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In this paper, the dynamical attractor and heteroclinic orbit have been employed to make the late-time

behaviors of the model insensitive to the initial condition and thus alleviate the fine-tuning problem in the

torsion cosmology. The late-time de Sitter attractor indicates that torsion cosmology is an elegant scheme

and the scalar torsion mode is an interesting geometric quantity for physics. The numerical solutions

obtained by Nester et al. are not periodic solutions but are quasiperiodic solutions near the focus for the

coupled nonlinear equations.
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I. INTRODUCTION

The current observations, such as SNeIa (supernovae
type Ia), cosmic microwave background, and large scale
structure, converge on the fact that a spatially homogene-
ous and gravitationally repulsive energy component, re-
ferred to as dark energy, accounts for about 70% of the
energy density of the Universe. Some heuristic models that
roughly describe the observable consequences of dark
energy were proposed in recent years, a number of them
stemming from a certain physics [1] and the others being
purely phenomenological [2]. About 30 years ago, the
bouncing cosmological model with torsion was suggested
in Ref. [3], but the torsion was imagined as playing a role
only at high densities in the early Universe. Goenner et al.
made a general survey of the torsion cosmology [4], in
which the equations for all of the PGT (Poincaré gauge
theory of gravity) cases were discussed although they
solved in detail only a few particular cases. Recently,
some authors have begun to study torsion as a possible
reason of the accelerating Universe [5]. Nester and collab-
orators [6] consider an accounting for the accelerated
Universe in terms of the PGT: dynamic scalar torsion.
With the usual assumptions of homogeneity and isotropy
in cosmology, they find that the torsion field could play a
role of dark energy. This elegant model has only a few
adjustable parameters, so scalar torsion may be easily
falsified as ‘‘dark energy.’’

The fine-tuning problem should be one of the most
important issues for the cosmological models, and a good
model should limit the fine-tuning as much as possible.
The dynamical attractor of the cosmological system has
been employed to make the late-time behaviors of the
model insensitive to the initial condition of the field and
thus alleviates the fine-tuning problem [7]. In this paper,
we study the attractor and heteroclinic orbit in the torsion
cosmology. We show that the late-time de Sitter behaviors
cover a wide range of the parameters. This attractor in-
dicates that torsion cosmology is an elegant scheme and the
scalar torsion mode is an interesting geometric quantity for

physics. Furthermore, there are only exact periodic solu-
tions for the linearized system, which just correspond to
the critical line (line of centers). The numerical solutions in
Ref. [6] are not periodic but are quasiperiodic solutions
near the focus for the coupled nonlinear equations.

II. AUTONOMOUS EQUATIONS

The PGT [8] based on a Riemann-Cartan geometry
allows for dynamic torsion in addition to curvature. The
affine connection of the Riemann-Cartan geometry is

���
� ¼ ����

� þ 1
2ðT��

� þ T�
�� þ T�

��Þ; (1)

where ����
� is the Levi-Civita connection and T�

�� is the

torsion tensor. Meanwhile, the Ricci curvature and scalar
curvature can be written as

R�� ¼ �R�� þ �r�T� þ 1
2ð �r� � T�ÞðT��

� þ T�
�� þ T�

��Þ
þ 1

4ðT���T
��

� þ 2T���T
��

�Þ; (2)

R ¼ �Rþ 2 �r�T
� þ 1

4ðT���T
��� þ 2T���T

��� � 4T�T
�Þ;
(3)

where �R�� and �R are the Riemannian Ricci curvature and

scalar curvature, respectively, and �r is the covariant de-
rivative with the Levi-Civita connection and T� � T�

��.

According as Ref. [6] we take the restricted form of torsion
in this paper

T��� ¼ 2
3T½�g���; (4)

therefore, the gravitational Lagrangian density for the sca-
lar mode is (for a detailed discussion, see Ref. [9])

Lg ¼ �a0
2
Rþ b

24
R2 þ a1

8
ðT���T

��� þ 2T���T
���

� 4T�T
�Þ: (5)

Since current observations favor a flat universe, we will
work in the spatially flat Robertson-Walker metric.
According to the homogeneity and isotropy, the torsion
T� should be only time-dependent, so one can let*kychz@shnu.edu.cn

PHYSICAL REVIEW D 79, 027301 (2009)

1550-7998=2009=79(2)=027301(4) 027301-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.027301


TtðtÞ � �ðtÞ and the spatial parts vanish since we have
taken the restricted form (4) of torsion. For the general
form, the torsion tensor have two independent components
[4,5]. From the field equations one can finally give the
necessary equations for the matter-dominated era to inte-
grate (for a detailed discussion, see Ref. [6])

_H ¼ �

6a1
R� �

6a1
� 2H2; (6)

_� ¼ � a0
2a1

R� �

2a1
� 3H�þ 1

3
�2; (7)

_R ¼ � 2

3

�
Rþ 6�

b

�
�; (8)

where � ¼ a1 � a0 and the energy density of matter com-
ponent

� ¼ b

18

�
Rþ 6�

b

�
ð3H ��Þ2 � b

24
R2 � 3a1H

2: (9)

One can scale the variables and the parameters as

t ! l�2
p H�1

0 t; H ! l2pH0H; � ! l2pH0�;

R ! l4pH
2
0R; a0 ! l2pa0; a1 ! l2pa1;

� ! l2p�; b ! l�2
p H�2

0 b;

(10)

where H0 is the present value of Hubble parameter and

lp � ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the Planck length. Under the transform (10),

Eqs. (6)–(8) remain unchanged. After transform, new var-
iables t, H, �, and R and new parameters a0, a1, �, and b
are all dimensionless. Furthermore, the Newtonian limit
requires a0 ¼ �1. Obviously, Eqs. (6)–(8) is an autono-
mous system, so we can use the qualitative method of
ordinary differential equations. It is worth noting that, in
the analysis of critical points, Copeland, Liddle, and
Wands [10] introduced the elegant compact variables
which are defined from the Friedmann equation constraint,
but in our case, the Friedmann equation cannot be written
as the ordinary form, so the compact variables are not
convenient here. Therefore, we will analyze the system
of Eqs. (6)–(8) using the variables H, �, and R under the
transform (10).

III. LATE-TIME DE SITTER ATTRACTOR

In the case of the scalar torsion mode, the effective
energy-momentum tensor can be represented as

~T t
t ¼ �3�H2 þ b

18

�
Rþ 6�

b

��
3H ��

�
2 � b

24
R2;

(11)

~T r
r ¼ ~T�

� ¼ ~T�
� ¼ 1

3½�ðR� �RÞ � ~Tt
t�; (12)

and the off-diagonal terms vanish. The effective energy
density

�eff ¼ �þ �T � �þ ~Ttt; (13)

which is deduced from general relativity. peff ¼ pT � ~Tr
r

is an effective pressure, and the effective equation of state
is

weff ¼
~Tr
r

�þ ~Ttt

; (14)

which is induced by the dynamic torsion.
According to Eqs. (6)–(8), we can obtain the critical

points and study the stability of these points. There are five
critical points ðHc;�c; RcÞ of the system as follows:

ðiÞ ð0;0;0Þ;

ðiiÞ
��
3ð1þa1Þ

8
�A

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
BþC

p
;
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BþC

p
;�6ð1þa1Þ

b

�
;
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�
�
�
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p
;�3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BþC

p
;�6ð1þa1Þ

b

�
;
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��
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8
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� ffiffiffiffiffiffiffiffiffiffiffiffiffi
B�C

p
;
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B�C

p
;�6ð1þa1Þ

b

�
;
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�
�
�
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8
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� ffiffiffiffiffiffiffiffiffiffiffiffiffi
B�C

p
;�3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B�C

p
;�6ð1þa1Þ

b

�
;

(15)

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ð1þ a1Þ3ð1þ 9a1Þ

q
=8a1ð1þ a1Þ, B¼

�ð1þa1Þð5þ9a1Þ
a1b

, and C ¼ �ð3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ð1þ a1Þ3ð1þ 9a1Þ

q
=a21bÞ.

Consider that the parameter b is associated with the qua-
dratic scalar curvature term R2, so that b should be positive
[6]. Evidently, the critical points ðHc;�c; RcÞ are not real
values except ð0; 0; 0Þ in the cases of parameters b > 0 and
a1 > 0 or �1 � a1 <�1=9.
If we consider the linearized equations, then Eqs. (6)–(8)

are reduced to

_H ¼ �

6a1
R; _� ¼ 1

2a1
R; _R ¼ � 4�

b
�: (16)

In the case a1 > 0, there is only a critical point ð0; 0; 0Þ for
the nonlinear system. Equations (16) have an exact peri-
odic solution

H ¼ 	R0 sin!tþ�

3
�0 cos!tþH0 ��

3
�0; (17)

� ¼ 
�1R0 sin!tþ�0 cos!t; (18)

R ¼ R0 cos!t� 
�0 sin!t; (19)

where ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=a1b

p
, 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b�=72a1
p

, 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�a1=b

p
,

and H0 ¼ Hð0Þ, �0 ¼ �ð0Þ, and R0 ¼ Rð0Þ are initial
values. Obviously, ðH; 0; 0Þ is a critical line for the line-
arized system. However, there is only a critical point
ð0; 0; 0Þ for the nonlinear system which is an asymptoti-
cally stable focus. In other words, there is no periodic
solution for the nonlinear system since the corresponding
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eigenvalue is ð0;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=a1b

p
i;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=a1b

p
iÞ. In Fig. 1, we

plot the orbits near the point ð0; 0; 0Þ for the nonlinear
systems.

Next, the parameters are restricted within b > 0 and
�1=9 � a1 < 0 or a1 <�1 in this paper. To study the
stability of the critical points ðHc;�c; RcÞ, we write the
variables near the critical points in the form H ¼ Hc þU,
� ¼ �c þ V, and R ¼ Rc þ X, with U, V, and X the
perturbations of the variables near the critical points.
Substituting the expression into the system of equations
(6)–(8), we can obtain the corresponding eigenvalues of
critical points (i)–(v):

ðiÞ
�
0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ð1þ a1Þ

a1b

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ð1þ a1Þ

a1b

s �
;
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�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ C
p

;�3

�
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8
� A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C

p
;

�
�
1þ 9a1

8
� 3A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C

p �
;
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ C
p

; 3

�
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8
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C

p
;

�
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8
� 3A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C

p �
;
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�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� C
p

;�3

�
3ð1þ a1Þ

8
þ A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p
;

�
�
1þ 9a1

8
þ 3A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p �
;

ðvÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� C
p

; 3

�
3ð1þ a1Þ

8
þ A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p
;

�
1þ 9a1

8
þ 3A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p �
: (20)

The properties of the critical points are shown in Tables I

and II. We find that critical point (ii) is a late-time de Sitter
attractor in the case of �1=9 � a1 < 0.

IV. NUMERICAL ANALYSIS

In previous sections, we have studied the phase space of
a torsion cosmology. The de Sitter attractor indicates that
torsion cosmology [3–6] is an elegant scheme and the
scalar torsion mode is an interesting geometric quantity
for physics. In this section, we study their dynamical
evolution numerically. The crossing of the w ¼ �1 barrier
is impossible in the traditional scalar field models [11]. The
importance of the torsion cosmology is further promoted
by this impossibility. In Fig. 2, we plot the dynamical
evolution of the equation of state weff for different initial
values ðH;�; RÞ. Contrary to the quintessence and phan-
tom model [11], the effective equation-of-state parameter
weff is dependent on time that can cross the cosmological
constant divide w� ¼ �1 from weff >�1 to weff <�1 as
the observations mildly indicate.

FIG. 1. The phase diagrams of ðH;�; RÞ for nonlinear system
(6)–(8) with a1 > 0. We take a1 ¼ 0:9, b ¼ 8, and the initial
values ð0:8; 0:5; 1:1Þ. ð0; 0; 0Þ is an asymptotically stable focus
point.

TABLE I. The physical properties of critical points for a1 <
�1.

Critical points Property weff Stability

(i) Focus �1 Stable

(ii) Saddle �1 Unstable

(iii) Saddle �1 Unstable

(iv) Saddle �1 Unstable

(v) Saddle �1 Unstable

TABLE II. The physical properties of critical points for
�1=9 � a1 < 0.

Critical points Property weff Stability

(i) Saddle �1 Unstable

(ii) Positive attractor �1 Stable

(iii) Negative attractor �1 Unstable

(iv) Saddle �1 Unstable

(v) Saddle �1 Unstable
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FIG. 2 (color online). The evolution of the equation-of-state
parameters weff for different initial values ðH;�; RÞ with
�1=9 � a1 < 0. We take a1 ¼ �1=10 and b ¼ 8.
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Critical points are always exact constant solutions in the
context of autonomous dynamical systems. These points
are often the extreme points of the orbits and therefore
describe the asymptotic behavior. If the solutions interpo-
late between critical points, they can be divided into a
heteroclinic orbit and a homoclinic orbit (a closed loop).
The heteroclinic orbit connects two different critical
points, and the homoclinic orbit is an orbit connecting a
critical point to itself. In the dynamical analysis of cos-
mology, the heteroclinic orbit is more interesting [12]. If
the numerical calculation is associated with the critical
points, then we will find all kinds of heteroclinic orbits.
Especially, the heteroclinic orbit is shown in Fig. 3, which
connects the positive and negative attractors.

V. CONCLUSION AND DISCUSSION

In this paper, we investigate the dynamics of a torsion
cosmology, in which we consider only the ‘‘scalar torsion’’
mode. This mode has certain distinctive and interesting
qualities. We show that the late-time asymptotic behavior
does not always correspond to an oscillating aspect. In fact,
only in the focus case can we declare that the scalar torsion
mode can contribute a quasinormal oscillating aspect to the
expansion rate of the Universe. There are only exact peri-
odic solutions for the linearized system, which just corre-
spond to the critical line (line of centers). Via numerical
calculation of the coupled nonlinear equations, Nester et al.
[6] plot that quasiperiodic solution near the focus.
The late-time de Sitter attractor indicates that torsion

cosmology is an elegant scheme and the scalar torsion
mode is an interesting geometric quantity for physics.
We show that the late-time de Sitter behaviors cover a
wide range of the parameters and thus alleviate the fine-
tuning problem. Furthermore, the torsion cosmology has
considered the possibility that the dynamics scalar torsion
(geometric field) could fully account for the accelerated
Universe, which is naturally expected from spacetime
gauge theory.
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