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A new parametrization of the generalized parton distributions t dependence is proposed. It allows one to

reproduce sufficiently well electromagnetic form factors of the proton and neutron at small and large

momentum transfer. The description of the data obtained by the Rosenbluth method and the polarization

method are compared. The results obtained by the latter method are shown to be compatible with

correspondent neutron data. The impact parameter dependence of the neutron charge density is examined.

The quark contributions to gravitational form factors of the nucleons are obtained.
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I. INTRODUCTION

The description of the hadron structure is related with
our understanding of the nonperturbative properties of
QCD. The essential part of the information about this
structure is contained in the matrix elements of conserved
quark operators.

The electromagnetic current of a nucleon is

J�ðP0; s0;P; sÞ ¼ �uðP0; s0Þ��ðq; PÞuðP; sÞ
¼ �uðP0; s0Þð��F1ðq2ÞÞ

þ 1

2M
i���q�F2ðq2ÞÞuðP; sÞ; (1)

where P, s, ðP0; s0Þ are the four-momentum and polariza-
tion of the incoming (outgoing) nucleon and q ¼ P0 � P is
the momentum transfer. The quantity ��ðq; PÞ is the

nucleon-photon vertex.
Similar expressions for the decomposition of matrix

elements of energy-momentum tensors describe the parti-
tion of angular momenta [1] and coupling of quarks and
gluons to classical gravity [2]. The latter connection mani-
fests also a relation to the equivalence principle for spin-
gravity interactions [3–6] and its possible validity sepa-
rately for quarks and gluons [7,8].

Two important combinations of the Dirac and Pauli form
factors are the so-called Sachs form factors [9]:

Gp
EðtÞ ¼ Fp

1 ðtÞ þ
t

4M2
Fp
2 ðtÞ; (2)

Gp
MðtÞ ¼ Fp

1 ðtÞ þ Fp
2 ðtÞ; (3)

with t ¼ �q2 < 0. Their three-dimensional Fourier trans-
form provides the electric-charge-density and the
magnetic-current-density distribution [10]. Normalization
requires Gp

Eð0Þ ¼ 1, Gn
Eð0Þ ¼ 0 corresponding to proton

and neutron electric charges; GMð0Þ ¼ ðGEð0Þ þ kÞ ¼ �
defines the proton and neutron magnetic moments. Here
�p ¼ ð1þ 1:79Þ e

2M is the proton magnetic moment and

k ¼ F2ð0Þ is the anomalous magnetic moment: kp ¼ 1:79

Early experiments at modest t, based on the Rosenbluth
separation method, suggested the scaling behavior of both
proton form factors and the neutron magnetic form factor
approximately described by a dipole form,

Gp
E � Gp

M

�p

� Gn
M

�n

� GD ¼ �4

ð�2 � tÞ2 ; (4)

which leads to

FD
1 ðtÞ ¼

4M2
p � t�p

4M2
p � t

GD; (5)

FD
2 ðtÞ ¼

4kpM
2
p

ð4M2
p � t�GD; (6)

with �2 ¼ 0:71 GeV2. These experiments were based on
the Rosenbluth formula [11],

d�

d�
¼ �Mott

�ð1þ �Þ ½�G
2
MðtÞ þ �G2

EðtÞ�; (7)

where � ¼ Q2=4M2
p and � ¼ ½1þ 2ð1þ �Þtan2ð�e=2Þ��1

is a measure of the virtual photon polarization.
Recently, better data have been obtained by using of the

polarization method [12,13]. Measuring both transverse
and longitudinal components of the recoil proton polariza-
tion in the electron scattering plane, the data on the ratio

Gp
E

Gp
M

¼ �Pt

Pl

Eþ E0

2Mp

tanð�=2Þ (8)

were obtained. These data manifested a strong deviation
from the scaling law and, consequently, disagreement with
data obtained by the Rosenbluth technique. The results
consist in an almost linear decrease of Gp

E=G
p
M. There

were attempts to solve the problem by inclusion of addi-
tional radiative correction terms related to two-photon
exchange approximations, for example [14]. In recent
works [15,16] the box amplitude is calculated when the
intermediate state is a proton or the � resonance. The
results of the numerical estimation show that the present
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calculation of radiative corrections can bring into better
agreement the conflicting experimental results on proton
electromagnetic form factors. Note, however, that the pre-
cise data of a Rosenbluth measurement of the proton form
factors at Q24:10 GeV2 [17] lie so high that they require
very large corrections to move them down to meet the
polarization data.

The form factors are related to the first moments of the
generalized parton distributions (GPDs) [1,18–20].
Generally, GPDs depend on the momentum transfer t, the
average momentum fraction x ¼ 0:5ðxi þ xfÞ of the active
quark, and the skewness parameter 2� ¼ xf � xi measures

the longitudinal momentum transfer. One can choose the
special case � ¼ 0 of the nonforward parton densities [21]
F a

�ðx; tÞ for which the emitted and reabsorbed partons

carry the same momentum fractions:

H qðx; tÞ ¼ Hqðx; 0; tÞ �H �qð�x; 0; tÞ; (9)

E qðx; tÞ ¼ Eqðx; 0; tÞ � E �qð�x; 0; tÞ: (10)

The form factors can be represented as moments

Fq
1 ðtÞ ¼

Z 1

0
dxH qðx; tÞ; (11)

Fq
2ðtÞ ¼

Z 1

0
dxEqðx; tÞ; (12)

following from the sum rules [1,19].
Nonforward parton densities also provide information

about the distribution of the parton in impact parameter
space [22] which is connected with t dependence of GPDs.
Now we cannot obtain this dependence from the first
principles, but it must be obtained from the phenomeno-
logical description with GPDs of the nucleon electromag-
netic form factors.

Choosing a frame where the momentum transfer r is
purely transverse r ¼ r?, the two-body contribution to the
form factor can be written as [23]

Fð2ÞðtÞ ¼
Z 1

0
dz

Z 1

0
��ðx; k? þ �xr?Þ�ðx; k?Þ d

2k?
16	3

:

(13)

As it was shown in [21,24], assuming the Gaussian
ansatz

�ðx; k?Þ � exp

�
� k2?
2xð1� xÞ
2

�
; (14)

one can obtain

Fð2Þðq2Þ ¼
Z 1

0
dxqð2ÞðxÞeð1�xÞq2=4x
2

; (15)

where qð2ÞðxÞ has the meaning of the two-body part of the
quark density qðxÞ. The scale 
2 characterizes the average
transverse momentum of the valence quarks in the nucleon

and q2 ¼ �t is momentum transfer. This Gaussian ansatz
was used in [21] for describing the form factors of proton.
However, this ansatz leads to a faster decrease in F1 at
large momentum transfer. So there arises an important
question about t dependence of GPDs.
In [25], it was proposed to use the factorized Regge-like

picture

H qðx; tÞ � 1

x�
0t qðxÞ; (16)

which, however [24], does not satisfy some conditions in
the light-cone representation.
In [26,27], two parts of�ðx; k?Þ were introduced which

are responsible for the interaction at small momentum
transfer �ðx; k?Þsoft and for the interactions at large mo-
mentum transfer �ðx; k?Þhard. These functions can repro-
duce the t dependence of, for example, F1 but at the cost of
the complicated mechanism and growth of F1 at higher
value of t.
In [24], the Regge-like picture was used again but now

without factorization

H qðx; tÞ � 1

x�
0ð1�xÞt qðxÞ: (17)

This ansatz reproduces the basic properties of F1 and
provides a good description of the ratio of F1 to F2 and,
consequently, of the ratio of GE to GM. A similar approach

was examined in [28] with GPDs form �ðx=g0Þ��ðtÞð1�xÞ,
where �ðtÞ is the nonlinear part of the Regge trajectory.
Note that in [29,30] it was shown that at large x ! 1 and

momentum transfer the behavior of GPDs requires a larger
power of (1� x) in the t-dependent exponent:

H qðx; tÞ � exp½að1� xÞnt�qðxÞ; (18)

with n � 2. It was noted that n ¼ 2 naturally leads to the
Drell-Yan-West duality between parton distributions at
large x and the form factors.
In other works (see e.g. [31–33]) the description of the t

dependence of the GPDs was developed in a more com-
plicated picture using the polynomial forms:

H qðx; tÞ � qðxÞ exp½fðxÞt�; (19)

with

fðxÞ ¼ �0ð1� xÞ2 ln
�
1

x

�
þ Bqð1� xÞ2 þ Aqxð1� xÞ

(20)

or

fðxÞ ¼ �0ð1� xÞ3 ln
�
1

x

�
þ Bqð1� xÞ3 þ Aqxð1� xÞ2:

(21)

These parametrizations provide the good description of
the data extracted from [34]. The curve from Fig. 6 in [31]
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is reproduced in Fig. 1. Note, that the parametrization of
(forward) parton distribution qðxÞ there also differs from
the other curves at Fig. 1.

II. NEW MOMENTUM TRANSFER DEPENDENCE
OF GPDS

Let us modify the original Gaussian ansatz in order to
incorporate the observations of [21,30] and choose the t
dependence of GPDs in the form

H qðx; tÞ ¼ qðxÞ exp
�
aþ

ð1� xÞ2
xm

t

�
: (22)

The value of the parameter m ¼ 0:4 is fixed by the low t
experimental data while the free parameters a� (aþ—for
H and a�—for E) were chosen to reproduce the experi-
mental data in the whole t region. Indeed, large t behavior
corresponds to x� 1 in (10) and (11), where the depen-
dence on m is weak.

The function qðxÞ was chosen at the same scale �2 ¼ 1
as in [24], which is based on the MRST2002 global fit [35].
In all our calculations we restrict ourselves, as in other
quoted works, to the contributions of u and d quarks.

Hence, we have

uðxÞ ¼ 0:262x�0:69ð1� xÞ3:50ð1þ 3:83x0:5 þ 37:65xÞ;
(23)

dðxÞ ¼ 0:061x�0:65ð1� xÞ4:03ð1þ 49:05x0:5 þ 8:65xÞ:
(24)

Following the standard representation, see for example
[24], we have for the Pauli form factor F2

E qðx; tÞ ¼ EqðxÞ exp
�
a�

ð1� xÞ2
x0:4

t

�
; (25)

with

E uðxÞ ¼ ku
Nu

ð1� xÞ�1uðxÞ; (26)

E dðxÞ ¼ kd
Nd

ð1� xÞ�2dðxÞ; (27)

where �1 ¼ 1:53 and �2 ¼ 0:31 [24].
According to the normalization of the Sachs form fac-

tors, we have

ku ¼ 1:673; kd ¼ �2:033;

Nu ¼ 1:53; Nd ¼ 0:946:

The parameters aþ ¼ 1:1 and a� were chosen to obtain
two possible forms of the ratio of the Pauli and Dirac form
factors. Below we consider variant (I) with a� ¼ 1:1 and
variant (II) with a� ¼ 1:4 which correspond to the de-
scription of the experimental data obtained by the polar-
ization method and the Rosenbluth method, respectively.

III. PROTON FORM FACTORS

The proton Dirac form factor, multiplied by t2, is shown
in Fig. 1 in comparison with other works and the experi-
mental data. It can be seen that the complicated mechanism
proposed in [26] leads to an increase in these values at
higher t. One can see that our model reproduces suffi-
ciently well the behavior of the experimental data at both
high t and low t.
The ratio of the Pauli to the Dirac proton form factors

multiplied by t is shown in Fig. 2. As mentioned above,
there are two different sets of experimental data. Here we
are not going to discuss these two methods and different
corrections to them. We just observe that our model de-
scribes the results of both methods by changing the slope of
E only and present two respective variants of this slope a�.

FIG. 1. Proton Dirac form factor multiplied by t2 (hard line,
the present work; dot-dashed line, [21]; long-dashed line, [24];
dashed line, [27]; dotted line, [31]; the data for Fp

1 are from [45].

FIG. 2. Ratio of the Pauli to Dirac proton form factor multi-
plied by t [hard and dot-dashed lines correspond to variant (I)
and (II)] of the present work, dotted line, [46]; long-dashed line,
[24]); the data are from [47–50].
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This is supported also by Fig. 3 where �pG
p
E=G

p
M are

shown in comparison with the experimental data.

IV. NEUTRON FORM FACTORS

Let us now calculate the neutron form factors using the
model developed for the proton. The isotopic invariance
can be used to relate the proton and neutron GPDs. Hence,
we do not change any parameter and keep the same t
dependence of GPDs as in the case of proton

H nðx; tÞ ¼ qþðxÞn exp
�
2aþ

ð1� xÞ2
x0:4

t

�
; (28)

where

qþðxÞn ¼ 2
3d� 1

3u: (29)

For the Pauli form factors of the neutron we correspond-
ingly have

E nðx; tÞ ¼ q�ðxÞn exp
�
2a�

ð1� xÞ2
x0:4

t

�
; (30)

with

q�ðxÞn ¼ � 1

3

ku
Nu

ð1� xÞ�1uðxÞ þ 2

3

kd
Nd

ð1� xÞ�2dðxÞ:
(31)

We take the two values of slope a� as in the case of the
proton form factors, corresponding to variant (I) and vari-
ant (II) below.

First, let us calculateGn
E. The results are shown in Fig. 4.

Evidently, the first variant is in better agreement with the
experimental data.

A more clear situation with our calculations of Gn
M is

shown in Fig. 5. In this case, it is obvious that the first
variant much better describes the experimental data, espe-
cially at low momentum transfer.

Finally, we present our calculations for the ratio of
Gn

E=G
n
M for neutron in Fig. 6.

FIG. 4. Gn
E [hard and dot-dashed lines correspond to variant (I)

and (II)]; the experimental data are from [55–57].

FIG. 5. Gn
M [hard and dot-dashed lines correspond to variant (I)

and (II)]; the experimental data are from [58].

FIG. 3. �pG
p
E=G

p
M [hard and dot-dashed lines correspond to

variant (I) and (II)]; the experimental data from [17,48–54].

FIG. 6. Gn
E=G

n
M [hard and dot-dashed lines corresponds to

variant (I) and (II)]; experimental data are from [55,56].
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V. CHARGE DENSITIES OF NEUTRON

Let us now discuss the neutron structure in the impact
parameter [36–38] representation. We are particularly mo-
tivated by a recent discussion of the definition of charge
density of the neutron at small impact parameters corre-
sponding to the ‘‘center’’ of the neutron [39,40]. In [40],
the charge density of the neutron is related to Fn

1 ðtÞ and
calculated using phenomenological representation of the
Gn

EðtÞ and Gn
MðtÞ:

ðbÞ ¼ X
q

eq
Z

dxqðx; bÞ ¼ R
d2qF1ðQ2 ¼ q2Þei ~q ~b

¼
Z 1

0

qdq

2	
J0ðqbÞGEðq2Þ þ �GMðq2Þ

1þ �
; (32)

J0 being a cylindrical Bessel function. It differs essentially
from the definition of the neutron charge distribution in the
Breit frame related Gn

EðtÞ:

GE
ðbÞ ¼

Z
d2q½F1ðq2Þ þ �F2ðq2Þ�ei ~q ~b

¼
Z 1

0

qdq

2	
J0ðqbÞGEðq2Þ: (33)

Using our model of t dependence of GPDs, we may
calculate both forms of neutron charge distribution in the
impact parameter representation and, moreover, determine
separate contributions of u and d quarks.

The charge distribution nðbÞ corresponding to Gn
E is

shown in Fig. 7. It practically coincides with the result [41].
The charge density of the neutron nðbÞ corresponding to
F1 is shown in Fig. 8, while the respective separate con-
tributions of u and d quarks are shown in Fig. 9. We can see
that u quarks have the large negative charge density in the
center of the neutron.

VI. TRANSVERSE CHARGE DENSITIES

Recently, the impact parameter distributions were gen-
eralized [42] to the case of spin-flip magnetic form factor
so that in addition to expression (32) one has

N
T ð ~bÞ ¼ N

0 ð ~bÞ þ sinð�Þ 1

2	

Z 1

0
dq

q2

2MN

J1ðqbÞF2ðq2Þ;
(34)

here tanð�Þ ¼ bx=by. This transverse charge density for

the proton obtained in the framework of our model is
shown in Fig. 10 while the angular-dependent contribution
[second term in (34)] is shown in Fig. 11.
The angular-dependent part of the density is small and it

is practically invisible in Fig. 10. However, removing the

axially symmetric part of the density related to N
0 ð ~bÞ, one

can see that the nonsymmetric part is reaching the value
about�0:05 (see Fig. 11) at the distance of 0.3 fm from the
center of the proton, comparable to the size of the valence
quark.

FIG. 7. Parton charge density of the neutron nðbÞ corresponds
to GEðbÞ.

FIG. 8. Parton charge density of the neutron nðbÞ corresponds
to F1ðbÞ.

FIG. 9. u-quark (hard line) and (� d)-quark (dashed line)
density of the neutron.
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The transverse densities of the neutron is presented in
Figs. 12 and 13. In this case the symmetric part of the

transverse density n
0ð ~bÞ is small (compare with Fig. 8).

while the nonsymmetric part is sufficiently large and con-
centrated around the center of the neutron.

VII. GRAVITATIONAL FORM FACTORS

Taking the matrix elements of energy-momentum tensor
T�� instead of the electromagnetic current J�, one can

obtain the gravitational form factors of quarks which are
related to the second, rather than the first moments of
GPDs:

0.5

0.0

0.5

bx fm

0.5

0.0

0.5

by fm

0.0

0.2

0.4

ρ b

(a) (b)

FIG. 10 (color online). Quark transverse charge density of the proton Eq. (34): (a) left panel, back side view; (b) right panel, view
from above.

0.5

0.0

0.5

bx fm

0.5

0.0

0.5

by fm

0.05

0.00

0.05

ρ b

FIG. 11 (color online). Angular-dependent contribution to quark transverse charge density of the proton p
Tð ~bÞ � p

0 ð ~bÞ: (a) left
panel, back side view; (b) right panel, view from above.

0.5

0.0

0.5 bx fm

0.5

0.0

0.5by fm

0.5

0.0

0.5

ρ b

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

bx fm

by
fm

FIG. 13 (color online). Quark transverse charge densities of

the neutron N
T ð ~bÞ � N

0 ð ~bÞ: (a) left panel, with the back side

view point; (b) right panel, with the upper view point.
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0.0

0.5

bx fm

0.5

0.0

0.5
by fm

0.10

0.05

0.00

ρ b

FIG. 12 (color online). Quark transverse charge densities of

the neutron n
0ð ~bÞ: (a) left panel, with the back side view point;

(b) right panel, with the upper view point.
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Z 1

�1
dxxHqðx;�2; �Þ ¼ Aqð�2Þ;

Z 1

�1
dxxEqðx;�2; �Þ ¼ Bqð�2Þ:

(35)

For � ¼ 0 one has

Z 1

0
dxxH qðx; tÞ ¼ AqðtÞ;

Z 1

0
dxxEqðx; tÞ ¼ BqðtÞ:

(36)

This representation combined with our model (we use
here the first variant of parameters describing the experi-
mental data obtained by the polarization method) allows
one to calculate the gravitational form factors of valence
quarks and their contribution (being just their sum) to
gravitational form factors of the nucleon. Our result for
AuþdðtÞ is shown in Fig. 14. Separate contributions of the u
and d quark distribution are shown in Fig. 15. At t ¼ 0
these contributions equal Auðt ¼ 0Þ ¼ 0:35 and Adðt ¼
0Þ ¼ 0:14. The corresponding calculations for BqðtÞ are

shown in Fig. 16. At t ¼ 0 these contributions equal

Buðt ¼ 0Þ ¼ 0:22 and Bdðt ¼ 0Þ ¼ �0:27. Hence, their
sum shows the sort of compensation supporting the con-
jecture [7,8] about validity of the equivalence principle
separately for quarks and gluons: Buþdðt ¼ 0Þ ¼ �0:05.
Note that nonperturbative analysis within the framework

of the lattice OCD indicates that the net quark contribution
to the anomalous gravitomagnetic moment Buþdð0Þ is
close to zero [43,44].
Let us compare the distribution of electric charge and

matter (that is, gravitational charge) in the nucleon. For
that purpose we generalize (34) in a straightforward way
and introduce the gravitomagnetic transverse density

Gr
T ð ~bÞ ¼ Gr

0 ðbÞ þ sinð�Þ 1

2	

Z 1

0
dq

q2

2MN

J1ðqbÞBðq2Þ;
(37)

with a matter density

Gr
0 ðbÞ ¼ 1

2	

Z 0

1
dqqJ0ðqbÞAðq2Þ: (38)

In Fig. 17 we compare this matter density with the charge
density (cf. Sec. V) for proton. The plots for the angular-

dependent part of transverse density Gr
T ð ~bÞ � Gr

0 ðbÞ are
shown in Figs. 18 and 19. One can see that it is quite small

FIG. 14. Comparison of gravitational form factor Auþd (hard
line) and proton Dirac form factor (dashed line) multiplied by t2,
the data for Fp

1 are from [45].

FIG. 15. Contributions of the u quark (hard line) and d quark
(dashed line) to the gravitational form factor Aq.

FIG. 16. Contributions of the u (hard line) and d (with reversed
sign; dashed line) quarks to the gravitation form factor Bq.

0.5

0.0

0.5

bx fm

0.5

0.0

0.5

by fm

0.00

0.05

0.10

FIG. 17 (color online). Difference in the forms of charge
density FP

1 and ‘‘matter’’ density (A).
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and its maximal values are concentrated almost at the same
distances from the center of nucleon as the transverse
charge density of the proton.

VIII. CONCLUSION

We introduced a simple new form of the GPDs t depen-
dence based on the Gaussian ansatz corresponding to that

of the wave function of the hadron. It satisfies the con-
ditions of the nonfactorization, introduced by Radyushkin,
and the Burkhardt condition on the power of ð1� xÞn in the
exponential form of the t dependence. With this simple
form we obtained a good description of the proton electro-
magnetic form factors. Using the isotopic invariance, we
obtained also a good description of the neutron Sachs form
factors without changing any parameters. We showed that
both sets of the experimental data (obtained by the
Rosenbluth and polarization methods) on the electromag-
netic form factors can be described by changing only the
slope of the t dependence of the spin-dependent GPD
Eðx; tÞ. Comparison of these two variants with the neutron
form factors gives preference to the one which describes
data obtained by the polarization method.
Our calculations of charge distribution of the neutron in

the impact parameter form of F1 coincide with the calcu-
lation by Miller obtained from phenomenological forms of
Gp

E and Gp
M. They confirm that respective charge density is

negative at small impact parameters. On the basis of our
results we calculated the contribution of u and d quarks to
the gravitational form factor of the nucleons. The cancel-
lation of these contributions at t ¼ 0 shows that the grav-
itomagnetic form factor is close to zero for separate
contributions of gluons and quarks, which supports the
conjecture of [7,8].
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