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We investigate the process of phase conversion in a thermally driven weakly first-order quark-hadron

transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves

to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by

combining the equation of state obtained within lattice QCD for the partonic sector with that of a gas of

resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates, and

time evolution, including the effects from reheating on the dynamics for different expansion scenarios.

Our findings confirm the standard picture of a cosmological first-order transition, in which the process of

phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On

the other hand, we show that, even for expansion rates much lower than those expected in high-energy

heavy-ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion

is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition,

as the one provided by the MIT bag model.
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I. INTRODUCTION

It is widely accepted that experiments in high-energy
heavy-ion collisions at the Relativistic Heavy Ion Collider
(RHIC) have produced clear signals that nuclear matter
undergoes a phase transition to a deconfined partonic phase
at sufficiently large values of energy density [1,2]. A
similar transition presumably took place in the early uni-
verse a few seconds after the big bang [3,4]. In fact, this
whole picture is expected from quantum chromodynamics
(QCD), which exhibits the phenomenon of asymptotic
freedom. The nature of the quark-hadron transition, never-
theless, remains an open question. Although lattice QCD
[5], whose recently improved techniques allow for per-
forming calculations with almost realistic quark masses
[6], seems to indicate a crossover, the possibility of a
weakly first-order transition is not ruled out from the
experimental point of view. In reality, most hydrodynamic
calculations within high-energy heavy-ion collisions adopt
an equation of state which provides a strongly first-order
transition [1].

Another point that is seldom mentioned is that, being
built on equilibrium assumptions, lattice QCD thermody-
namics does not provide any information on the dynamical
nature of the deconfining transition. In actual experiments,
the critical (dynamical) behavior could be very different
from what one would expect from a crossover in the
(equilibrium) phase diagram, simply because the phase
conversion is achieved via a nonequilibrium evolution
process [7,8]. Indeed, results from simulations in statistical

mechanics show that the critical behavior can differ sig-
nificantly if one compares the equilibrium phase diagram
to the (nonequilibrium) time evolution of a given system,
and suggest that the dynamics could change the nature of
the phase transition, even though the situation is still un-
clear [9,10]. For these reasons, the scenario of a weakly
first-order deconfining transition is physically appealing,
especially since it comes out naturally by matching two
equations of state that are realistic in their own regimes of
temperature, namely, the equations of state provided by
lattice QCD and by a hadron resonance gas.
In this paper we investigate the process of phase con-

version in a thermally driven weakly first-order quark-
hadron transition. We build an effective potential by com-
bining the equation of state obtained from lattice simula-
tions for one heavy and two light flavors of quarks, which
we use for the partonic sector, with the equation of state of
a gas of resonances for the hadronic phase. Using standard
techniques for the dynamics of first-order transitions, we
compute bubble nucleation features, such as bubble pro-
files, critical radii, the surface tension, and the free energy
as functions of the temperature. We study the process of
phase conversion evaluating the nucleation rate and inves-
tigating the time evolution of the temperature of the system
and its hadronic fraction, as well as the role played by
reheating.
Bubble nucleation is one of different simplified mecha-

nisms used to describe the dynamics of a first-order phase
transition [8]. In this kind of transition, for temperatures
slightly lower than the critical temperature, Tc, the ther-
modynamic potential exhibits a metastable minimum be-
sides the global minimum. The former gradually
disappears as the system cools down, and is turned into a
point of inflection known as spinodal instability. By de-
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creasing further the temperature, the transition follows a
qualitatively different (explosive) evolution, since the free
energy barrier disappears and there is no extra surface cost
for small amplitude long-wavelength fluctuations.
Therefore, depending on the dynamics of supercooling,
the phase conversion can proceed via more than one
mechanism. In a slowly expanding system, the phase tran-
sition occurs through the nucleation of bubbles of the ‘‘true
vacuum’’ state via thermal activation. In general, in order
to knowwhether the system reaches the spinodal instability
before nucleation is completed, it is necessary to inves-
tigate the time scale for thermal nucleation relative to that
for the expansion. In the case of the quark-gluon plasma
(QGP) presumably formed in ultrarelativistic heavy-ion
collisions, the expansion of the plasma is faster than that
in the case of the early universe during the cosmological
quark-hadron transition by a factor of �1018. Thus, it is
clear that one should expect major differences in the pro-
cess of phase conversion when comparing the big bang to
the little bang [11].

Our findings confirm the standard picture of a cosmo-
logical first-order transition, in which the process of phase
conversion is entirely dominated by nucleation, also for the
case of a weakly first-order transition. On the other hand,
we show that, even for expansion rates much lower than
those expected in high-energy heavy-ion collisions, nu-
cleation is very unlikely, indicating that the main mecha-
nism of phase conversion is spinodal decomposition. Our
results are compared to those obtained for a strongly first-
order transition, as the one provided by theMIT bag model.

The dynamics of nucleation and spinodal decomposition
in the hadronization of an expanding QGP after a high-
energy heavy-ion collision has been studied under different
approaches for more than 20 years [12–22], as is also the
case for the cosmological quark-hadron transition [23,24].
However, previous studies were mostly based on equations
of state obtained in the frame of the MIT bag model or
within effective models, such as the linear sigma model
[25], the Nambu-Jona-Lasinio model [26], and the
Polyakov loop model [27] in the environment of a strongly
first-order transition. Only more recently, stimulated by the
findings of lattice QCD, a few studies have considered the
case of a smooth crossover, and how its dynamics com-
pares to a strongly first-order transition, including the
effects from fluctuations and inhomogeneities and the
presence of a critical point [28–30]. Our proposal in this
paper is, as described above, to investigate a scenario
which is in between these two extrema. Furthermore, in
the case of high-energy heavy-ion collisions, in which
there is a very fast quench down to the spinodal instability,
the dynamics can possibly be well described by spinodal
decomposition even in the case of a smooth (but very fast)
crossover.

The paper is organized as follows. Section II reviews the
theoretical methods we use to describe the nucleation

process of an expanding system, including a brief presen-
tation of the thin-wall approximation following a different
reasoning, and discusses the dynamics in an expanding
background plus the role of reheating. Our numerical
results are discussed in Sec. III, where we display the
relevant bubble features, as well as the time evolution of
the temperature and of the hadronic fraction, and analyze
the process of reheating. Finally, our conclusions are pre-
sented in Sec. IV.

II. THEORETICAL FRAMEWORK

Thermodynamically, a phase transition happens when a
given system shifts its state of equilibrium from one free
energy minimum to another in response to the change of
some critical thermodynamic parameter. In real transitions,
this shift between equilibrium states is often an essentially
nonequilibrium process and, in principle, one has no hope
to describe it using the machinery of equilibrium thermo-
dynamics. However, several natural systems exhibit phase
transitions in which the system is trapped in a metastable
state (false vacuum) for a long time before reaching the
final equilibrium configuration (true vacuum). This is cer-
tainly true in a strongly first-order scenario in which the
time scale of supercooling (superheating) in a thermally
driven transition is not much faster than the typical reaction
time of the system. A first-order phase transition occurs
between noncontiguous states in the thermodynamic con-
figuration space, and manifests itself as a discontinuity in
the entropy. This latent heat is a consequence of an energy
barrier that prevents the system to simply roll down to the
true minimum. If this barrier is high (characteristic of a
strongly first-order transition), a statistically improbable
fluctuation is required, and the system is held in a meta-
stable state for an appreciable time interval.
A similar metastable behavior sets in when the change in

the critical parameter is fast as compared to the relaxation
time of the system. This is the case of the hadronization of
the QGP formed in high-energy heavy-ion collisions,
where the time scale of the expanding plasma is orders
of magnitude shorter than the typical reaction time of the
deconfined matter. It turns out that it can be impossible
(and immaterial) to determine the ‘‘real nature’’ of the
phase transition in this dynamical system since the
quenched plasma does not have to follow a continuous
path in the thermodynamic configuration space.
Assuming a weakly first-order scenario for the quark-
hadron transition, we review in the next sections some
theoretical tools used in the description of the decay of
metastable states.

A. Homogeneous nucleation

The paramount example of metastability in a first-order
transition is the supersaturated vapor in a gas-liquid mix-
ture below the condensation temperature. The mixture is
composed of bubbles of liquid suspended in the gas, the
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two phases separated by a definite surface. Taking into
account the surface energy of the partially developed
phase, the notion of thermodynamic equilibrium can be
extended in spite of the fact that the gas cannot be in
equilibrium with a fully developed liquid phase. Since it
takes energy to make a surface, small bubbles will not be
energetically favorable, and will be constantly created and
evaporated. On the other hand, if a sufficiently large bubble
is formed in the medium, it will tend to grow, eventually
converting the entire system to the new phase.

The mechanism of bubble nucleation can play an im-
portant role in a first-order phase transition. It ignores the
initial stages of the development of bubbles, being an
effective theory for semimacroscopic elements of volume.
Still, one may have a flavor of what really happens by
studying the dynamics of the nucleated bubbles. The ques-
tion of the formation of bubbles is extremely relevant,
mainly when external agents play the role of nucleating
centers, leading to a significant increase of the nucleation
rate. This is actually what happens to most natural systems,
and is known as heterogeneous nucleation. However, we
will not consider this kind of nucleation mechanism, but
one in which bubbles originate from intrinsic thermody-
namic fluctuations: the mechanism of homogeneous nu-
cleation. It is a more fundamental process for which there
is a field theory which captures its basic features. Most of
the formalism is based on a series of papers written by
Langer in the late sixties [31], where the basic theoretical
apparatus to describe the decay of a metastable state of a
classical system interacting with a heat bath at temperature
T is proposed (see also [32]). In this approach, stable and
metastable phases appear as local minima of a smooth
energy functional E. Based on a phenomenological droplet
model, it is conjectured that, in going from one minimum
to a neighbor one, the system is likely to pass across a
saddle point which is a minimum of E in all directions of
functional space but one, the latter giving rise to the
instability. This saddle-point configuration plays the role
of the critical bubble in the formalism. Langer derived an
equation of motion for the probability distribution of the
system, and obtained a steady-state solution flowing across
the saddle point, allowing for the calculation of a classical
nucleation rate (probability per unit time per unit volume
that a critical bubble nucleates)

� ¼ j��1j
�T

ImF; (1)

where F is a prescribed analytic continuation of the free
energy of the stable phase in the unbroken (single-well)
version of the theory which becomes metastable after the
analytic continuation. The parameter ��1 is the negative
eigenvalue of the fluctuation operator characterizing the
instability of the saddle-point configuration.

The zero-temperature quantum field theoretic case,
where transitions are exclusively due to quantum tunnel-

ing, was considered by Coleman and Callan in [33], and,
when both quantum and thermal fluctuations act together,
the decay rate is approximately given by (1), as proved by
Affleck [34] in a quantum mechanical context. Of course,
the existence of a single direction of instability simplifies
the extension of Langer’s formalism to quantum field
theories, and direct applications were proposed in the
literature [35,36].
A good description of the nucleation process relies on a

suitable choice of the free energy functional governing the
dynamics of the bubbles. The natural choice corresponds to
deriving the free energy from a more fundamental theory.
When this is not feasible, and this is the case for the full
QCD Lagrangian, one can resort to a phenomenological
approach, imposing symmetry requirements, as will be
discussed in the next section.

B. Effective potential and equations of state

As customary, one can obtain information about the
phase transition by studying the evolution of a scalar field
� which represents the order parameter. It is reasonable to
assume spherical symmetry for nucleating bubbles, so that
one defines a coarse-grained free energy functional of the
form:

Fð�Þ ¼ 4�
Z

r2dr

�
1

2

�
d�

dr

�
2 þ Vð�Þ

�
: (2)

Thus, the field � evolves in space in the presence of an
effective potential that can be parametrized in the form of a
Landau expansion around the equilibrium phases, i.e.

Vð�Þ ¼ aðTÞ�2 � bT�3 þ c�4: (3)

The parameters b > 0, c > 0, and aðTÞ, and the interpre-
tation of the order parameter are determined by the sce-
nario under consideration, namely, the supercooled
(T < Tc) QGP. One should notice that, in this simple
approach, the temperature enters only as a parameter of
the effective potential.
The potential (3) is suitable for a first-order phase tran-

sition due to the properties of its extrema. The order
parameter configurations (bubble profiles) are solutions
of the following Euler-Lagrange equation:

d2�

dr2
þ 2

r

d�

dr
� V 0ð�Þ ¼ 0: (4)

The potential (3) has two minima, �q and �h, which

correspond to the equilibrium phases. Here, �q (�h) cor-

responds to the quark (hadron) phase. There is a barrier
separating�q and�h which can be associated with a latent

heat, a jump in entropy from one phase to the other. In
addition, one can prove that, as required by Langer’s
formalism, this theory has a saddle-point solution, �b,
connecting the two minima and with a single unstable
direction [31]. The minimum �q is conveniently chosen

to be zero, while the other one is located at
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�h ¼ 1

8c
ð3bT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9b2T2 � 32aðTÞc

q
Þ: (5)

The transition temperature is reached when the pressures
of the competing phases coincide. This condition sets a
connection with thermodynamics through the identifica-
tion

pqðTÞ � phðTÞ ¼ Vð�h; TÞ; Vð�q; TÞ ¼ 0; (6)

where pq and ph are the pressures of the quark (decon-

fined) phase and hadron phase, respectively.
In order to proceed with the study of the phase conver-

sion from the deconfined state to hadrons, one has to fix the
potential, either by connecting it to pressures computed for
each phase, as described above, or by extracting the effec-
tive potential directly from some effective field theory,
such as the linear sigma model as, for instance, in
Refs. [20,28]. We choose to follow the first procedure
and, instead of using the MIT bag model as usually done
for simplicity, we profit from the currently more robust
knowledge of the equation of state of QCD in the two
different regimes (partonic and hadronic) which justifies
the use of more realistic expressions for the pressure.
Concretely, we use lattice QCD results for Nf ¼ 2þ 1

quark flavors to describe the high-temperature sector
[37], and a gas of over 250 free resonances for the hadronic
phase [38]. This yields a weakly first-order deconfining
transition, to be contrasted to the usual case of a strongly
first-order transition as provided by the bag model, and the
value of the critical temperature is automatically deter-
mined by the crossing of the high and low temperature
pieces of the equation of state (EoS), as illustrated in Fig. 1.
For comparison, we also use the bag model for the quark
phase in our calculations and discussion, choosing the bag
constant according to the critical temperature obtained by
the crossing of the pressure curves [39].

Finally, the relations (6) leave two remaining conditions
to be imposed on the potential. These can be chosen to fit a
pair of physical properties of the critical bubble near the
transition temperature, such as the surface tension and the
correlation length [13].

C. The thin-wall approximation revisited

It is always convenient to consider the following auxil-
iary mechanical problem in the solution of Eq. (4): the one-
dimensional dynamics of a particle moving in a dissipative
medium in the presence of the potential (� V). Ignoring
the dissipative term, strictly at T ¼ Tc, the solution of
Eq. (4) can be written in terms of elementary functions.
The aim of this section is to discuss approximate analytic
solutions for temperatures close (in some precise sense) to
Tc, where dissipation must be present.
In order to explore this case, it is convenient to write the

potential V as the sum of the critical potential plus a linear
term which introduces deviations from T ¼ Tc [20]. This is
always possible for a quartic potential up to a shift in the
zero of the energy. In the present case, we obtain Vð�Þ ¼
Wð�þ�Þ þW0, where W0 is a constant,

Wð�Þ ¼ cð�2 ��2
0Þ2 þ j�; (7)

�2
0 ¼

1

2

�
3

8

�
bT

c

�
2 � aðTÞ

c

�
; (8)

j ¼ c

2

�
aðTÞbT

c2
� 1

4

�
bT

c

�
3
�
; (9)

and � ¼ �bT=4c. The corresponding Euler-Lagrange
equation has the same form as (4), with W 0 replacing V 0.
The critical (T ¼ Tc) potential (for which j ¼ 0) is a
symmetric double well with minima at� ¼ ��0. In terms
of these parameters, the solution in the thin-wall approxi-
mation at T ¼ Tc is a kink which interpolates between the
two symmetric minima:

�bðrÞ ¼ �0 tanh

�
r� R

�

�
; (10)

where � ¼ 1=ð�0

ffiffiffiffiffi
2c

p Þ can be thought of as a correlation
length. When dissipation is neglected, the previous func-
tion is a solution for any value of R. Given the specific form
of the dissipation term, approximate solutions for the full
potential are obtained for large values of R=�. The limit
�=R � 1 characterizes the so-called thin-wall regime [8].
For T < Tc, the parameter j is negative and the two

minima of W are shifted to

�f ¼ � � ��0

�
1þ j

8c�3
0

�
(11)

and

�t ¼ � 1

2
�þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

0 � 3�2
q

� �0

�
1� j

8c�3
0

�
: (12)
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FIG. 1 (color online). Pressures for the hadron resonance gas
(solid line), bag model (dash-dotted line), andNf ¼ 2þ 1 lattice

QCD (dashed line) equations of state.
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When jj=ð8c�3
0Þj � 1, the potential is only slightly tilted.

In this range, the dissipation term will be small, and it is
reasonable to assume that the interpolating solution still
has a kinklike profile, i.e.,

�bðrÞ ¼ �f þ
�t ��f

2

�
1� tanh

�
r� R

�

��
; (13)

where � ¼ ffiffiffiffiffiffiffiffi
2=c

p ð�t ��fÞ�1. Still in this limit, one can

show that the free energy of the bubble �b is given by

Fð�bÞ ¼ � 4�R3

3
�W þ 4�R2�; (14)

where �W ¼ Wð�fÞ �Wð�tÞ � 2ajjj, and the surface

tension, �, is related to the parameters of the problem
through

� �
Z 1

0

�
d�b

dr

�
2
dr � 2

3c�3
: (15)

As discussed in the previous subsection, the value of � at
T ¼ Tc and the constant value of � will be considered as
inputs in our treatment. In terms of these quantities, the
coefficients of the potential (3) are completely determined.
Imposing that �b be stationary, we obtain the critical
radius

Rc ¼ 2�

�W
: (16)

Strictly speaking, the function (13) is an exact solution
only at T ¼ Tc, where j ¼ 0 and Rc diverges. A different
approach consists in taking the dissipation into account in
the following manner: (i) the solution conserves energy;
(ii) it is exact at Tc. We can impose both conditions to a
function of the form

c bðrÞ ¼ �f þ �

�
1� tanh

�
r� ~Rc

~�

��
: (17)

Condition (ii) gives

~R c ¼ 2�=~�

�jþ 4cð�þ �Þ½�2
0 � ð�þ �Þ2� ; (18)

whereas condition (i) is equivalent to

Z 1

0

2

r

�
dc bðrÞ
dr

�
2
dr ¼ Wð�fÞ �Wðc bð0ÞÞ: (19)

In the thin-wall limit (~�= ~Rc � 1), condition (i) is simply

8�2

3~� ~Rc

¼ Wð�fÞ �Wð�f þ 2�Þ: (20)

Coupling (i) with (ii) leads to � ¼ ð�v ��fÞ=2, ~� ¼ �,

and ~Rc ¼ Rc. Numerical results point to a kinklike solution
with a decreasing escape value when one decreases the
temperature. This fact explains the behavior of the surface
tension plotted in Fig. 4 within this approximation.

Once we have an (approximated) expression for the
bubble solution, we can use it to calculate the decay rate
shown in Eq. (1). This rate can be written as [31]

� ¼ P 0

ð2�Þ e
��F=T; (21)

where �F is the difference in free energy between the
saddle-point configuration (�b) and the metastable phase
(�f). The prefactor P 0 is a product of a dynamical factor �

(related to the expansion rate of the bubbles) and a statis-
tical factor �0, which accounts for the first corrections to
�F due to quadratic fluctuations around each extremum.
As usual, these quadratic fluctuations are formally written
in terms of the determinant of the fluctuation operator
½r2 � V 00ð�Þ�, where � is either �f or �b. Thus, one

obtains

�0 ¼ ð�R2
cTÞ1=2

�
4�R2

c�

3

�
3=2

�
det0½r2 � V 00ð�bÞ�
det½r2 � V00ð�fÞ�

��1=2
;

(22)

where the prime indicates that the zero and negative modes
are excluded. The first term in the (right-hand side) r.h.s. of
(22) comes from the negative eigenvalue of the fluctuation
operator along the direction of instability. The second term
is the contribution from the three zero modes which are
present because the bubble breaks translational symmetry.
Except for the four unpaired eigenvalues of ½r2 �
V00ð�fÞ�, all the other delocalized eigenvalues of that op-

erator cancel the corresponding ones of ½r2 � V 00ð�bÞ�.
Taking all the remaining contributions into account, it is
possible to show that [35]

�0 ¼ 2

3
ffiffiffi
3

p
�
�

T

�
3=2

�
Rc

�q

�
4
; (23)

where �q is identified as the correlation length of the

metastable phase. For the dynamical coefficient, Csernai
and Kapusta derived the following expression [13]:

� ¼ 4�ð	 þ 4
=3Þ
ð�!Þ2R3

c

: (24)

In the previous formula, 	 and 
 are, respectively, the bulk
and shear viscosity coefficients of the quark phase, and�!
is difference in the enthalpy density of quark and hadron
phases (see also Ref. [40] for a careful discussion of the
dynamical prefactor).

D. Dynamics of the phase conversion in an expanding
background

As soon as a QGP is formed after a high-energy collision
of heavy ions or in the early universe, it expands towards
the empty space around it. Because of this expansion, the
energy density and, therefore, the temperature of the
plasma drops and eventually becomes smaller than the
critical temperature for the quark-hadron phase transition.
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Assuming a weakly first-order transition, as discussed
before, the system then becomes metastable and the nu-
cleation of bubbles of the cold phase is possible. If the
expansion rate is large enough, however, the system super-
cools so fast that it may reach a thermodynamically un-
stable region of the phase diagram, the spinodal region,
before nucleation is able to drive most of the system to the
true vacuum. In this case, the phase conversion is domi-
nated by the process of spinodal decomposition, which is
rather different from nucleation, since it is characterized by
long-ranged fluctuations, instead of localized nucleating
bubbles [8]. Here we focus on the nucleation stage during
the expansion, and how the nucleation and expansion time
scales compare.

For simplicity, we consider a homogeneous and iso-
tropic expansion of the fluid, and assume that the Hubble
parameter HðxÞ � @�u

�ðxÞ is actually a constant. We also

assume that the entropy is approximately conserved (glob-
ally) during the expansion, once the viscosity of the QGP is
very low, as indicated by heavy-ion collision experiments
[2,41]. However, the viscosity cannot be strictly zero, once
it is necessary for the process of nucleation at vanishing
chemical potential (see, e.g., Ref. [40]). For definiteness,
we assume that the viscosity coefficient in Eq. (24), 	 þ
4
=3, is of the order of the lower bound set by holographic
models [42].

To have a measure of the importance of nucleation in the
hadronization process, we estimate how much of an ex-
panding plasma should hadronize through nucleation be-
fore the spinodal temperature is reached. In a first
approach, we employ some simplifying assumptions. The
first of them is to neglect reheating effects (which will be
considered later) and, assuming the conservation of en-
tropy:

d

dt
ðsa3Þ ¼ 0: (25)

The assumption of isotropic expansion leads to the Hubble
law for the scale factor aðtÞ,

da

dt
ðtÞ ¼ HaðtÞ; (26)

and Eq. (26) leads to an exponential decay of the tempera-
ture with time

TðtÞ ¼ Tc expð�HtÞ; (27)

where t ¼ 0 is chosen to correspond to T ¼ Tc.
Given an equation of state and an effective potential, we

can find the spinodal temperature of the system, Tsp, and

the time tsp the plasma takes to reach this temperature. For

our equation of state, Tsp=Tc ¼ 0:984, which leads to

Htsp � 0:01. The fraction fðtÞ of space which suffers nu-

cleation from tðTcÞ � 0 until tsp � tðTspÞ can be overesti-

mated as follows:

fðtspÞ ¼
Z tsp

0
dt

4�

3
R3ðt; tspÞ�½TðtÞ�

<
4�

3
ðtspTcÞ4 � 10�3 � 1; (28)

where Rðt0; tÞ is the radius at time t of a bubble ‘‘born’’ at
time t0 [Rðt0; tÞ< cðt� t0Þ]. In this estimate we also use the
value H�1 ¼ 10 fm=c, which should also give an extra
overestimating contribution to fðtspÞ.1 We see that, if we

neglect reheating effects, typical QGP expansion times in
heavy-ion collisions rule out nucleation and therefore most
of the plasma should hadronize via spinodal decomposi-
tion, a result that was also obtained using the linear sigma
model [16,20].
However, once a bubble of the true vacuum is nucleated,

an amount of latent heat proportional to the volume of the
bubble is released in the medium, so that the temperature
does not fall exponentially as in the previous case. If the
nucleation rate is high enough, the released latent heat may
win the competition against the energy loss due to the fluid
expansion and the plasma reheats. This reheating can drive
the system to temperatures close to Tc, decreasing the
supercooling rate and considerably delaying its arrival at
the spinodal temperature. In this case, when we may say
that reheating is effective, the whole system is hadronized
via nucleation of bubbles and Tsp will be reached only

some time after the transition is completed.

E. Reheating

In order to account for reheating effects, we make some
assumptions aside from those cited on the previous sec-
tions. First, the latent heat released in the formation of a
true vacuum bubble is uniformly distributed throughout the
whole plasma, which is consistent with that of bubble
growth via weak deflagration [23]. Therefore, if sqðTÞ
(shðTÞ) is the entropy in the QGP (hadron gas) phase and
sðTÞ is the space average of the entropy density,

s ¼ shfþ ð1� fÞsq; (29)

then entropy conservation implies

s ¼
�
að0Þ
aðtÞ

�
3
sqðTcÞ; (30)

where we set T ¼ Tc and s ¼ sq at t ¼ 0. For a supercool-

ing � � ðTc � TÞ=ðTc � TspÞ � 1, we have sqðTÞ �
sqðTcÞ and using the thermodynamic relation�p ¼ �V ¼
e� Ts, we find a relation between the temperature and the
scale factor at a given time t:

�
TðtÞ
Tc

�
3 ¼

�
að0Þ
aðtÞ

�
3 þ f

�sðTÞ
sqðTcÞ ; (31)

1H�1 is usually estimated to be in the range 1–10 fm=c for the
expanding QGP created in heavy-ion collisions [43].
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where �sðTÞ ¼ sqðTÞ � shðTÞ is proportional to the latent

heat ‘ at T � Tc. Once we consider a constant Hubble
parameter H, the scale factor grows exponentially, aðtÞ ¼
að0ÞeHt, and Eq. (31) becomes an implicit equation for the
temperature as a function of time. We see that the first term
on the r.h.s. of Eq. (31) accounts for the cooling due to the
expansion, while the second is proportional to the hadron-
ized fraction f and reflects the homogeneous reheating
caused by the phase conversion.

We compute f using the expression [44]

fðtÞ ¼ 1� exp

�
�
Z t

0
dt0

�
aðt0Þ
aðtÞ

�
3
�½Tðt0Þ� 4�

3
R3ðt0; tÞ

�
;

(32)

where Rðt0; tÞ is the radius of a bubble created at time t0
with critical size Rc½Tðt0Þ� at time t:

Rðt0; tÞ ¼ Rc½Tðt0Þ� aðtÞaðt0Þ þ
Z t

t0
dt00vw½Tðt00Þ� aðtÞaðt00Þ : (33)

We suppose that the velocity of the bubble wall at the
temperature T is given by the following Allen-Cahn equa-
tion, which relates the velocity of a domain wall to the
local curvature [8,45]:

vwðTÞ ¼ �pðTÞ



¼ ��VðTÞ



; (34)

where �pðTÞ ¼ ��VðTÞ � VqðTÞ � VhðTÞ> 0 is the

pressure difference between the two phases at a given
temperature T. This expression corresponds to a steady
growth of the bubble in which the pressure difference
between both sides of the bubble wall is balanced by a
damping force which is proportional to the velocity of the
wall. The friction coefficient 
 is given by


 ¼ ~
T�ðTÞ; (35)

where

�ðTÞ ¼
Z 1

0
dr

�
d�

dr

�
2

(36)

is the surface tension as a function of the temperature, and
~
 is a number of order one.
We solve the set of equations (31)–(34) numerically, and

the results are presented in the following section.

III. RESULTS AND DISCUSSION

A. Bubble features

In what follows, we calculate the main physical attrib-
utes of critical bubbles both numerically and using the thin-
wall approximation. Figure 2 shows bubble profiles, �ðrÞ,
for various temperatures. It is clear that the numerical
results and the thin-wall approximation give very similar
results for temperatures close to Tc and become more and
more different as the temperature is lowered, as expected.
One of the main differences is the broadening of the

numerical profile, which does not happen with the thin-
wall result, indicating not only the failure of this approxi-
mation for lower temperatures but also the failure of the
nucleation picture itself as the system approaches the
spinodal temperature.
From the bubble profiles we obtain two important quan-

tities: the bubble critical radius and the surface tension.
The critical radius as a function of the temperature is
shown in Fig. 3. Notice that the critical radius (defined
here as the distance from the bubble center in which � ¼
�0=2) diverges at the critical temperature, as seen in
Sec. II C, and also diverges at the spinodal temperature.
Notice, however, that for these high values of supercooling,
the very concept of a bubble does not make sense any
longer, once the width of the wall is larger than the bubble
radius.
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FIG. 2 (color online). Order parameter distributions (bubble
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The surface tension, �ðTÞ, exhibits an interesting behav-
ior, as displayed in Fig. 4. From its value at T ¼ Tc,
�ðTcÞ ¼ 2 MeV=fm2, downwards it starts to grow up to
a maximum value and then decreases from this point down.
Roughly speaking, the value of the surface tension is the
slope pðrÞ � ðd�=drÞ2 times the width of the wall �ðTÞ,
i.e., the region in which pðrÞ � 0. As the temperature is
lowered from Tc, the wall is progressively broadened, but
pðrÞ does not change much. As a consequence, the surface
tension increases. It is only when pðrÞ starts to decrease
faster than the increase of �ðTÞ that �ðTÞ decreases too.
This happens for lower temperatures because the order
parameter deep into the bubble, �ðr ¼ 0Þ, becomes
smaller, as can be seen in Fig. 2 and, therefore, pðrÞ also
becomes smaller. Notice that the thin-wall approximation
is not very sensitive to this competition between the width
of the wall and the discontinuity of the order parameter
across it because its bubble profiles always connect the two
minima, having �hðTÞ as the decisive parameter, which
decreases more slowly than the exact (numeric) �ðr ¼ 0Þ
for lower temperatures. Therefore, in the thin-wall ap-
proximation, �ðTÞ is a monotonically decreasing function
of T. This nontrivial behavior of �ðTÞ suggests that the
temperature in which �ðTÞ reaches its maximum can be
interpreted as a (generous) limit to the applicability of the
thin-wall approximation. Following the previous criterion,
one can say that the thin-wall approximation fails for
supercooling higher than � ¼ 0:1.

Our aim in calculating all these quantities is to evaluate
the change in free energy �F due to the presence of the
bubble, which is an essential ingredient for the nucleation
rate � [see Eq. (21)]. �F can be calculated either directly
from (2) or, in a computationally faster way, by using the
formula

�FðTÞ ¼ 4�

3
R3
cðTÞ�pðTÞ þ 4��ðTÞR2

cðTÞ: (37)

This expression resembles the thin-wall expression for
�F, but here the temperature dependence of the surface
tension makes this formula a good approximation to the
exact value obtained using (2), once the functions RcðTÞ,
�pðTÞ, and �ðTÞ are known. The different results to �F,
calculated using a simple thin-wall (where � is a constant),
using Eq. (37) (which we call T-dependent thin-wall), and
from Eq. (2), are shown in Fig. 5. In our following compu-
tations, we use Eq. (37).

B. Time evolution

Now that we have all the necessary elements, we may
investigate the time evolution of the system. We first
analyze how the temperature evolves with time if we
consider the reheating backreaction effects on the expand-
ing system. As a first example, we consider three different
expansion rates: H�1 ¼ 100 fm=c (fast), H�1 ¼
600 fm=c (critical), and H�1 ¼ 107 fm=c (slow). From
Fig. 6 we can see that in the first case the temperature
drops so fast that the system reaches the spinodal tempera-
ture without having time to grow enough bubbles to reheat.
This is an example of a quench into the spinodal region. As
the expansion rate H is lowered, the growing bubbles
eventually have time to effectively release enough latent
heat. Then, the cooling process is reversed and the tem-
perature is raised to a value close to (and lower than) Tc. In
this way the phase transition is completed through bubble
nucleation. When the whole plasma is hadronized, there is
no more release of latent heat, the expansion once again
dominates, and the temperature falls abruptly. For the
realistic equation of state we adopt, we find that the lowest
(critical) expansion rate H at which there is reheating
corresponds approximately to H�1 ¼ 600 fm=c. Finally,
we also consider a very low expansion and verify that the
phase conversion proceeds almost entirely at T ¼ Tc,
which is equivalent to having an almost in equilibrium
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FIG. 4 (color online). Surface tension as a function of T=Tc.
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phase conversion. Notice, however, that, if we take a closer
look at the temperature as a function of time, even for the
slowest expansion rate there is a slight supercooling in
the beginning of the phase transition (as can be seen in
the zoom for early times displayed in Fig. 7). In any case,
the slower the expansion rate, the closer to equilibrium the
transition evolves. Furthermore, the product Htsp is the

same for all expansion rates.
Dissipation effects can generally affect significantly the

dynamics of phase conversion, even in the case of an
explosive spinodal decomposition [22]. In our framework,
viscosity enters as a parameter in the dynamical prefactor
of the nucleation rate [see Eq. (24)]. Recalling that the
viscosity of the QGP is presumably very small [2,41] and
that, on the other hand, holographic models set a lower
bound (
AdS=s ¼ 1=4�) [42], we compare the dynamics
of the phase conversion for two values of viscosity: 
AdS

and 3
AdS. Figure 8 shows that by increasing the viscosity
from 
AdS to 3
AdS the supercooling decreases approxi-

mately by a factor of 2, although the time to complete the
transition remains unaffected.
The effects of different values of latent heat on the

dynamics of the phase transition was also studied. In
Fig. 9, we show the time evolution of the temperature
considering the two equations of state discussed in
Sec. II B and an expansion rate H�1 ¼ 600 fm=c.
In Fig. 9 we can see that the EoS provided by the bag

model, which leads to a latent heat larger than the one
produced by the mixed EoS we adopt, implies a different
transition dynamics. In fact, the larger latent heat of the bag
EoS leads to a faster reheating of the plasma, since each
nucleated bubble releases much more latent heat. Thus, a
faster reheating means that the system will spend more
time close to the critical temperature and the average
nucleation rate will be much smaller for higher values of
latent heat. Therefore, as can be seen in the figure, the
nucleation process will take much longer to be completed.
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FIG. 7 (color online). Temperature, in units of Tc, as a function
of time, in units of 1=H, for different expansion rates at early
times.

0 0.05 0.1 0.15 0.2 0.25

Ht

0.98

0.99

1

T
/T

c

η/s = 1/(4π)
η/s = 3/(4π)
T = T

sp

FIG. 8 (color online). Temperature, in units of Tc, as a function
of time, in units of 1=H for different values of viscosity with
H�1 ¼ 600 fm=c.

0 0.1 0.2 0.3 0.4

Ht

0.9995

1

T
/T

c

Lattice + Hadron gas
Bag + Hadron gas

FIG. 9 (color online). Temperature, in units of Tc, as a function
of time, in units of 1=H, for the mixed and the bag model
equations of state with H�1 ¼ 600 fm=c.

0 0.05 0.1 0.15 0.2 0.25 0.3

Ht

0.98

0.99

1
T

/T
c

H
-1

 = 100 fm/c
H

-1
 = 600 fm/c

H
-1

 = 10
7
fm/c

T = Tsp

FIG. 6 (color online). Temperature, in units of Tc, as a function
of time, in units of 1=H, for different expansion rates.

PHASE CONVERSION IN AWEAKLY FIRST-ORDER . . . PHYSICAL REVIEW D 79, 034012 (2009)

034012-9



We can now focus on the hadronic fraction of the
plasma, i.e., the fraction which has been hadronized via
bubble nucleation up to time t, fðtÞ. As can be easily seen

from Eq. (32), fðtÞ depends very strongly on ~� �
1� T=Tc, another measure of the supercooling. In fact,

for a small ~�, when the thin-wall approximation is valid,

�ðTÞ ¼ P 0

2�
exp½��F=T� � P 0

2�
exp

�
� 16��3

3‘2Tc
~�2

�
; (38)

which depends very strongly on ~�. This implies that fðtÞ
will also grow exponentially as the temperature decreases,
but before reheating effects are manifest. Indeed, after
reheating the fluid temperature is near Tc and it is unlikely
that new bubbles nucleate. This means that after reheating
fðtÞ grows due to the expansion of the existing bubbles, i.e.
in a much milder fashion than during the supercooling
phase, as can be seen in Fig. 10. We also notice that, for
a slow expansion, the first stage (nucleation of new bub-
bles) takes place very early, and almost all of the dynamics
of phase conversion is due to the expansion of the bubbles.

By examining both TðtÞ and fðtÞ on the same plot
(Fig. 11), one can see quite clearly the relation between
the reheating and the growth of fðtÞ on one hand and, on
the other hand, that after the reheating the temperature
drops only after the phase transition is completed, i.e., after
the system reaches f ¼ 1.

If the plasma is quenched directly into the spinodal
region and its hadronization begins, there will also be a
release of latent heat, just like in nucleation, and the system
may also reheat. A curious possibility is that of a double
process phase conversion, in which the reheating takes the
plasma back to some metastable temperature, in which
nucleation dominates. As a result, part of the plasma is
converted through spinodal decomposition and part by
(inhomogeneous) nucleation. It would also be interesting

to explore experimental consequences of such a hybrid
transition process.

IV. CONCLUSIONS AND OUTLOOK

Using two different equations of state, a realistic match-
ing of hadron gas of resonances and lattice QCD for Nf ¼
2þ 1 on one side, and the bag model (matched onto a
hadron gas in the low temperature sector) on the other, we
calculated both static and dynamical features of homoge-
neous bubble nucleation in a weakly first-order quark-
hadron transition scenario, which is physically appealing
if one takes into account results from the lattice and from
experiments, as well as the nonequilibrium nature of the
phase conversion process, especially in the case of high-
energy heavy-ion collisions.
After setting up an effective potential, we obtained

numerically bubble profiles, critical radii, the surface ten-
sion, and the free energy as functions of the temperature.
We also compared our numerical results to those derived in
the thin-wall approximation. We showed how this approxi-
mation (valid only near the critical temperature) can be
used to overestimate the nucleation rate for lower tempera-
tures. This indicates that an adequate approach to the
dynamics of nucleation away from Tc should take into
account exact bubble profiles �ðrÞ, which in general
have to be calculated numerically. With these static quan-
tities we were able to feed a model for the dynamics of
bubble nucleation in a homogeneously and isotropically
expanding plasma, which is often adopted in studies of the
early universe and heavy-ion collisions. Within this model,
the only essential difference between these two physical
settings is the value of the inverse Hubble constant H�1,
which is about 1019 fm=c in the early Universe during the
quark-hadron transition era, and about 10 fm=c in the case
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of heavy-ion experiments. We computed the temperature
and the fraction of hadronized plasma as functions of time
for different expansion rates, H, in order to make a quanti-
tative estimate of the importance of nucleation in (homo-
geneous and isotropic) expanding systems.

In the scenario of a weakly first-order transition inves-
tigated in this paper, it is clear that nucleation remains as
the dominant mechanism of phase conversion in the early
universe, as expected from the standard cosmological pic-
ture. Nevertheless, previous estimates for relevant time
scales using the bag model equation of state, which yields
a much stronger first-order transition, may differ by a
factor of 2 when compared to results from a more realistic

equation of state. For high-energy heavy-ion collisions,
where the plasma expands very quickly, the main mecha-
nism for phase conversion must be greatly dominated by
spinodal decomposition, which possibly has some effect on
particle correlations and fluctuation [21,28–30,46–51].
This issue will be addressed in a future publication.
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