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We analyze the phenomenology of a prolonged early epoch of matter domination by an unstable but

very long-lived massive particle. This new matter domination era can help to relax some of the

requirements on the primordial inflation. Its main effect is the huge entropy production produced by

the decays of such a particle that can dilute any possible unwanted relic, as the gravitino in super-

symmetric models, and thus relax the constraints on the inflationary reheating temperature. A natural

candidate for such a heavy, long-lived particle already present in the standard model of the electroweak

interactions would be a heavy right-handed neutrino. In this case, we show that its decays can also

generate the observed baryon asymmetry with right-handed neutrino masses well above the bound from

gravitino overproduction.
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I. INTRODUCTION

Inflation was introduced in the 80s [1] as a solution to
several problems of the big bang cosmology. Perhaps the
main problem was the large-scale smoothness problem.
Why do different patches of the Universe, that were not
in causal contact in the radiation last scattering era, have
approximately the same temperature today [2]? In infla-
tionary models, an epoch of exponential expansion inflates
a small patch of the Universe in causal contact to contain
all the observable Universe today. Simultaneously if the
temperature after inflation is low enough, inflation helps
also to dilute unwanted relics from higher scales and
reduces the flatness problem.

It is usually assumed that some kind of inflation starts
already at the Planck scale to avoid the Universe collapse
in a few Planck times if�> 1 or (for any�) to prevent the
invasion of the surrounding inhomogeneity to our homo-
geneous patch before inflation. On the other hand, the
scales observable today in the cosmic microwave back-

ground left the horizon at an energy V1=4 & 6� 1016 GeV
[3], or 60 e-foldings before the end of inflation. So that,
inflation must end below this scale. After the end of
inflation comes an era of reheating when the inflaton field
oscillates around its minimum and decays to ordinary
particles. The final reheating temperature where we re-
cover ordinary big bang cosmology can take any value

from V1=4 above to scales as low as 1 MeV. However, the
required dilution of unwanted relics, as grand unified the-
ory (GUT) monopoles or gravitinos in supersymmetric
models, forces the reheating temperature to be well below
the GUT scale or even below TRH � 108 GeV in super-
symmetry models.

In this paper, we propose a simple and economical
mechanism that helps solve some of these problems and

reduces the requirements on the primordial inflationary
mechanism without further additions to the particle spec-
trum of the standard model with right-handed neutrinos.1

After an initial inflationary epoch (still necessary to repro-
duce the observed correlation on temperature fluctuations
at large scales) we assume our Universe is radiation domi-
nated for a short period and then enters a matter domina-
tion era due to the existence of a heavy long-lived unstable
particle that decays to radiation well-before nucleosynthe-
sis, when we connect with usual cosmology. In the stan-
dard model, as we will show, this role could be played by a
heavy right-handed neutrino. In the literature, it is well-
known that late time entropy release can help to ameliorate
some of the problems of standard cosmology. However, so
far most of these works have only considered moduli fields
in supersymmetric theories (see for instance [4–8]) and
their real presence in nature could be considered more
speculative than the existence of right-handed neutrinos.
As we show below, this matter domination mechanism,

naturally embedded in the standard model (SM), is able to
help primordial inflation in several aspects. A long period
of matter domination can reduce mildly the number of e-
folds before the end of inflation at which observable per-
turbations were generated, relaxing this way flatness con-
ditions on the inflationary potential. Moreover, the large
entropy production in the decay of this particle completely
dilutes any unwanted relics, eliminating the constraint on
the inflation reheating temperature. In this sense our matter
domination epoch has the same advantages as thermal
inflation [9], without resorting to yet another scalar field
and/or scalar potential.

1From now on, we call the standard model with right-handed
neutrinos simply ‘‘standard model’’
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II. REWRITING THE HISTORY OF THE
UNIVERSE

Let us assume for a moment that at an early time a
massive particle dominated the energy balance of the
Universe by many orders of magnitude. How does the
observed Universe feel this new epoch? Are there any
observable consequences of this?

As it is well-known [10,11], a massive particle X be-
comes nonrelativistic when the temperature of the thermal
bath falls bellow its mass, MX, and its energy density
freezes out when it drops out of equilibrium. Then,
X-relic abundance relative to photons (radiation) becomes
constant and therefore, if X is completely stable, the energy
density of the X particles will eventually become larger
than the radiation one, dominating the energy balance of
the Universe. If X is not completely stable but rather
sufficiently long-lived to dominate the energy density, later
on X will decay into relativistic particles that thermalize.
The radiation content of the Universe will be increased and
it will enter again in a radiation dominated era. This will be
the basic evolution of the Universe in our model.

We start from a radiation dominated Universe at a scale
larger than the mass of our X particle, MX, where this
particle is in thermal equilibrium. We assume that this
particle decouples from the plasma at a temperature of
the order of its mass. This particle is unstable, although
very long-lived, i.e. it has very weak interactions with
radiation degrees of freedom. Then, its energy density,
�X, starts diluting as matter, much slower than radiation.
If its lifetime, �X, is long enough, it will necessarily
dominate the energy density of the Universe. Although
our X particle decays all the time through an exponential
law [12], it is only when the age of the Universe is of the
order of 1=�X that the decay will sizably reduce its abun-
dance. Once it reaches this point, it will quickly decay into
radiation and our Universe will go back to a radiation
dominated epoch where it will connect with the usual
cosmology. This ‘‘matching’’ with the standard scenario
must happen well-before nucleosynthesis.

The evolution equations for the matter and radiation
energy-densities are well-known

_� X ¼ �3Hð1þ wXÞ�X � �X�X; (1)

_� old
r ¼ �4H�old

r ; (2)

_� new
r ¼ �4H�new

r þ �X�X; (3)

H2 ¼ _a

a
¼ 8�

3M2
Pl

ð�old
r þ �new

r þ �XÞ; (4)

where wX is the equation of state parameter of particle X,
which drops from 1=3 to zero as X becomes nonrelativistic,
�old
r is the energy density in radiation not related to X

decays, �new
r is the energy density in radiation produced

by X decays, and here we assume a flat Universe after
inflation consistent with observations [2].
From these equations we can see that, when X is non-

relativistic, the number of X’s per comoving volume
(NX ¼ R3�X=MX) follows a simple exponential decay
law and the (formal) solution to these equations is given by

�X ¼ �0
X

�
a

a0

��3
e��Xðt�t0Þ; (5)

�old
r ¼ �old0

r

�
a

a0

��4
; (6)

�new
r ¼ �0

X

�
a

a0

��4 Z t

t0

dt0
�
aðt0Þ
a0

�
e��Xt

0
�X; (7)

H2 ¼ _a

a
¼ 8�

3M2
Pl

ð�old
r þ �new

r þ �XÞ; (8)

where the superscript zero denotes the value of that quan-
tity at the initial epoch.
In general, it is not possible to integrate analytically

these equations, although useful approximations exist
[12,13]. However, it is always possible to solve them
numerically as we have done to generate Figs. 1 and 2.
These evolution equations, (1) to (4), were thoroughly
analyzed by M. Turner and collaborators in Refs. [12,13]
(for a more recent work see for example [14]) and we agree
completely with their analysis of the matter and radiation
densities, entropy, and temperature. However, we are es-
pecially interested in the particular limit of small �X and
largeMX. In fact, as we will see below, wewill focus on the
limit of small �X keeping �X � 1=tBBN so that no trace of
X is present at nucleosynthesis time, in agreement with
experimental observations.
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FIG. 1 (color online). Evolution of the different components of
the energy density of the Universe from T � 1014 GeV to T �
1 MeV. The short-dashed (green) line corresponds to �old

r versus
time, the long-dashed (blue) line to �new

r , and the solid (red) line
to �X. We start from �X ¼ �old

r =200 at T � 1015 GeV, with a
�X ¼ 10�20 GeV.
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In this limit, our massive particle X dominates the
energy density of the Universe by many orders of magni-
tude during a sizeable fraction of the thermal history of the
Universe (see Fig. 1). As shown in Refs. [12,13], during the
X decays the temperature of the Universe does not fall as

t�1=2ða�1Þ, but rather as t�1=4ða�3=8Þ due to the entropy
release of the decays and the temperature reaches an al-
most flat plateau from the point where the energy density in
new radiation born through X decays and the energy den-
sity in old radiation becomes comparable up to t ’ ��1

X .
After this time, X rapidly decays and the temperature falls

again as t�1=2ða�1Þ (see Fig. 2).
Once it has completely decayed away, our Universe is

left with a temperature

Tpost-decay ’ 1:0 � 109
�
g�
200

��1=4
�

�

1 GeV

�
1=2

GeV; (9)

where g� counts the effective number of relativistic degrees
of freedom. Notice that the temperature after X decay
depends only on the decay width �. The ratio of entropy
per comoving volume before and after X decay is given by

Spost-decay

Spre-decay
’ 0:14r

�
g�
200

��3=4
�
1 GeV

�

�
1=2

�
MX

1010 GeV

�
;

(10)

where r ¼ gX=2 if X is a boson and r ¼ 3gX=8 if it is a
fermion, with gX the total number of spin degrees of
freedom.

As mentioned before, an early period of matter domina-
tion, triggered by a long-lived massive particle that goes
out of equilibrium and comes to dominate the energy
density of the Universe before decaying, reduces the num-
ber of e-foldings before the end of inflation at which our
present Hubble scale equaled the Hubble scale during

inflation, i.e. the time of horizon crossing. The reduction
is given by

�N ¼ 1

12
ln

�
�post-matter-d

�pre-matter-d

�
; (11)

where �pre-matter-d and �post-matter-d are the energy densities

at the beginning and end of the matter dominated era,
respectively. The reduction can also be expressed in terms
of the X parameters as

�N ’ � 1

6
ln

�
90g�3=2

� r2
M2

X

�MPl

�
: (12)

This reduction is illustrated in Fig. 3, where it can be
clearly seen that to determine the number of e-foldings
after the horizon crossing of a given cosmological scale, as
the present Hubble scale, the complete thermal history of
the Universe must be used. From nucleosynthesis onwards
this history is well in place. However earlier epochs are still
very uncertain. The standard cosmological model assumes
that inflation gives way to a long period of radiation
domination (we neglect here the period of reheating that
immediately follows inflation and assume sudden transi-
tions between the different regimes). The radiation domi-
nated epoch lasts until a redshift of a couple of thousands
before entering an era of matter domination, which at
redshift below one gives way to the current acceleration.
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FIG. 2 (color online). Temperature of the Universe (in GeVs)
as a function of time. The four different epochs in the evolution
of the Universe, radiation domination, matter domination, decay,
and radiation domination again can be seen in the different
slopes of the curve. The time dependence of the temperature is
explicitly indicated for each epoch.
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FIG. 3 (color online). Comoving Hubble radius, logð1=aHÞ,
versus loga. This plot shows the different eras entering the e-
foldings calculation. Inflation is an epoch where logð1=aHÞ is
decreasing. Exponential inflation gives a line with a slope of -1.
In all other cases the inflation line is shallower. During matter
domination ð1=aHÞ / a1=2, while during radiation domination
ð1=aHÞ / a. The current dark energy domination signals a new
inflationary epoch. The horizontal (black) solid line indicates the
present horizon scale. The number of e-foldings before the end
of inflation at which observable perturbations were born is the
horizontal distance between the time when ð1=aHÞ first crosses
that value and the end of inflation. The solid (red) line represents
a Universe with a period of matter domination before big bang
nucleasynthesis. The dashed (blue) line represents the standard
cosmological history of the Universe with only one (recent)
epoch of matter domination.
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Changing the sequence of events after inflation can
therefore have a strong impact on the number of e-foldings
calculation. If our Universe goes through a long period of a

regimewhere logð1=aHÞ scales as an, i.e.H / a�ðnþ1Þ, it is
straightforward to see that with n > 1 the total number of
e-foldings will be increased while for n < 1 this number
will be reduced. A period of matter domination belongs to

the latter class, as in a matter dominated epoch ð1=aHÞ /
a1=2 opening the door to a significant reduction on the
number of e-foldings.

If we put all this information together we can see what
are the required features of our particle X, its massMX, and
its lifetime �, if it is to dominate over the energy density of
the Universe for a long period.

Although we do want a prolonged period of matter
domination, we want it to come to an end at the latest
shortly before nucleosynthesis, as the Universe must have
attained thermalized radiation domination by that time.
Using Eq. (9), this condition sets a lower bound on �,

� � 4:6 � 10�25

�
g�

10:75

�
1=2

GeV: (13)

We can also get an upper bound on �, by requesting the
reheating temperature Tpost-decay to be at most 108 GeV, so

that no unwanted relics will be produced after X decay in
supersymmetric models. Such a condition reads

� � 0:7

�
g�
200

�
1=2

GeV: (14)

However, for lifetimes this short (large widths), we can see
from Eq. (10) that only large X masses are capable of
effectively diluting the unwanted relics. In the case of the
gravitino this is even more difficult as the gravitino abun-
dance is also proportional to the temperature, T � MX.

Of course detailed bounds can be set only after specify-
ing the basic physics behind X, its production mechanism,
its decays, or in short, its interactions. Nevertheless, we can
say that requiring at least 5 orders of magnitude of dilution
by entropy production for MX � 1010 GeV would need

2:0 � 10�6

�
g�
200

�
1=2

GeV � � � 2:0 � 10�24

�
g�
200

�
1=2

GeV:

(15)

In this case the 5 orders of magnitude of increase in the
entropy should be enough to get rid of unwanted relic
which could have been produced at earlier times for
Tpost-decay & 108 GeVs. Shorter lifetimes (larger widths)

are also possible if we do not need such a large entropy
production.

With regards to the reduction in the number of e-
foldings, only a very prolonged period of matter domina-
tion, i.e. large MX and � in the lower part of the allowed
range, is required to give a significant reduction. In most
cases, however, this number is expected to be below 10.

III. MATTER DOMINATION IN THE STANDARD
MODEL

Now, we must check whether this early matter domina-
tion epoch could exist in the context of the standard model
of the strong and electroweak interactions or any of its
extensions. Clearly to obtain such an early matter domina-
tion era we need a massive particle, X, in thermal equilib-
rium at temperatures above its mass with a very long
lifetime. The simplest candidate for our X particle would
be a right-handed neutrino. Right-handed neutrinos are one
of the minimal additions to the standard model to repro-
duce the observed neutrino masses through the seesaw
mechanism [15]. These right-handed neutrinos, Ri, have
superheavy masses, that can be as high as the grand uni-
fication scale, and are singlets under the SM gauge group.
The only renormalizable couplings of Ri with the SM
particles are, possibly small, Yukawa couplings. There-
fore, if these couplings are sufficiently small, it seems
possible that the right-handed neutrinos play the role of
the X-particle with a long lifetime.
More precisely, the right-handed neutrino masses and

Yukawa couplings have to reproduce the measured neu-
trino masses and mixings though the seesaw mechanism,
m�L

¼ v2
2Y� � ðMRÞ�1 � YT

� , with v2 the vacuum expecta-

tion value of the up-type Higgs. From here it is straightfor-
ward to obtain the required right-handed Majorana matrix
from the seesaw formula itself

MR ¼ v2
2Y

T
� � ðm�L

Þ�1 � Y�: (16)

From the light-neutrino mass matrix, m�L
, we know the

mixings and the two mass differences.
The mixing matrix U is close to the so-called tribimax-

imal mixing

U ¼
2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BB@

1
CCA: (17)

Then, m�L
¼ U� � Diagðm1; m2; m3Þ �Uy, and the inverse

of this matrix is m�1
�L

¼ U � Diagð 1
m1

; 1
m2

; 1
m3
Þ � UT .

Therefore

m�1
�L

¼ 1

m3

0 0 0

0 1
2 � 1

2

0 � 1
2

1
2

0
BB@

1
CCAþ 1

m2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

0
BB@

1
CCA

þ 1

m1

2
3 � 1

3 � 1
3

� 1
3

1
6

1
6

� 1
3

1
6

1
6

0
BB@

1
CCA: (18)

Experimentally we have that m3 ¼ matm ’ 0:05 eV, m2 ¼
msol ’ 0:008 eV, and m1 	 m2 in the normal
hierarchy situation and m2 ¼ matm ’ 0:05 eV, m1 ¼
matm �msol=2 ’ 0:046 eV, and m3 	 m2 in the inverse
hierarchy case [16].
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As seen in Eq. (16) the masses of the right-handed
neutrinos reproducing the observed light-neutrino masses
and mixings are determined by the Yukawa matrix, Y�.

Choosing the basis of diagonal Yy
�Y� and diagonal charged

lepton Yukawa matrix, we have Y� ¼ VL � Diagðy1; y2; y3Þ.
Obviously the physics depends strongly on the form of Y�,
both on the eigenvalues, yi, and the VL matrix. Let us first
analyze the role of VL. We have two limiting situations:
a) VL has large mixings and is the source of the observed
Pontecorvo-Maki-Nakagawa-Sakata matrix in neutrino
mixings, VL ’ U� and b) the mixings in VL are small,
similarly to the situation observed in the Cabibbo-
Kobayashi-Maskawa mixing matrix, VL ’ 1.

Case a) is very simple, the seesaw mechanism plays no
role in the generation of the neutrino mixings. The ob-
served large neutrino mixings are already present in the
Yukawa couplings before the seesaw mechanism. This
corresponds to the situation where, the light-neutrino
Majorana mass matrix and the neutrino Yukawa couplings,
or equivalently, the right-handed neutrino Majorana
matrix and the Yukawa combination YyY, can be simulta-
neously diagonalized. So, we have MR ¼
v2
2Diagðy21=m1; y

2
2=m2; y

2
3=m3Þ. The decay widths of the

right-handed neutrinos will be given by �i ¼
1
8�MiðYyYÞii and we must compare it with the Hubble

rate, HðT ¼ MiÞ in order to know if/when our massive
neutrino will go out of equilibrium. Equivalently, we can

compare the effective mass ~mi ¼ ðYyYÞiiv2=Mi (i.e. � ¼
~mi

8�

~M2
i

v2
2

) with the critical mass m� ¼ 1� 10�3 eV [17,18].

A right-handed neutrino would dominate the energy den-
sity if ~mi < m�=g2� where g� is the number of radiation
degrees of freedom at T ¼ Mi. The presence of g

2� is due to
the fact that as we can see from Eq. (5), the ratio of matter
and radiation densities grows as a. Therefore the universe
has to expand a factor of g� since T ¼ Mi to compensate g�
radiation degrees of freedom. In radiation dominance H /
a�2 and hence the lifetime has to be g2� times longer.2

Altogether, in case a), it is clear ~m3 ¼ m3, ~m2 ¼ m2, and
~m1 ¼ m1. Therefore, in the normal hierarchy case, taking
m1 � 10�10 eV, R1 would dominate the energy density of
the Universe with a mass of

MR1
¼

�
y1

10�6

�
2
�
1� 10�10 eV

m1

�
6� 1011 GeV: (19)

This case is therefore a perfect example of how a right-
handed neutrino can dominate the energy density of
the Universe after inflation. In terms of ~mi we can write
Eq. (10) as

Spost-decay

Spre-decay
’ 0:4r

�
g�
200

��3=4
�
1� 10�6 eV

~mi

�
1=2

: (20)

Therefore, if we want 2 orders of magnitude of entropy
production, we would need m1 ¼ 10�10 eV (correspond-
ing to � ¼ 4:6� 10�2 GeV) and Tpost-decay ’ 2�
108 GeV. Here, as the gravitino abundance is approxi-
mately linear with the reheating temperature [19], 2 orders
of magnitude of dilution by the entropy production
would correspondingly relax the bound on the reheating
temperature by 2 orders of magnitude. Naturally, this can
be easily improved by choosing smaller m1 and y1 in
Eqs. (19) and (20).
However this simple model has several phenomenologi-

cal problems. First, given that ~m1 	 m�, this right-handed
neutrino would not be produced thermally through its
Yukawa interactions. In fact this will be a common prob-
lem of any massive particle dominating the energy density
of the Universe as necessarily its decay/production rate
will be much slower than the Hubble rate. Therefore we
will always need another active interaction to produce our
right-handed neutrino in the thermal plasma after inflation.
This role could be played, for instance, by a gauged B-L
interaction. Many grand unified models based on SOð10Þ
or groups containing it have an intermediate scale of
the order of 1013 GeVs with a intermediate gauge group
containing Uð1ÞB�L, as SUð2ÞL � SUð2ÞR � SUð3Þc �
Uð1ÞB�L for example [20–22]. In these grand unified mod-
els the B-L coupling unifies with the other gauge couplings
at MGUT and therefore it is always strong enough to keep
the right-handed neutrinos in thermal equilibrium in the
unbroken phase. However, the B-L gauge interaction can
never mediate the neutrino decay as it couples only diago-
nally in flavor. The neutrino decay would require a Yukawa
interaction to lighter states that, as shown above, in this
case is very small. A second problem, more specific of this
particular case is that the decay of this right-handed neu-
trino erases completely any previously existing baryon or
lepton asymmetry and therefore, we need some mechanism
to generate the observed baryon asymmetry. The baryon
asymmetry generated by this completely out-of-
equilibrium decay of the right-handed neutrino is given
by [23]

�B ¼ 8

23
" ’ 1

16�

X
j�1

Im½ðYyYÞ21j

ðYyYÞ11

M1

Mj

; (21)

but, as YyY is completely diagonal in the basis of diagonal
right-handed neutrino masses, no new lepton asymmetry is
generated by R1 decays.
However, this situation is very unstable and a slight

departure from the perfect alignment of the Majorana
and Yukawa matrices changes the situation. If we call R
the rotation diagonalizing the neutrino Yukawas in the
basis of diagonal left-handed neutrino Majorana masses,
we have Y� ¼ U� � R � Diagðy1; y2; y3Þ and

2However, as we see below, this large effective mass, ~mi ’
10�5 eV, does not generate sufficient entropy.

(STANDARD MODEL) UNIVERSE DOMINATED BY THE . . . PHYSICAL REVIEW D 79, 033007 (2009)

033007-5



ðMRÞij ¼ v2
2yiyj

�
1

m1

R1iR1j þ 1

m2

R2iR2j þ 1

m3

R3iR3j

�
:

(22)

If the Yukawa couplings are sufficiently hierarchical, y3 �
y2 � y1, the heaviest eigenvalue will be given by the
element ðMRÞ33,

ðMRÞ33 ’ v2
2y

2
3

�
1

m1

ðsin�13Þ2 þ 1

m2

ðsin�23Þ2

þ 1

m3

ðcos�13 cos�23Þ2
�
; (23)

where we used the standard Particle Data Group parame-
trization for the matrix R [24]. From here, we can see that
the contribution fromm1 	 m2; m3, will dominate ðMRÞ33,
and hence the heaviest right-handed neutrino eigenvalue, if
ðsin�13Þ2 >m1=m3. For m1 ¼ 1� 10�10 eV, a sin�13 >
4:4� 10�5 will be enough and such a small departure
from perfect alignment will completely change the situ-
ation. To understand this, it is enough to analyze a simpler
situation with �12 ¼ �23 ¼ 0 and �13 � 0. Let us take y3 ’
1, y1 ’ 10�6 (similar to the up-quark hierarchy), m3 ’
0:05 eV and m1 ’ 10�10 eV. In this case, the two right-
handed neutrino eigenvalues (the other one is unchanged)
are given by

MR3
’ v2

2y
2
3

�
cos2�13
m3

þ sin2�13
m1

�
;

MR1
’ v2

2y
2
1

1

m1cos
2�13 þm3sin

2�13
:

(24)

If sin�13 � m1=m3 then both M3 and ~m3 are fixed by m1,
whileM1 and ~m1 are fixed bym3. So, we have, form1 in the
interesting range

MR3
¼

�
y3
1

�
2
�
1� 10�10 eV

m1

��
sin�13
0:005

�
2
1:5� 1019 GeV;

~m3 ¼ m1=sin
2�13: (25)

And this is the only neutrino that can dominate the energy
density of the Universe. Clearly, this situation is not inter-

esting phenomenologically as it is not possible to produce
it after inflation and (probably) it does not produce a large
amount of entropy.
The most interesting situation corresponds to sin�13 <

m1=m3. In this case from Eq. (24) we have MR3
’

v2
2y

2
3=m3ð1þ sin2�13m3=m1Þ and MR1

’ v2
2y

2
1=ðm1ð1þ

sin2�13m3=m1ÞÞ. Now, the rotation that diagonalizes the
right-handed mass matrix is given by sin� ’
sin�13ðy1m3Þ=ðy3m1Þ. Therefore in the basis of diagonal
right-handed neutrino masses we have,

YyY ¼
y21ð1þ sin2�13ðm3

m1
Þ2Þ 0 �y1y3

m3

m1
sin�13

0 y22 0
�y1y3

m3

m1
sin�13 0 y23

0
B@

1
CA

0

(26)

and for sin�13 <m1=m3 we have ~m1 ’ m1 and ~m3 ’ m3.
This means the lightest right-handed neutrino, with a mass
approximately given by Eq. (19), can still dominate
the energy density. In such a situation, we can see from
Eq. (21), that the generated baryon asymmetry is given by

�B ’ 1

16�

Im½ðy1y3 m3

m1
sin�13Þ2


ðy21Þ
y21m3

y23m1

’ 1

16�
y21sin

2�13
m3

3

m3
1

: (27)

Taking y1 ’ 10�7, m3 ’ 0:05 eV, m1 ’ 10�12 eV, and
sin�13 ¼ 0:1�m1=m3, we would obtain �B ’ 10�7 sin’
with ’ the CP violating phase of ðYyYÞ213. Therefore, in
this case, it would be possible to generate the observed
baryon asymmetry and simultaneously dilute the relic
density and, in particular, the gravitino density by 3 orders
of magnitude. This means that the bound on the infla-
tionary reheating temperature would be relaxed by 3 orders
of magnitude. Clearly, using smaller values for m1 and y1
the situation can be improved arbitrarily.
The second example of Yukawa mixing matrix was case

b) where VL ’ 1 so that we can neglect this rotation onm�L

as a small rotation will not modify the contribution of the
different neutrino eigenvalues to the matrix elements.
Then, we have

MR ¼ v2

y21
m�1

2 þ2m�1
1

3 y1y2
m�1

2 �m�1
1

3 y1y3
m�1

2 �m�1
1

3

y1y2
m�1

2
�m�1

1

3 y22
m�1

1
þ2m�1

2
þ3m�1

3

6 y2y3
m�1

1
þ2m�1

2
�3m�1

3

6

y1y3
m�1

2
�m�1

1

3 y2y3
m�1

1
þ2m�1

2
�3m�1

3

6 y23
m�1

1
þ2m�1

2
þ3m�1

3

6

0
BBB@

1
CCCA: (28)

We must diagonalize this matrix to obtain the right-handed
neutrino eigenvalues and the Yukawa matrix in the basis of
diagonalMR. In analogy with the charged lepton and quark
Yukawas we can expect y3 � y2 � y1. Then we obtain, in
the normal hierarchy case

MR3
’ v2y33

m�1
1

6
;

MR2
’ v2y322m

�1
3 ; and MR1

’ v2y313m
�1
2 :

(29)

Then, we have, ~m3 ’ 6m1, ~m2 ’ m3, and ~m1 ’ 2
3m2. This
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means that once again the right-handed neutrino that could
dominate the energy density of the Universe is the heaviest
one and its mass would be given by Eq. (25) with sin�13 �
1=

ffiffiffi
6

p
, i.e. a mass close or even above the Planck scale,

unless y3 is much smaller than 1.
Thus we see that with hierarchical Yukawa eigenvalues,

similar to the up-quark eigenvalues, it is possible to have
right-handed neutrino dominance of the energy density
with consistent phenomenology, although only in rather
fine-tuned situations where VL is very close to the PMNS
mixing matrix but not exactly equal. If we move to an
extension of the minimal standard model with right-handed
neutrinos (or minimal supersymmetric standard model) the
same results can be obtained without such a tight fine-
tuning.

From Eq. (16), we can see that besides the Yukawa
mixing VL we can still use different Yukawa eigenvalues.
In a GUT with an underlying Pati-Salam symmetry, we
would expect the neutrino Yukawa couplings to be related
to the up-quark Yukawas, and in fact we would expect one
of the neutrino eigenvalues of the order of the top Yukawa
coupling [25]. However the two light Yukawa eigenvalues
are less restricted. The masses of the right-handed neutri-
nos will depend on the Yukawa eigenvalues and we can
make them as small as we wish. However, if y3 is large, we
will normally be in the same situation as before and the
only neutrino with a sufficiently large lifetime will still be
�R3

, which will be far too heavy. An interesting limit is

when one of the Yukawa eigenvalues is exactly zero, y1 ¼
0, and therefore, one of the light left-handed neutrino
masses is zero. Again the simplest situation is when the

right-handed Majorana matrix and the Yukawas, Yy
�Y� are

simultaneously diagonalizable. In this case, it is clear that
only two right-handed neutrinos will play a role in the
seesaw mechanism and the third one will be completely
decoupled from the seesaw. In fact this third neutrino does
not couple to the doublets through Higgs Yukawa cou-
plings. Given that right-handed neutrinos are singlets under
the SM group, apparently these neutrinos do not decay at
all. However, if we have a GUT symmetry, as for instance
SOð10Þ or a group containing SUð2ÞR, at a high scale, the
right-handed neutrino will decay with a lifetime

��R
’ �2

GUT

M5
Ri

M4
GUT

’ 1� 10�18ð25�GUTÞ2
�

MRi

1010 GeV

�
5

�
�
2� 1016 GeV

MGUT

�
4
GeV: (30)

So, indeed we can see that this right-handed neutrino can
dominate the energy density of the Universe if it is pro-
duced through another interaction, as a gauged B-L. In this
case the production of the baryon asymmetry is not pos-
sible through gauge interactions. However, it is possible
that this right-handed neutrino has nonvanishing complex

Yukawa couplings when it unifies with the quarks at the
GUT scale.3 In this case the neutrino decay through GUT
Higgses could violate CP and generate the observed
baryon asymmetry.
Finally we would like to point out another possibility

where we introduce more SM singlets mixed with the three
‘‘standard’’ right-handed neutrinos. An example of this
situation is provided by the so-called ‘‘double seesaw’’
[27] mechanism. In this case, the right-handed Majorana
masses are generated through a second seesaw with these
additional singlets. The singlets would decay only through
its mixings with the three right-handed neutrinos and, as
we are introducing another free parameter, we can easily
make any of these new singlets dominate the energy den-
sity of the Universe. Similarly, these singlets would easily
generate the observed baryon asymmetry through the usual
neutrino Yukawa couplings. The problem of how to gen-
erate a thermal abundance of these singlets could be solved
again if they are charged under a gauged B-L symmetry.

IV. CONCLUSIONS

In this work, we have shown that an early epoch of
matter domination by a long-lived massive particle can
help to solve some of the problems of primordial inflation.
We have seen that the large entropy production generated
by the decays of such particle can dilute unwanted relics
from higher temperatures, relaxing the constraints on the
inflationary reheating temperature. In supersymmetric
theories this mechanism can help to solve the gravitino
problem. Moreover, a long period of matter domination
reduces the number of e-foldings before the end of inflation
at which the observable cosmological perturbations were
generated. In the standard morel a natural candidate for
such heavy, long-lived particle is a heavy right-handed
neutrino. For a low enough mass of the lightest left-handed
neutrino and neutrino Yukawa mixings sufficiently close
to the PNMS mixing matrix, the right-handed neutrino
dominates the energy density of the Universe for a long
time and generates a large amount of entropy in its
decay. In this case, we show that its decays can also
generate the observed baryon asymmetry for right-handed
neutrino masses well above the bound from gravitino over-
production.
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3For instance, we could think of a Georgi-Jarlskog vacuum
expectation value distinguishing up-quark and neutrino Yukawas
and being zero for the neutrinos [26].
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