fþB!Pðq2Þ and

fTB!Pðq2Þ ¼
mB þmP

mb

fþB!Pðq2Þ;
(28)

which agree with the conclusions drawn in Ref. [13].
Moreover, with the help of Eqs. (4) and (28), we obtain

f0B!Pðq2Þ ¼
�
1� q2

m2
B �m2

P

�
fþB!Pðq2Þ: (29)

As for the NLO twist-2 contribution, the NLO 
�;T
T2 ðs; q2Þ

can be written as


�;T
T2 ðs; q2ÞjNLO ¼ � fP

�

�
�sCF

4�

�Z 1

0
du�Pðu;�Þ

� ImT�;T
1

�
q2

m2
b

;
s

m2
b

; u;�

�
; (30)

where

1

2�
ImsT

�
1 ¼ �ð1� 
Þ

�
2ð1� r2Þ
r2ðr2 � 
Þ

�
� �ð
� 1Þ

r1 � 


�
r1 � r2

2

� ð2� r2Þðr2 � r1Þ
r2


þ 2ðr2 � 1Þ
r2

�

þ 	ð
� 1Þ
�
1� r2

r1
� ðr1 � 1Þðr1 � r2Þ lnð1� r1Þ

r21

�
; (31)

and

1

4�
ImsT

T
1 ¼ �ð1� 
Þ

�
L2ðr2Þ

� 1

��������þ
� 1� r1
ðr2 � r1Þð
� r2ÞL1ðr2Þ � r2 � 1

r2ð
� r2Þ
�

þ �ð
� 1Þ
�
L2ðr2Þ � 2L1ð
Þ


� 1

��������þ
� 1� r1
ðr2 � r1Þð
� r2ÞL1ðr2Þ � r1 þ r2 � 
� 1

ðr1 � 
Þðr2 � 
ÞL1ð
Þ � r1 � 1

r1ð
� r1Þ
� 2ðr2 � r1Þ þ r1r2

2r1r2

þ 1

2
2

�
þ 	ð
� 1Þ

��
ln
r2 � 1

1� r1

�
2 � ln

ðr2 � 1Þ2
1� r1

�
lnr2 þ 1

r2
� 1

�
þ 3� �2

2

�
�
1� 1

r1

�
lnð1� r1Þ � 2 ln

�
m2

b

�2

�
þ Li2ðr1Þ � 3Li2ð1� r2Þ

�
; (32)

for the case of r1 < 1 and r2 > 1.
As a cross-check of the above NLO formulas for the

twist-2 contributions, it can be found that our present

results for fþ;�;T
B!� agree with Ref. [14] by transforming the

formulas for the MS b-quark mass to be the ones for the
b-quark one-loop pole mass, except for an overall factor 2.1

Here similar to the treatment of Refs. [3,15,16], we have
adopted the b-quark pole mass to do the calculation.

References [14,17] have argued to use the b-quark MS
running mass other than the pole mass. Numerically, we
shall show in due places that, if properly choosing the
possible ranges for the undetermined parameters, these
two treatments are in fact equivalent to each other within
reasonable uncertainties. We prefer to take the pole quark
mass, since the pole quark mass is universal that can be
determined through proper potential model analysis or
through lattice QCD calculation, while the running quark
mass is process dependent, i.e. depends on the renormal-
ization scheme and the renormalization scale of a particu-
lar process.

III. NUMERICAL RESULTS FOR fþ;0;T
B!�;Kðq2Þ

WITHIN THE QCD LCSR WITH CHIRAL
CURRENT

A. Parameters and distribution amplitudes of the light
mesons

First, we specify the input parameters used in the LCSRs
for B ! � and B ! K transition form factors. For the
needed meson masses and the light mesons’ decay con-
stants, we adopt the center values as listed by the Particle
Data Group [18]:

f� ¼ 130:4 MeV; fK ¼ 155:5 MeV;

MB ¼ 5:279 GeV; M� ¼ 139:570 MeV;

MK ¼ 493:667 MeV:

As has been argued in the last section, we shall adopt the
b-quark pole mass to do numerical calculation throughout
the paper. As for the value of fB, to be consistent with the
present calculation technology, they should be determined
by using the two-point sum rule with proper chiral currents
up to NLO. Such a calculation has been done in Ref. [3],
the interesting reader may turn to Ref. [3] for more calcu-
lation detail, and here we only quote some typical results as

1The overall factor 2 comes from the different choices of
correlation function.
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shown in Table I, where the one-loop pole massmb is taken
to be ð4:80� 0:05Þ GeV [19].

Naively, the leading twist-2 DAs �� and �K can be
expanded as Gegenbauer polynomials as shown in the
Appendix. The first two Gegenbauer moments, e.g. a�2
and a�4 for pion and aK1 and aK2 for kaon, have been studied
with various processes. We adopt two constraints for
a�2 ð1 GeVÞ and a�4 ð1 GeVÞ, e.g. a�2 ð1 GeVÞ þ
a�4 ð1 GeVÞ ¼ 0:1� 0:1 [20] and � 9

4a
�
2 ð1 GeVÞ þ

45
16 a

�
4 ð1 GeVÞ þ 3

2 ¼ 1:2� 0:3 [5,21], such that the al-

lowed values of a�2 and a�4 are correlated and given by
the rhomboid shown in Fig. 1. Note here we do not adopt
the wider range of a�2 ¼ 0:25� 0:15 as suggested by
Ref. [12], since we prefer a more asymptoticlike pion DA
as favored by a very recent QCD LCSR analysis of the
B ! � vector form factor [22]. The first Gegenbauer mo-
ment aK1 has been studied by several references, e.g.
Refs. [12,23–27], etc. For convenience, we quote the
values for the twist-2 Gegenbauer moments of kaon as
obtained from the average of those obtained in literature
to do the discussion, aK1 ð1 GeVÞ ¼ 0:06� 0:03 and
aK2 ð1 GeVÞ ¼ 0:25� 0:15 [12].

Furthermore, for the twist-2 DAs, we do not adopt the
Gegenbauer expansion (A1), since its higher Gegenbauer

moments are still determined with large errors whose con-
tributions may not be too small, i.e. their contributions are
comparable to that of higher twist structures [3]. As a
compensation, we adopt the suggestion of deriving the
pion and kaon DAs from their corresponding wave func-
tions (WFs) by integrating over the transverse momentum
[3]. The twist-2 pion and kaon WFs can be constructed on
their first two Gegenbauer moments and on the Brodsky-
Huang-Lepage prescription [28], i.e.,

��ðx;k?Þ ¼ ½1þ B�C
3=2
2 ð2x� 1Þ þ C�C

3=2
4 ð2x� 1Þ�

� A�

xð1� xÞ exp
�
��2

�

�
k2
? þm2

q

xð1� xÞ
��

; (33)

and

�Kðx;k?Þ ¼ ½1þ BKC
3=2
1 ð2x� 1Þ þ CKC

3=2
2 ð2x� 1Þ�

� AK

xð1� xÞ
� exp

�
��2

K

�
k2
? þm2

q

x
þ k2

? þm2
s

1� x

��
; (34)

where q ¼ u, d, C3=2
1;2 ð1� 2xÞ are Gegenbauer

polynomials. The constitute quark masses are set to be
mq ¼ 0:30 GeV and ms ¼ 0:45 GeV. After doing the

integration over the transverse momentum dependence,

we obtain the twist-2 kaon DA, e.g. �Kðx;�bÞ ¼R
k2?<�2

b

d2k?
16�3 �Kðx;k?Þ, where �b ¼ 2:2 GeV for the

present case. The Gegenbauer moments a�;Kn ð�bÞ are de-
fined as

a�;Kn ð�bÞ ¼
R
1
0 dx��;Kð1� x;�bÞC3=2

n ð2x� 1ÞR
1
0 dx6xð1� xÞ½C3=2

n ð2x� 1Þ�2 : (35)

The four unknown parameters can be determined by the
first two Gegenbauer moments, the normalization condi-

tion
R
1
0 dx

R
k2?<�2

b

d2k?
16�3 ��;Kðx;k?Þ ¼ 1, and the constraint

hk2
?i1=2K 	 hk2

?i1=2� ¼ 0:350 GeV [29], where the average

value of the transverse momentum square is defined as

hk2
?i1=2�;K ¼

R
dxd2k?jk2

?jj��;Kðx;k?Þj2R
dxd2k?j��;Kðx;k?Þj2

:

Some typical parameters for the pion and kaon WFs are
presented in Tables II and III. A comparison with the
conventional Gegenbauer expansion DAs is presented in
Fig. 2. The remaining parameters for the twist-4 DA’s
(	2

�;K, 
�;K) are presented in Table IV, which are taken

from [12].

B. Properties of fþ;0;T
B!�;Kðq2Þ within QCD LCSR with
chiral current

Taking the above-mentioned parameters, we discuss the

properties of fþ;0;T
B!�;Kðq2Þ within QCD LCSRs with chiral

FIG. 1 (color online). a�2 ð1 GeVÞ and a�4 ð1 GeVÞ as deter-
mined from the two constraints adopted in the body of the
text, where the rhomboid stands for the allowable range.

TABLE I. The value of fB (in units GeV) within the LCSRs
with chiral currents up to NLO; the corresponding formulas can
be found in Ref. [3], where mb is taken to be the b-quark pole
mass.

- s0 (GeV2) M2 fB (GeV)

mb ¼ 4:75 ðGeVÞ 33.0 2.48 0.192

mb ¼ 4:80 ðGeVÞ 32.6 2.28 0.169

mb ¼ 4:85 ðGeVÞ 32.3 2.10 0.146
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current. At the maximum recoil region, q2 ¼ 0, by varying
the parameters within their reasonable regions, we obtain

fþ;0
B!�ð0Þ ¼ 0:260þ0:059

�0:040; fTB!�ð0Þ ¼ 0:276þ0:052
�0:039

(36)

and

fþ;0
B!Kð0Þ ¼ 0:334þ0:094

�0:069; fTB!Kð0Þ ¼ 0:379þ0:092
�0:077:

(37)

By comparingB ! K form factors with theB ! � form
factors, we find the following SUfð3Þ-breaking effects

among the B ! light form factors:

fþ;0
B!Kð0Þ

fþ;0
B!�ð0Þ

¼ 1:28þ0:06
�0:08;

fTB!Kð0Þ
fTB!�ð0Þ

¼ 1:37þ0:07
�0:02: (38)

It is found that this larger SUfð3Þ-breaking effect is ob-

tained by taking a larger aK2 ð1 GeVÞ 2 ½0:10; 0:40�; if
taking a smaller aK2 ð1 GeVÞ, then one can obtain a smaller

SUfð3Þ-breaking effect, e.g. ½fþ;0
B!Kð0Þ�=½fþ;0

B!�ð0Þ� ¼
1:13� 0:03 for aK2 ð1 GeVÞ 2 ½0:05; 0:10� [3] and

½fþ;0
B!Kð0Þ�=½fþ;0

B!�ð0Þ� ¼ 1:08þ0:19
�0:17 for aK2 ð1 GeVÞ 2

½�0:11; 0:27� [30]. Note that this larger SUfð3Þ-breaking
effect is consistent with the some other LCSR calculation
as Refs. [17,31] and a recently relativistic treatment that is
based on the study of the Dyson-Schwinger equation in

QCD, i.e. ½fþ;0
B!Kð0Þ�=½fþ;0

B!�ð0Þ� ¼ 1:23 [32]. So a better
determination of aK2 ð1 GeVÞ will be helpful to obtain a
better understanding of the SUfð3Þ-breaking effect.

We show the B ! � vector, scalar, and tensor form
factors with their corresponding errors in Fig. 3, where
the center dashed line is for mb ¼ 4:80 GeV,
a�2 ð1 GeVÞ ¼ 0:115, a�4 ð1 GeVÞ ¼ �0:015, 	2

� ¼
0:18 GeV2, and 
� ¼ 0:525. For fþ;0

B!�ðq2Þ, the lower
edge of the shaded band is obtained by setting mb ¼
4:75 GeV, a�2 ð1 GeVÞ ¼ 0:0, a�4 ð1 GeVÞ ¼ 0:0, 	2

� ¼
0:12 GeV2, and 
� ¼ 0:2625 and the upper edge is ob-

TABLE III. Kaon twist-2 wave function parameters for some typical Gegenbauer moments, where �0 ¼ 1 GeV. Note the obtained
WF parameters are for � ¼ 2:2 GeV.

aK1 ð�0Þ 0.09 0.06 0.03

aK2 ð�0Þ 0.40 0.25 0.10 0.40 0.25 0.10 0.40 0.25 0.10

AK ðGeV�2Þ 171.2 209.3 253.8 172.6 211.8 255.9 173.9 213.5 258.1

BK 0.0845 0.0732 0.0588 0.107 0.0966 0.0825 0.130 0.119 0.106

CK 0.203 0.122 0.0371 0.207 0.127 0.0422 0.211 0.132 0.0471

�K ðGeVÞ 0.774 0.821 0.869 0.775 0.823 0.870 0.776 0.824 0.871

TABLE II. Pion twist-2 wave function parameters for some typical Gegenbauer moments, where �0 ¼ 1 GeV. Note the obtained
WF parameters are for � ¼ 2:2 GeV.

a�2 ð�0Þ 0.00 0.115 0.230

a�4 ð�0Þ 0.00 0.092 �0:015 �0:120 �0:030

A� ðGeV�2Þ 226.0 196.7 199.4 199.1 173.8

B� �0:079 �0:024 �0:018 �0:014 0.043

C� 0.027 0.073 0.012 �0:050 �0:006 56
�� ðGeVÞ 0.902 0.862 0.868 0.870 0.832

FIG. 2 (color online). Typical distribution amplitudes �PðxÞ at
�b ¼ 2:2 GeV, where ��ðxÞ and �KðxÞ are for a�2 ð1 GeVÞ ¼
0:115 and a�4 ð1 GeVÞ ¼ �0:015, aK1 ð1 GeVÞ ¼ 0:06, and

aK2 ð1 GeVÞ ¼ 0:25, respectively, and �gen
� ðxÞ and �gen

K ðxÞ are

for Gegenbauer expansion (A1) with the same Gegenbauer
moments.

TABLE IV. Input parameters for the pion and kaon twist-4
DAs’ [12].

Twist � � ¼ 1 GeV K � ¼ 1 GeV

4 	2
� 0:18� 0:06 GeV2 	2

K 0:20� 0:06 GeV2


�
21
8 ð0:2� 0:1Þ 
K

21
8 ð0:2� 0:1Þ
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tained by setting mb ¼ 4:85 GeV, a�2 ð1 GeVÞ ¼ 0:230,
a�4 ð1 GeVÞ ¼ �0:030, 	2

� ¼ 0:24 GeV2, and 
� ¼
0:7875. For fTB!�ðq2Þ, the lower edge of the shaded band
is obtained by setting mb ¼ 4:75 GeV, a�2 ð1 GeVÞ ¼ 0:0,
a�4 ð1 GeVÞ ¼ 0, 	2

� ¼ 0:24 GeV2, and 
� ¼ 0:7875 and
the upper edge is obtained by setting mb ¼ 4:85 GeV,
a�2 ð1 GeVÞ ¼ 0:230, a�4 ð1 GeVÞ ¼ �0:030, 	2

� ¼
0:12 GeV2, and 
� ¼ 0:2625. This difference is caused
by the fact that the twist-4 structures lead to positive and

negative contributions to the fþ;0
B!�ðq2Þ and fTB!�ðq2Þ, re-

spectively. The main uncertainties of the form factors are
caused by the value of mb and a�2 , and it can be found that
all the B ! � form factors shall increase with the incre-
ment of mb and a�2 . Furthermore, we obtain
fTB!�ð0Þ=fþB!�ð0Þ 2 ½1:03; 1:08�. This shows that the
NLO correction shall affect the usual simple rela-
tion (28), e.g. ½fTB!�ð0Þ=fþB!�ð0Þ� ¼ ðmB þm�Þ=mb 2
½1:12; 1:14�, to a certain degree. Furthermore, we show

contributions to the B ! � form factors fþ;0;T
B!� ðq2Þ from

the different parts in Fig. 4, where all the parameters are

taken to be their center values. For fþ;0
B!�ðq2Þ, it can be

found that the LO twist-2, the NLO twist-2, and the LO
twist-4 contributions are positive, more specifically at
q2 ¼ 0, they are about 68%, 26%, and 6%, respectively.
f0B!�ðq2Þ is very close to the asymptotic LO result derived
from Eq. (29), which is caused by the fact that the LO

twist-2 gives zero contribution to the sum of the form
factor ½fþB!� þ f�B!�� and then ½fþB!� þ f�B!�� gives a
negligible contribution to f0B!�ðq2Þ. For fTB!�ðq2Þ, the
LO twist-2 and the NLO twist-2 give a positive contribu-
tion while the LO twist-4 gives a negative contribution,
more specifically at q2 ¼ 0, they are about 72%, 30%, and
�2% respectively.
Second, we show the B ! K form factors with their

corresponding errors in Fig. 5, where the center dashed
line is for mb ¼ 4:80 GeV, aK1 ð1 GeVÞ ¼ 0:06,
aK2 ð1 GeVÞ ¼ 0:25, 	2

K ¼ 0:20 GeV2, and 
K ¼ 0:525.

For fþ;0
B!Kðq2Þ, the lower edge of the shaded band is ob-

tained by setting mb ¼ 4:75 GeV, aK1 ð1 GeVÞ ¼ 0:09,
aK2 ð1 GeVÞ ¼ 0:10, 	2

K ¼ 0:14 GeV2, and 
K ¼ 0:2625,
and the upper edge is obtained by setting mb ¼
4:85 GeV, aK1 ð1 GeVÞ ¼ 0:03, aK2 ð1 GeVÞ ¼ 0:40, 	2

K ¼
0:26 GeV2, and 
K ¼ 0:7875. For fTB!Kðq2Þ, the lower
edge of the shaded band is obtained by setting mb ¼
4:75 GeV, aK1 ð1 GeVÞ ¼ 0:09, aK2 ð1 GeVÞ ¼ 0:10, 	2

K ¼
0:26 GeV2, and 
K ¼ 0:7875, and the upper edge is ob-
tained by setting mb ¼ 4:85 GeV, aK1 ð1 GeVÞ ¼ 0:03,
aK2 ð1 GeVÞ ¼ 0:40, 	2

� ¼ 0:14 GeV2, and 
K ¼ 0:2625.
The main uncertainties are caused by the value of mb,
aK1 , and aK2 , and it can be found that all the B ! K form

factors shall increase with the increment ofmb and a
K
2 , and

decrease with the increment of aK1 . As for the LO results,

FIG. 3 (color online). Uncertainties of the B ! � form factors fþ;0;T
B!� ðq2Þ within the allowable regions for the undetermined

parameters. The center dashed line is for mb ¼ 4:80 GeV, a�2 ð1 GeVÞ ¼ 0:115, a�4 ð1 GeVÞ ¼ �0:015, 	2
� ¼ 0:18 GeV2, and 
� ¼

0:525.

FIG. 4 (color online). Different parts’ contributions to the B ! � form factors fþ;0;T
B!� ðq2Þ for all the parameters taken to be their

center values. The curve of asymptotic total in the middle figure stands for the LO f0B!�ðq2Þ up to twist-3 that is derived from Eq. (29).
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we obtain ½fTB!Kð0Þ=fþB!Kð0Þ�LO 2 ½1:19; 1:22�; while for
the NLO results, we obtain ½fTB!Kð0Þ=fþB!Kð0Þ�NLO 2
½1:09; 1:15�. Furthermore, we show the different parts’

contributions to the B ! K form factors fþ;0;T
B!K ðq2Þ in

Fig. 6, where all the parameters are taken to be their center

values. For fþ;0
B!Kðq2Þ, it can be found that the LO twist-2,

the NLO twist-2, and the LO twist-4 contributions are
positive, more specifically at q2 ¼ 0, they are about 67%,
27%, and 6%, respectively. Even though the LO twist-2
gives zero contribution to the sum of the form factor
½fþB!K þ f�B!K� but due to SUfð3Þ-breaking effect they

shall give sizable contribution to f0B!Kðq2Þ, so f0B!Kðq2Þ
is higher than the LO result derived from Eq. (29) as shown
in Fig. 6. For fTB!Kðq2Þ, the LO twist-2 and the NLO twist-
2 give a positive contribution while the LO twist-4 gives
negative contribution, more specifically at q2 ¼ 0, they are
about 70%, 32% and �2% respectively.

IV. COMPARATIVE STUDIES OF fþ;0;T
B!�;Kðq2Þ WITH

OTHER APPROACHES IN QCD LCSRS

A. A striking advantage of the present approach with
the chiral current

The adopted chiral current approach has a striking ad-
vantage that the twist-3 LC functions which are not known
as well as the twist-2 light-cone functions are eliminated,
and then it is considered to provide results with less un-

certainties. On the other hand, by using the standard weak
current in the correlator as shown by Eqs. (1) and (2), it has
been pointed out that the twist-3 contributions can contrib-
ute 
30%–40% to the total contribution [33]. So to obtain
a more accurate result, one has to calculate the above
correlator by including one-loop radiative corrections to
both the twist-2 and the twist-3 contributions. Such a
calculation together with the updated pion and kaon
twist-3 wave functions has been done by Ref. [5].
It may be interesting to do a comparison of their results

with our present ones so as to show whether these two
treatments are consistent with each other or not. For such a
purpose, we adopt the following convenient form for the
QCD sum rules obtained by Ref. [5], which splits the B !
P form factors into contributions from different
Gegenbauer moments:

Fþ;0;T
B!P ðq2Þ ¼ fasðq2Þ þ aP1 ð�0ÞfaP1 ðq2Þ þ aP2 ð�0ÞfaP2 ðq2Þ

þ aP4 ð�0ÞfaP4 ðq2Þ; (39)

where fas contains the contributions to the form factor
from the asymptotic DA and all higher-twist effects from

three-particle quark-quark-gluon matrix elements, fa
P
1 ;a

P
2 ;a

P
4

contains the contribution from the higher Gegenbauer term
of DA that is proportional to aP1 , a

P
2 , and aP4 , respectively.

The explicit expressions of fas;a
P
1
;aP

2
;aP

4 for all the mentioned
form factors can be found in Tables V IX of Ref. [5]. In

FIG. 5 (color online). Uncertainties of the B ! K form factors fþ;0;T
B!� ðq2Þ within the allowable regions for the undetermined

parameters. The center dashed line is formb ¼ 4:80 GeV, aK1 ð1 GeVÞ ¼ 0:06, aK2 ð1 GeVÞ ¼ 0:25, 	2
K ¼ 0:20 GeV2, and 
K ¼ 0:525.

FIG. 6 (color online). Different parts’ contributions to the B ! K form factors fþ;0;T
B!K ðq2Þ for all the parameters taken to be their

center values. The curve of asymptotic total in the middle figure stands for the LO f0B!Kðq2Þ up to twist-3 that is derived from Eq. (29).
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doing the comparison, we take the same DA moments for
both methods.

We show a comparison of our results of Fþ;0;T
B!�;Kðq2Þwith

those of Eq. (39) in Figs. 7 and 8, respectively. Figure 7

shows fþ;0;T
B!� ðq2Þ with a�2 and a�4 being correlated and

given by the rhomboid shown in Fig. 1, where the solid
line is obtained with a�2 ð1 GeVÞ ¼ 0:0 and a�4 ð1 GeVÞ ¼
0:0 and the dashed line is obtained with a�2 ð1 GeVÞ ¼ 0:23
and a�4 ð1 GeVÞ ¼ �0:030, which set the upper and

the lower ranges of fþ;0;T
B!� ðq2Þ, respectively. Figure 8

shows fþ;0;T
B!K ðq2Þ with aK1 ð1 GeVÞ 2 ½0:03; 0:09� and

aK2 ð1 GeVÞ 2 ½0:10; 0:40�, where the solid line is obtained
with aK1 ð1 GeVÞ ¼ 0:03 and aK2 ð1 GeVÞ ¼ 0:10 and the
dashed line is obtained with aK1 ð1 GeVÞ ¼ 0:09 and
aK2 ð1 GeVÞ ¼ 0:40, which set the upper and the lower

ranges of fþ;0;T
B!K ðq2Þ, respectively. As a comparison, the

shaded bands in these figures show the results of Eq. (39)
within the same aK1 and aK2 region and with their estimated
½12%þ 3%� theoretical uncertainty, where the extra 3%
uncertainty is from aK1 uncertainty [5].

More explicitly, we show the comparison in detail:

(i) At the large recoil region q2 ¼ 0, Ref. [5] gives

fþ;0
B!�ð0Þ ¼ 0:258� 0:031, fTB!�ð0Þ ¼ 0:253�

0:028, fþ;0
B!Kð0Þ ¼ 0:304� 0:076, and fTB!Kð0Þ ¼

0:332� 0:080. It can be found that our results as
shown by Eqs. (36) and (37) are consistent with
those of Ref. [5], especially in the lower q2 region.

(ii) With the increment of q2, the form factors of
Ref. [5] increase faster than ours. We can see this
clearly from the scalar and tensor form factors

f0;TB!�;Kðq2Þ. These differences, especially in the

larger q2 region, are mainly caused by the treatment
of the twist-3 contribution and by the different treat-
ment of the uncertainty. The twist-3 contribution
can affect the shape of the form factors. For ex-
ample, as shown by Fig. 4, the present obtained
f0B!�;Kðq2Þ are close to the LO result derived from

Eq. (29); while Ref. [5] gives a larger f0B!�;Kðq2Þ at
higher q2 region due to the fact that the twist-3
contribution to ½fþB!�;K þ f�B!�;K� is dominant

over the leading twist contribution at large momen-
tum transfer. In Ref. [5], the total uncertainty is

π π π

FIG. 7 (color online). fþ;0;T
B!� ðq2Þ with the allowed values of a�2 and a�4 being correlated and given by the rhomboid shown in Fig. 1.

The solid line is obtained with a�2 ð1 GeVÞ ¼ 0:0 and a�4 ð1GeVÞ ¼ 0:0 and the dashed line is obtained with a�2 ð1 GeVÞ ¼ 0:23 and

a�4 ð1 GeVÞ ¼ �0:030, which set the upper and the lower ranges of fþ;0;T
B!� ðq2Þ, respectively. As a comparison, the shaded band shows

the results of Ref. [5] together with its 12% theoretical uncertainty.

FIG. 8 (color online). fþ;0;T
B!K ðq2Þ for aK1 ð1 GeVÞ 2 ½0:03; 0:09� and aK2 ð1 GeVÞ 2 ½0:10; 0:40�. The solid line is obtained with

aK1 ð1 GeVÞ ¼ 0:09 and aK2 ð1 GeVÞ ¼ 0:10 and the dashed line is obtained with aK1 ð1 GeVÞ ¼ 0:03 and aK2 ð1 GeVÞ ¼ 0:40, which set

the upper and the lower ranges of fþ;0;T
B!K ðq2Þ, respectively. As a comparison, the shaded band shows the results of Ref. [5] together with

its 15% theoretical uncertainty.
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obtained by adding up the uncertainties caused by
each parameter in quadrature; while at the present,
we vary the parameters within their possible regions
and adopt the minimum and the maximum ones as
the uncertainty boundary. Moreover, we have
adopted a simple overall uncertainty 12% or 15%
for the form factors within all q2 for the LCSRs of
Ref. [5], which in fact should be varied according to
different q2, e.g. we have found that such uncer-
tainty may be up to 5% for the mentioned form
factors with the region of q2 2 ½0; 14� GeV2.

(iii) One may observe that in the lower q2 region, differ-
ent from Ref. [5] where FB!Kþ;0;Tðq2Þ increases with
the increment of both aK1 and aK2 , our present
predicted FB!K

þ;0;Tðq2Þ will increase with the incre-

ment of aK2 but with the decrement of aK1 . This
difference is caused by the fact that we adopt the
pion and kaon DAs derived from their wave func-
tions to do our discussion, whose parameters are
determined by the combined effects of aK1 and aK2 ;
while in Ref. [5], aK1 and aK2 are varied indepen-
dently and then their contributions are changed
separately.

B. A comparison of the choosing of the pole or the MS
b-quark mass

References [14,17] have argued to useMS b-quark mass

instead of the pole quark mass. The MS b-quark running
mass ( �mb) is related to the one-loop b-quark pole mass
(m�

b) through the following well-known relation:

�mbð�Þ ¼ m�
b

�
1þ �Sð�ÞCF

4�

�
�4þ 3 ln

m�2
b

�2

��
: (40)

With the help of the relation (40), one can conveniently
transform the form factor expressions among these two
choices of b-quark mass. One only need to be careful to use
all the parameters calculated under the same choice; e.g.
the value of fb should be calculated by using the same
currents in the correlator and under the same choice of
b-quark mass. By calculating the ordinary correlators (1)

and (2) up to NLO and by varying the MS b-quark mass
within the region of �mbð �mbÞ ¼ 4:164� 0:025 GeV,

Refs. [14,17] obtain fþ;0
B!�ð0Þ ¼ 0:26þ0:04

�0:03, fTB!�ð0Þ ¼
0:255� 0:035, fþ;0

B!Kð0Þ ¼ 0:36þ0:05
�0:04, fTB!Kð0Þ ¼

0:38� 0:05, and

fþ;0
B!Kð0Þ

fþ;0
B!�ð0Þ

¼ 1:38þ0:11
�0:10;

fTB!Kð0Þ
fTB!�ð0Þ

¼ 1:49þ0:18
�0:06: (41)

These results are consistent with ours and also with those
of Ref. [5] within reasonable errors, which is also calcu-
lated by taking the pole quark mass. This shows that these
two choices of b-quark mass are equivalent to each other.

C. Extrapolations of the LCSR results to the higher q2

region

In order to allow a simple implementation of our results,
we present a parametrization that includes the main fea-
tures of the analytical properties of the form factors and is
valid in the full physical regime 0 � q2 � ðmB �mPÞ2.
Following the same argument of Ref. [5], we fit the LCSR
results to the following parametrizations that are based on
the procedure advocated by Becirevic and Kaidalov [34],
where we take the LCSR results with all the parameters
taken to be their center values to do the extrapolation, i.e.
the b-quark one-loop pole mass mb ¼ 4:8 GeV,
a�2 ð1 GeVÞ ¼ 0:115, a�4 ð1 GeVÞ ¼�0:015, aK1 ð1 GeVÞ ¼
0:06, and aK2 ð1 GeVÞ ¼ 0:25. To measure the quality of the
fit, we introduce the parameter � that is defined as

� ¼ 100max
t

��������
fðtÞ � ffitðtÞ

fðtÞ
��������;

t 2
�
0;
1

2
; . . . ;

23

2
; 12

�
GeV2;

(42)

i.e. it gives, in percent, the maximum deviation of the fitted
form factors from the original LCSR result for q2 <
12 GeV2.
(i) For f�þ;T ,

fðq2Þ ¼ r1
1� q2=ðm�

1 Þ2
þ r2

1� q2=m2
fit

; (43)

where m�
1 ¼ 5:325 GeV [18] is the mass of B�ð1�Þ.

For f�þ, the fit parameters are r1 ¼ 0:7411, r2 ¼
�0:4815, and m2

fit ¼ 40:01 GeV2 for � ’ 0:05. For
f�T , the fit parameters are r1 ¼ 0:7742, r2 ¼
�0:4952, and m2

fit ¼ 34:71 GeV2 for � ’ 0:9.
(ii) For fKþ;T ,

fðq2Þ ¼ r1
1� q2=ðmK

1 Þ2
þ r2

1� q2=m2
fit

; (44)

where mK
1 ¼ 5:413 GeV [18] is the mass of the

B�
sð1�Þ. For fKþ, the fit parameters are r1 ¼

0:8182, r2 ¼ �0:4862, and m2
fit ¼ 41:61 GeV2 for

� ’ 1:3. For fKT , the fit parameters are r1 ¼ 0:893,
r2 ¼ �0:5073, andm2

fit ¼ 33:13 GeV2 for � ’ 1:8.

(iii) For f�;K0 ,

f0ðq2Þ ¼ r2
1� q2=m2

fit

: (45)

For the case of pion, we obtain r2 ¼ 0:2596
and m2

fit ¼ 46:09 GeV2 for � ¼ 0:07. For the

case of kaon, we obtain r2 ¼ 0:332 and m2
fit ¼

61:64 GeV2 for � ¼ 1:3.
A comparison of the lattice QCD results can be found in

Fig. 9. There are many lattice results in the literature for
B ! �, e.g. [35–41], etc.; for convenience, we have taken
the unquenched lattice QCD result [37] and the quenched
lattice QCD result [36] of B ! � form factors. For the
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B ! K form factors there are little lattice QCD results, and
we adopt the preliminary results derived by Ref. [41] for
our discussion.

V. SUMMARY

We have calculated all the B ! P transition form factors

Fþ;0;T
B!P ðq2Þ with chiral current in the LCSR up to NLO, in

which the most uncertain twist-3 contributions have been
eliminated naturally, with the b-quark pole mass that is
universal. The SUfð3Þ-breaking effects in B ! K form

factors have been carefully discussed and their values
depend on the moment of the kaon distribution amplitude,

aK2 ð1 GeVÞ. It is found that ½fþ;0
B!Kð0Þ�=½fþ;0

B!�ð0Þ� ¼
1:28þ0:06

�0:08 and ½fTB!Kð0Þ�=½fTB!�ð0Þ� ¼ 1:37þ0:07
�0:02 for

aK1 ð1 GeVÞ 2 ½0:03; 0:09� and aK2 ð1 GeVÞ 2 ½0:10; 0:40�.
Based on the LCSR with chiral current, we have made a
comparative study on the properties of transition form
factors with those obtained in literature [5,14,17], in which
the radiative corrections on both the twist-2 and twist-3
parts should be treated in equal footing. It has been found
that the present results are less uncertain under the same
parameter regions to consider the radiative corrections
since the twist-3 contributions have been eliminated natu-
rally in the adopted method, so our results are simpler and
consistent with those in literature that has been derived
with the usual correlators. These form factors are important
ingredients in the analysis of semileptonic B decays, our
present results may be especially helpful to clarify the

present conditions for the B ! �ð0Þð‘� ��‘; ‘
þ‘�Þ decays

and then a better understanding of the � and �0 mixing
[42].
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APPENDIX: PION AND KAON DISTRIBUTION
AMPLITUDES

Generally, the pion and kaon twist-2 and twist-4 DAs
can be written in the following forms:
(i) Twist-2 DAs:

’Pðu;�Þ ¼ 6u �u½1þ aP1 ð�ÞC3=2
1 ð2u� 1Þ

þ aP2 ð�ÞC3=2
2 ð2u� 1Þ

þ aP4 ð�ÞC3=2
4 ð2u� 1Þ þ � � ��; (A1)

where P stands for � or K, respectively, � � � stands
for even higher Gegenbauer terms.

(ii) Twist-4 DA’s [3]:

�4Pð�iÞ ¼ 30�2
3ð�2 � �1Þ½h00 þ h01�3

þ 1
2h10ð5�3 � 3Þ�;

~�4Pð�iÞ ¼ �30�2
3½h00ð1� �3Þ

þ h01½�3ð1� �3Þ � 6�1�2�
þ h10½�3ð1� �3Þ � 3

2ð�2
1 þ �2

2Þ��;
�4Pð�iÞ ¼ 120�1�2�3½a10ð�1 � �2Þ�;
~�4Pð�iÞ ¼ 120�1�2�3½v00 þ v10ð3�3 � 1Þ�;

(A2)

where
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FIG. 9 (color online). Extrapolations of the LCSR results of B ! � and K form factors for higher q2. For comparison, the left
diagram shows the unquenched lattice QCD result [37] (diamond) and the quenched lattice QCD result [36] (triangle) with their
corresponding errors for the vector and scalar B ! � form factors; the right diagram shows the lattice QCD results [41] for the vector
and scalar B ! K form factors (asterisk).
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h00 ¼ v00 ¼ �M2
P

3
�4P ¼ �	2

P

3
;

a10 ¼ 21M2
P

8
�4P!4P � 9

20
aP2M

2
P

¼ 	2
P
P � 9

20
aP2M

2
P;

v10 ¼ 21M2
P

8
�4P!4P ¼ 	2

P
P;

h01 ¼ 7M2
P

4
�4P!4P � 3

20
aP2M

2
P

¼ 2

3
	2
P
P � 3

20
aP2M

2
P

and

h10 ¼ 7M2
P

2
�4P!4P þ 3

20
aP2M

2
P

¼ 4

3
	2
P
P þ 3

20
aP2M

2
P;

with �4P ¼ 	2
P=M

2
P, !4P ¼ 8
P=21. Taking the

leading meson-mass effect into consideration, the

remaining two-particle DA’s of twist-4 can be writ-
ten as [3]

�4PðuÞ ¼ 4u �u

3
f�5u �u½30h00 þ 4h01ð3þ u �uÞ

þ 5h10ð�3þ 2u �uÞ�
þ 2a10½6þ u �uð9þ 40u �uÞ�g
þ 8a10f2u3ð10� 15uþ 6u2Þ lnu
þ 2 �u3ð10� 15 �uþ 6 �u2Þ ln �ug; (A3)

c 4PðuÞ ¼ 5½�4h00 � 2h01 þ h10

þ 4ð�4a10 þ 6h00 þ 4h01 þ h10Þu
� 6ð4h00 þ 6h01 þ 9h10 � 16a10Þu2
þ 20ð2h01 þ 5h10 � 8a10Þu3
þ 10ð8a10 � 2h01 � 5h10Þu4�: (A4)

Setting MP ! 0 and MP ! MK, one can obtain the
pionic and the kaonic twist-4 DAs, respectively.
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