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In this paper we present a comprehensive formalism for dilepton production from the collision of two

polarized spin- 12 hadrons by identifying the general angular distribution of the cross section in combi-

nation with a complete set of structure functions. The various structure functions are computed in the

parton model approximation where we mainly consider the case when the transverse momentum of the

dilepton pair is much smaller than its invariant mass. In this kinematical region dilepton production can be

described in terms of transverse momentum dependent parton distributions.
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I. INTRODUCTION

During the past decades dilepton production in high-
energy hadron-hadron collisions (the so-called Drell-Yan
(DY) process [1,2]) has played an important role in order to
pin down parton distributions (PDFs) of hadrons. While the
main focus was on PDFs of the nucleon, also information
on the partonic structure of the pion was already obtained
through Drell-Yan measurements. The crucial tool re-
quired for the extraction of PDFs is the QCD-factorization
theorem [3–6] which applies if the invariant mass of the
dilepton pair is sufficiently large. Experimentally, the
Drell-Yan process is quite challenging because of the
relatively low counting rates. On the other hand, from the
theoretical point of view it is the cleanest hard hadron-
hadron scattering process. The fact that no hadron is de-
tected in the final state simplifies the proof of factorization
in comparison to hadron-hadron collisions with hadronic
final states. This important point is one of the main reasons
for the continued interest in the Drell-Yan reaction.

Currently, not less than six programs for future Drell-
Yan measurements are pursued. These plans comprise
dilepton production in nucleon-nucleon collisions (at
RHIC [7], J-PARC (KEK) [8,9], IHEP (Protvino) [10],
and at the JINR (Dubna) [11]), in antiproton nucleon
collisions (at FAIR (GSI) [12]), as well as in pion nucleon
collisions (at COMPASS (CERN) [13]). Past measure-
ments exclusively considered the unpolarized cross sec-
tion, but all future programs are also aiming at polarization
measurements. Including polarization of the incoming
hadrons opens up a variety of new opportunities for study-
ing the strong interaction in both the perturbative and the
nonperturbative regime. Here we only mention the access
to the transversity distribution of the nucleon [14–21], and
to transverse momentum dependent parton distributions
(TMDs). The TMDs not only depend on the longitudinal
momentum of a parton inside a hadron but also on its
(intrinsic) transverse momentum, and, in general, describe
the strength of various intriguing spin-spin or spin-orbit

correlations of the parton-hadron system (see Refs. [22–
25] for more information on TMDs).
In order to analyze upcoming data from polarized Drell-

Yan measurements it is necessary to have a general and
concise formalism at hand. The main motivation for writ-
ing the present paper is to provide such a framework. To
this end we decompose the hadronic tensor of the polarized
Drell-Yan process in terms of 48 basis tensors which are
multiplied by structure functions. We limit ourselves to
photon exchange and do not consider weak interaction
effects. To ensure electromagnetic gauge invariance of
the hadronic tensor we make use of a projector method
proposed in Ref. [26]. On the basis of the hadronic tensor
we then write down the general structure of the angular
distribution of the Drell-Yan process. This step is most
conveniently done in a dilepton rest frame like the
Collins-Soper frame [27]. In addition to our model-
independent results we also consider the process in the
parton model approximation, where we distinguish be-
tween two cases: (1) cross section integrated upon the
transverse momentum qT of the dilepton pair; (2) cross
section kept differential in qT and qT � q, where q is the
invariant mass of the dilepton pair. While in the former
case one ends up with ordinary forward PDFs, in the latter
TMDs enter in the parton model description and in a full
QCD treatment [28–30].
In addition to our model-independent treatment we also

consider the process in the parton model approximation by
concentrating on the situation when the cross section is
kept differential in the transverse momentum qT of the
dilepton pair. In this case TMDs enter the parton model
description as well as a full QCD treatment [28–30].
Part of the results presented here were already given in

the literature [14,31–33], and we comment on other work
during the course of the paper. However, to the best of our
knowledge, a complete formalism for the polarized Drell-
Yan process has not been worked out before.
The paper is organized as follows. In Sec. II we fix part

of our notation and give the general form of the cross
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section in the one-photon exchange approximation.
Section III contains the decomposition of the hadronic
tensor in terms of basis tensors and structure functions,
while in Sec. IV some discussion on reference frames is
given. In Sec. V we present the general angular distribution
of the polarized Drell-Yan process which can be derived
from the results of Sec. III in a straightforward manner.
Section VI contains the results for the structure functions in
the parton model approximation. We conclude in Sec. VII.

II. CROSS SECTION IN ONE-PHOTON
EXCHANGE APPROXIMATION

To be now specific we consider the dilepton production

HaðPa; SaÞ þHbðPb; SbÞ ! l�ðl; �Þ þ lþðl0; �0Þ þ X;

(1)

with ðPa; SaÞ and ðPb; SbÞ denoting the 4-momenta and the
spin vectors of the incoming hadrons. One has P2

a ¼ M2
a,

Pa � Sa ¼ 0, S2a ¼ �1, and corresponding relations for the
second hadron. Throughout this work the mass of the
leptons in the final state is neglected. We will sum over
the helicities �, �0 of the leptons.

At large invariant mass q of the dilepton pair the process
(1) can approximately be described in the Drell-Yan model
[1,2], which corresponds to the parton model approxima-
tion. According to this approach a quark from hadron Ha

and an antiquark from hadron Hb (and vice versa) annihi-
late into a timelike virtual photon which subsequently
decays into a lepton pair (see Fig. 1).1 This means the
process proceeds according to

Ha þHb ! ��ðqÞ þ X ! l� þ lþ þ X; (2)

where the 4-momentum of the virtual photon is given by
q ¼ lþ l0.2 Note that the meaning of (2) remains valid if
higher-order QCD corrections are taken into account.

In the one-photon exchange approximation the (frame-
independent) cross section of the Drell-Yan process is
given by

l0l00d�
d3 ~ld3 ~l0

¼ �2
em

Fq4
L��W

��; (3)

where

F ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPa � PbÞ2 �M2

aM
2
b

q
(4)

represents the flux of the incoming hadrons. If hadron
masses are neglected one can write F ¼ 2s ¼ 2ðPa þ
PbÞ2. The fine structure constant is related to the elemen-
tary charge through �em ¼ e2=4�. In Eq. (3) the quantity

L�� denotes the spin-averaged leptonic tensor,

L�� ¼ X
�;�0

ð �uðl; �Þ��vðl0; �0ÞÞð �uðl; �Þ��vðl0; �0ÞÞ�

¼ 4

�
l�l0� þ l�l0� � q2

2
g��

�
; (5)

while

W��ðPa; Sa;Pb; Sb; qÞ ¼ 1

ð2�Þ4
Z

d4xeiq�x

� hPa; Sa;Pb; SbjJ�emð0ÞJ�emðxÞj
� Pa; Sa;Pb; Sbi (6)

is the hadronic tensor, which is determined by the electro-
magnetic current operator J�em.
The tensor W�� a priori is unknown and contains the

information on the hadron structure. It has to fulfill certain
constraints due to electromagnetic gauge invariance, par-
ity, and hermiticity. In this order the constraints read

q�W
��ðPa; Sa;Pb; Sb; qÞ ¼ q�W

��ðPa; Sa;Pb; Sb;qÞ
¼ 0; (7)

W��ðPa; Sa;Pb; Sb; qÞ ¼ W��ð �Pa;� �Sa; �Pb;� �Sb; �qÞ; (8)

W��ðPa; Sa;Pb; Sb; qÞ ¼ ½W��ðPa; Sa;Pb; Sb;qÞ��; (9)

where the notation �v� ¼ v� for a generic 4-vector v is

used. In Sec. III, by imposing the relations (7)–(9), the
hadronic tensor is decomposed into a set of 48 basis tensors
multiplied by scalar functions (structure functions). In
doing so the conditions (7) and (8) considerably reduce
the number of allowed basis tensors, while the hermiticity
constraint (9) implies that the structure functions are real.
Note that time-reversal does not impose any constraint on
the hadronic tensor, because this operation converts the
two-particle hadronic in-state into a two-particle out-state,
and both states are not related. In Sec. VI the hadronic
tensor is considered in the parton model approximation.
The angular distribution of the Drell-Yan cross section is

most conveniently considered in a dilepton rest frame like
the Collins-Soper frame [27] or the Gottfried-Jackson
frame [34]. In any dilepton rest frame, one can rewrite Eq.
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FIG. 1 (color online). Amplitude for dilepton production in
parton model approximation. Both diagrams have to be taken
into account. The spectator systems Xa and Xb of the two
hadrons are not detected.

1As already mentioned we do not consider weak interaction
effects.

2In our notation the symbol q describes both the 4-momentum
of the virtual photon as well as the invariant mass

ffiffiffiffiffi
q2

p
of the

dilepton pair. This should, however, not lead to any confusion.
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(3) according to

d�

d4qd�
¼ �2

em

2Fq4
L��W

��; (10)

where the solid angle � specifies the orientation of the
leptons. In Sec. IV we elaborate a bit more on reference
frames with the main focus on the center-of-mass frame
(cm-frame) and the Collins-Soper frame (CS-frame).

III. HADRONIC TENSOR

The total hadronic tensor can be decomposed into the
unpolarized, single polarized (for hadron Ha and hadron
Hb), and double-polarized tensor according to

W�� ¼ W��
u þW��

a þW��
b þW��

ab : (11)

In the following we merely have to consider the symmetric
part of W�� because the spin-averaged leptonic tensor in
(5) is symmetric under the exchange � $ �.

A. Unpolarized case

Since the unpolarized tensor depends on the 4-vectors
q�, P

�
a , and P

�
b one can immediately write down the tensor

basis

h
��
u;1 ¼ g��; h

��
u;2 ¼ q�q�; h

��
u;3 ¼ P

�
a P�

a;

h
��
u;4 ¼ P

�
b P

�
b; h

��
u;5 ¼ q�P�

a þ q�P
�
a ;

h
��
u;6 ¼ q�P�

b þ q�P
�
b ; h

��
u;7 ¼ P

�
a P�

b þ P�
aP

�
b :

(12)

The expressions in (12) constitute a complete list of basis
tensors being in accordance with the parity constraint (8).
Therefore one can write in a first step

W
��
u ¼ X7

i¼1

h
��
u;i

~Vu;i; (13)

where the structure functions ~Vu;i depend on the invariants

Pa � q, Pb � q, and q2.
So far we have not yet used the gauge invariance con-

straint (7) which, in fact, implies that not all of the ~Vu;i are

independent. Contracting the tensor in (13) with the 4-
momentum of the virtual photon and imposing (7) one
readily finds

0 ¼ ~Vu;1 þ q2 ~Vu;2 þ Pa � q ~Vu;5 þ Pb � q ~Vu;6;

0 ¼ Pa � q ~Vu;3 þ q2 ~Vu;5 þ Pb � q ~Vu;7;

0 ¼ Pb � q ~Vu;4 þ q2 ~Vu;6 þ Pa � q ~Vu;7:

(14)

These three relations follow because in W
��
u q� the terms

proportional to q�, P
�
a , and P

�
b must vanish separately.

Now one can use (14) to eliminate three structure functions
and consequently end up with a hadronic tensor given by
just four independent structure functions that are multi-
plied by four independent basis tensors. The explicit form

of the basis tensors depends of course on which of the
structure functions are eliminated.
Though this procedure of implementing gauge invari-

ance in principle is straightforward it gets rather cumber-
some for single and double polarization because in those
cases considerably more structure functions and basis ten-
sors are involved. Therefore we resort to an alternative and
very elegant method proposed in Ref. [26] which makes
use of projection operators. We define3

P�� ¼ g�� � q�q�

q2
; (15)

and let this operator act on the basis tensors in (12) accord-
ing to

P�
�h

��
u;i P�

�: (16)

Because of the property

q�P
�� ¼ P��q� ¼ 0 (17)

the tensors in (16) vanish for i ¼ 2, 5, 6, while the remain-
ing four nonzero tensors are gauge invariant by construc-
tion. This means that one arrives at the following final form
of the unpolarized hadronic tensor:

W
��
u ¼ X4

i¼1

t
��
u;i Vu;i; (18)

with the four structure functions, Vu;i and the tensor basis

t
��
u;1 ¼ g�� � q�q�

q2
; t

��
u;2 ¼ ~P

�
a ~P�

a;

t
��
u;3 ¼ ~P

�
b
~P�
b; t

��
u;4 ¼ ~P

�
a ~P�

b þ ~P�
a
~P
�
b :

(19)

In Eq. (19) we make use of the vectors

~P�
a ¼ P�

a � Pa � qq�
q2

; ~P�
b ¼ P�

b � Pb � qq�
q2

; (20)

which vanish upon contraction with q. Needless to say that
the tensor in (18) is frame-independent. The contraction
with the leptonic tensor can therefore be performed in any
frame. In the context of the parton model calculation in
Sec. VI, for instance, this contraction is carried out in the
cm-frame. The specific form of the tensor (18) is by no
means unique. Other sets of basis tensors can be found in
the literature (see, e.g., Refs. [14,35,36] and also [37]), and
it is straightforward to write down relations between differ-
ent sets. Here we refrain from doing so because it does not
give much further insight and, in addition, is not needed for
the main purpose of this manuscript. We have discussed the
unpolarized case in some detail in order to outline the
procedure which is used in the following two subsections
that are dealing with hadron polarization.

3Note that the projection operator is not unique [26]. One can
also define an operator involving the hadron momentum Pa or
Pb.
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B. Single polarized case

Now we proceed to the case when one of the hadrons in
the initial state is polarized. We first consider polarization
of the hadronHa, and then just quote the result for the case
when Hb is polarized. In order to construct a tensor basis

we now have also the spin vector S
�
a at our disposal—in

addition to the 4-momenta q�, P
�
a , P

�
b . Imposing the parity

constraint (8) one finds the following list of tensors which
are symmetric under the exchange � $ �:

h
��
a;1 ; . . . ; h

��
a;7 ¼ "SaqPaPbfg��; q�q�;P

�
a P�

a; P
�
b P

�
b; q

�P�
a þ q�P

�
a ; q�P�

b þ q�P
�
b ;P

�
a P�

b þP�
aP

�
b g;

h
��
a;8 ; h

��
a;9 ¼ fSa � q; Sa � Pbgð"�qPaPbq� þ "�qPaPbq�Þ; h

��
a;10; h

��
a;11 ¼ fSa � q; Sa � Pbgð"�qPaPbP�

a þ "�qPaPbP
�
a Þ;

h��
a;12; h

��
a;13 ¼ fSa � q; Sa � Pbgð"�qPaPbP�

b þ "�qPaPbP�
b Þ; h��

a;14 ¼ "�SaqPaq� þ "�SaqPaq�;

h��
a;15 ¼ "�SaqPbq� þ "�SaqPbq�; h��

a;16 ¼ "�SaPaPbq� þ "�SaPaPbq�; h��
a;17 ¼ "�SaqPaP�

a þ "�SaqPaP�
a ;

h
��
a;18 ¼ "�SaqPbP�

a þ "�SaqPbP
�
a ; h

��
a;19 ¼ "�SaPaPbP�

a þ "�SaPaPbP
�
a ; h

��
a;20 ¼ "�SaqPaP�

b þ "�SaqPaP
�
b ;

h
��
a;21 ¼ "�SaqPbP�

b þ "�SaqPbP
�
b ; h

��
a;22 ¼ "�SaPaPbP�

b þ "�SaPaPbP
�
b ; h

��
a;23 ¼ "�qPaPbS�a þ "�qPaPbS

�
a :

(21)

To shorten the notation we have used abbreviations like "SaqPaPb ¼ "����S
�
a q�P

�
aP�

b . Note that the hadron spin vector can
only appear linearly. It turns out that not all of the tensors h

��
a;i in (21) are independent of each other. The identity

g�	"���� ¼ g�	"���� þ g�	"���� þ g�	"���� þ g�	"���� (22)

allows one to eliminate several out of the 23 tensors. To be explicit one finds 10 linearly independent relations between the
tensors in (21) which may be written in the form

2h
��
a;1 ¼ �h

��
a;16 þ h

��
a;18 � h

��
a;20 þ h

��
a;23; 2h

��
a;2 ¼ h

��
a;8 � Pb � qh��

a;14 þ Pa � qh��
a;15 � q2h

��
a;16;

2h��
a;3 ¼ �Pa � Pbh

��
a;17 þM2

ah
��
a;18 � Pa � qh��

a;19; 2h��
a;4 ¼ h��

a;13 �M2
bh

��
a;20 þ Pa � Pbh

��
a;21 � Pb � qh��

a;22;

h��
a;5 ¼ h��

a;10 � Pb � qh��
a;17 þ Pa � qh��

a;18 � q2h��
a;19; h��

a;5 ¼ �Pa � Pbh
��
a;14 þM2

ah
��
a;15 � Pa � qh��

a;16;

h��
a;6 ¼ h��

a;9 �M2
bh

��
a;14 þ Pa � Pbh

��
a;15 � Pb � qh��

a;16; h��
a;6 ¼ h��

a;12 � Pb � qh��
a;20 þ Pa � qh��

a;21 � q2h��
a;22;

h
��
a;7 ¼ h

��
a;11 �M2

bh
��
a;17 þ Pa � Pbh

��
a;18 � Pb � qh��

a;19; h
��
a;7 ¼ �Pa � Pbh

��
a;20 þM2

ah
��
a;21 � Pa � qh��

a;22:

(23)

On the basis of the relations in (23) we choose to eliminate
the tensors h

��
a;14; . . . ; h

��
a;23.

Following Eq. (16) the projection operator P�� is now
applied to the remaining tensors in order to implement
electromagnetic gauge invariance. This procedure pro-
vides, in a straightforward manner, the final form of the
hadronic tensor for the case of single hadron polarization.
One finds

W
��
a ¼ X8

i¼1

t
��
a;i Va;i; (24)

with the eight structure functions Va;i, and the tensor basis

t��
a;1; . . . ; t

��
a;4 ¼ "SaqPaPb

�
g�� � q�q�

q2
; ~P�

a ~P�
a; ~P

�
b
~P�
b; ~P

�
a ~P�

b

þ ~P�
a
~P
�
b

�
;

t
��
a;5 ; t

��
a;6 ¼ fSa � q; Sa � Pbgð"�qPaPb ~P�

a þ "�qPaPb ~P
�
a Þ;

t
��
a;7 ; t

��
a;8 ¼ fSa � q; Sa � Pbgð"�qPaPb ~P�

b þ "�qPaPb ~P
�
b Þ:
(25)

Here we used the 4-vectors ~P�
a and ~P�

b as given in (20).

Note that the first four tensors in (25) correspond to the
four tensors in (19) for the unpolarized case, multiplied by
the structure "SaqPaPb . It is worthwhile pointing out the
following: we have chosen to first remove redundant ten-
sors in (21) by means of the identity (22) and then imple-
mented gauge invariance. If one reverses these two steps
one can obtain the same final result for the hadronic tensor.
If the hadron Hb is polarized one can now write imme-

diately

W��
b ¼ X8

i¼1

t��
b;i Vb;i; (26)

with the eight structure functions Vb;i, and the tensor basis

t��
b;1 ; . . . ; t

��
b;4 ¼ "SbqPbPa

�
g�� � q�q�

q2
; ~P�

a ~P�
a; ~P

�
b
~P�
b; ~P

�
a ~P�

b

þ ~P�
a
~P�
b

�
;

t��
b;5 ; t

��
b;6 ¼ fSb � q; Sb � Pagð"�qPbPa ~P�

a þ "�qPbPa ~P�
a Þ;

t
��
b;7 ; t

��
b;8 ¼ fSb � q; Sb � Pagð"�qPbPa ~P�

b þ "�qPbPa ~P
�
b Þ:
(27)
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In Ref. [31] the case of single hadron polarization for the
Drell-Yan process was already considered. In that paper,
however, the focus of the model-independent part was on
the angular distribution of the cross section in the CS-
frame rather than on the general form of the hadronic
tensor. We will discuss the angular distribution of the cross
section in Sec. V.

C. Double-polarized case

Eventually, we consider the situation when both hadrons
in the initial state are polarized. In that case the basis
tensors depend linearly on both Sa and Sb. A full set of
tensors respecting the parity constraint (8) and being sym-
metric under the exchange � $ � reads

h��
ab;1; . . . ; h

��
ab;7 ¼ Sa � Sbfg��; q�q�; P�

a P�
a; P

�
b P

�
b; q

�P�
a þ q�P�

a ; q�P�
b þ q�P�

b ; P
�
a P�

b þ P�
aP

�
b g;

h
��
ab;8; . . . ; h

��
ab;14 ¼ Sa � qSb � qfg��; q�q�; P

�
a P�

a; P
�
b P

�
b; q

�P�
a þ q�P

�
a ; q�P�

b þ q�P
�
b ; P

�
a P�

b þ P�
aP

�
b g;

h
��
ab;15; . . . ; h

��
ab;21 ¼ Sa � qSb � Pafg��; q�q�; P

�
a P�

a; P
�
b P

�
b; q

�P�
a þ q�P

�
a ; q�P�

b þ q�P
�
b ; P

�
a P�

b þ P�
aP

�
b g;

h
��
ab;22; . . . ; h

��
ab;28 ¼ Sb � qSa � Pbfg��; q�q�; P

�
a P�

a; P
�
b P

�
b; q

�P�
a þ q�P

�
a ; q�P�

b þ q�P
�
b ; P

�
a P�

b þ P�
aP

�
b g;

h��
ab;29; . . . ; h

��
ab;35 ¼ Sa � PbSb � Pafg��; q�q�; P�

a P�
a; P

�
b P

�
b; q

�P�
a þ q�P�

a ; q�P�
b þ q�P�

b ; P
�
a P�

b þ P�
aP

�
b g;

h
��
ab;36; . . . ; h

��
ab;38 ¼ Sa � qfS�b q� þ S�bq

�; S
�
b P

�
a þ S�bP

�
a ; S

�
b P

�
b þ S�bP

�
b g;

h��
ab;39; . . . ; h

��
ab;41 ¼ Sb � qfS�a q� þ S�aq

�; S�a P�
a þ S�aP

�
a ; S

�
a P�

b þ S�aP
�
b g;

h
��
ab;42; . . . ; h

��
ab;44 ¼ Sa � PbfS�b q� þ S�bq

�; S
�
b P

�
a þ S�bP

�
a ; S

�
b P

�
b þ S�bP

�
b g;

h
��
ab;45; . . . ; h

��
ab;47 ¼ Sb � PafS�a q� þ S�aq

�; S
�
a P�

a þ S�aP
�
a ; S

�
a P�

b þ S�aP
�
b g; h

��
ab;48 ¼ S

�
a S�b þ S�aS

�
b :

(28)

Like in the case of single hadron polarization not all 48
tensors in (28) are independent of each other. An explicit
relation between a certain subset of the h

��
ab;i can be found

by means of the determinant identity [38]

D��	�
;� �� �	 �� �
 ¼

�����������������������

g�� g� �� g�
�	 g� �� g�

�


g�� g� �� g�
�	 g� �� g�

�


g	� g	 �� g	
�	 g	 �� g	

�


g�� g� �� g�
�	 g� �� g�

�


g
� g
 �� g

�	 g
 �� g


�


�����������������������
¼ 0:

(29)

Equation (29) immediately implies

D��	�
;� �� �	 �� �
ðS�aS ��
b þ S ��

aS
�
b Þq	q �	P�

aP
��
aP


bP
�

b ¼ 0;

(30)

which allows one to eliminate exactly one out of the
tensors in (28). For the sake of symmetry we choose to
eliminate the tensor h��

ab;48. Equation (30) implies a relation
of the type

fq2½ðPa � PbÞ2 �M2
aM

2
b� � 2Pa � PbPa � qPb � q

þM2
aðPb � qÞ2 þM2

bðPa � qÞ2gh��
ab;48 ¼ . . . ; (31)

where the right-hand side of (31) is a linear combination of
terms in which most of the h

��
ab;i (i ¼ 1; . . . ; 47) enter. We

refrain from writing down this (rather lengthy) formula
explicitly as it is not needed for the following discussion.
We also mention that the determinant identity (29) does not
lead to any further relation between the h��

ab;i.
To implement gauge invariance we now apply, accord-

ing to Eq. (16), the projection operator P�� to the tensors in
(28). This procedure provides, in a straightforward manner,
the final form of the hadronic tensor for the case of polar-
ization of both hadrons. One finds

W��
ab ¼ X28

i¼1

t��
ab;iVab;i; (32)

with the 28 structure functions Vab;i, and the tensor basis
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t
��
ab;1; . . . ; t

��
ab;4 ¼ Sa � Sb

�
g�� � q�q�

q2
; ~P

�
a ~P�

a; ~P
�
b
~P�
b;

~P
�
a ~P�

b þ ~P�
a
~P
�
b

�
;

t��
ab;5; . . . ; t

��
ab;8 ¼ Sa � qSb � q

�
g�� � q�q�

q2
; ~P�

a ~P�
a; ~P

�
b
~P�
b; ~P

�
a ~P�

b þ ~P�
a
~P�
b

�
;

t
��
ab;9; . . . ; t

��
ab;12 ¼ Sa � qSb � Pa

�
g�� � q�q�

q2
; ~P

�
a ~P�

a; ~P
�
b
~P�
b; ~P

�
a ~P�

b þ ~P�
a
~P
�
b

�
;

t��
ab;13; . . . ; t

��
ab;16 ¼ Sb � qSa � Pb

�
g�� � q�q�

q2
; ~P�

a ~P�
a; ~P

�
b
~P�
b; ~P

�
a ~P�

b þ ~P�
a
~P�
b

�
;

t
��
ab;17; . . . ; t

��
ab;20 ¼ Sa � PbSb � Pa

�
g�� � q�q�

q2
; ~P

�
a ~P�

a; ~P
�
b
~P�
b; ~P

�
a ~P�

b þ ~P�
a
~P
�
b

�
;

t��
ab;21; t

��
ab;22 ¼ Sa � qf~S�b ~P�

a þ ~S�b ~P
�
a ; ~S

�
b
~P�
b þ ~S�b ~P

�
b g;

t
��
ab;23; t

��
ab;24 ¼ Sb � qf~S�a ~P�

a þ ~S�a ~P
�
a ; ~S

�
a ~P�

b þ ~S�a ~P
�
b g;

t��
ab;25; t

��
ab;26 ¼ Sa � Pbf~S�b ~P�

a þ ~S�b ~P
�
a ; ~S

�
b
~P�
b þ ~S�b ~P

�
b g;

t
��
ab;27; t

��
ab;28 ¼ Sb � Paf~S�a ~P�

a þ ~S�a ~P
�
a ; ~S

�
a ~P�

b þ ~S�a ~P
�
b g:

(33)

Here we used the 4-vectors ~P
�
a and ~P

�
b as given in (20). The

vectors ~S
�
a and ~S

�
b are defined accordingly, i.e.,

~S
�
a ¼ S

�
a � Sa � qq�

q2
; ~S

�
b ¼ S

�
b � Sb � qq�

q2
: (34)

Note that the first 20 tensors in (33) correspond to the four
tensors in (19) for the unpolarized case, multiplied by
certain scalar products containing the spin vectors of the
hadrons. We again emphasize the crucial importance of the
relation (30). Without this identity the final form of the
hadronic tensor would have 29 rather than 28 basis
elements.

To the best of our knowledge the general structure of the
hadronic tensor for the double-polarized Drell-Yan process
is a new result. Though the double-polarized case was
already investigated in Ref. [14], this was only done for
the specific cases qT ¼ 0 and cross section integrated upon
qT . In those cases seven basis tensors can be identified.

D. Identical hadrons

If both hadrons in the initial state are identical—as is the
case, e.g., for proton-proton —the total hadronic tensor in

Eq. (11) has to satisfy the symmetry relation

W��ðPa; Sa;Pb; Sb; qÞ ¼ W��ðPb; Sb;Pa; Sa; qÞ: (35)

This immediately implies that eight out of the 48 structure
functions are symmetric when exchanging the momenta Pa

and Pb,

Vu;1ðb;aÞ ¼ Vu;1ða;bÞ; Vu;4ðb;aÞ ¼ Vu;4ða;bÞ;
Vab;1ðb;aÞ ¼ Vab;1ða;bÞ; Vab;4ðb;aÞ ¼ Vab;4ða;bÞ;
Vab;5ðb;aÞ ¼ Vab;5ða;bÞ; Vab;8ðb;aÞ ¼ Vab;8ða;bÞ;
Vab;17ðb;aÞ ¼ Vab;17ða;bÞ; Vab;20ðb;aÞ ¼ Vab;20ða;bÞ;

(36)

where, e.g., the first relation in (36) is a shorthand of

Vu;1ðPb � q; Pa � q; q2Þ ¼ Vu;1ðPa � q; Pb � q; q2Þ: (37)

Because of the symmetry property it is sufficient to know
the structure functions in (36) for just half of the allowed
parameter space. The remaining 40 structure functions
fulfil the relations

Vu;3ðb;aÞ ¼ Vu;2ða;bÞ; Vb;1ðb;aÞ ¼ Va;1ða;bÞ; Vb;2ðb;aÞ ¼ Va;3ða;bÞ; Vb;3ðb;aÞ ¼ Va;2ða;bÞ;
Vb;4ðb;aÞ ¼ Va;4ða;bÞ; Vb;5ðb;aÞ ¼ Va;7ða;bÞ; Vb;6ðb;aÞ ¼ Va;8ða;bÞ; Vb;7ðb;aÞ ¼ Va;5ða;bÞ;
Vb;8ðb;aÞ ¼ Va;6ða;bÞ; Vab;3ðb;aÞ ¼ Vab;2ða;bÞ; Vab;7ðb;aÞ ¼ Vab;6ða;bÞ; Vab;13ðb;aÞ ¼ Vab;9ða;bÞ;
Vab;14ðb;aÞ ¼ Vab;11ða;bÞ; Vab;15ðb;aÞ ¼ Vab;10ða;bÞ; Vab;16ðb;aÞ ¼ Vab;12ða;bÞ; Vab;19ðb;aÞ ¼ Vab;18ða;bÞ;
Vab;23ðb;aÞ ¼ Vab;22ða;bÞ; Vab;24ðb;aÞ ¼ Vab;21ða;bÞ; Vab;27ðb;aÞ ¼ Vab;26ða;bÞ; Vab;28ðb;aÞ ¼ Vab;25ða;bÞ:

(38)

For instance the first relation in (38) implies that if one knows the structure function Vu;2 for the entire parameter space one
also knows Vu;3.
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IV. REFERENCE FRAMES

So far our treatment is frame-independent. If, however,
one wants to write down the general form of the angular
distribution of the cross section—as we are going to do in
Sec. V—one has to specify the reference frame. Moreover,
the parton model calculation of the hadronic tensor, carried
out in Sec. VI, is naturally performed in the cm-frame.
Therefore, in the following we will consider both the cm-
frame and the CS-frame [27], which is a particular dilepton
rest frame. In general, the angular distribution of the cross
section is most conveniently given in a dilepton rest frame.

In the cm-frame the 4-momenta P
�
a , P

�
b , and q

� take the

form

P�
a;CM ¼ ðP0

a;CM; 0; 0; P
3
a;CMÞ �

ffiffiffi
s

p
2
ð1; 0; 0; 1Þ; (39)

P
�
b;CM ¼ ðP0

b;CM; 0; 0; P
3
b;CMÞ �

ffiffiffi
s

p
2
ð1; 0; 0;�1Þ; (40)

q�CM ¼ ðq0;CM; qT;CM; 0; qL;CMÞ; (41)

where the simple relation between the hadron momenta
and

ffiffiffi
s

p
holds if the hadron masses are neglected. Note that

without loss of generality the transverse part of the photon
momentum is pointing into the x-direction. To shorten the
notation we will use qT � qT;CM in the following.

Equations (39)–(41) fix the axes of the cm-frame according
to

ê x;CM¼ ~qT
qT

; êy;CM ¼ êz;CM� êx;CM; êz;CM ¼ ~Pa;CM

j ~Pa;CMj
:

(42)

To make the transition from the cm-frame to the CS-
frame one can apply two subsequent Lorentz boosts [27].
In a first step one boosts along the z-axis such that the
virtual photon no longer has a longitudinal momentum
component. In a second step one boosts along the x-axis
such that also the transverse momentum of the virtual
photon disappears. This leads to the following transforma-
tion matrix between the two frames:

B�
� ¼ 1

q

q0;CM ��q 0 �qL;CM
� sin�q0;CM ðcos�Þ�1q 0 sin�qL;CM

0 0 q 0
� cos�qL;CM 0 0 cos�q0;CM

0
BBB@

1
CCCA;

(43)

with

� ¼ qT
q
; sin� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p ; cos� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p :

(44)

Applying the transformation matrix in (43) to the 4-
momenta P�

a;CM, P
�
b;CM, q

�
CM one finds, in particular, that

the hadron momenta span the xz-plane. The results are

P�
a;CS ¼ ðP0

a;CS;� sin ��j ~Pa;CSj; 0; cos ��j ~Pa;CSjÞ
� P0

a;CSð1;� sin�; 0; cos�Þ; (45)

P
�
b;CS ¼ ðP0

b;CS;� sin ��j ~Pb;CSj; 0;� cos ��j ~Pb;CSjÞ
� P0

b;CSð1;� sin�; 0;� cos�Þ; (46)

q
�
CS ¼ ðq; 0; 0; 0Þ; (47)

where the energies of the hadrons in the CS-frame are
given by

P0
a;CS ¼ Pa � q

q
�

ffiffiffi
s

p
2q

ðq0;CM � qL;CMÞ;

P0
b;CS ¼ Pb � q

q
�

ffiffiffi
s

p
2q

ðq0;CM þ qL;CMÞ:
(48)

The approximate expressions in (45) and (46) again hold if
the hadron masses are neglected. Note that in this case one
has � ¼ ��. Equations (45) and (46), imply that the axes in
the CS-frame are fixed by the hadron momenta according
to

ê x;CS ¼ � 1

2 sin ��

� ~Pa;CS

j ~Pa;CSj
þ ~Pb;CS

j ~Pb;CSj
�
;

êy;CS ¼ êz;CS � êx;CS;

êz;CS ¼ 1

2 cos ��

� ~Pa;CS

j ~Pa;CSj
� ~Pb;CS

j ~Pb;CSj
�
:

(49)

In principle there are infinitely many dilepton rest frames.
Any other dilepton rest frame is related to the CS-frame
through a 3-dimensional rotation. For instance, the fre-
quently used Gottfried-Jackson frame [34], in which the
momentum of one of the hadrons is pointing into the
z-direction, is connected to the CS-frame by a rotation
about the y-axis.
One can readily invert the Lorentz transformation in (43)

and find
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ðB�1Þ�� ¼ 1

q

q0;CM sin�q0;CM 0 cos�qL;CM
�q ðcos�Þ�1q 0 0
0 0 q 0

qL;CM sin�qL;CM 0 cos�q0;CM

0
BBB@

1
CCCA: (50)

This inverse transformation is now applied to the 4-
momenta of the outgoing leptons, which in the CS-frame
take the simple form

l
�
CS ¼

q

2
ð1; sin�CS cos�CS; sin�CS sin�CS; cos�CSÞ; (51)

l
0�
CS ¼

q

2
ð1;� sin�CS cos�CS;� sin�CS sin�CS;� cos�CSÞ;

(52)

i.e., the directions of both leptons are specified by the same
two angles �CS and �CS. This feature, of course, holds in
any other dilepton rest frame as well. In the cm-frame the
lepton momenta are given by

l
�
CM ¼ 1

2

ð1þ sin� sin�CS cos�CSÞq0;CM þ cos� cos�CSqL;CM
qT þ ðcos�Þ�1 sin�CS cos�CSq

sin�CS sin�CSq
ð1þ sin� sin�CS cos�CSÞqL;CM þ cos� cos�CSq0;CM

0
BBB@

1
CCCA; (53)

l0�CM ¼ 1

2

ð1� sin� sin�CS cos�CSÞq0;CM � cos� cos�CSqL;CM
qT � ðcos�Þ�1 sin�CS cos�CSq

� sin�CS sin�CSq
ð1� sin� sin�CS cos�CSÞqL;CM � cos� cos�CSq0;CM

0
BBB@

1
CCCA: (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the cm-frame. This
is particularly convenient in connection with the parton model calculation in Sec. VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

S�a;CM ¼
�
SaL;CM

j ~Pa;CMj
Ma

; j ~SaT;CMj cos�a;CM; j ~SaT;CMj sin�a;CM; SaL;CM
P0
a;CM

Ma

�
; (55)

S
�
b;CM ¼

�
SbL;CM

j ~Pb;CMj
Mb

; j ~SbT;CMj cos�b;CM; j ~SbT;CMj sin�b;CM;�SbL;CM
P0
b;CM

Mb

�
; (56)

with the longitudinal components SaL;CM, SbL;CM, and the
transverse components ~SaT;CM, ~SbT;CM. The condition S

2
a ¼

�1 implies ðSaL;CMÞ2 þ ð ~SaT;CMÞ2 ¼ 1 (and analogously
for the hadron Hb). One can also write down, e.g., S�a in
the CS-frame in terms of longitudinal and transverse com-
ponents.4 Mainly for the following reason we prefer, how-
ever, to work with components of the spin vectors in the
cm-frame. If one has a pure transverse polarization in the
cm-frame (in the xz-plane), this implies also a longitudinal
polarization component in the CS-frame. Therefore, lon-
gitudinal and transverse polarization components can get
mixed up when switching between both frames. Since an
experimental setup and also the parton model approxima-
tion have a closer connection to the cm-frame than to the

CS-frame it is preferable to work with cm-frame compo-
nents of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS
SECTION

By means of the general form of the hadronic tensor as
derived in Sec. III one can now write down the full angular
distribution of the DY cross section. Since the hadronic
tensor is frame-independent this can be done, in principle,
for any reference frame. We focus here on a dilepton rest
frame because in that case the angular distribution takes the
most compact and transparent form. Expressing the orien-
tation of the leptons through the CS-angles �CS and �CS

(see Eqs. (51)–(54)) and contracting the leptonic tensor in
(5) with the hadronic tensor one finds the following general
form of the cross section in Eq. (10):

4The resulting expression looks a bit more complicated be-
cause ~Pa;CS is not pointing in the z-direction.
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d�

d4qd�
¼ �2

em

Fq2
fðð1þ cos2�ÞF1

UU þ ð1� cos2�ÞF2
UU þ sin2� cos�Fcos�

UU þ sin2� cos2�Fcos2�
UU Þ

þ SaLðsin2� sin�Fsin�
LU þ sin2� sin2�Fsin2�

LU Þ þ SbLðsin2� sin�Fsin�
UL þ sin2� sin2�Fsin2�

UL Þ
þ j ~SaTj½sin�aðð1þ cos2�ÞF1

TU þ ð1� cos2�ÞF2
TU þ sin2� cos�Fcos�

TU þ sin2� cos2�Fcos2�
TU Þ

þ cos�aðsin2� sin�Fsin�
TU þ sin2� sin2�Fsin2�

TU Þ� þ j ~SbTj½sin�bðð1þ cos2�ÞF1
UT þ ð1� cos2�ÞF2

UT

þ sin2� cos�Fcos�
UT þ sin2� cos2�Fcos2�

UT Þ þ cos�bðsin2� sin�Fsin�
UT þ sin2� sin2�Fsin2�

UT Þ�
þ SaLSbLðð1þ cos2�ÞF1

LL þ ð1� cos2�ÞF2
LL þ sin2� cos�Fcos�

LL þ sin2� cos2�Fcos2�
LL Þ

þ SaLj ~SbTj½cos�bðð1þ cos2�ÞF1
LT þ ð1� cos2�ÞF2

LT þ sin2� cos�Fcos�
LT þ sin2� cos2�Fcos2�

LT Þ
þ sin�bðsin2� sin�Fsin�

LT þ sin2� sin2�Fsin2�
LT Þ� þ j ~SaTjSbL½cos�aðð1þ cos2�ÞF1

TL þ ð1� cos2�ÞF2
TL

þ sin2� cos�Fcos�
TL þ sin2� cos2�Fcos2�

TL Þ þ sin�aðsin2� sin�Fsin�
TL þ sin2� sin2�Fsin2�

TL Þ�
þ j ~SaTjj ~SbTj½cosð�a þ�bÞðð1þ cos2�ÞF1

TT þ ð1� cos2�ÞF2
TT þ sin2� cos�Fcos�

TT þ sin2� cos2�Fcos2�
TT Þ

þ cosð�a ��bÞðð1þ cos2�Þ �F1
TT þ ð1� cos2�Þ �F2

TT þ sin2� cos� �Fcos�
TT þ sin2� cos2� �Fcos2�

TT Þ
þ sinð�a þ�bÞðsin2� sin�Fsin�

TT þ sin2� sin2�Fsin2�
TT Þ

þ sinð�a ��bÞðsin2� sin� �Fsin�
TT þ sin2� sin2� �Fsin2�

TT Þ�g: (57)

In Eq. (57) 48 structure functions show up which exactly
matches with the number of the Vi defined in Sec. III. The
structure functions again depend on the three variables Pa �
q, Pb � q, and q2, i.e., F1

UU ¼ F1
UUðPa � q; Pb � q; q2Þ and

so on.We refrain from giving the explicit relations between
the structure functions in (57) and the Vi because these
lengthy formulae are not needed for the following discus-
sion. In order to shorten the notation in (57) we left out
indices for the angles which characterize the lepton mo-
menta and the transverse spin vectors of the hadrons. There
is yet another reason for omitting those indices: the form of
the angular distribution in (57) holds for any dilepton rest
frame and not just the CS-frame. The numerical values of
the structure functions of course change when going from
one frame to another. Furthermore, note that the compo-
nents of the spin vectors can be understood in different
frames like the rest frame of one of the hadrons, the cm-
frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolar-
ized cross section different notations can be found in the
literature (see, e.g., [37] and references therein). Here we
just quote the frequently used formula

dN

d�
� d�

d4qd�

�
d�

d4q

¼ 3

4�

1

�þ 3

�
1þ �cos2�þ� sin2� cos�

þ �

2
sin2� cos2�

�
: (58)

One readily finds

� ¼ F1
UU � F2

UU

F1
UU þ F2

UU

;

� ¼ Fcos�
UU

F1
UU þ F2

UU

;

� ¼ 2Fcos2�
UU

F1
UU þ F2

UU

:

(59)

The so-called Lam-Tung relation [35,36,39]

�þ 2� ¼ 1; (60)

which in terms of the structure functions defined in (57)
reads

F2
UU ¼ 2Fcos2�

UU ; (61)

has attracted considerable attention in the past. This rela-
tion is exact if one computes the DY process to Oð�sÞ in
the standard collinear perturbative QCD framework. Even
at Oð�2

sÞ the numerical violation of (60) is small [40]. On
the other hand data for ��N ! ���þX taken at CERN
[41,42] and at Fermilab [43] are in disagreement with the
Lam-Tung relation. In particular, an unexpectedly large
cos2� modulation of the cross section was observed, and
in the meantime different explanations for this phenome-
non have been put forward in the literature [44–50]. In
Ref. [33] it was pointed out that intrinsic transverse motion
of initial state partons might be responsible for the ob-
served violation of the Lam-Tung relation. In the following
section we will briefly return to this point in connection
with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron
Drell-Yan do agree with the Lam-Tung relation [51].
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The hadronic tensor given in Sec. III also allows one to find the angular distribution of the cross section for the specific
kinematical point qT ¼ 0. Altogether, in that case one has nine independent angular dependences and structure functions,

d�

d4qd�

��������qT¼0
¼ �2

em

Fq2

�
ðð1þ cos2�ÞF1

UU þ ð1� cos2�ÞF2
UUÞ þ SaLSbLðð1þ cos2�ÞF1

LL þ ð1� cos2�ÞF2
LLÞ

þ SaLj ~SbTj
�
sin2� cosð���bÞ 12 ðF

cos�
LT þ Fsin�

LT Þ
�
þ j ~SaTjSbL

�
sin2� cosð���aÞ 12 ðF

cos�
TL þ Fsin�

TL Þ
�

þ j ~SaTjj ~SbTj
�
sin2� cosð2���a ��bÞ 12 ðF

cos2�
TT þ Fsin2�

TT Þ

þ cosð�a ��bÞðð1þ cos2�Þ �F1
TT þ ð1� cos2�Þ �F2

TTÞ
	�
: (62)

This result was already given in Ref. [14] using a different
notation. We note that in the double-polarized sector the
following relations hold:

Fcos�
LT jqT¼0 ¼ Fsin�

LT jqT¼0; Fcos�
TL jqT¼0 ¼ Fsin�

TL jqT¼0;

Fcos2�
TT jqT¼0 ¼ Fsin2�

TT jqT¼0: (63)

All the structure functions that show up in (57) but not in
(62) have a kinematical zero at qT ¼ 0. Notice that the
angular distribution of the qT-integrated cross section
agrees with the one in (62), but the corresponding structure
functions differ numerically (see also [14]).

We have pointed out that our hadronic tensor provides
the angular distribution of the cross section at qT ¼ 0. In
fact, this statement is not totally correct. The hadronic
tensor in Eq. (33) does not generate the term proportional
to cosð2���a ��bÞ in (62). This can be understood by
taking a close look at Eq. (31): there the prefactor in front
of h��

ab;48 vanishes for qT ¼ 0 implying that at this particu-

lar kinematical point one is actually not allowed to elimi-

nate this tensor which does generate the required
cosð2���a ��bÞ term for qT ¼ 0. One may instead
eliminate, for instance, the tensor h��

ab;47. Since the rather

specific case qT ¼ 0 was already worked out in the litera-
ture [14] we have proposed the tensor in (33) for the sake of
symmetry.
In Sec. III D we have considered the case of identical

hadrons in the initial state and the resultant constraints for
the structure functions Vi. One can do a corresponding
analysis for the structure functions defined in Eq. (57).
The key ingredient of such an analysis is that the cross
section remains the same if the hadrons are exchanged.
Note that the exchange Ha $ Hb also leads to the reversal
of the z-direction which, in particular, implies

�a $ ��b; � ! ��; � ! �� �: (64)

Twenty structure functions are either symmetric or anti-
symmetric under the exchange Pa $ Pb. Using the short-
hand notation of Eqs. (36) and (38), one finds

F1
UUðb;aÞ ¼ F1

UUða;bÞ; F2
UUðb;aÞ ¼ F2

UUða;bÞ; Fcos�
UU ðb;aÞ ¼ �Fcos�

UU ða;bÞ; Fcos2�
UU ðb;aÞ ¼ Fcos2�

UU ða;bÞ;
F1
LLðb;aÞ ¼ F1

LLða;bÞ; F2
LLðb;aÞ ¼ F2

LLða;bÞ; Fcos�
LL ðb;aÞ ¼ �Fcos�

LL ða;bÞ; Fcos2�
LL ðb;aÞ ¼ Fcos2�

LL ða;bÞ;
F1
TTðb;aÞ ¼ F1

TTða;bÞ; F2
TTðb;aÞ ¼ F2

TTða;bÞ; Fcos�
TT ðb;aÞ ¼ �Fcos�

TT ða;bÞ; Fcos2�
TT ðb;aÞ ¼ Fcos2�

TT ða;bÞ;
�F1
TTðb;aÞ ¼ �F1

TTða;bÞ; �F2
TTðb;aÞ ¼ �F2

TTða;bÞ; �Fcos�
TT ðb;aÞ ¼ � �Fcos�

TT ða;bÞ; �Fcos2�
TT ðb;aÞ ¼ �Fcos2�

TT ða;bÞ;
Fsin�
TT ðb;aÞ ¼ �Fsin�

TT ða;bÞ; Fsin2�
TT ðb;aÞ ¼ Fsin2�

TT ða;bÞ; �Fsin�
TT ðb;aÞ ¼ �Fsin�

TT ða;bÞ; �Fsin2�
TT ðb;aÞ ¼ � �Fsin2�

TT ða;bÞ:
(65)

The remaining structure functions fulfil the relations

Fsin�
UL ðb;aÞ ¼ Fsin�

LU ða;bÞ; Fsin2�
UL ðb;aÞ ¼ �Fsin2�

LU ða;bÞ; F1
UTðb;aÞ ¼ �F1

TUða;bÞ; F2
UTðb;aÞ ¼ �F2

TUða;bÞ;
Fcos�
UT ðb;aÞ ¼ Fcos�

TU ða;bÞ; Fcos2�
UT ðb;aÞ ¼ �Fcos2�

TU ða;bÞ; Fsin�
UT ðb;aÞ ¼ Fsin�

TU ða;bÞ;
Fsin2�
UT ðb;aÞ ¼ �Fsin2�

TU ða;bÞ; F1
TLðb;aÞ ¼ F1

LTða;bÞ; F2
TLðb;aÞ ¼ F2

LTða;bÞ; Fcos�
TL ðb;aÞ ¼ �Fcos�

LT ða;bÞ;
Fcos2�
TL ðb;aÞ ¼ Fcos2�

LT ða;bÞ; Fsin�
TL ðb;aÞ ¼ �Fsin�

LT ða;bÞ; Fsin2�
TL ðb;aÞ ¼ Fsin2�

LT ða;bÞ: (66)

It is of course intuitively clear that for identical hadrons relations as given in (66) have to exist. But one has to keep in mind
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that relative signs between the corresponding structure
functions can show up. Eventually, we mention that (65)
and (66) can also be derived from (36) and (38) and the
relations between the two sets of structure functions.

VI. PARTON MODEL APPROXIMATION

This section deals with the parton model description of
the structure functions in Eq. (57). Up to this point we did
not specify the external kinematics of the process. In the
following we will consider the kinematical regime where
the transverse photon momentum qT is of the order of a
typical hadronic mass scale which means, in particular, that
it is much smaller than the hard scale q. This is the region
where TMDs enter the description of the DY process in a
natural way.

Our treatment is restricted to leading twist, i.e., to the
leading order of an expansion in powers of 1=q. Mainly
because of the potential problems of subleading twist
TMD-factorization pointed out in Refs. [52,53] we refrain
here from including the twist-3 case. Moreover, we neither
take into account higher-order hard scattering corrections
nor effects associated with soft gluon radiation. For three
of the structure functions such contributions were consid-
ered in [54].

A. Hadronic tensor

The parton model description of the Drell-Yan process
can be represented by the diagrams shown in Fig. 1, where,
e.g., the scattering amplitude for diagram (a) reads

iMðaÞ ¼
X
q

XNc

c¼1

ieqe
2

q2
hXajc c;q

i ð0ÞjPa; Sai

� hXbj �c c;q
j ð0ÞjPb; Sbi½ð��Þji �uðl; �Þ��vðl0; �0Þ�:

(67)

A sum over color c and the quark flavors q is implemented
explicitly in this expression. The electromagnetic charge of
the quark, in units of the elementary charge e, is denoted by
eq. A corresponding formula holds for the amplitude MðbÞ
of the graph (b). The differential cross section (10) in a
dilepton rest frame is then given by

d�

d4qd�
¼ 1

8ð2�Þ2F
X
�;�0

ZX
Xa;Xb

ðjMðaÞj2 þ jMðbÞj2Þ

� 
ð4ÞðPXa
þ PXb

þ q� Pa � PbÞ: (68)

Note that there is no interference between the two diagrams
in Fig. 1. One can modify this formula by introducing the
momenta of the active partons, ka and kb. This allows one
to sum over a complete set of intermediate states and to
rewrite the hadronic part of the cross section in terms of
fully unintegrated quark-quark correlators (see, e.g.,
Refs. [23,24,32,55–58]). In doing so one finds the hadronic
tensor

W�� ¼ 1

Nc

X
q

e2q
Z

d4kad
4kb


ð4Þðq� ka � kbÞ

� Tr½���qðka; Pa; SajnaÞ�� ��qðkb; Pb; SbjnbÞ�
þ f� $ ��g; (69)

where the quark-quark correlators, which depend on the
full 4-momentum of the quarks, are defined as

�q
ijðka; Pa; SajnaÞ ¼

Z d4z

ð2�Þ4 e
ika�zhPa; Saj �c q

j ð0Þ
�W DY½0; zjna�c q

i ðzÞjPa; Sai; (70)

��q
ijðkb; Pb; SbjnbÞ ¼

Z d4z

ð2�Þ4 e
ikb�zhPb; Sbjc q

i ð0Þ
�W DY½0; zjnb� �c q

j ðzÞjPb; Sbi: (71)

The objectW denotes a gauge link operator (Wilson line)
which ensures color gauge invariance of the correlators.
We note that actually the Wilson lines cannot be derived
from the diagrams in Fig. 1. They are generated, however,
if in addition collinear gluon exchanges between the active
partons and the remnants of the incoming hadrons are
taken into account (see, e.g., Refs. [59–62]). In general,
the Wilson lines entering unintegrated parton correlators
are process-dependent. For the DY process we will specify
them below but already emphasize here their dependence
on a light-cone vector na or nb. Note that in Eqs. (70) and
(71) a color sum is implicit, leading to the factor 1=Nc ¼
1=3 in (69). The term f� $ ��g in Eq. (69) represents the
contribution of the diagram in Fig. 1(b) and is obtained
from the first term by interchanging the correlators.
In the parton model initial state partons are assumed to

move quasicollinearly with respect to their parent hadron.
Consequently, the components of the parton momenta
behave like the corresponding components of the hadron
momenta. The following estimates for the parton momenta
in the DY process are valid in frames where the hadron Ha

has a large light-cone plus-momentum and the hadronHb a
large minus-momentum (this applies, in particular, to the
cm-frame—see also the discussion in Sec. IV):

kþa 	OðqÞ; k�a 	Oð1=qÞ; kaT 	Oðq0Þ;
kþb 	Oð1=qÞ; k�b 	OðqÞ; kbT 	Oðq0Þ; (72)

where we use the light-cone components v
 ¼
ðv0 
 v3Þ= ffiffiffi

2
p

for a generic 4-vector v. From the stand-

point of factorization this means that � and �� are treated
as nonperturbative objects because the kinematical invar-
iants ka � Pa, k2a, kb � Pb, k2b on which the correlators

depend are much smaller than q2. According to (72) the
momentum components k�a and kþb are small and hence

can be neglected in the 
-function in Eq. (69). This also
automatically implies qþ � kþa and q� � k�b . The had-

ronic tensor then reduces to
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W�� ¼ 1

Nc

X
q

e2q
Z

d2 ~kaTd
2 ~kbT


ð2Þð ~qT � ~kaT � ~kbTÞ

� Tr½���qðxa; ~kaT; SajnaÞ�� ��qðxb; ~kbT; SbjnbÞ�
þ f� $ ��g; (73)

where we used the common DY variables

xa ¼ q2

2Pa � q � kþa
Pþ
a

; xb ¼ q2

2Pb � q � k�b
P�
b

: (74)

The transverse momentum dependent quark-quark corre-
lators in (73) are defined according to

�q
ijðxa; ~kaT; SajnaÞ ¼

Z dz�d2 ~zT
ð2�Þ3 eika�zhPa; Saj �c q

j ð0Þ
�W DY½0; zjna�c q

i ðzÞjPa; Saijzþ¼0;

(75)

��q
ijðxb; ~kbT; SbjnbÞ ¼

Z dzþd2 ~zT
ð2�Þ3 eikb�zhPb; Sbjc q

i ð0Þ
�W DY½0; zjnb� �c q

j ðzÞjPb; Sbijz�¼0;

(76)

and they are obtained from the correlators in (70) and (71)
by integrating out the respective small light-cone momen-
tum of the parton. We now specify the Wilson lines in the
quark-quark correlators. The appropriate choice for the DY
process is [59–61]

W DY½0; zjna�jzþ¼0 ¼ ½0;�1na� � ½�1na;�1na þ zT�
� ½�1na þ zT ; z

�na þ zT�; (77)

W DY½0; zjnb�jz�¼0 ¼ ½0;�1nb� � ½�1nb;�1nb þ zT�
� ½�1nb þ zT ; z

�nb þ zT�; (78)

with ½a; b� denoting a straight gauge link between the
positions a and b, and z�T � ð0; ~zT; 0Þ. The light-cone
vectors in (77) and (78) are given by

n
�
a ¼ 1ffiffiffi

2
p ð1; 0; 0;�1Þ; n

�
b ¼ 1ffiffiffi

2
p ð1; 0; 0; 1Þ: (79)

Note that the diagram in Fig. 1(b) generates, e.g., the
correlator �qðkb; Pb; SbjnbÞ which can be related to
�qðka; Pa; SajnaÞ in Eq. (70) by means of the parity
transformation.

We also mention that so-called light-cone divergences,
which are caused by the lightlike Wilson lines in (77) and
(78), can be avoided if near-light-cone directions for the
Wilson lines are chosen instead. For a discussion of such
divergences and other nontrivial issues concerning the
precise definition of unintegrated parton correlation func-
tions we refer to the recent contribution [63] as well as
references therein.

B. Transverse momentum dependent parton
distributions

The quark-quark correlators in Eqs. (75) and (76) can be
parametrized through TMDs [14,23,24,32,55,56]. A com-
mon and rather convenient procedure for performing such
a parametrization is by specifying the traces of the corre-
lators with the Dirac-matrices � ¼ ��, ���5, i�

���5, 1,
i�5,

�q½�� � 1

2
Tr½�q��: (80)

In the cm-frame, where the hadron Ha has a large plus-

momentum, the leading (twist) traces are �½�þ�, �½�þ�5�,
and �½i�iþ�5� (i ¼ f1; 2g), while all the other traces are
suppressed in the cross section by at least one power of
the large light-cone momentum (and consequently by one
power of q). These traces then have the following expres-
sions in terms of leading twist quark TMDs (see, e.g.,
[24,56]5):

�q½�þ� ¼ fq1 ðxa; ~k2aTÞ �
"ijT k

i
aTS

j
aT

Ma

f?q
1T ðxa; ~k2aTÞ; (81)

�q½�þ�5� ¼ SaLg
q
1Lðxa; ~k2aTÞ þ

~kaT � ~SaT
Ma

gq1Tðxa; ~k2aTÞ;
(82)

�q½i�iþ�5� ¼ SiaTh
q
1ðxa; ~k2aTÞ

þ kiaTð ~kaT � ~SaTÞ � 1
2
~k2aTS

i
aT

M2
a

h?q
1T ðxa; ~k2aTÞ

þ SaL
kiaT
Ma

h?q
1L ðxa; ~k2aTÞ þ

"ijT k
j
aT

Ma

h?q
1 ðxa; ~k2aTÞ:

(83)

For brevity we omitted the arguments of the correlator �.
Note that the components of the nucleon spin vector in (81)

–(83) are understood in the cm-frame. The object "ijT
represents a short form of the transverse epsilon tensor
"�þij, where we use the convention "�þ12 ¼ 1. The trans-
verse momentum dependent unpolarized quark distribu-
tion, helicity distribution, and transversity distribution are
denoted by f1, g1L, and h1, respectively. Of particular
importance are also the time-reversal odd (T-odd) Sivers
function f?1T [64,65] and Boer-Mulders function h?1 [55] as
they can give rise to quite interesting single spin and/or
azimuthal asymmetries in hard semi-inclusive reactions.

The correlator ��q in Eq. (76) is related to the correlator
��q which defines, precisely in analogy to the Eqs. (81)–
(83), antiquark distributions. For the different Dirac traces
the relation reads [32]

5Note that the left-hand side in Eq. 16 of [56] should read
�½i�iþ�5�.
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�� q½�� ¼ 
��q½��;
�þfor ��; i����5

�for ���5; 1; i�5
: (84)

Since the correlator �� in (76) is associated with the hadron
Hb having a large minus-momentum in the cm-frame, the

leading traces are now ��½���, ��½���5�, and ��½i�i��5�. Taking
(84) into account the parametrizations can be directly
obtained from (81)–(83),

�� q½��� ¼ f �q
1ðxb; ~k2bTÞ þ

"ijT k
i
bTS

j
bT

Mb

f? �q
1T ðxb; ~k2bTÞ; (85)

�� q½���5� ¼ �SbLg
�q
1Lðxb; ~k2bTÞ �

~kbT � ~SbT
Mb

g �q
1Tðxb; ~k2bTÞ;

(86)

��q½i�i��5� ¼ SibTh
�q
1ðxb; ~k2bTÞ

þ kibTð ~kbT � ~SbTÞ � 1
2
~k2bTS

i
bT

M2
b

h? �q
1T ðxb; ~k2bTÞ

þ SbL
kibT
Mb

h? �q
1L ðxb; ~k2bTÞ

� "ijT k
j
bT

Mb

h? �q
1 ðxb; ~k2bTÞ: (87)

Note the respective sign change in front of the epsilon

tensor "ijT which is due to the interchange of plus-momenta
and minus-momenta.

C. Leading spin observables

Nowwe are in a position to calculate all the leading twist
observables for qT � q by inserting the traces (81)–(83)
and (85)–(87) into the hadronic tensor (73). We mention
again that the contraction of the hadronic and the leptonic
tensor is performed in the cm-frame where, in order to get

the leptonic tensor in that frame, use is made of Eqs. (53)
and (54). Since the lepton momenta contain angles in the
CS-frame our final result for the cross section is of the form
(57). Here one has to keep in mind that the leading twist
calculation of course merely provides nonzero results for
part of the structure functions in (57). Carrying out the
contraction of the tensors and keeping only the leading
contribution in 1=q one finds

d�

d4qd�
¼�2

emxaxb
2q4

1

Nc

X
q

e2q
Z
d2 ~kaTd

2 ~kbT

�
ð2Þð ~qT� ~kaT� ~kbTÞ½ð1þcos2�Þð�q½�þ� ��q½���

þ�q½�þ�5� ��q½���5�Þ
þsin2�ðcos2�ð
i1
j1�
i2
j2Þ
þsin2�ð
i1
j2þ
i2
j1ÞÞ�q½i�iþ�5� ��q½i�j��5��
þf�$ ��gþOð1=qÞ: (88)

To present the leading twist spin observables we will make
use of the following notation for the convolution of TMDs
in the transverse momentum space:

C½wð ~kaT; ~kbTÞf1 �f2� � 1

Nc

X
q

e2q
Z

d2 ~kaTd
2 ~kbT

� 
ð2Þð ~qT � ~kaT � ~kbTÞwð ~kaT; ~kbTÞ
� ½fq1ðxa; ~k2aTÞf �q

2ðxb; ~k2bTÞ
þ f �q

1 ðxa; ~k2aTÞfq2 ðxb; ~k2bTÞ�: (89)

The two terms on the right-hand side of (89) are generated
by the two diagrams in Fig. 1. For the parton model
calculation it is convenient to introduce a number of linear
combinations of various structure functions given in Eq.
(57):

Fsinð2���aÞ
TU ��1

2
ðFcos2�

TU �Fsin2�
TU Þ; Fsinð2�þ�aÞ

TU � 1

2
ðFcos2�

TU þFsin2�
TU Þ; Fsinð2���bÞ

UT ��1

2
ðFcos2�

UT �Fsin2�
UT Þ;

Fsinð2�þ�bÞ
UT � 1

2
ðFcos2�

UT þFsin2�
UT Þ; Fcosð2���bÞ

LT � 1

2
ðFcos2�

LT þFsin2�
LT Þ; Fcosð2�þ�bÞ

LT � 1

2
ðFcos2�

LT �Fsin2�
LT Þ;

Fcosð2���aÞ
TL � 1

2
ðFcos2�

TL þFsin2�
TL Þ; Fcosð2�þ�aÞ

TL � 1

2
ðFcos2�

TL �Fsin2�
TL Þ; Fcosð2���a��bÞ

TT � 1

2
ðFcos2�

TT þFsin2�
TT Þ;

Fcosð2���aþ�bÞ
TT � 1

2
ð �Fcos2�

TT þ �Fsin2�
TT Þ; Fcosð2�þ�a��bÞ

TT � 1

2
ð �Fcos2�

TT � �Fsin2�
TT Þ; Fcosð2�þ�aþ�bÞ

TT � 1

2
ðFcos2�

TT �Fsin2�
TT Þ:
(90)

Using the unit vector ~h � ~qT=qT one eventually finds the following leading-order structure functions in the CS-frame:

F1
UU ¼ C½f1 �f1�; (91)

Fcos2�
UU ¼ C

�
2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT

MaMb

h?1 �h?1
	
; (92)
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Fsin2�
LU ¼ C

�
2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT

MaMb

h?1L �h
?
1

	
; (93)

Fsin2�
UL ¼ �C

�
2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT

MaMb

h?1 �h?1L
	
; (94)

F1
TU ¼ �C

� ~h � ~kaT
Ma

f?1T �f1
	
; (95)

Fsinð2���aÞ
TU ¼ C

� ~h � ~kbT
Mb

h1 �h
?
1

	
; (96)

Fsinð2�þ�aÞ
TU ¼ C

�
2ð ~h � ~kaTÞ½2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT� � ~k2aTð ~h � ~kbTÞ

2M2
aMb

h?1T �h
?
1

	
; (97)

F1
UT ¼ C

� ~h � ~kbT
Mb

f1 �f
?
1T

	
; (98)

Fsinð2���bÞ
UT ¼ �C

� ~h � ~kaT
Ma

h?1 �h1

	
; (99)

Fsinð2�þ�bÞ
UT ¼ �C

�
2ð ~h � ~kbTÞ½2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT� � ~k2bTð ~h � ~kaTÞ

2MaM
2
b

h?1 �h?1T
	
; (100)

F1
LL ¼ �C½g1L �g1L�; (101)

Fcos2�
LL ¼ C

�
2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT

MaMb

h?1L �h?1L
	
; (102)

F1
LT ¼ �C

� ~h � ~kbT
Mb

g1L �g1T

	
; (103)

Fcosð2���bÞ
LT ¼ C

� ~h � ~kaT
Ma

h?1L �h1
	
; (104)

Fcosð2�þ�bÞ
LT ¼ C

�
2ð ~h � ~kbTÞ½2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT� � ~k2bTð ~h � ~kaTÞ

2MaM
2
b

h?1L �h
?
1T

	
; (105)

F1
TL ¼ �C

� ~h � ~kaT
Ma

g1T �g1L

	
; (106)

Fcosð2���aÞ
TL ¼ C

� ~h � ~kbT
Mb

h1 �h
?
1L

	
; (107)

Fcosð2�þ�aÞ
TL ¼ C

�
2ð ~h � ~kaTÞ½2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT� � ~k2aTð ~h � ~kbTÞ

2M2
aMb

h?1T �h
?
1L

	
; (108)

F1
TT ¼ C

�
2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT

2MaMb

ðf?1T �f?1T � g1T �g1TÞ
	
; (109)

S. ARNOLD, A. METZ, AND M. SCHLEGEL PHYSICAL REVIEW D 79, 034005 (2009)

034005-14



�F 1
TT ¼ �C

� ~kaT � ~kbT
2MaMb

ðf?1T �f?1T þ g1T �g1TÞ
	
; (110)

Fcosð2���a��bÞ
TT ¼ C½h1 �h1�; (111)

Fcosð2���aþ�bÞ
TT ¼ C

�
2ð ~h � ~kbTÞ2 � ~k2bT

2M2
b

h1 �h
?
1T

	
; (112)

Fcosð2�þ�a��bÞ
TT ¼ C

�
2ð ~h � ~kaTÞ2 � ~k2aT

2M2
a

h?1T �h1
	
; (113)

Fcosð2�þ�aþ�bÞ
TT ¼ C

��
4ð ~h � ~kaTÞð ~h � ~kbTÞ½2ð ~h � ~kaTÞð ~h � ~kbTÞ � ~kaT � ~kbT�

4M2
aM

2
b

þ
~k2aT ~k

2
bT � 2 ~k2aTð ~h � ~kbTÞ2 � 2 ~k2bTð ~h � ~kaTÞ2

4M2
aM

2
b

�
h?1T �h?1T

	
: (114)

We close this section with a number of comments.
(i) The structure functions depend on the variables

ðxa; xb; qTÞ. Instead of using qT one may also work
with the transverse momentum of one of the hadrons
in the CS-frame.

(ii) One finds nonzero contributions for 24 out of the 48
structure functions defined in Eq. (57). This also
means that exactly half of the structure functions
are of subleading twist for the kinematical region
qT � q we are interested in here.

(iii) The leading twist parton model calculation contain-
ing T-even effects was first carried out in Ref. [32],
while T-odd effects were investigated in [33]. We
obtain the same number of nonzero structures iden-
tified in those articles, though we do not agree with
certain angular dependences given in [33].

(iv) Our results are for the structure functions in Eq. (57)
with the lepton angles understood in the CS-frame,
and the components of the hadron spin vectors in the
cm-frame. Note that the expressions would be ex-
actly the same for structure functions defined in the
Gottfried-Jackson frame, because differences be-

tween those two dilepton rest frames are only of
OðqT=qÞ.

(v) For identical hadrons in the initial state the results in
Eqs. (91)–(114) satisfy the model-independent con-
straints listed in (65) and (66). In particular, we point
out that the parton model result

Fcosð2�þ�a��bÞ
TT ðxb; xaÞ ¼ Fcosð2���aþ�bÞ

TT ðxa; xbÞ
(115)

has a model-independent status. It is worthwhile to
mention that, by means of charge conjugation, in the
case of proton-antiproton DYone also finds symme-
tries for structure functions (like FUUðxa; xb; qTÞ ¼
FUUðxb; xa; qTÞ), and relations between various
structure functions. In particular, when studying
single spin effects one can obtain the same informa-
tion by either polarizing the proton or the antiproton.

(vi) If the cross section is integrated upon qT only three

structure functions (F1
UU, F

1
LL, F

cosð2���a��bÞ
TT ) sur-

vive. Neglecting hadron masses one obtains

d�

dxadxbd�
¼ s

2

d�

dqþdq�d�

¼ �2
em

12q2

�
ð1þ cos2�ÞX

q

e2qðfq1 ðxaÞf �q
1 ðxbÞ þ f �q

1 ðxaÞfq1 ðxbÞÞ � SaLSbLð1þ cos2�ÞX
q

e2qðgq1ðxaÞg �q
1ðxbÞ

þ g �q
1ðxaÞgq1ðxbÞÞ þ j ~SaTjj ~SbTjsin2� cosð2���a ��bÞ

X
q

e2qðhq1ðxaÞh �q
1ðxbÞ þ h �q

1ðxaÞhq1ðxbÞÞ
�
: (116)

Further integration upon the solid angle � provides
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d�

dxadxb
¼4��2

em

9q2

�X
q

e2qðfq1 ðxaÞf �q
1 ðxbÞþf �q

1 ðxaÞfq1 ðxbÞÞ

�SaLSbL
X
q

e2qðgq1ðxaÞg �q
1ðxbÞ

þg �q
1ðxaÞgq1ðxbÞÞ

�
: (117)

Note that the term containing the transversity
dropped out.

(vii) For the qT-dependent cross section all chiral-odd
parton distributions disappear after integrating out
the azimuthal angle �. On the other hand, all the
chiral-even effects survive this integration.

(viii) The large number of independent structure func-
tions—for instance 16 for identical hadrons in the
initial state—indicates the high potential of the po-
larized DY process for studying TMDs. Therefore,
this process has also a certain advantage over semi-
inclusive DIS (if in that reaction polarization of the
initial state lepton and hadron are exploited) where
eight leading twist structure functions exist [23,24],
being just sufficient to map out, in principle, all the
eight leading twist TMDs.

(ix) As already pointed out in Sec. V data on ��N !
���þX [41–43] show a rather large cos2� depen-
dence of the unpolarized cross section which cannot
be explained by collinear perturbative QCD.
However, if intrinsic transverse parton motion in
the initial state is taken into account the Boer-
Mulders function h?1 contributes to the cos2� term
according to (92) which may explain the observed
violation of the Lam-Tung relation [33]. This finding
stimulated a lot of phenomenological work on this
subject [11,33,66–80].

(x) Of particular interest is also the transverse single
spin effect given byF1

TU in Eq. (95) or F1
UT in (98).

Both structure functions contain the Sivers parton
distribution which was predicted to have the opposite
sign in DY as compared to semi-inclusive DIS
[59,81,82]. As the sign reversal is at the core of our
present understanding of transverse single spin
asymmetries in hard scattering processes an experi-
mental check of this prediction is of utmost impor-
tance. Theoretical work on the Sivers effect in DY
can be found in [11,83–89].

(xi) The expected sign reversal of T-odd TMDs can also
be investigated through the structure functions

Fsinð2���aÞ
TU in (96) or Fsinð2���bÞ

UT in (99) in which
the Boer-Mulders function enters (see also
Refs. [11,71,73]).

(xii) A phenomenological study of the structure functions
in (109) and (110) was carried out in [90].

VII. SUMMARY

We have presented a formalism for dilepton production
from the collision of two polarized spin- 12 particles. To this

end we have derived in a first step a general expression for
the hadronic DY tensor. This tensor consists of 48 basis
elements, and each basis tensor is multiplied by a scalar
function (structure function). In order to ensure electro-
magnetic gauge invariance of the hadronic tensor we have
made use of an elegant projection method proposed in [26].
In general, our treatment completes earlier work [14,31].
The double-polarized case, which is the most challenging
part, was studied before only for the specific kinematical
case qT ¼ 0 [14].
The result for the hadronic tensor allows one to obtain

the general angular distribution of the cross section for any
reference frame. In this work we have focussed on a
dilepton rest frame where the angular distribution takes
the most compact form and shows a high degree of sym-
metry. We repeat here that the angular distribution as given
in Eq. (57), which represents a central result of our work,
holds for any dilepton rest frame.
Our analysis is supplemented by a parton model calcu-

lation of the polarized DY reaction (see also [32,33]). For
this part of the work we concentrated on the kinematical
situation where the transverse momentum of the dilepton
pair is much smaller than its invariant mass. This region is
the realm of TMDs which are currently under intense
investigation both from the experimental and the theoreti-
cal side.
We reemphasize that the polarized DY process has a

high potential for studying TMDs which contain important
information on the nonperturbative structure of hadrons.
Moreover, polarized dilepton measurements can provide us
with a crucial and highly nontrivial check of QCD-
factorization [59]. In addition, one can systematically
study different resummation techniques [91–93] in an un-
precedented way. Consequently, there is sufficient reason
for looking forward to the first polarized DY data.
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