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We study two-photon exchange (TPE) in the elastic electron-nucleon scattering at high Q2 in the

framework of perturbative quantum chromodynamics. The obtained TPE amplitude is of order �=�s with

respect to Born approximation. Its shape and value are sensitive to the choice of nucleon wave function,

thus study of TPE effects can provide important information about nucleon structure. With the wave

functions based on quantum chromodynamics sum rules, TPE correction to the electron-proton cross

section has a negative sign, is almost linear in ", and grows logarithmically with Q2 up to 7% at Q2 ¼
30 GeV2. The results of existing hadronic calculations, taking into account just the nucleon intermediate

state, can be smoothly connected with the perturbative quantum chromodynamics result near Q2 �
3 GeV2. Above this point two methods disagree, which implies that the hadronic approach becomes

inadequate at high Q2. Other relevant observables, such as the electron/positron cross section ratio, are

also discussed.

DOI: 10.1103/PhysRevD.79.034001 PACS numbers: 25.30.Bf, 12.38.Bx

I. INTRODUCTION

Two-photon exchange (TPE) in the electron-proton scat-
tering has been actively discussed over the last several
years. The impetus for this was initially given by the
discovery of the so-called GE=GM problem in the proton
form factor measurements [1]. It was shown later that the
discrepancy between the Rosenbluth separation and polar-
ization transfer methods can be at least partially eliminated
after taking into account TPE effects [2]. Several experi-
ments aimed at direct detection of TPE contribution to the
cross section are proposed [3]. Nonzero single-spin asym-
metry, which is induced by the imaginary part of TPE
amplitude, was observed experimentally [4]. The role of
TPE in the determination of the proton radius [5], parity-
violating observables [6], and in deep inelastic scattering
[7] was also discussed.

Currently, measurements of proton form factors atQ2 �
10 GeV2 are in progress [8] and other measurements in this
region are proposed [9,10]. Clearly, these experiments call
for a reliable estimate of TPE effects for high-Q2 kinemat-
ics, which was one of the aims of the present work. At
moderate Q2, the TPE amplitude was calculated using
nucleon and resonances as intermediate states (further
called the hadronic approach) [2,11–13]. At high Q2, how-
ever, a natural means for the description of any process
involving hadrons and, in particular, TPE, is perturbative
quantum chromodynamics (pQCD). Surprisingly, we have
found no direct pQCD calculation of TPE in the literature.

In Ref. [14], TPE at high Q2 was investigated using the
formalism of generalized parton distributions. The authors
doubt of pQCD applicability in the currently accessible
kinematical region and thus use the alternative method.
The values of TPE corrections obtained this way have the
opposite sign to the results of the hadronic calculations.
The authors also use an assumption that the most important
diagrams are those in which both photons interact with the

same quark. It turns out that in the pQCD approach the
situation is reversed (see below, Sec. III B).
In the present paper we study TPE in the elastic electron-

nucleon scattering at high Q2 in the framework of pQCD.
We employ the method, which was used to calculate
baryon form factors in Refs. [15,16]. In the adopted ap-
proach, a nucleon with momentum p is represented as
three collinearly moving quarks with momenta xip, where
0< xi < 1,

P3
i¼1 xi ¼ 1. All quark masses and nucleon

mass are neglected and thus p2 ¼ ðxipÞ2 ¼ 0. The process
amplitude has the form

M ¼ h�ðyiÞjTðyi; xiÞj�ðxiÞi; (1)

where T is the hard scattering amplitude at quark level
(represented by appropriate Feynman diagrams), and�ðxiÞ
and �ðyiÞ are initial and final nucleon spin-flavor-
coordinate wave functions (quark distribution amplitudes).
The convolution with nucleon wave function implies a
convolution of spinor indices and an integration over
dx1dx2dx3�ð1� x1 � x2 � x3Þ and similarly for yi.
To obtain a nonzero transition amplitude one must turn

the momenta of all three quarks from the initial to final
direction. In the one-photon exchange (Born) approxima-
tion one therefore needs at least two hard gluons to be
exchanged between the quarks. It follows then that the
amplitude scales as ��2

s=Q
6 and the nucleon form fac-

tor—as �2
s=Q

4. In the case of TPE the exchange of one
gluon is sufficient and thus the leading-order pQCD con-
tribution to the TPE amplitude should be ��2�s=Q

6. The
ratio TPE/Born then will not be just �, as one may naively
expect, but �=�s, which is significantly larger and growing
with Q2. Thus the larger Q2 is, the more important TPE
will be.
The paper is organized as follows. In Sec. II the observ-

ables, affected by TPE, are discussed; Sec. III describes all
ingredients of the calculation (hard scattering amplitude
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for one-photon and two-photon exchange and nucleon
wavefunctions); numerical results are given in Sec. IV;
and conclusions—in Sec. V.

II. KINEMATICS AND OBSERVABLES

The momenta of particles are denoted according to
eðkÞ þ NðpÞ ! eðk0Þ þ Nðp0Þ. The transferred momentum
is q ¼ p0 � p, Q2 ¼ �q2 > 0 and � ¼ ðpþ kÞðp0 þ k0Þ.
The reduced cross section of the elastic electron-proton
scattering can be written as

�R ¼ Q2

4M2
jGMj2 þ "jGEj2 þ Q2

4M2

"ð1� "Þ
1þ "

jG3j2; (2)

where M is proton mass, " ¼ 1� 2½1þ �2=Q2ð4M2 þ
Q2Þ��1, which for Q2 � M2 turns to

" � ð�2 �Q4Þ=ð�2 þQ4Þ; (3)

and GM, GE, and G3 are certain invariant amplitudes (see
details in Ref. [13]). In Born approximation GE and GM

become usual electric and magnetic form factors and G3

vanishes, that is

G E ¼ GE þ �GE; GM ¼ GM þ �GM;

G3 ¼ �G3;
(4)

where prefix � indicates TPE contribution. The dominant
part of the cross section at high Q2 comes from the gener-
alized magnetic form factor GM and looks like

�R � Q2

4M2
G2

M

�
1þ 2Re

�GM

GM

�
: (5)

Hence we should primarily study TPE contribution �GM.
This quantity also defines the positron/electron elastic
cross section ratio

R ¼ �þ

�� ¼
��������
GM � �GM

GM þ �GM

��������
2� 1� 4Re

�GM

GM

: (6)

The generalized electric form factor GE is suppressed in
the cross section by M2=Q2 � 1. Therefore a considera-
tion of TPE corrections to GE makes little sense.
The amplitude �G3 in principle can be measured in

polarization experiments. Namely, neglecting terms of or-
derM2=Q2, the polarization of the final proton in the recoil
polarization method is purely longitudinal and equals

P‘ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p �
1� 2"2

1þ "
Re

�G3

GM

�
; (7)

where h is electron helicity. Thus a precise study of
" dependence of P‘ may give an access to �G3.

III. AMPLITUDE CALCULATION

A. One-photon exchange

First, we briefly review the pQCD calculation of form
factors [15,16].
The nucleon form factors, or the elastic electron-nucleon

scattering in one-photon exchange approximation, is de-
scribed in pQCD to leading order in �s by seven diagrams
(Fig. 1(a)). For example, the piece of amplitude, coming
from the first of them, is

M ¼ � 4��

q2

�
4��s

q2

�
2 � 6 � ð4=9Þ � ð�q2Þ �u0��uh�ðyiÞje1

��ðy1p̂0 þ y2p̂
0 � x2p̂Þ�	ðx1p̂þ q̂Þ�� � �� � �	

x22y2x3y3ðy1 þ y2Þð1� x1Þq4
j�ðxiÞi;

(8)

where u and u0 are electron spinors, the overall minus sign
is due to the negative electron charge, ei is the ith quark
charge, 6 ¼ 3! is a symmetry factor due to possible per-
mutations of quark lines, and (� q2) comes from quark
and nucleon spinors normalization,

4=9 ¼
�
1

2

a 1

2

b � 1

2

a � 1

2

b

�
(9)

is a color factor (here 
a are Gell-Mann matrices and h i
means averaging over totally antisymmetric color wave

function). In the last equation as well as in Eq. (8) we
separate matrices, acting on different quarks, by the� sign.
Thus in the expression for the color factor 1

2

a 1
2


b acts on
the first, 12


a on the second, and 1
2


b on the third quark.
Adding up contributions from all the diagrams and using

the fact that spin-flavor-coordinate wave function is totally
symmetric under quark interchange, we obtain

M ¼ 4��

Q2
�u0��u �U0��U �GMðq2Þ; (10)

(a)

(b) (c) (d)

FIG. 1. pQCD diagrams for eN ! eN: one-photon exchange (a), two-photon exchange, leading order (b), subleading order (c, d).
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where U and U0 are initial and final nucleon spinors and

GM ¼ 16

3

�
4��s

q2

�
2h�ðyiÞjð1þ h1h3Þ

�
2e1

x3y3ð1� x1Þ2ð1� y1Þ2
þ 2e1

x2y2ð1� x1Þ2ð1� y1Þ2
þ e2

x1y1x3y3ð1� x1Þð1� y3Þ
� e1

x2y2x3y3ð1� x1Þð1� y3Þ �
e1

x2y2x3y3ð1� x3Þð1� y1Þ
�
j�ðxiÞi; (11)

where hi ¼ 	1 are signs of quark helicities; the helicities
of initial and final quarks should be equal. This is equiva-
lent to the well-known result [15,16].

B. Two-photon exchange

For the case of TPE, there are only four distinct dia-
grams in the leading order (Fig. 1(b)) in which the photons
are connected to different quarks. The diagrams in which
both photons interact with the same quark (Fig. 1(c)) need
one more gluon to turn all quarks’ momenta and thus are
subleading in �s. Moreover, the evaluation of such dia-
grams alone is inconsistent, since the contribution of the
same order in �s comes from one-gluon corrections to the
leading diagrams (e.g. Fig. 1(d)).

One point needs to be clarified here. If we remove the
electron line, the diagrams (Fig. 1(b)–1(d)) will represent
Compton scattering of virtual photons on the nucleon
[doubly virtual Compton scattering (VVCS)]. And vice
versa, TPE can be viewed as a process in which the virtual
photon, emitted by the electron, is scattered from the
proton and then absorbed back by the electron. VVCS
has an important qualitative difference from the well-
studied real Compton scattering (RCS). Since the momen-
tum r of the real photon satisfies r2 ¼ 0, it cannot alone
turn the quark’s momentum: ðxip� yip

0Þ2 � 0 ¼ r2.
Therefore diagrams with the structure like Fig. 1(b) vanish
for RCS, and the amplitude expansion begins with Oð�2

sÞ
terms (diagrams like Fig. 1(c) and 1(d)). On the contrary, in
the case of VVCS the photons may be highly virtual,
diagrams Fig. 1(b) contribute, and leading terms in
VVCS amplitude are Oð�sÞ. Hence, one cannot employ
an analogy with RCS in the analysis of TPE (cf. Ref. [14]).
We write down the expression for the first diagram in
Fig. 1(b), the rest are analogous. We have

�M ¼
�
4��

q2

�
2 4��s

q2
� 6 � ð�2=3Þ � ð�q2Þ


 h�ðyiÞje1e2
�u0��ðk̂þ x2p̂� y2p̂

0Þ��u

ðkþ x2p� y2p
0Þ2 þ i0


 ��ðy1p̂0 þ y3p̂
0 � x3p̂Þ�� � �� � ��

x2y2x
2
3y3ðx1 þ x3Þðy1 þ y3Þ2q2

j�ðxiÞi;
(12)

where the color factor is �2=3 ¼ h12
a � 1
2


a � 1i. After
some algebraic transformations and using wave function
symmetry, we obtain the full TPE amplitude in the form

�M ¼ 4��

Q2
�u0��u �U0��U

�
4p�k�

�
�G3 þ g���GM

�
;

(13)

where

�GM ¼ � 256�2��s

q4
h�ðyiÞj e1e2ð1� h1h3Þ

x2y2x3y3ð1� x2Þð1� y2Þ

 ð�� q2Þ=ð1� x2Þ þ ð�þ q2Þ=ð1� y2Þ � 2�

�ðx2 � y2Þ � q2ðx2 þ y2 � 2x2y2Þ þ i0


 j�ðxiÞi; (14)

�G3 ¼ � 256�2��s

q4
h�ðyiÞj e1e2ð1� h1h3Þ

x2y2x3y3ð1� x2Þð1� y2Þ

 2�

�ðx2 � y2Þ � q2ðx2 þ y2 � 2x2y2Þ þ i0
j�ðxiÞi:

(15)

From this expression it is easy to see the crossing symme-
try of TPE amplitudes �GM and �G3: both are �-odd. The
quantity �GM, associated with the cross section correction
(5), equals [13]

�GM ¼ �GM þ "�G3: (16)

As implied by Eqs. (5)–(7), it is better to consider ratios
�GM=GM and �G3=GM than the amplitudes themselves.
This way we also avoid the uncertainty related with the
absolute normalization of nucleon wave functions, since it
cancels in the ratio. We have

�
�GM

GM

;
�G3

GM

�
¼ � 3�

�s

h�ðyiÞjðT�GM
; T�G3

Þj�ðxiÞi
h�ðyiÞjTGM

j�ðxiÞi ; (17)

where TGM
, T�GM

, and T�G3
are the expressions, sand-

wiched between wave functions in Eqs. (11), (14), and
(15).
The obtained TPE amplitudes are free from infrared (IR)

divergence. This becomes clear if we recall that the IR-
divergent terms are proportional to the Born amplitude.
Thus �G3 is IR-finite (it vanishes in the Born approxima-
tion), and

�GðIRÞ
M � �GM ln
2; (18)

where 
 is an infinitesimal photon mass. The magnetic
form factor (11) is a quantity of order Oð�2

sÞ. On the other
hand, the leading-order contribution to TPE is Oð�sÞ and
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therefore IR divergence should only appear as a subleading
effect, in the next order in �s.

Another interesting point pertains to photons’ virtual-
ities. In all diagrams they are both of order Q2, e.g. in the
first diagram q21 ¼ �x2y2Q

2 and q22 ¼ �ðx1 þ x3Þ

ðy1 þ y3ÞQ2. We may conclude that the leading contribu-
tion to the amplitude at high Q2 comes from the region
where both photons are hard, q21 � q22 ��Q2.

C. Wave functions

Before turning to numerical calculations, we must spec-
ify a model for wave functions. The requirement for the
total spin and isospin to be 1=2 together with the Pauli
principle fixes the following form of the quark distribution
amplitude (for the proton of positive helicity):

j�ðxiÞi ¼ fNffiffiffi
6

p �1ðx1; x2; x3Þðju"u#d"i � ju"d#u"iÞ þ perm:;

(19)

where ‘‘perm.’’ means the sum over all quark permutations
and fN is the overall normalization constant not needed for
our calculation. The neutron wave function is obtained by
interchange d $ u. As we can see, the distribution ampli-
tude is completely determined by the function �1.

In general, the distribution amplitude and thus �1 de-
pend logarithmically on Q2. Namely, we have

�1ðxi; Q2Þ ¼ x1x2x3
X
k

½�sðQ2Þ��kBkPkðx1; x3Þ; (20)

where Pk are Appell polynomials (P1 ¼ 1, P2 ¼ x1 � x3,
etc.) and �k are corresponding anomalous dimensions [15].
Thus in the formal limit Q2 ! 1 the term with the lowest
�k, which is P1, dominates and �1 ! �as ¼ x1x2x3. This
asymptotical wave function, however, leads to predictions
inconsistent with the experiment. In particular, it yields
zero proton and positive neutron magnetic form factors.
Thus at present Q2 the distribution amplitude should be
considerably different from its asymptotic form [16]. Since
the evolution with Q2 is very slow (�k � 1), the same
wave function can be employed for all currently accessible
Q2 with reasonable accuracy.

Various forms of distribution amplitude were proposed
in the literature. We did the calculations with the following
amplitudes: Chernyak-Zhitnitsky (CZ) [16], King-
Sachrajda (KS) [17], Chernyak-Ogloblin-Zhitnitsky
(COZ) [18], Gari-Stefanis (GS) [19], and heterotic (Het)
[20]. The CZ and KS amplitudes give practically the same
results as the COZ amplitude, thus they are not considered
further.

IV. NUMERICAL RESULTS

There are two independent kinematical variables in any
elastic process. For eN scattering, Q2 and " [Eq. (3)] are
generally used. The " dependence of the obtained TPE

amplitude �GM is shown in Fig. 2. It turns out to be
universal for all Q2 (except for slow logarithmic evolution,
which we neglect here). We see that the amplitude �GM,
calculated with COZ and Het wave functions, is very close
to a linear function of ". Slight deviations from linearity
are present near the endpoints " ¼ 0, " ¼ 1 only. In con-
trast, the GS wave function yields a much larger and highly
nonlinear TPE amplitude. In light of this it is worth noting
that linear " dependence of �GM is necessary and suffi-
cient for Rosenbluth plots to remain linear even under the
influence of TPE [21]. Since a careful analysis of the
experimental data does not reveal any nonlinearity in the
Rosenbluth plots [22], we conclude that the experiment
disfavors the GS wave function.
For the neutron target, both GS and Het wave functions

yield nonlinear and anomalously huge TPE corrections, up
to 25% (Fig. 3). Taking into account the smallness of the

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

COZ
GS
Het

FIG. 2 (color online). TPE amplitude �GM=GM vs " at Q2 ¼
10 GeV2.
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FIG. 3 (color online). TPE amplitude �GM=GM vs " for neu-
tron at Q2 ¼ 5 GeV2.
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neutron electric form factor, these corrections would mani-
fest as severe nonlinearities of the Rosenbluth plots, that is,
strong " dependence of the elastic cross section. Though
such cross section behavior seems unlikely, the high-Q2

neutron form factor data are too poor to draw a final
conclusion. Further experimental study of electron-neutron
elastic scattering at high Q2 and different " can show
definitely whether the nucleon is described by Het or by
COZ wave function. For the present moment we take the
COZ wave function as the most plausible.

The amplitude �G3, which determines the correction to
longitudinal recoil polarization [Eq. (7)], is small (< 1%)
for both proton and neutron, and unfortunately lies below
the precision of today’s experiments.

The positron/electron cross section ratio is shown in
Fig. 4. The calculation is done with the COZ wave function

at Q2 ¼ 2, 5, 10, and 20 GeV2. The experimental data in
the range 1:5<Q2 < 5 GeV2 from Ref. [23] are also
shown. Though the data points are well near the curves,
the errors are very large. More precise data would be
helpful, preferably in the low-" region, where the predicted
ratio is higher.
TheQ2 dependence of ‘‘normalized’’ TPE amplitudes at

fixed " is completely determined by the evolution of a
strong coupling constant �s. We have used simple parame-
terization

�s ¼ 4�=½	 lnðQ2=�2Þ�; (21)

with � ¼ 0:2 GeV. The resulting shape of the TPE ampli-
tude �GM for the proton, calculated with the COZ wave
function, is plotted in Fig. 5. At Q2 � 30 GeV2, which is
today the maximal Q2 ever investigated, the relative value
of TPE amplitude reaches 3.5%, which corresponds to the
cross section correction of about 7%. Such a correction is,
however, smaller than the experimental errors. On the other
hand, TPE can be seen in the recently proposed high-Q2

JLab experiment [9], where the estimated errors are at the
1% level.
The results of the hadronic calculation [11,13] are also

shown in Fig. 5 for comparison. Probably, the amplitude
undergoes some gradual transition from this curve at lower
Q2 to pQCD prediction at higher Q2 (recall that
" dependence in both cases is the same, approximately
linear with the positive slope). The figure suggests that a
reasonable interpolation is possible between the hadronic
result for Q2 below �3 GeV2 and the pQCD result above
this value. But we also see a strong disagreement of these
two curves at higher Q2. The most likely reason for such
behavior is that the hadronic approach, i.e. saturation of the
intermediate hadronic states by the bare nucleon and the
lowest resonances, is inadequate at high Q2. The multi-

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

1.15

1.2

1.25

ε

R

2

5

10
20

FIG. 4 (color online). Positron/electron cross section ratio for
Q2 ¼ 2, 5, 10, and 20 GeV2 (shown near the curves). Data are
from Ref. [23] at 1:5<Q2 < 5 GeV2.
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−0.015

−0.01
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0
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0 5 10 15 20 25
−0.04
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−0.02

−0.01

0
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FIG. 5 (color online). TPE amplitude �GM vs Q2 at " ¼ 0:5 (left) and " ¼ 0:1 (right). Dashed curves show hadronic calculations,
with form factors’ parameterizations: dipole (red) and Ref. [24] (black).
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particle intermediate states yield a substantial part of the
amplitude.

V. CONCLUSIONS

We have considered TPE for the elastic electron-nucleon
scattering in the framework of pQCD. The calculations are
done in the leading order with several model wave func-
tions. For the proton target and wave functions based on
quantum chromodynamics sum rules (CZ [16], KS [17],
and COZ [18]), the TPE amplitude �GM, which determines
cross section correction, has linear " dependence. Its value
is of order �=�s, grows logarithmically with Q2, and at
Q2 ¼ 30 GeV2 reaches 3.5% of the Born amplitude. At
lower Q2 a smooth connection is possible with previous
hadronic calculations, in which TPE amplitudes were cal-
culated taking into account just the nucleon intermediate
state [11]. On the other hand, at highQ2 the results of these
two methods are very different, which implies that the
hadronic approach becomes inadequate at Q2 * 3 GeV2.

The size and " dependence of TPE amplitudes are
sensitive to the choice of nucleon wave function (quark

distribution amplitude). At the same time, they are directly
measurable: �GM=GM via the cross section or the positron/
electron cross section ratio and �G3=GM—via the longi-
tudinal recoil polarization. Thus an accurate measurement
of TPE observables opens a new efficient way to study
quark distribution amplitude in the nucleon. For example,
the existing experimental data already rules out the GS
wave function (Ref. [19]). Since TPE amplitudes have
nontrivial " dependence, they potentially provide much
more information than just nucleon form factors. Thus
TPE turns from the correction to form factor measurements
into an independent tool for studying nucleon structure.
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