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We study baryonic matter in holographic QCD with D4=D8=D8 multi-D brane system in type IIA

superstring theory. The baryon is described as the ‘‘brane-induced Skyrmion,’’ which is a topologically

nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We

employ the ‘‘truncated-resonance model’’ approach for the baryon analysis, including pion and � meson

fields below the ultraviolet cutoff scale MKK � 1 GeV, to keep the holographic duality with QCD. We

describe the baryonic matter in large Nc as single brane-induced Skyrmion on the three-dimensional

closed manifold S3 with finite radius R. The interactions between baryons are simulated by the curvature

of the closed manifold S3, and the decrease of the size of S3 represents the increase of the total baryon-

number density in the medium in this modeling. We investigate the energy density, the field configuration,

the mass and the root-mean-square radius of single baryon on S3 as the function of its radius R. We find a

new picture of ‘‘pion dominance’’ near the critical density in the baryonic matter, where all the (axial)

vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the

baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general

context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic

matter are examined by taking the proper order parameters. We also compare our truncated-resonance

model with another instanton description of the baryon in holographic QCD, considering the role of cutoff

scale MKK.
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I. INTRODUCTION

The concept of ‘‘holography’’ was first introduced by D.
Gabor in 1948 [1] as a new technique of the optical physics
to playback the three-dimensional information onto the
two-dimensional plate as a hologram. In 1997, this concept
of holography got a new appearance in the framework of
the superstring theory as the duality between two theories
belonging to the different spatial dimensions. It is first
proposed by Maldacena [2] as the AdS/CFT correspon-
dence betweenAdS5 � S5 supergravity andN ¼ 4 super-
symmetric Yang-Mills theory through D3 brane in type IIB
superstring theory. In a more general point of view, an
essential element of the holography is ‘‘Dp brane’’ as the

ðpþ 1Þ-dimensional membrane in the ten-dimensional
space-time. In fact, the Dp brane appears as the soliton,

i.e., the condensed object of the fundamental strings. The
Dp brane has two important aspects as follows: ðpþ
1Þ-dimensional gauge theory appears on a surface of the
Dp brane, and fðpþ 1Þ þ 1g-dimensional supergravity ap-

pears around the Dp brane. (The italic ‘‘1’’ denotes the

radial dimension with nontrivial curvature around the Dp

brane, indicating the existence of the gravity). Actually, the
concept of holography indicates the duality between the
ðpþ 1Þ-dimensional gauge theory without the gravity and
fðpþ 1Þ þ 1g-dimensional supergravity mediated by the
Dp brane, and the gauge interaction as a ‘‘hologram’’ on

the surface of the Dp brane is to give the supergravity as a

‘‘vision’’ in the extra dimension.
One of the most essential properties of the holography is

the ‘‘strong-weak duality’’ between the gauge theory and
the supergravity: the coupling strengths are transversely
related with each other. Therefore, the holography provides
a remarkable possibility that nonperturbative aspects of
one side can be analyzed by the other dual side just with
the tree-level calculations. Then, if we find the special
configurations of D branes reflecting QCD on their sur-
faces, nonperturbative aspects of QCD can be successfully
examined from the tree-level dual supergravity side. This is
the strategy of the holographic QCD.
There exist several trials to find the special configura-

tions of D branes reflecting QCD. Eventually, in 2005,
Sakai and Sugimoto succeeded in constructing QCD with
massless quarks and gluons from the fluctuation modes of

the open strings on the D4=D8=D8 multi-D brane configu-
rations in type IIA superstring theory [3], called Sakai-
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Sugimoto model, which is one of the most realistic models
of holographic QCD. By using this model, many phenome-
nological properties of mesons belonging to the nonpertur-
bative aspects of QCD like meson mass spectra, hidden
local symmetry [4], vector meson dominance [5], KSRF
relation [6], GSW model [7], etc., are successfully derived
from the tree-level dual supergravity calculations. In this
sense, holographic QCD is often regarded as the ‘‘unified
meson theory.’’ On the other hand, baryon description is
not straightforward in this approach since the classical
supergravity is found to be dual with the strong-coupling
‘‘large-Nc’’ QCD, where baryons do not directly appear as
dynamical degrees of freedom [8].

In our previous work, we gave the first study of the
baryon as a nontrivial topological soliton in the four-
dimensional meson effective action derived from holo-
graphic QCD. We call this topological soliton as a
‘‘brane-induced Skyrmion’’ [9,10]. Especially we included
pions and � mesons appearing below the Kaluza-Klein
mass scale MKK � 1 GeV, which is often called the
‘‘truncated-resonance model’’ for the baryon analysis.

Actually, MKK plays the role as the ultraviolet cutoff
scale of the holographic approach. In fact, there appear an
infinite number of ‘‘non-QCD modes’’ with mass scale
�OðMKKÞ in holographic QCD like gluinos and Kaluza-
Klein modes. In this sense, the duality with QCD could be
maintained below MKK as the ultraviolet cutoff.

The appearance of certain cutoff scale MKK should be
essential for the holographic approach to be dual of real-
istic QCD with confinement and chiral symmetry breaking
as the non-SUSY natures. In the holographic model with

D4=D8=D8 multi-D brane system, D4 branes are
S1-compactified with the MKK scale, to give the complete
SUSY breaking and its resulting nonconformal natures of
QCD, like finite string tension and chiral condensate.
These considerations suggest that MKK should be well
respected, giving our truncation of meson resonances at
MKK for baryon analysis (See, Sec. II for details).

Recently a baryon is also described as an instanton on
the five-dimensional gauge theory of D8 branes with D4
supergravity background [11–15]. The instanton is intro-
duced before the mode expansion of the five-dimensional
gauge field into mesons, so that the baryon as the instanton
is to be composed by the infinite number of color-singlet
modes with the mesonic quantum number even above the
MKK scale. However, we consider that such color-singlet
modes above MKK might not directly correspond to physi-
cal mesons in QCD, because the duality with QCD is
maintained below MKK. Furthermore, there also exists an
infinite number of other non-QCD modes above MKK,
which could also affect the baryon properties if they
were included. Therefore, in contrast to instanton models,
we severely respect the cutoff scale MKK and truncate the
meson resonances at MKK to keep the duality with QCD.
More comprehensive discussions with instantons are sum-
marized in Sec. VII.

In the present work, we newly consider the extension of
the holographic model to dense QCD. Because of the non-
Abelian nature of QCD, various realizations are expected
in the vacuum itself with finite temperature and density,
called ‘‘QCD phase diagram.’’ Up to now, interesting phase
structures are proposed by using some low-energy effective
theories of QCD, e.g., a confined phase with mesons and
baryons, a deconfined phase with quark-gluon plasma
(QGP), a chiral symmetry broken phase with mass genera-
tion [16], color superconductivity as diquark condensation
[17–21], etc. In fact, some wisdom about QGP gives
the insight for the early universe just after the big bang
[22]. Furthermore, the possible QCD phase transitions in
the core region of neutron stars could affect a lot of
their macroscopic features like moment of inertia, angle
velocity, and breaking index [23]. There also exist several
experimental projects to search the QGP in the ultrarela-
tivistic heavy ion collisions in the RHIC (Relativistic
Heavy Ion Collider) at BNL, and the LHC at CERN.
There will also appear relatively low-energy collision ex-
periments to make the low-temperature high-density object
in FAIR (Facility for Antiproton and Ion Research) at GSI,
giving some knowledge about the core region of the com-
pact stars. With these backgrounds, it should be urgently
important to make clear the structure of the QCD phase
diagram more explicitly from QCD itself with the rich help
of experimental data, which will eventually bring about the
fundamental understanding of our whole nature.
There exists the lattice QCD numerical study as the first

principle calculation of the strong interaction. However,
because of the ‘‘sign problem,’’ its applicability is severely
restricted near the zero-density at finite-temperature re-
gime of the wide QCD phase diagram (For some review,
see, Ref. [24]). Therefore, if one succeeds in the extension
of holographic approach to the dense regime, it should give
a new analytical tool for nonperturbative aspects of the
finite density QCD, where the holography provides the
duality between the strong-coupling gauge theory and the
weak-coupling supergravity. This is the main aim of our
study.
In this work, we consider the baryonic matter in holo-

graphic QCD as the extension of the holographic approach
to dense QCD. Especially, we treat the baryonic matter
with large-Nc because the holographic QCD is derived as a
large-Nc effective theory. As the general property of
large-Nc QCD [8], the static baryon mass is proportional
toOðNcÞ, so that its kinetic energy becomesOðN�1

c Þ. There
also exist the quantum effects like the zero point quantum
fluctuation energy E0 and also the baryon mass splitting
�m within the baryonic matter, while these correspond to
the higher order contributions of the 1=Nc expansions as
E0 �OðN0

cÞ and�m�OðN�1
c Þ [25]. Such large-Nc count-

ings indicate that, for sufficiently large Nc, the kinetic
energy and the quantum effects within the baryonic matter
can be suppressed relative to the static mass, and the
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baryonic matter comes into the static Skyrme matter. Such
static Skyrme matter was first analyzed by Klebanov [26],
by placing the Skyrme soliton solutions periodically along
the three-dimensional cubic lattice, which would corre-
spond to the nuclear crystal in the deeper interior of
neutron stars.

Since the cubic lattice treatment is rather cumbersome,
we employ a mathematical trick to analyze such static
Skyrme matter, proposed by Manton and Ruback [27]. In
order to represent some high-density state of the multi-
Skyrmion system on the three-dimensional flat space R3,
single Skyrmion is alternately placed on a surface of the
three-dimensional closed manifold S3 with a finite radius.
In fact, the multi-Skyrmion system on R3 and the single
Skyrmion on S3 can be related with each other through the
compactification of the boundary of a unit cell on R3

shared by one Skyrmion. The interactions between baryons
on R3 are simulated by the curvature of the manifold S3,
and decreasing the radius of S3 represents the increase of
the baryon-number density in the medium in this modeling.
Actually, by taking such mathematical simplification, one
could avoid some complicated analysis like Monte Carlo
simulations on the three-dimensional cubic lattice [26],
and he can get some physical intuitions as for the baryonic
matter qualitatively and even quantitatively [27]. There-
fore, by placing the single brane-induced Skyrmion on the
closed manifold S3, we try to analyze the typical features
of baryonic matters in holographic QCD. Especially, in this
analysis, the roles of �mesons in the dense baryonic matter
will be examined in detail from the holographic point of
view.

There exist a lot of works about the extension of the
holographic approaches to dense SUSY QCD (See,
Ref. [28] and references therein). With the bottom-up
construction of the AdS/QCD models [29–36], it was
applied to dense QCD by introducing the bi-nucleon con-
densate [37]. After the discovery of the Sakai-Sugimoto
model [3] as one of the most reliable holographic top-down
approaches to non-SUSY QCD with massless quark fla-
vors, there exist several proposals about the extension of
this model to dense QCD. For example, in Refs. [38,39],
the baryon chemical potential �B is introduced by the

asymptotic value of a Uð1Þ gauge field on the D8-D8
branes as V 0 ¼ �i�B=Nc, similarly to the introduction
of the chemical potentials to the chiral perturbation theory
by promoting the global chiral symmetry to local gauge
one [40,41]. In these holographic analyses, the density
dependence of the ‘‘local’’ properties of mesons and bary-
ons like their masses and coupling constants, and also the
phase structure of QCD have been successfully discussed.
Now, in our paper, we treat the baryon as a ‘‘nonlocal’’
solitonic object as the Skyrmion in the Sakai-Sugimoto
model, and we analyze the dense QCD by the Skyrme
matter. Therefore, adding to the information about the local
natures of hadrons and QCD phase structure, we can ex-

tensively examine the internal structure of the baryon, e.g.
the size and the field configurations.
Here we show the organization of this paper and its brief

summary. In Sec. II, we overview the holographic deriva-
tion of the four-dimensional meson effective action with
the pion and � meson fields, reemphasizing the role of
cutoff scale MKK in the holographic framework to be dual
of QCD. In Sec. III, we analyze the properties of baryons
and baryonic matter in holographic QCD. In Sec. III A, we
introduce the concept of the brane-induced Skyrmion on
the three-dimensional flat spaceR3. Then, in Sec. III B, we
describe the baryonic matter as the system of single brane-
induced Skyrmion on the three-dimensional closed mani-
fold S3. We derive the expression of the hedgehog mass
and Euler-Lagrange equations for the pion and � meson
fields as the brane-induced Skyrmion on S3. Section IV is
devoted to the numerical results and their physical inter-
pretations about the baryon nature in dense QCD. In
Sec. IVA, the baryon-number density dependence of the
energy density and field configuration profiles of a single
baryon are discussed. In Sec. IVB, we propose a new
striking picture of the ‘‘pion dominance’’ near the critical
density, i.e., all the (axial) vector meson fields disappear
and only the pion field survives. In Sec. IVC, the baryon-
number density dependence of the mass and root-mean-
square mass radius of the single baryon are analyzed. We
find some nonlinear increase in the size of the baryon near
the critical density as swelling phenomena. In Sec. IVD,
we explain the swelling mechanism in the general context
of QCD, and consider its effects on the stability of N-�
mixed matter. In Sec. V, we examine the features of the
delocalization phase transitions and the chiral symmetry
restoration by choosing proper order parameters, through
which the relations between deconfinement and chiral
symmetry restoration are reconsidered. In Sec. VI,
we calculate the critical densities of the phase transitions
in the physical units with the experimental inputs for the
pion decay constant f�ð¼ 92:4 MeVÞ and � meson mass
m�ð¼ 776:0 MeVÞ. We find the critical density �B ’ 7�0

in the holographic approach. Through all of the sections,
by comparing the brane-induced Skyrmion and standard
Skyrmion without � meson fields, the roles of the vector
mesons in the dense baryonic matter are examined from the
holographic point of view. Sec. VII is devoted to summary
and outlook. In this final section, we compare our
truncated-resonance approach with another instanton de-
scription of baryons [11–15] in the holographic QCD,
paying attention on the role of cutoff scale MKK.

II. MESON EFFECTIVE THEORY FROM
HOLOGRAPHIC QCD

In this section, we overview the derivation of the four-
dimensional meson effective action from holographic

QCD with the D4=D8=D8 multi-D brane system in type
IIA superstring theory, called the Sakai-Sugimoto model
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[3]. The meson effective action is derived without small
amplitude expansion to discuss a baryon as a large ampli-
tude chiral soliton. (For more comprehensive derivations,
see our previous paper [9]). Here we especially emphasize
the roles of cutoff scale MKK in holographic QCD.

First, we review the construction of the D4=D8=D8
multi-D brane system and also the supergravity description
of D4 branes as the holographic dual of QCD. As the first
step, Nc sheets of D4 branes are prepared to construct the
gluon sector of QCD. The D4 branes are S1-compactified
along one extra dimension with a radius as the inverse of
the Kaluza-Klein mass scale MKK. There appear ten inde-
pendent fluctuation modes from the open strings on the
surface of D4 branes, i.e., gauge fields A�¼0�3, scalar

fields A4 and �i¼5�9, and also their superpartners as fer-
mions. By imposing the antiperiodic boundary conditions
for all the fermions along the S1-compactified direction,
they acquire large masses�OðMKKÞ. Then supersymmetry
(SUSY) is completely broken and, due to the radiative
corrections, all the scalar fields A4 and �i also get large
masses �OðMKKÞ. Because of the S1-compactification,
there also appear the infinite number of the Kaluza-Klein
modes with masses �OðMKKÞ. Therefore, below the MKK

scale, only massless gauge fieldsA� appear. In this sense,

the system of Nc sheets of D4 branes with the
S1-compactification can be viewed as the UðNcÞ Yang-
Mills theory below MKK scale, corresponding to the pure
gauge sector of QCD. As the next step,Nf sheets of D8 and

D8 branes are added to introduce the massless quark

flavors of QCD. D8 has opposite chirality relative to D8,
providing UðNfÞL �UðNfÞR chiral symmetry in this

model. From the fluctuation modes of open strings between

D4 and D8 (D8), there appear massless chiral fermions as
quarks in QCD. As a whole, massless QCD appears as the

hologram on the surface of D4=D8=D8 branes.
Then we shift into the gravitational description of D

branes from the extra dimensions. The D brane is originally
introduced as the fixed edges of open strings with Dirichlet
boundaries. This also indicates that, through the ‘‘open-
closed duality’’ for the fundamental strings, the D brane
can also be regarded as the source of closed strings, giving
the graviton in the extra dimensions outside of the D brane.
In this sense, the D brane can be identified as a highly
gravitational system, i.e., the ‘‘black brane,’’ allowing the
gravitational description from the extra dimensions. In
fact, the mass of the D branes is proportional to its sheets
number, so that, by assuming Nc � Nf, only D4 branes

can be represented by the gravitational background and D8

(D8) branes are introduced as the probes called ‘‘probe
approximation,’’ which corresponds to the quenched ap-
proximation in lattice QCD study [42]. Especially the
classical supergravity description of D4 branes is tractable,
followed by the local approximation of the strings and also
the suppressions of the string loop effect. These conditions
in the gravitational side around the D branes give the

constraints for the gauge theory side as the QCD on the
surface of D branes as

g4YM � 1

g2YMNc

� 1; (1)

which is achieved by gYM ! 0, Nc ! 1, and ’tHooft
coupling: � � g2YMNc fixed and large. In this sense, the
strong-coupling large-Nc QCD is found to be dual with the

classical supergravity of D4 branes with probe D8 (D8)
branes, which is one of the realizations of the strong-weak
duality between the gauge theory and gravitational theory
through the holography. Therefore, by analyzing the effec-
tive action of D8 branes with D4 supergravity background,
one can analyze the nonperturbative aspects of QCD on the
surface of D branes.
Then we start formal discussions from the Nf ¼ 2 non-

Abelian Dirac-Born-Infeld (DBI) action of probe D8 brane
with D4 supergravity background as a probe approxima-
tion. After dimensional reductions, the nine-dimensional
DBI action of the probe D8 brane with the D4 supergravity
background can be reduced into a five-dimensional Yang-
Mills theory, belonging to the flat four-dimensional
Euclidean space-time x, i.e., x0�3 and the other fifth di-
mension z with curved measures as follows [3]:

SDBID8 � SDBID8 jAM!0 ¼ �
Z

d4xdz tr

�
1

2
KðzÞ�1=3F��F��

þ KðzÞF�zF�z

�
þOðF4Þ; (2)

where AM is the gauge field and FMN ¼ @MAN � @NAM þ
i½AM; AN� (M, N ¼ 0� 3, z) is the field strength tensor in
five-dimensional space-time ðx0�3; zÞ of the probe D8
branes. In the action (2), MKK ¼ 1 unit is taken, and the
overall factor � is defined as

� � �Nc

216�3
: (3)

(Note here that we use the value of � as a half of that in
Ref. [9], taking away the misleading factor 2 in Eq. (16) of
Ref. [9]. All the formulas and numerical results can be
scaled by the factor �, so that the discussions in Ref. [9] are
not altered.) The functional KðzÞ � 1þ z2 in the action (2)
expresses the nontrivial curvature in the extra fifth dimen-
sion z induced by the supergravity background of the D4
brane. The gravitational energy of the D8 brane, i.e.,
SDBID8 jAM!0 is subtracted in the action (2) as the vacuum

relative to the gauge sectors.

In the D4=D8=D8 multi-D brane configurations, color
quantum number is carried only by the Nc sheets of D4
branes. Therefore, after the supergravity description of D4
branes, there are no colored particles from the fluctuation
modes of open strings on the residual probe D8 branes.
This is regarded as some holographic manifestation of
‘‘color confinement’’ in the low-energy scale of QCD. In
fact, gauge field AM¼0�3;z in the action (2) is a color-singlet
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and obeys the adjoint representation of the UðNfÞ group,
eventually producing the meson degrees of freedom after
some proper mode expansions in the holographic QCD.

In this paper, we treat the nontrivial leading order of
1=Nc and 1=� expansions in the holographic QCD as the
five-dimensional Yang-Mills action (2) with OðF2Þ. In
general, there also exists the Chern-Simons (CS) term to
avoid anomalies in the superstring theory. By introducing
!meson degrees of freedom as theUð1Þ sector of �meson
fields in the holographic approach, the ! meson indirectly
couples with pions via (axial) vector mesons after the
proper mode expansions of CS term, which is regarded
as a general representation of the Gell-Mann–Sharp–
Wagner (GSW) model [7]. The roles of ! mesons for
low-energy meson dynamics and also chiral solitons have
been traditionally examined in some QCD phenomenolo-
gies [43]. Actually, however, the CS term is found to be
Oð�0Þ, i.e., the higher order contributions of ’tHooft cou-
pling expansion relative to the OðF2Þ of the Yang-Mills
action (2) with Oð�1Þ, which is manifestly shown in holo-
graphic QCD. Furthermore, the majority of the CS term
includes one time-derivative of pion fields and does not
affect the static properties of hedgehog solitons. Therefore,
we neglect the CS term in the discussions below for the
argument of the nonperturbative (strong coupling) proper-
ties of QCD.

In the holographic approach, the pion field is introduced
as the Wilson line of the fifth gauge field Az, i.e., a path-
ordered product of the fifth gauge field along the z direc-
tion [3,9,31] as

Uðx�Þ ¼ P exp

�
�i

Z 1

�1
dz0Azðx�; z0Þ

�
2 UðNfÞ: (4)

One can also introduce the variables ��ðx�Þ as

��1� ðx�Þ ¼ P exp

�
�i

Z �1

z0ðx�Þ
dz0Azðx�; z0Þ

�
2 UðNfÞ; (5)

where z0ðx�Þ is a single-valued arbitrary function of x�.

Then the pion field (4) can be written as

Uðx�Þ ¼ ��1þ ðx�Þ��ðx�Þ; (6)

some resemble formulas which can also be found in the
traditional approach of hidden local symmetry [4].

Now we take ‘‘Az ¼ 0 gauge’’ and also
‘‘��1þ ðx�Þ ¼ ��ðx�Þð� �ðx�ÞÞ gauge’’ for the UðNfÞ
gauge symmetry in the action (2) of the probe D8 brane.
The Az ¼ 0 gauge is similar to the unitary gauge in the
non-Abelian Higgs theory; fifth gauge field Az performs as
a scalar field in four-dimensional space-time x�¼0�3, and it

is eaten by the four-dimensional gauge field A� to give the

mass generation of gauge field, especially the (axial) vector
mesons as a part of A�. In this sense the masses of the

(axial) vector mesons come from the Higgs mechanism in
five-dimensional space-time with the UðNfÞ gauge sym-

metry breaking on the probe D8 brane. The ��1þ ðx�Þ ¼
��ðx�Þ gauge is also essential to get the low-energy effec-

tive theory of QCD with proper parity and G-parity clas-
sification in a manifest way [9]. With these gauge fixings,
the five-dimensional gauge field A�ðxNÞ can be mode-

expanded into the four-dimensional parity and G-parity
eigenstates with proper complete orthogonal basis c�ðzÞ
and c nðzÞ (n ¼ 1; 2; 	 	 	 ) as follows [3,9]:

A�ðxNÞ ¼ l�ðx�ÞcþðzÞ þ r�ðx�Þc�ðzÞ
þ X

n
1

BðnÞ
� ðx�Þc nðzÞ; (7)

l�ðx�Þ � 1

i
��1ðx�Þ@��ðx�Þ; (8)

r�ðx�Þ � 1

i
�ðx�Þ@���1ðx�Þ; (9)

where l� and r� are left and right currents of pion fields,

respectively. The basis c�ðzÞ are introduced to support
whole of the gauge field A�ðxNÞ at the boundary z ! �1
as c�ðz ! �1Þ ¼ 1 and c�ðz ! �1Þ ¼ 0 as

c�ðzÞ � 1
2 � ĉ 0ðzÞ; (10)

ĉ 0ðzÞ � 1

�
arctanz: (11)

In order to diagonalize the five-dimensional Yang-Mills

action (2)with the induced measures KðzÞ�1=3 and KðzÞ in
the fifth dimension z, the basis c n (n ¼ 1; 2; 	 	 	 ) are taken
to be the normalizable eigenfunction satisfying

� KðzÞ1=3 d

dz

�
KðzÞdc n

dz

�
¼ �nc n; ð�1 < �2 < 	 	 	Þ

(12)

with normalization condition as

�
Z

dzKðzÞ�1=3c mc n ¼ �nm: (13)

In the holographic model, the fields Bðn¼1;2;			Þ
� in the

mode expansion (7) are regarded as (axial) vector mesons,
belonging to the adjoint representation of the UðNfÞ gauge
group as B� ¼ Ba

�T
a. By substituting the expansion (7)

into the action (2), the mass of BðnÞ
� field is found with the

eigenvalue of oscillating fifth basis in Eq. (12) asm2
n � �n,

indicating that the origin of meson mass is the oscillation
of meson wave function in the extra fifth dimension.
Furthermore, A�ðxNÞ is the five-dimensional vector and

c nðzÞ are the parity eigenstate in the z direction as
c nð�zÞ ¼ ð�Þn�1c nðzÞ. Therefore, from the mode

expansion (7), BðnÞ
� fields have four-dimensional parity

transformation as BðnÞ
� ð�x�Þ ! ð�ÞnBðnÞ

� ðx�Þ. These con-
sideration indicates that vector and axial vector mesons
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appear alternately in the excitation spectra about index n

as Bð1Þ
� � ��; B

ð2Þ
� � a1�; B

ð3Þ
� � �0

�; B
ð4Þ
� � a01�; B

ð5Þ
� �

�00
�; 	 	 	 .
In our study, we construct the four-dimensional meson

effective action only with pion field Uðx�Þ and � meson

field Bð1Þ
� ðx�Þ � ��ðx�Þ below the Kaluza-Klein mass scale

MKK � 1 GeV. Recall that there appears an infinite num-
ber of non-QCD modes with large mass �OðMKKÞ in
holographic QCD, e.g., scalar fields, gluino, and also the
Kaluza-Klein modes, discussed in the first part of this

section. Therefore, the D4=D8=D8 multi-D brane system
can be viewed as QCD as far as low-energy phenomenol-
ogy below �MKK is concerned. In this sense, MKK plays
the roles as the ultraviolet cutoff scale of the theory, so that
we include the meson degrees of freedom below MKK for
the baryon analysis in later sections, called ‘‘truncated-
resonance model.’’

Actually, the appearance of MKK scale with finite value
seems to be essential in the recent holographic analysis. In
the framework of AdS/CFT correspondence without
Kaluza-Klein compactification, the N ¼ 4 SUSY and its
resulting conformal symmetry protect the emergence of the
dimensional quantities like string tension and chiral con-
densate at the ground state, because of the cancellation of
the radiative corrections between bosons and fermions. In
this sense, SUSY breaking is at least needed to be dual of
QCDwith confinement and chiral symmetry breaking as its
vacuum nature. In the Sakai-Sugimoto model, Nc sheets of
D4 branes are Kaluza-Klein compactified with radiusM�1

KK,
and the SUSY is completely broken by the field boundary
condition along the compactified direction. Therefore, con-
finement and chiral symmetry breaking could occur as the
non-SUSY gauge theory. In fact, the compactified D4
brane is ‘‘non-BPS,’’ having a ‘‘horizon’’ in the supergrav-
ity description. In the holographic framework, confinement
and chiral symmetry breaking do occur on this horizon,

giving the loss of ‘‘colored’’ information, and also the

geometrical connection of D8 and D8 branes. As a whole,
the appearance of MKK would be essential for the holo-
graphic model to be dual of realistic QCD.
Now, one may regret about the finiteness of MKK as

almost 1 GeV, which is comparable with the QCD mass
scale �QCD. In the holographic approach, the QCD mass

scale is introduced by the experimental inputs for the pion
decay constant and � meson mass as f� ¼ 92:4 MeV and
m� ¼ 776:0 MeV. These experimental values come from

our hadronic world withNc ¼ 3 and large but finite ’tHooft
coupling �, which may infringe the condition (1) to give
the effects of string length and string loops in the gravita-
tional side. Therefore, too large MKK cannot be taken to
neglect the internal structure of strings on the surface of D4
branes compactified with radius M�1

KK, which might even-
tually give the scale MKK � 1 GeV. These considerations
indicate that, by including the effects of string length and
loops in the gravitational side, MKK could be taken suffi-
ciently large relative to �QCD with fixed f� and m�.

Anyway, MKK � 1 GeV essentially appears as the ultra-
violet cutoff scale in the system of probe D8 brane with D4
‘‘classical’’ supergravity background to be dual of QCD
with proper dimensional quantities.
By neglecting the higher mass excitation modes of

(axial) vector mesons rather than the � meson sector
with n ¼ 1 in the expansions (7), the five-dimensional
gauge field A�ðxNÞ can be written as

A�ðxNÞ ¼ l�ðx�ÞcþðzÞ þ r�ðx�Þc�ðzÞ þ ��ðx�Þc 1ðzÞ:
(14)

By taking this mode expansion (14) with the Az ¼ 0 gauge,
five-dimensional field strength F�� and Fz� can be written

as

F�� ¼ @�A� � @�A� þ i½A�; A��
¼ ð@�l� � @�l�Þcþ þ ð@�r� � @�r�Þc� þ ð@��� � @���Þc 1 þ if½l�; l��c 2þ þ ½r�; r��c 2� þ ½��; ���c 2

1g
þ ifð½l�; r�� þ ½r�; l��Þcþc� þ ð½l�; ��� þ ½��; l��Þcþc 1 þ ð½r�; ��� þ ½��; r��Þc�c 1g

¼ �i½	�;	��cþc� þ ð@��� � @���Þc 1 þ i½��; ���c 2
1 þ ifð½	�; ��� þ ½��; 	��Þĉ 0c 1

þ ð½
�; ��� þ ½��;
��Þc 1g; (15)

Fz� ¼ @zA� ¼ 	�@z ĉ 0 þ ��@zc 1; (16)

with axial-vector current 	� and vector current 
� of the
pion field as

	�ðx�Þ � l�ðx�Þ � r�ðx�Þ; (17)


�ðx�Þ � 1
2fl�ðx�Þ þ r�ðx�Þg: (18)

In the derivation of (15) and (16), we have used the
Maurer-Cartan equations, @�l� � @�l� þ i½l�; l�� ¼ 0
and @�r� � @�r� þ i½r�; r�� ¼ 0. By substituting
Eqs. (15) and (16) into the five-dimensional Yang-Mills
action (2) with OðF2Þ, we eventually get the four-
dimensional Euclidean meson effective action with pions
and � mesons from holographic QCD as follows (deriva-
tions in more detail can be found in our previous paper [9]):
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Seff � SDBID8 � SDBID8 jAM!0 ¼ �
Z

d4xdz tr

�
1

2
KðzÞ�1=3F��F�� þ KðzÞF�zF�z

�
(19)

¼ f2�
4

Z
d4x trðL�L�Þ þm2

�

Z
d4x trð����Þ � 1

32e2

Z
d4x tr½L�; L��2 þ 1

2

Z
d4x trð@��� � @���Þ2

þ ig3�
Z

d4x trfð@��� � @���Þ½��; ���g � 1

2
g4�

Z
d4x tr½��; ���2 � ig1

Z
d4x trf½	�;	��ð@��� � @���Þg

þ g2
Z

d4x trf½	�;	��½��; ���g þ g3
Z

d4x trf½	�;	��ð½
�; ��� þ ½��;
��Þg

þ ig4
Z

d4x trfð@��� � @���Þð½
�; ��� þ ½��;
��Þg � g5
Z

d4x trf½��; ���ð½
�; ��� þ ½��;
��Þg

� 1

2
g6

Z
d4x trð½	�; ��� þ ½��; 	��Þ2 � 1

2
g7

Z
d4x trð½
�; ��� þ ½��;
��Þ2; (20)

where L� is the 1-form of pion fields as

L�ðx�Þ � 1

i
Uyðx�Þ@�Uðx�Þ: (21)

There exist 12 kinds of coupling constants: f�, m�, e, g3�,
g4�, and g1�7 in the action (20). However, all of the
coupling constants are uniquely determined from the prop-
erties of meson wave functions in the extra fifth dimension
z, i.e., the complete orthogonal basis c�ðzÞ and c 1ðzÞwith
oscillating eigenvalue �1 as follows:

f2�
4

� �
Z

dzKðzÞð@z ĉ 0Þ2 ¼ �

�
; (22)

m2
� � m2

1 ¼ �1; (23)

1

16e2
� �

Z
dzKðzÞ�1=3c 2þð1� cþÞ2; (24)

g3� � �
Z

dzKðzÞ�1=3c 3
1; (25)

g4� � �
Z

dzKðzÞ�1=3c 4
1; (26)

g1 � �
Z

dzKðzÞ�1=3c 1cþc�; (27)

g2 � �
Z

dzKðzÞ�1=3c 2
1

�
1

4
� ĉ 2

0

�
; (28)

g3 � �
Z

dzKðzÞ�1=3c 1cþc� ¼ g1; (29)

g4 � �
Z

dzKðzÞ�1=3c 2
1 ¼ 1; (30)

g5 � �
Z

dzKðzÞ�1=3c 3
1 ¼ g3�; (31)

g6 � �
Z

dzKðzÞ�1=3c 2
1 ĉ

2
0 ¼ 1

4
� g2; (32)

g7 � �
Z

dzKðzÞ�1=3c 2
1 ¼ 1: (33)

The holographic model has two parameters �ð¼ �Nc

216�3Þ and
the Kaluza-Klein mass MKK as the ultraviolet cutoff scale
of this theory. � appears in front of the effective action (2)
because the effective action of the D8 brane with a D4
supergravity background expanded up to OðF2Þ corre-
sponds to the leading order of 1=Nc and 1=� expansions.
Therefore, by fixing two parameters � and MKK to adjust
experimental inputs for f� and m�, then all the coupling
constants (22)–(33) are uniquely determined through the
background of the extra fifth dimension z. Such uniqueness
of the action is one of the remarkable consequences in
holographic QCD.

III. BRANE-INDUCED SKYRMION ON R3 AND S3

In this section, we discuss baryons and baryonic matter
in holographic QCD. In Sec. III A, we describe the baryon
as a chiral soliton in the four-dimensional meson effective
action Seff in (20) including pion and � meson fields
derived from holographic QCD. We call this topological
soliton as the ‘‘brane-induced Skyrmion.’’ The hedgehog
mass of the brane-induced Skyrmion on the flat coordinate
space R3 is derived, which is originally given in our
previous paper [9]. In Sec. III B, we newly discuss the
baryonic matter in holographic QCD by analyzing the
system of the single brane-induced Skyrmion on the
three-dimensional closed manifold S3. Through the pro-
jection procedure from the flat space R3 onto the curved
space S3, the hedgehog mass and the Euler-Lagrange
equations of the brane-induced Skyrmion on S3 are de-
rived. All the numerical results and their physical interpre-
tations are presented in Secs. IV, V, and VI.
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A. Brane-induced Skyrmion on R3

In this work, we describe the baryon as the four-
dimensional chiral soliton, i.e., the Skyrmion in holo-
graphic QCD. To see the validity of this approach for the
baryon, we now compare the meson effective action in-
duced by holographic QCD with that in a chiral perturba-
tion theory (ChPT) as a low-energy effective theory of
QCD [44]. The ChPT is phenomenologically constructed
respecting the symmetry of QCD, the chiral symmetry and
the Lorentz invariance in the four-dimensional space-time.
With these symmetry constraints, there are three possible
terms as the four-derivative terms of pion fields:

tr ½L�; L��2; trfL�; L�g2; trð@�L�Þ2; (34)

where L� ¼ 1
i U

y@�U is the 1-form pion fields in Eq. (21).

The first term tr½L�; L��2, called the ‘‘Skyrme term’’ [45],

is to give the stability of the Skyrme soliton solution with
finite size in the coordinate space. On the other hand, the
other two terms are known to give the instability of Skyrme
solitons [46]. The symmetry constraints in the ChPT can-
not determine which terms should appear because all the
terms in (34) are chiral symmetric and Lorentz invariant.
Therefore Skyrme deliberately takes only the first term
tr½L�; L��2 in the meson effective action as an effective

‘‘model’’ for the baryon as the chiral soliton, which was
called the ‘‘Skyrme model’’ [45].

Now, by starting from the holographic QCD with the
five-dimensional Yang-Mills action (2) of the probe D8
brane, one can find only the Skyrme term without the other
two in (34), which is manifestly seen in the action (20).
Actually the five-dimensional Yang-Mills action (2) with
OðF2Þ includes two time derivatives at most, so that the
appearances of the other two terms: trfL�; L�g2 and

trð@�L�Þ2 with four time derivatives are forbidden at the

leading order of 1=Nc and 1=� expansion in holographic
QCD. These comparisons with the chiral perturbation the-
ory clearly indicate that holographic QCD is not just the
low-energy effective theory of QCD only with the con-
straint of symmetries in four-dimensional space-time: ac-

tually, it obeys the UðNfÞ symmetry extending to the extra

fifth dimension z. Furthermore, one can see that the chiral
soliton picture for the baryon is now supported by the
holographic approach, retaining the direct connection
with QCD. With these considerations, we employ the con-
cept of chiral soliton picture for the baryon analysis in
holographic QCD [9].
Now we begin with the hedgehog Ansatz for pion field

UðxÞ and � meson field ��ðxÞ as a baryon configuration

[9]:

U?ðxÞ ¼ ei�ax̂aFðrÞ;
�
x̂a � xa

r
; r � jxj

�
(35)

�?
0 ðxÞ ¼ 0; �?

i ðxÞ ¼ �?
iaðxÞ

�a
2

¼ f"iabx̂b ~GðrÞg�a;
ð ~GðrÞ � GðrÞ=rÞ (36)

where �a is the Pauli matrix, and FðrÞ is a dimensionless
profile function of the pion field with boundary conditions
Fð0Þ ¼ � and Fð1Þ ¼ 0, giving topological charge equal
to unity. Ansatz (35) means �aðxÞ ¼ x̂aFðrÞ for the pion
field. GðrÞ is also a dimensionless profile function of the �
meson field. This Ansatz for the � meson field is also
called ‘‘Wu-Yang-’tHooft-Polyakov Ansatz’’ [47], and
the same configuration Ansatz can be seen for the gauge
field of the ’tHooft-Polyakov monopole [48].
By substituting the configuration Ansatz (35) and (36)

into the four-dimensional meson effective action Seff in
(20) with the Euclidean metric, we can get the static
hedgehog mass of a brane-induced Skyrmion on the flat
space R3 as follows (detailed derivations can be found in
our previous paper [9]):

E½FðrÞ; GðrÞ� � ½SDBID8 � SDBID8 jAM!0�hedgehog
�

Z 1

0
4�drr2 	 "½FðrÞ; GðrÞ�; (37)

r2 	 "½FðrÞ; GðrÞ� ¼ f2�
4
½2ðr2F02 þ 2sin2FÞ� þm2

�½4r2 ~G2� þ 1

32e2

�
16sin2F

�
2F02 þ sin2F

r2

��

þ 1

2
½8f3 ~G2 þ 2r ~Gð ~G0Þ þ r2 ~G02g� � g3�½16r ~G3� þ 1

2
g4�½16r2 ~G4�

þ g1½16fF0 sinF 	 ð ~Gþ r ~G0Þ þ sin2F 	 ~G=rg� � g2½16sin2F 	 ~G2� � g3½16sin2F 	 ð1� cosFÞ ~G=r�
� g4½16ð1� cosFÞ ~G2� þ g5½16rð1� cosFÞ ~G3� þ g6½16r2F02 ~G2� þ g7½8ð1� cosFÞ2 ~G2�; (38)

where F0 � dFðrÞ
dr ð¼ @FðrÞ

@r Þ and ~G0 � d ~GðrÞ
dr ð¼ @ ~GðrÞ

@r Þ.
Nowwe take the ‘‘Adkins-Nappi-Witten (ANW) unit’’ for energy and length as EANW � f�

2e and rANW � 1
ef�

[25], and we

rewrite all variables in this ANWunit as �E � 1
EANW

E and �r � 1
rANW

r. By taking this scaled unit, the hedgehog energy density

(38) of the single brane-induced Skyrmion on R3 can be rewritten as follows (overlines of �E and �r below are abbreviated
for simplicity):
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r2 	 "½FðrÞ; GðrÞ� ¼ ðr2F02 þ 2sin2FÞ þ 2

�
m�

f�

�
2½4r2 ~G2� þ sin2F

�
2F02 þ sin2F

r2

�

þ ð2e2Þ 1
2
½8f3 ~G2 þ 2r ~Gð ~G0Þ þ r2 ~G02g� � ð2e2Þg3�½16r ~G3� þ ð2e2Þ 1

2
g4�½16r2 ~G4�

þ ð2e2Þg1½16fF0 sinF 	 ð ~Gþ r ~G0Þ þ sin2F 	 ~G=rg� � ð2e2Þg2½16sin2F 	 ~G2�
� ð2e2Þg3½16sin2F 	 ð1� cosFÞ ~G=r� � ð2e2Þg4½16ð1� cosFÞ ~G2� þ ð2e2Þg5½16rð1� cosFÞ ~G3�
þ ð2e2Þg6½16r2F02 ~G2� þ ð2e2Þg7½8ð1� cosFÞ2 ~G2�: (39)

Here we comment about a scaling property of the brane-
induced Skyrmion. The holographic QCD has just two
parameters: �ð¼ �Nc

216�3Þ and MKK, so that the pion decay
constant f�, the � meson mass m�, and the Skyrme pa-
rameter e in Eqs. (22)–(24) can be explicitly written by �
and MKK in holographic QCD as

f� ¼ 2

ffiffiffiffi
�

�

r
MKK; (40)

m� ¼ ffiffiffiffiffiffi
�1

p
MKK ’ ffiffiffiffiffiffiffiffiffi

0:67
p

MKK; (41)

e ¼ 1

4

�
�
Z

dzK�1=3c 2þð1� cþÞ2
��1=2 ’ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffi
0:157

p 1ffiffiffiffi
�

p ;

(42)

where the energy unit MKK is recovered. By using these
relations (40)–(42), the ANW unit for energy and length,
i.e., EANW and rANW can be written by � and MKK as

EANW ¼ f�
2e

¼ const 	 �MKK; (43)

rANW ¼ 1

ef�
¼ const 	 1

MKK

: (44)

The five-dimensional Yang-Mills action (2) with OðF2Þ is
proportional to �ð¼ �Nc

216�3Þ, as the leading order of 1=Nc

and 1=� expansion. Furthermore, MKK is the sole energy
scale of the holographic approach. Therefore, in the energy
unit EANWð/ �MKKÞ, the total energy appears as a scale
invariant variable. In fact, by introducing the rescaled �
meson field ĜðrÞ as

ĜðrÞ � 1ffiffiffiffi
�

p ~GðrÞ; (45)

and considering the �-dependence of the basis c 1 as c 1 /
1ffiffiffi
�

p in the normalization condition (13), one can analytically
show that every energy density in each term of Eq. (39) and
meson field configurations FðrÞ and ĜðrÞ are scale invari-
ant variables, being independent of the holographic two
parameters, � and MKK.

With the considerations above, we give most discussions
below in the ANW unit as the universal features of bar-
yonic matter in holographic QCD, being independent of
the definite values of f� and m�. The recovering of the

physical unit with the experimental inputs for f� andm� is

discussed in Sec. VI, with respect to the critical densities of
the phase transitions in the baryonic matter within the
holographic approach.

B. Brane-induced Skyrmion on S3

Now we study the baryonic matter in holographic QCD
by analyzing the system of single brane-induce Skyrmion
on a three-dimensional closed manifold S3.
In this study, we consider the baryonic matter with large

Nc because holographic QCD is the large Nc effective
theory, derived from the classical supergravity justified in
the large Nc and large ’tHooft coupling [49]. According to
the general analysis of large-Nc QCD, a baryon mass is
found to become OðNcÞ [8,50], so that its kinetic energy
becomes OðN�1

c Þ. As for the quantum effects of the bar-
yonic matter, zero point quantum fluctuation energy E0 and
baryon mass splitting �m in the isospin projection corre-
spond to the higher-order effects of 1=Nc expansion: E0 �
OðN0

cÞ and �m�OðN�1
c Þ [25]. Therefore, with large-Nc

condition, we can consider that the kinetic energy and
quantum effects are suppressed relative to the static
mass, and the baryonic matter comes into the ‘‘static
Skyrme matter.’’
Such static Skyrme matter was first analyzed by

Klebanov [26], placing Skyrme soliton configurations pe-
riodically along the three-dimensional cubic lattice, which
could be related with ‘‘nuclear crystal’’ with pion conden-
sation in the deep interior of neutron stars. Therefore, by
analyzing the static Skyrme matter, one can see some
typical features of baryonic matter with large-Nc

conditions.
In this paper, we take certain mathematical tricks to

analyze such static Skyrme matter suggested by Manton
and Ruback [27]. To analyze the features of the multi-
Skyrmion system on the flat coordinate space R3, they
alternately treat the system of a single Skyrmion on a
three-dimensional closed manifold S3 with finite radius R
as shown in Fig. 1. Actually, the multi-Skyrmion system on
R3 and the system of a single Skyrmion on S3 can be
related with each other through the compactification of the
boundary for a unit cell on R3 shared by the single
Skyrmion as in Fig. 1. The interaction between the baryons
in the medium on R3 is simulated by the curvature of the
closed manifold S3. The baryon-number density can be
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represented as �B ¼ 1=2�2R3 on S3, so that as the size of
S3 decreases, the increase of the baryon-number density in
the medium is represented in this modeling. Actually, as
the radius R of S3 decreases, the energy density of a single
baryon is found to delocalize due to the medium effects in
the baryonic matter [27], and, below the critical radius Rcrit

of S3, the energy density of the baryon coincides with the
uniform distribution as the ‘‘identity map,’’ which is called
the ‘‘delocalization phase transition’’ shown in Fig. 1. Such
delocalization phase transition in the Skyrme model can be
related with the deconfinement of the baryon and also the
chiral symmetry restoration in QCD, which will be inclu-
sively discussed by taking the order parameters in Sec. V.
With these considerations, by analyzing the system of a
single brane-induced Skyrmion on S3, we can see some
typical features of baryonic matter in holographic QCD.
Especially, by comparing the standard Skyrmion without �
mesons and the brane-induced Skyrmion on S3, the roles of
(axial) vector mesons in the high density phase of baryonic

matter can be discussed from the holographic point of
view.
Now we introduce the projection procedure from the flat

space R3 onto the curved space S3 [51], to get a hedgehog
mass of a brane-induced Skyrmion on S3. First, we con-
sider the three-dimensional orthogonal space R3 in polar
coordinates as

x ¼ ðz; x; yÞ ¼ ðr cos�; r sin� cos; r sin� sinÞ
¼ ðr; �;Þ3 dim:polar: (46)

The integral operator dx̂ and the derivation d can be
written in polar coordinates as

dx̂ ¼ ðdr̂; d�̂; d̂Þ3 dim:polar ¼ ðdr; rd�; r sin�dÞ3 dim:polar;

(47)

d ¼ dr
@

@r
þ d�

@

@�
þ d

@

@

¼ dr̂
@

@r
þ d�̂

1

r

@

@�
þ d̂

1

r sin�

@

@
; (48)

so that the differential operator @ can be written as

@ ¼
�
@

@r
;
1

r

@

@�
;

1

r sin�

@

@

�
3 dim:polar

: (49)

Second, we consider the four-dimensional orthogonal
space R4 in polar coordinates as

X ¼ ðt; z; x; yÞ
¼ ðR cos�; R sin� cos�; R sin� sin� cos;

R sin� sin� sinÞ
¼ ðR;�; �; Þ4 dim:polar: (50)

The integral operator dx̂ and the derivation d can be
written in polar coordinates as

dx̂ ¼ ðdR̂; d�̂; d�̂; d̂Þ4 dim:polar

¼ ðdR; Rd�; R sin�d�; R sin� sin�dÞ4 dim:polar;

(51)

d ¼ dR
@

@R
þ d�

@

@�
þ d�

@

@�
þ d

@

@

¼ dR̂
@

@R
þ d�̂

1

R

@

@�
þ d�̂

1

R sin�

@

@�

þ d̂
1

R sin� sin�

@

@
; (52)

so that the differential operator @ can be written as

@ ¼
�
@

@R
;
1

R

@

@�
;

1

R sin�

@

@�
;

1

R sin� sin�

@

@

�
4 dim:polar

:

(53)

ρρ

ρ

FIG. 1 (color online). Schematic figure of the static Skyrme
matter on a flat coordinate space R3, and the system of a single
Skyrmion on a closed manifold S3 with finite radius R. The static
Skyrme matter on R3 and the system of a single Skyrmion on S3

can be related with each other through the compactification of
the boundary for a unit cell onR3 shared by the single Skyrmion.
The decrease of the radius R of S3 represents the increase of the
baryon-number density �Bð� ð2�2R3Þ�1Þ in the medium in
this modeling. For R � Rcrit as a critical radius, i.e., �B 

�BðcÞð� f2�2ðRcritÞ3g�1Þ as a critical density, the energy density

of the single Skyrmion becomes uniform distribution as the
‘‘identity map’’ discussed in Eq. (67), which is called the
‘‘delocalization phase transition.’’
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Now, by limiting the four-dimensional orthogonal space
R4 onto the surface of a three-dimensional closed manifold
S3 with fixed radius R, the coordinate t in Eq. (50) becomes
dependent on the other coordinates ðz; x; yÞ. Furthermore,
dR and @

@R can be regarded as zero in Eqs. (51) and (53)

because the radial coordinate R is fixed on S3. Therefore,
by comparing Eqs. (46), (47), and (49) on R3, and
Eqs. (50), (51), and (53) on S3 with fixed radius R, we
find the projection procedure from R3 to S3 as follows:

r ! R sin�; (54)

dr ! Rd�; (55)

@

@r
! 1

R

@

@�
: (56)

Recall that the hedgehog mass on R3 with energy den-
sity in Eq. (39) can be written with its explicit arguments
for the energy density as

E ¼
Z 1

0
4�drr2 	 "

�
FðrÞ; GðrÞ; @

@r
FðrÞ; @

@r
GðrÞ; r

�
:

(57)

By applying the projection procedure (54)–(56) to the
hedgehog mass onR3 in Eq. (57), we can get the hedgehog
mass on S3 as

E ¼
Z �

0
4�Rd�R2sin2� 	 "

�
FðR sin�Þ; GðR sin�Þ;

1

R

@

@�
FðR sin�Þ; 1

R

@

@�
GðR sin�Þ; R sin�

�
(58)

¼
Z �R

0
4�drR2sin2

r

R

	 "
�
FðrÞ; GðrÞ; @

@r
FðrÞ; @

@r
GðrÞ; R sin

r

R

�
: (59)

In Eq. (59), we introduce a new variable r as the arc length
on S3 as

r � R�; (60)

and r-dependent dimensionless functions FðR sinr
RÞ and

GðR sinr
RÞ are renamed again as FðrÞ and GðrÞ. Therefore,

by comparing Eq. (57) on R3 and Eq. (59) on S3, we can
get the simple projection procedure for the hedgehog en-
ergy density from R3 to S3 as

drr2 	 "
�
FðrÞ; GðrÞ; @

@r
FðrÞ; @

@r
GðrÞ; r

�

! drR2sin2
r

R
	 "

�
FðrÞ; GðrÞ; @

@r
FðrÞ; @

@r
GðrÞ; R sin

r

R

�
;

(61)

where the topological boundary for the chiral field FðrÞ in
(35) is also projected on S3 as

Fð0Þ ¼ �; Fð�RÞ ¼ 0: (62)

Now, by applying the projection procedure (61) for the
hedgehog energy density on R3 in Eq. (39), we can even-
tually get the hedgehog energy density on S3 with ANW
units as follows (Note here that the dimensional profile

function ~GðrÞ ¼ GðrÞ=r onR3 is to be naturally introduced

on S3 through the projection procedure as ~GðrÞ � GðrÞ
R sinr

R
):

E½FðrÞ; GðrÞ� ¼
Z �R

0
4�drR2sin2

r

R
	 "½FðrÞ; GðrÞ�;

(63)

R2sin2
r

R
	 "½FðrÞ; GðrÞ� ¼

�
R2sin2

r

R
	 F02 þ 2sin2F

�
þ 2

�
m�

f�

�
2
�
4R2sin2

r

R
	 ~G2

�
þ sin2F

�
2F02 þ sin2F

R2sin2 r
R

�

þ ð2e2Þ 1
2

�
8

��
2þ cos2

r

R

�
~G2 þ 2R sin

r

R
cos

r

R
	 ~Gð ~G0Þ þ R2sin2

r

R
	 ~G02

��

� ð2e2Þg3�
�
16R sin

r

R
	 ~G3

�
þ ð2e2Þ 1

2
g4�

�
16R2sin2

r

R
	 ~G4

�

þ ð2e2Þg1
�
16

�
F0 sinF 	

�
cos

r

R
	 ~Gþ R sin

r

R
	 ~G0

�
þ sin2F 	 ~G

��
R sin

r

R

���

� ð2e2Þg2½16sin2F 	 ~G2� � ð2e2Þg3
�
16sin2F 	 ð1� cosFÞ ~G

��
R sin

r

R

��

� ð2e2Þg4½16ð1� cosFÞ ~G2� þ ð2e2Þg5
�
16R sin

r

R
	 ð1� cosFÞ ~G3

�

þ ð2e2Þg6
�
16R2sin2

r

R
	 F02 ~G2

�
þ ð2e2Þg7

�
8ð1� cosFÞ2 ~G2

�
; (64)
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where F0 � dFðrÞ
dr ð¼ @FðrÞ

@r Þ and ~G0 � d ~GðrÞ
dr ð¼ @ ~GðrÞ

@r Þ. Here measures as R2sin2 r
R newly appear in the energy density (64)

relative to Eq. (39) on the flat space R3, indicating the existence of the curvature of the closed manifold S3. We also
construct the Euler-Lagrange equations for the pion field FðrÞ and � meson field ~GðrÞ from the energy density in Eq. (64)
as follows:

1

4�

�
�E

�FðrÞ �
d

dr

�
�E

�F0ðrÞ
��

¼
�
�4R sin

r

R
cos

r

R
	 F0 � 2R2sin2

r

R
	 F00 þ 4 sinF 	 cosF

�

þ
�
�4 sinF 	 cosF 	 F02 � 4sin2F 	 F00 þ 4sin3F 	 cosF

��
R2sin2

r

R

��

þ ð2e2Þg1
�
16

�
2 sinF 	 cosF 	 ~G

��
R sin

r

R

�

� sinF 	
�
� 1

R
sin

r

R
	 ~Gþ 2 cos

r

R
	 ~G0 þ R sin

r

R
	 ~G00

���
� ð2e2Þg2½16ð2 sinF 	 cosF 	 ~G2Þ�

� ð2e2Þg3
�
16ðsinFþ 2 sinF 	 cosF� 3 sinF 	 cos2FÞ ~G

��
R sin

r

R

��

� ð2e2Þg4½16ðsinF 	 ~G2Þ� þ ð2e2Þg5
�
16

�
R sin

r

R
sinF 	 ~G3

��

þ ð2e2Þg6
�
16

�
�4R sin

r

R
cos

r

R
	 F0 ~G2 � 2R2sin2

r

R
	 F00 ~G2 � 4R2sin2

r

R
	 F0 ~G ~G0

��
þ ð2e2Þg7½8f2ð1� cosFÞ sinF 	 ~G2g� ¼ 0; (65)

1

4�

�
�E

� ~GðrÞ �
d

dr

�
�E

� ~G0ðrÞ
��

¼ 2

�
m�

f�

�
2
�
4

�
2R2sin2

r

R
	 ~G

��

þ ð2e2Þ 1
2

�
8

�
4 ~Gþ 2sin2

r

R
	 ~G� 4R sin

r

R
cos

r

R
	 ~G0 � 2R2sin2

r

R
	 ~G00

��

� ð2e2Þg3�
�
16

�
3R sin

r

R
	 ~G2

��
þ ð2e2Þ 1

2
g4�

�
16

�
4R2sin2

r

R
	 ~G3

��

þ ð2e2Þg1
�
16

�
sin2F

��
R sin

r

R

�
� R sin

r

R
cosF 	 F02 � R sin

r

R
sinF 	 F00

��

� ð2e2Þg2½16ð2sin2F 	 ~GÞ� � ð2e2Þg3
�
16sin2Fð1� cosFÞ

��
R sin

r

R

��

� ð2e2Þg4
�
16

�
2ð1� cosFÞ ~G

��
þ ð2e2Þg5

�
16

�
3R sin

r

R
ð1� cosFÞ ~G2

��

þ ð2e2Þg6
�
16

�
2R2sin2

r

R
	 F02 ~G

��
þ ð2e2Þg7½8f2ð1� cosFÞ2 ~Gg� ¼ 0: (66)

Now one can show that the Euler-Lagrange equa-
tions (65) and (66) always have the analytical solution
for arbitrary value of radius R of S3 as

FðrÞ ¼ �� r

R
; ~GðrÞ ¼ 0; (67)

which is the ‘‘identity map’’ solution in the standard
Skyrme model without � meson field [27]. In the Skyrme
model, the energy density of the baryon is generated by the
spatial gradient of the pion fields. Therefore, such linear
configuration as in Eq. (67) gives the uniform energy
distributions with its classical mass as

Eid ¼
�
Rþ 1

R

�
6�2; (68)

which can be given by substituting the linear configuration
(67) into the energy density (64). Hence the change of the
absolute minimum solution from the localized Skyrmion
into the identity map (67) can be regarded as a signal of
transitions from the localized phase to the uniform phase of
the baryonic matter, referred to as the delocalization phase
transition. Note that the identity map solution (67) has no �
meson configuration: ~GðrÞ ¼ 0. Therefore, if the identity
map is realized as the absolute minimum solution, it in-
dicates that �meson field absolutely disappears in the high
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density phase, which is discussed with numerical results in
Sec. IV.

IV. BARYON NATURE IN DENSE QCD

In this section, we show the numerical results and dis-
cussions about the baryon nature in dense QCD by solving
the Euler-Lagrange equations (65) and (66) derived from
holographic QCD. The energy density and the field con-
figuration profiles of the baryon are analyzed in Sec. IVA.
A new striking picture of ‘‘pion dominance’’ near the
critical density is proposed in Sec. IVB. The mass and
root-mean-square mass radius of the baryon are examined
in Sec. IVC. We explain the swelling mechanism of the
baryon in the general context of QCD in Sec. IVD.
Through all of the sections below, by comparing the
Skyrme model without � meson field and the brane-
induced Skyrme (BIS) model on S3, the roles of (axial)
vector mesons in the baryonic matter are discussed from a
holographic point of view.

A. Energy density and field configuration profiles

In this section, we discuss the baryon-number density
dependence of the energy density and the field configura-
tion profiles of a single baryon for the Skyrme model and
the BIS model by changing the size of the manifold S3.
Actually, the baryon-number density is represented as
�B ¼ 1=2�2R3 on S3, so that, as the radius R of S3

decreases, the increase of total baryon-number density in
the medium is represented in this modeling.

First, we show in Fig. 2 the energy density of the baryon
for the Skyrme model with radius R of S3. One can see that
the energy density tends to delocalize as R decreases,
which can be regarded as some medium effects in the

dense baryonic matter. Below the critical radius, R �

R
Skyrme
crit ¼ ffiffiffi

2
p

, the energy-density distribution of the

baryon exactly coincides with the uniform one as the
identity map denoted by the dashed lines in Fig. 2. The
transition from localized energy density into uniform one
is called the ‘‘delocalization phase transition.’’
Next we show in Fig. 3 the same plot in the case of the

BIS model. The energy density of the baryon also tends to
delocalize as R decreases. However, the delocalization
along with the decrease of R is delayed relative to the
Skyrme model without � meson field, and the energy

distribution is still localized even around R� R
Sky
crit ¼

ffiffiffi
2

p
,

which is the critical radius for the Skyrme model. In fact,
the heavy �meson field appearing in the core region of the
baryon is to provide the attraction with the pion field,
which leads to the shrinkage of the total size of the baryon
[9]. Therefore, the smaller radius of S3, i.e., the larger
baryon-number density is needed for the BIS model to
give the delocalization phase transition, which is discussed
in Sec. VI with recovering the physical units. Then, below
the critical radius, R � RBIS

crit ¼ 1:19, the energy density

distribution of the baryon in the BIS model becomes the
uniform one as identity map (67). These delocalization
phase transitions in the Skyrmion picture can be related
with the deconfinement of the baryon and also the chiral
symmetry restoration, which will be discussed with the
order parameters in Sec. V.
We can also show in Fig. 4 the comparison between the

energy density of the baryon and � meson contributions in
the interaction terms of the BIS model (64) for R ¼ 4:0,ffiffiffi
2

p
, and 1.19. For R ¼ 4:0 and

ffiffiffi
2

p
, one can see the manifest

contributions from the � meson field in the core region of
the baryon. On the other hand, at the critical radius R ¼
RBIS
crit ¼ 1:19, all the contributions from the � meson field

absolutely disappear in the uniform phase.
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FIG. 2. Energy density of a single baryon for the Skyrme

model with radius R of S3. Below the critical radius, R �
R
Skyrme
crit ¼ ffiffiffi

2
p

, energy density becomes a uniform distribution

as the identity map, shown by the dashed lines.
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FIG. 3. Energy density of single baryon for the BIS model with
radius R of S3. Below the critical radius, R � RBIS

crit ¼ 1:19,
energy density becomes a uniform distribution as the identity
map, shown by the dashed lines.
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We also show the field configuration profiles of the pion
and the � meson in Fig. 5 and 6, respectively, in the BIS

model for R ¼ 4:0,
ffiffiffi
2

p
, and 1.19. As R decreases, the pion

field FðrÞ in Fig. 5 approaches to the linear configuration as
the identity map in Eq. (67), giving the uniform energy
density distribution. As for the � meson field in Fig. 6, the

amplitude of � meson field ĜðrÞ tends to decrease as R
decreases, and it absolutely disappears below the critical
radius, R � RBIS

crit ¼ 1:19 as the identity map in Eq. (67).

These results indicate that the amplitude of the � meson
field decreases as the baryon-number density increases in
the medium, and it absolutely disappears and only the pion
field survives near the critical density.

B. Pion dominance near critical density

In the previous section, we find that the � meson field
would disappear near the critical density. Now we propose
a conjecture that such disappearance of the � meson field
near the critical density can be generalized to all the other
(axial) vector meson fields: a1; �

0; a01; �00 	 	 	 , denoted by

-6
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ρ
ρ

ρ
ρ

ρ α
ρ α

ρ α β
ρ ρ β

ρ β
αρ αρ

ρ β
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π
π

π

∂

∂

FIG. 4 (color online). Energy density of single baryon and �
meson contributions in the terms of the BIS model (64) for R ¼
4:0,

ffiffiffi
2

p
, and 1.19. Labels for lines in (a) denote each term in (64),

e.g. ‘‘4�’’ corresponds to ð�1=2Þg4�
R
d4x tr½��; ���2 (See

Ref. [9] for labels). The vertical dashed lines in (b) and (c)
show the boundaries of S3 at the south pole r ¼ �R, respec-
tively. At the critical radius, R ¼ RBIS

crit ¼ 1:19 in (c), energy

density becomes a uniform distribution as the identity map,
where the � meson contributions disappear and only pion con-
tribution survives as the ‘‘pion dominance.’’
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FIG. 5. Pion field FðrÞ of the BIS model for R ¼ 4:0,
ffiffiffi
2

p
, and

1.19. At the critical radius, R ¼ RBIS
crit ¼ 1:19, FðrÞ coincides

with a linear configuration as the identity map in Eq. (67).
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FIG. 6. Rescaled � meson field ĜðrÞ ¼ ~GðrÞffiffiffi
�

p of the BIS model
for R ¼ 4:0,

ffiffiffi
2

p
, and 1.19. At the critical radius, R ¼ RBIS

crit ¼
1:19, ĜðrÞ becomes zero configuration as the identity map in
Eq. (67).
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the field BðnÞ
� ðx�Þ in Eq. (7) by the following reasons within

the holographic approach:

(1) The kinetic term of (axial) vector meson field BðnÞ
�

on the closed manifold S3 is proportional to R�2 as

tr f@�BðnÞ
� � @�B

ðnÞ
� g2 / R�2; (69)

which can be derived from a simple dimensional
analysis. In general, the kinetic energy indicates the
‘‘kink’’ energy of field configurations. Therefore,
the kinetic energy in Eq. (69) suppresses the spatial

dependence of the field configuration BðnÞ
� for small

R, i.e., for the high density state, giving flat configu-
ration in the high density phase.

(2) The mass term m2
n trfBðnÞ

� BðnÞ
� g suppresses the abso-

lute value of BðnÞ
� field more severely in accordance

with its larger mass m2
n.

(3) The couplings between pions and heavier (axial)

vector mesons BðnÞ
� with larger index n are found

to become smaller, which is suggested by the
‘‘bottom-up’’ dimensional deconstruction model
[31] and also the ‘‘top-down’’ holographic approach
[9]. In fact, within the holographic models, the
origin of the meson mass in four-dimensional
space-time can be regarded as the oscillation of
the meson wave function in the extra fifth dimension
z, denoted by the mass relation m2

n ¼ �n in Sec. II.
Such larger oscillations of heavier (axial) vector
mesons wave functions in the fifth dimension have
the smaller overlap with that of pions, giving the
smaller coupling constants with pions in four-
dimensional space-time [9]. In fact, some recent
experiments with the hadron reactions provide
some interesting data, showing that the heavier (ax-
ial) vector mesons tend to have smaller width for the
decay into pions despite of larger phase space [52],
which may be consistent with the prediction of
holographic QCD as their smaller coupling con-
stants with pions as mentioned above. Hence the
effects of heavier (axial) vector mesons should be
smaller for a baryon as a large-amplitude pion field,
i.e., the chiral soliton.

These considerations (1), (2), (3) about the meson effective
action in holographic QCD should support our conjecture
about the general disappearance of (axial) vector meson
fields in the high density phase. In other words, only the
pion fields survive near the critical density in the large-Nc

baryonic matter. We call this phenomenon ‘‘pion domi-
nance’’ near the critical density.

In Sec. VI, we will show that, even if the � meson field
disappears near the critical point, it affects the critical
density of the phase transition through its mass and also
the interactions with the pion field in the action Seff in
Eq. (19). In this sense, even with the pion dominance near

the critical point proposed above, the (axial) vector mesons
may still affect the critical phenomena like the critical
density through their contributions in the effective action
if they are included.
As for the survival of the pion fields near the critical

density as the pion dominance, we give the following
reason: the unit baryon-number on the manifold S3 comes
from the boundary conditions of the pion hedgehog con-
figuration FðrÞ at the north (r ¼ 0) and the south (r ¼ �R)
poles on S3 as Fð0Þ ¼ � and Fð�RÞ ¼ 0 in (62). In this
sense, pions play the essential roles for the baryon-number
current with their field boundaries. Therefore, the pion
field cannot disappear because of the baryon-number con-
straint (62) for each unit cell of the manifold S3. On the
other hand, there is no constraints for the other (axial)
vector meson fields, and they can disappear in the high
density phase as some representation of ‘‘deconfinement.’’
Such dominance of the pion field near the transition

point might be somehow related with the appearance of
chiral plasma modes � and � above Tc of the deconfine-
ment phase transition observed in the lattice QCD stuty
[53]. In fact, the screening masses were measured for a
variety of color-singlet channels with the quantum number
of �, �, �, b1, and a1 mesons. The chiral multiplet of �
and � was found to appear as the bound state even above
Tc, whereas the other (axial) vector mesons would be in the
continuum with the threshold as the twice of the lowest
Matsubara frequency, i.e., 2�T. Such survival of the chiral
plasma modes above Tc would inspire the concept of the
strong-coupling quark-gluon plasma (sQGP) due to the
long-range, nonperturbative effects of the strong interac-
tion even at the highest temperature, instead of the naive
free gas picture of quarks and gluons only due to the
asymptotic freedom. Such strong correlation would also
develop even at a dense regime of QCD, which may give
some linking of our analysis with ‘‘pion dominance’’ in
dense QCD.
By seeing some QCD phenomenologies, one can also

find that quark degrees of freedom are often represented by
‘‘pions.’’ For example, in the case of the chiral quark model
[54,55], quark–antiquark correlations are represented by
pionic collective modes through the bosonization scheme
for QCD, giving the ‘‘Cheshire cat picture’’ where the
quark dynamics are represented by pions. In fact, it has
provided a foundation of a Skyrme soliton picture for the
baryon as a large-amplitude pion field. These traditional
phenomenologies may also support the dominance of the
pions near the critical density in the baryonic matter, with
the appearance of quark-gluon dynamics.

C. Mass and root-mean-square mass radius

In this section, we discuss the baryon-number density
dependence of the mass and the root-mean-square (RMS)
mass radius of a single baryon for the Skyrme model and
the BIS model, by changing the size of the manifold S3.
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In Fig. 7, we show the mass of the baryon for the Skyrme
model and the BIS model with radius R of S3. In the case of
the Skyrme model, the mass decreases from the value on

the flat space R3: 1:231� 12�2½f�2e� [45] as R decreases,

and it coincides with the mass of the identity map below

the critical radius, R � RSkyrme
crit ¼ ffiffiffi

2
p

[27]. This coinci-

dence of the numerical solution with the identity map
indicates the transition from the localized phase to the
uniform phase as the delocalization phase transition. In
the case of the BIS model, the mass decreases from the

value on R3: 1:115� 12�2½f�2e� [9] as R decreases, and it

coincides with the mass of the identity map below the
critical radius, R � RBIS

crit ¼ 1:19, which is smaller than

R
Skyrme
crit due to the shrinkage of the baryon by the � meson

effects.
From a physical point of view, the decrease of the

baryon mass as R decreases in Fig. 7 might come from
the partial restoration of chiral symmetry in the dense
baryonic matter, which will be discussed with the order
parameter in Sec. V. This result is related with the well-
known picture of the baryon mass generation from the
quark condensate in the vacuum, suggested in some QCD
phenomenologies, e.g., the QCD sum rules with the Ioffe
formula [56], and also other chiral effective models
[57,58]. In fact, the decrease of the baryon mass with the
chiral symmetry restoration is observed in the finite-
temperature lattice QCD study [42]. Note also that the
decrease of the baryon mass with the chiral symmetry
restoration in dense QCD is proposed in the framework
of AdS/QCD model as the phenomenological bottom-up
constructions, called the ‘‘hard-wall’’ model [37].

Next we analyze the RMS mass radius of the baryon for
the Skyrme model and the BIS model. By using the nor-
malized energy density �"ðrÞ � "ðrÞ=E ("ðrÞ is the total
energy density and E is the mass of single baryon), the

RMS mass radius can be naturally introduced on S3 with
radius R as

ffiffiffiffiffiffiffiffi
hr2i

q
¼

�Z
S3
d3x 	 �"ðrÞr2

�
1=2

�
�Z �R

0
4�drR2sin2

r

R
	 �"ðrÞr2

�
1=2

; (70)

where R2sin2 r
R denotes the measure of the curved manifold

S3. In the case of the identity map, the RMS mass radius
can be analytically calculated by using the normalized
uniform energy density for the identity map : �"id �
1=2�2R3 as

ffiffiffiffiffiffiffiffiffiffiffi
hr2iid

q
�

�Z �R

0
4�drR2sin2

r

R
	 �"idr2

�
1=2

¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
� 1

2�2

s
: (71)

In Fig. 8, we show the RMS mass radius for the Skyrme
model and the BIS model with radius R of S3. One can find
that the RMS mass radius in each model increases non-
linearly around its critical radius as R decreases, indicating
the swelling phenomenon of the baryon in the high density
phase. Such swelling of the baryon can also be seen in the
analysis of the Skyrme crystal on the three-dimensional
cubic lattice [26] and also the finite density bag model [59].
After the delocalization phase transition, the energy den-
sity of a single baryon is uniformly saturated over the
surface of S3. Then the RMSmass radius decreases linearly
with the decrease of R as seen in Eq. (71). (In the uniform
phase, baryons are no longer localized, and the RMS mass
radius may have less physical meaning.)
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FIG. 7. Mass of a single baryon for the identity map, the
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D. Swelling mechanism and its phenomenological
implications

In the previous section, we numerically find the swelling
of the baryon by taking the Skyrmion picture for the baryon
analysis. Actually, as discussed in Sec. III A, the Skyrmion
picture is naturally derived from QCD through the new
concept of holography. Therefore, one can expect the
swelling phenomenon in QCD itself. In this section, we
try to give a qualitative explanation about the swelling
mechanism of a baryon in terms of QCD, by especially
referring to contexts of the lattice QCD [42] and also the
finite density bag picture [59].

First, in lattice QCD study, the nonperturbative QCD
vacuum is analyzed within a finite box of periodic bounda-
ries (and also Dirichlet boundaries) in the Euclidean space.
The nonperturbative effects with long wavelength tend to
be ‘‘blocked out’’ from such finite box of definite bounda-
ries, so that the QCD vacuum in the finite box is found to
approach the perturbative one. Also, the finite-temperature
phase transition in lattice QCD occurs because of the
definite boundaries along the imaginary time axis in
Euclidean space; as the temperature increases, the QCD
vacuum in the Euclidean space is more closely packed
along the imaginary time axis to block out the nonpertur-
bative effects with long wavelength, which eventually
gives the transition into the perturbative QCD vacuum,
like the chiral symmetry restoration and also the
deconfinement.

Next we combine the above picture into the finite den-
sity bag model, to explain the mechanism of the swelling in
QCD. In the bag model, the baryon is represented by a
‘‘bag’’ with the perturbative QCD vacuum surrounded by
the Dirichlet boundaries, which is supported by the non-
perturbative QCD vacuum with the bag pressure as shown
in Fig. 9(a). As a number of bags increases, representing
the high density baryonic matter, the nonperturbative QCD

vacuum around the bags is more closely packed within a
definite region, imitated by a cube with dashed lines in
Fig. 9(b). Then, in analogy with the case of lattice QCD
study discussed above, the QCD vacuum around the bags
should approach the perturbative one by blocking out the
nonperturbative effects with long wavelength as shown by
the several waves in Fig. 9. Therefore, the bag pressure as a
nonperturbative effect decreases as the number of bags
increases, so that it eventually gives the swelling of bags.
Such swelling in turn decreases the region of nonperturba-
tive QCD vacuum around the bags to give the decrease of
the bag pressure again. In this sense, such swelling could
occur nonlinearly as shown in Fig. 8, giving some drastic
change of features like deconfinement in the baryonic
matter. One can expect some resemblance between the
finite density bag model and the Skyrme matter in our
study with respect to baryonic matter, so that the swelling
phenomenon as shown in Fig. 8 could be understood on the
same footing provided above.
Now we also suggest the physical effects of the swelling

in the high-density baryonic matter. Here we take into
account possible baryon excitation with the chiral soliton
picture. Since a moment of inertia of the baryon is related
with the size of the baryon, some nonlinear increase in the
moment of inertia around critical density is expected along
with the swelling of a baryon. In the semiclassical quanti-
zation procedure of a Skyrme soliton, the baryon mass
spectra is given [43] as

MJ ¼ MHH þ JðJ þ 1Þ
2I

; (72)

where MHH is the static hedgehog mass and I is the mo-
ment of inertia of a baryon. The quantum number J in
Eq. (72) denotes the spin S and the isospin I of the baryon
as Jð¼ S ¼ IÞ ¼ 1

2 for N and Jð¼ S ¼ IÞ ¼ 3
2 for �. The

baryon mass splitting in the second term in Eq. (72) is

BP-QCD

NP-QCD

(a) (b)

NP-QCD

BP-QCD
: largeρ B

[low density] [high density]

FIG. 9 (color online). Schematic figure of the finite density bag model for low density case (a) and high density case (b): the baryon
is represented by a bag with perturbative QCD vacuum (P-QCD) surrounded by Dirichlet boundaries, supported by the nonperturbative
QCD vacuum (NP-QCD) with the bag pressure B. Several waves in (a) and (b) represent the nonperturbative effects of QCD with a
certain wavelength. A cube with dashed lines in (b) imitates a definite region of nonperturbative QCD vacuum surrounded by the
surfaces of the bags with Dirichlet boundaries, to discuss the mechanism of swelling in the high density baryonic matter.
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proportional to the inverse of the moment of inertia, in-
dicating that a larger object cannot be easily rotated.
Therefore we can now propose that the baryon mass split-
ting decreases as the density increases in the medium,
because the moment of inertia I increases due to the
swelling. In other words, the individuality of each baryon
like N, �, etc., would be lost at least with respect to their
mass spectra as the density increases. Such loss of indi-
viduality may be regarded as some precursory phenomena
of deconfinement, where the dominant degrees of freedom
in the hadronic matter shifts from the confined composites
as baryons (and mesons) into quarks and gluons.

Such swelling of the baryon leads to some interesting
phenomenological realizations. As one possibility, here we
propose the stable N-� mixed matter in dense QCD. For
simplicity, we consider the ‘‘symmetric nuclear matter,’’
where only the strong interaction is taken into account
without the electromagnetic interaction. In the low density
case, there exists large N-� splitting as ðM� �MNÞ �
290 MeV, and the Fermi surface of the nucleons �N may
locate below the threshold of � isobars, i.e., its mass M�.
This situation gives only the nucleon degrees of freedom as
nuclear matter. Now, if the swelling occurs as the density
increases, theN-� splitting should decrease as discussed in
Eq. (72). Then, the Fermi surface of the nucleons �N

would exceed M� to give the � isobar degrees of freedom
in the medium through the equilibrium process N þ � $
�. In this sense, N-� mixed matter would be realized in
dense QCD because of the swelling of a baryon. Such N-�
mixed matter may appear in the deep interior of neutron
stars between the nuclear crust and the core of quark matter
as the precursor of deconfinement, giving some softening
of the EOS of neutron stars relative to the analysis without
the mixed matter. While these are qualitative discussions,
we feel that these explanations catch some essential as-
pects of baryonic matter with baryon excitation in view of
its swelling nature.

V. PHASE TRANSITIONS WITH ORDER
PARAMETERS

In this section we discuss the delocalization phase tran-
sition in view of the deconfinement, and also the chiral
symmetry restoration by introducing the proper order pa-
rameters in the Skyrme model and the BIS model. The
relations between these phase transitions are also consid-
ered by referring to other QCD phenomenologies in the
end of Sec. VB.

A. Delocalization phase transition

First we consider the delocalization phase transition
with the order parameter. By using the normalized energy
density �"ðxÞ � "ðxÞ=E ("ðxÞ is total energy density and E
is the mass of single Skyrmion), one can introduce the
spatial fluctuation �ðRÞ of the energy density around the
uniform energy density distribution [60] as

�ðRÞ � 1

2

Z
S3
d3xj �"ðxÞ � �"idj; (73)

where �"id � 1
2�2R3 is the normalized uniform energy den-

sity for the identity map. If the Skyrmion is well localized
like the delta function, the energy density �"ðxÞ is almost
decoupled with uniform energy density distribution �"id
through the spatial integral over S3. Therefore, its spatial
fluctuation �ðRÞ becomes

�ðRÞ � 1

2

Z
S3
d3xfj �"ðxÞj þ j �"idjg ¼ 1: (74)

On the other hand, if the Skyrmion gives uniform energy
density distribution as the identity map, the energy density
�"ðxÞ coincides with �"id, giving

�ðRÞ ¼ 0: (75)

In this sense, �ðRÞ in Eq. (73) measures the amount of
localization in the energy density distribution of the
Skyrmion, regarded as the order parameter of delocaliza-
tion phase transition in the baryonic matter.
In Fig. 10, we show the value of �ðRÞ for the Skyrme

model and the BIS model with radius R of S3. For suffi-
ciently large R as the low density state, the Skyrme soliton
is well localized for both the Skyrme model and the BIS
model, giving �ðRÞ � 1. With the decrease of R, the
baryon tends to delocalize with the decrease of �ðRÞ,
regarded as some medium effects in the baryonic matter.
The delocalization phase transition into the uniform phase

with �ðRÞ ¼ 0 occurs at the critical radius R ¼ R
Skyrme
crit ¼ffiffiffi

2
p

for the Skyrme model and at R ¼ RBIS
crit ¼ 1:19 for the

BIS model. Actually, the delocalization phase transition in
the BIS model is delayed along with the decrease of R
because of the heavy � mesons in the core region of the
baryon, discussed in Sec. IVA.
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Here one may have some temptation to relate the deloc-
alization phase transition with the deconfinement of the
baryon in QCD, which should be carefully discussed.
Actually, there have been several conflicts about the mean-
ing of the delocalization phase transition in the standard
Skyrme model with finite density [26,27,60–62]. Within
the traditional works in the 1970’s, the direct linking of the
Skyrme model with QCD was still uncertain. Furthermore,
the standard Skyrme model does not manifestly include
quarks and gluons, so that great care should be taken to
relate the delocalization of the Skyrmion with the decon-
finement of the baryon as the appearance of quark-gluon
dynamics. In our case, however, the new concept of hol-
ography allows us to derive the Skyrmion picture from
QCD itself, which is discussed in Sec. III A. Moreover, one
should also note that quark degrees of freedom can be
represented by pions, suggested in some QCD phenomen-
ologies with ‘‘Cheshire cat picture’’ as in the chiral quark
model [54,55] derived from the bosonization scheme for
QCD. With these backgrounds, here we propose that the
delocalization phase transition in the BIS model can be
more admissibly related with the deconfinement of the
baryons in QCD, relative to the standard Skyrme models
in the 1970’s.

B. Chiral symmetry restoration in nonlinear realization

Next we consider the chiral symmetry restoration with
the order parameter. Normally, in the case of the linear
sigma model, the chiral symmetry restoration can be sig-
naled by the vanishing of the expectation value of the
meson fields at the matter ground state as

h�ðx�Þ2 þ�ðx�Þ2i ¼ 0; (76)

where the sigma meson field �ðx�Þ and three pseudoscalar
pion fields �ðx�Þ are called the ‘‘linear’’ realization of

chiral symmetry. We relate this terminology to the non-
linear sigma model, since the meson effective action and
also the Skyrmion picture are based on the ‘‘nonlinear’’
realization of the chiral symmetry. In the nonlinear sigma
model, the meson fields �ðx�Þ and �ðx�Þ are introduced

from the chiral field Uðx�Þ 2 SUðNfÞA as

Uðx�Þ ¼ ei�a�aðx�Þ=f�¼ cosfj�j=f�g þ i�a�̂a sinfj�j=f�g
� f�ðx�Þ þ i� 	�ðx�Þg=f�:
ðj�j � ffiffiffiffiffiffiffiffiffiffiffiffi

�a�a

p
; �̂a � �a=j�jÞ (77)

Since Uðx�Þ is s unitary matrix with the condition

Uyðx�ÞUðx�Þ ¼ 1, the squared sum of the meson fields

�ðx�Þ and �ðx�Þ in Eq. (77) should be constant every-

where as

�ðx�Þ2 þ�ðx�Þ2 ¼ f2�: (78)

Therefore, as far as the action is written in the chiral field
Uðx�Þwith fixed f�, the meson fields�ðx�Þ and�ðx�Þ are

forced on a surface of a three-dimensional closed manifold
S3int with finite radius f� in the internal space. In fact, the

existence of such closed manifold S3int is essential for the
concept of a Skyrmion, which is a nontrivial winding of the
compactified physical manifold S3 around the other closed
manifold S3int with conserved topological charge, belonging
to the homotopical classification �3ðS3Þ ¼ Z [63]. How-
ever, by comparing Eq. (78) with Eq. (76), one would
always encounter a problem of how to describe the chiral
symmetry restoration with its nonlinear realization.
Now in this paper, we take a spatially-averaged conden-

sate of the meson fields �ðx�Þ and �ðx�Þ as the order

parameter of the chiral symmetry restoration with the non-
linear realization [62] as

fh�ðx�Þi2 þ h�ðx�Þi2g=f2�: (79)

Here, the bracket in Eq. (79) denotes the three-dimensional
spatial average in the medium with volume V as

h�ðx�Þi �
R
V d

3x�ðx�ÞR
V d

3x
: (80)

Such spatially-averaged condensate of the meson fields is
somehow similar to the spatially-averaged magnetization
hMðxÞi as the global order parameter of the ferromagnetic
material like bulk iron. Within the bulk iron at sufficiently
high temperature, the spins of the ions orient randomly to
get the entropy gain in the free energy. As the temperature
decreases below the critical temperature without the exter-
nal magnetic field, there appear magnetic domains with
nonzero local magnetizationMðxÞ � 0. However, because
of the total angular momentum conservation, the spatially-
averaged magnetization hMðxÞi should vanish with the
appearance of a complex structure of magnetic domain
walls within the bulk iron, which gives no breaking of
the global spatial symmetry macroscopically in the bulk
material as hMðxÞi ¼ 0. In this sense, the spatially-
averaged condensate of the meson fields in Eq. (79) can
be regarded as the ‘‘global’’ order parameter of the chiral
symmetry in the bulk hadronic matter.
By taking the hedgehog configuration Ansatz

�aðx�Þ=f� ¼ x̂aFðrÞ as in Eq. (35), the meson fields

�ðx�Þ and �ðx�Þ can be written as

�ðx�Þ=f� ¼ cosf�ðx�Þ=f�g ¼ cosFðrÞ; (81)

� ðx�Þ=f� ¼ �̂ sinf�ðx�Þ=f�g ¼ x̂ sinFðrÞ: (82)

Note here that the pion field with the hedgehog ansatz in
Eq. (82) is proportional to the unit directional vector x̂, so
that its spatial average becomes trivially zero. Therefore,
only the sigma meson field should be considered as the
global order parameter of the chiral symmetry. If a
Skyrmion is well localized around the north pole at r ¼
0 on the manifold S3, the classical meson field configura-
tion FðrÞ becomes zero almost everywhere except for the
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localized point r� 0. Therefore the sigma meson configu-
ration in Eq. (81) becomes �ðx�Þ=f� � 1 almost every-

where. In other words, the vacuum is so much oriented
even globally in the medium, thus its spatial average
becomes nonzero as

h�ðx�Þi=f� � 1; (83)

indicating the appearance of the chiral symmetry broken
phase. On the other hand, if the Skyrmion gives uniform
energy density distribution as the identity map FðrÞ ¼ ��
r=R in Eq. (67), the sigma meson configuration becomes
�ðx�Þ=f� ¼ cosrR , changing monotonously from �1 to 1

over the coordinate space S3 through the arc distance r 2
½0; �R�. Therefore, its spatial average vanishes as

h�ðx�Þi=f� ¼ 0; (84)

indicating the appearance of the chiral symmetry restored
phase. These considerations about Eqs. (83) and (84) also
indicate that the chiral symmetry restoration is indirectly
related with the energy density distribution in the hadronic
matter through the classical meson field configurations.

In Fig. 11, we show the spatially-averaged condensate
h�ðx�Þi=f� for the Skyrme model and the BIS model with

radius R of S3. The spatial average with the hedgehog
configuration (81) is explicitly taken for each closed mani-
fold S3 as

h�ðx�Þi=f� ¼ hcosFðrÞi ¼
R
S3 d

3x cosFðrÞR
S3 d

3x

¼
R
�R
0 4�drR2sin2 r

R 	 cosFðrÞ
2�2R3

: (85)

For sufficiently large R as the low density state, the Skyrme
soliton is well localized for both the Skyrme model and the
BIS model, as previously shown in Fig. 10. Therefore, as
discussed in Eq. (83), the spatially-averaged condensate of

the meson field becomes h�ðx�Þi=f� � 1 as the chiral

symmetry breaking in both models as shown in Fig. 11.
In this sense, the � meson field (and also the other vector
and axial vector meson fields, if they are included) would
have less importance for the chiral symmetry breaking in
the bulk hadronic matter as far as sufficiently localized
baryon appears in the medium. With the decrease of R,
h�ðx�Þi=f� monotonously decreases, which corresponds

to the partial chiral symmetry restoration as the medium
effect in the baryonic matter. The chiral symmetry is fully

restored with h�ðx�Þi=f� ¼ 0 at the critical radius R ¼
R
Skyrme
crit ¼ ffiffiffi

2
p

for the Skyrme model and at R ¼ RBIS
crit ¼

1:19 for the BIS model. Actually, the small radius R, i.e.,
the larger baryon-number density, is needed to give the
chiral symmetry restoration due to the � meson fields,
similar to the case of the delocalization phase transition
as previously discussed.
Finally, we comment on the relation between the decon-

finement and the chiral symmetry restoration in QCD,
which has been discussed so long in the hadron physics.
The relation between two phase transitions is nontrivial
since they are characterized by the different symmetries:
the global chiral symmetry SUðNfÞL � SUðNfÞR, and Z(3)
symmetry as the center of the SUð3Þc gauge group. Note
that the former can be defined in the massless quark limit,
while the latter in the heavy quark limit, leading to diffi-
culties in discussing their relation.
Despite the difficulties, several implications have been

obtained: In finite temperature, the lattice QCD studies
suggest that the two phase transitions occur at the same
critical temperature Tc � 170 MeV [42]. Such simulta-
neous occurrence is supported by the analyses of the
Nambu-Jona-Lasinio model with a Polyakov loop (PNJL
model) as a low-energy effective theory of QCD [64].
Actually, these two phase transitions are separated with
respect to their dominant symmetries as mentioned above,
so that such mysterious coherence between two phase
transitions is often compared to some kinds of ‘‘entangle-
ment’’ [64]. Furthermore, the simultaneous occurrence of
the two phase transitions is also suggested by the recent

analysis of the holographic QCD with D4=D8=D8 multi-D
brane configurations: two independent chirality spaces on

the D8 and D8 branes, respectively, are connected with
each other (chiral symmetry breaking) by the ‘‘worm hole’’
of the D4 supergravity background into which the colored
objects like quarks and gluons are absorbed (color confine-
ment) [9]. In this sense, these two phase transitions are
more directly related with each other as just a single event
on the ‘‘worm hole’’ in the extra dimensions, the effects of
which might appear as some kind of mysterious entangle-
ment in view of the four-dimensional space-time.
Now, the situation has not been clear in finite density. In

this work, we indirectly relate the two phase transitions
through the meson field configurations. Admittedly, our
approach includes only meson fields and baryons appear as
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mesonic solitons. However, if the Cheshire cat picture
holds and quark-gluon dynamics can be indirectly ex-
pressed in the meson dynamics as an effective model, our
results could be interpreted as the simultaneous occurrence
of two phase transitions in the finite density QCD.
Investigations in this direction are interesting and should
be developed further.

VI. CRITICAL DENSITY WITH PHYSICAL UNITS

In this section, we show the critical densities of the
phase transitions for the Skyrme model and the BIS model
with recovering the physical units.

In this study, a single baryon is placed on a closed
manifold S3 with the surface volume 2�2R3, so that the
total baryon-number density �B can be given as

�B ¼ ð2�2R3Þ�1ðef�Þ3 ½fm�3�: (86)

Now, in the holographic model, by fixing two parame-
ters, e.g., experimental inputs for f� and m�, all the

physical quantities like masses and the coupling constants
are uniquely determined, which is a remarkable conse-
quence of the holographic approach discussed in Sec. II.
First, we take f� and m� as experimental values,

f� ¼ 92:4 MeV; m� ¼ 776:0 MeV: (87)

Then the Skyrme parameter e in Eq. (42) can be uniquely
determined as

e ’ 7:315: (88)

With these experimental inputs, we show in Fig. 12 the
total baryon-number density �B in Eq. (86) as a function of

radius R of S3, divided by the normal nuclear density �0 ’
0:17 fm�3. From Fig. 12 and also Eq. (86), the critical

densities for the Skyrme model (R
Skyrme
crit ¼ ffiffiffi

2
p

) and the

BIS model (RBIS
crit ¼ 1:19) are found as follows:

�
Skyrme
B � f2�2ðRSkyrme

crit Þ3g�1ðef�Þ3 ’ 4:26�0; (89)

�BIS
B � f2�2ðRBIS

crit Þ3g�1ðef�Þ3 ’ 7:12�0: (90)

The heavy � meson fields in the core region of the baryon
tend to decrease the total size of the baryon [9], so that the
� meson field has a significant role to increase the critical
density into the uniform phase as in Eq. (90) relative to
Eq. (89).
In Sec. IVA, we discuss the disappearance of the �

meson field in the high density phase of baryonic matter,
while we now find the significant roles of the �meson field
as for the critical density in Eq. (90) relative to Eq. (89).
This situation somehow resembles the ‘‘two-Higgs model’’
with scalar fields  and � in the finite temperature. On the
critical temperature of a phase transition with the dynamics
of a scalar field �, the condensate of the � field might
become trivial as h�i ¼ 0. However, in general, the mass of
the � field and also the interactions between the � and 
fields affect the critical properties like critical temperature.
In this sense, even if the � meson fields disappear near the
critical point, they could affect the critical phenomena as in
Eq. (90) through its mass and also the interactions with
pions in the action Seff in Eq. (19).
Here we briefly comment on the value of the critical

density by taking the other parameter set used by Adkins
et al. [25]. In 1983, Adkins et al. analyzed the baryon mass
spectra with the semiclassical quantization of the Skyrme
model, whereas theN-� splitting corresponds to the higher
order contribution OðN�1

c Þ relative to the static Skyrme
action OðN1

cÞ in the large-Nc expansion. To reproduce the
proper amount of the N-� splitting, they take the smaller
pion decay constant and Skyrme parameter [25] as

f� ¼ 64:5 MeV; e ¼ 5:44: (91)

Now if the parameter set in Eq. (91) is used for the baryon-
number density in Eq. (86), we find too small critical
density ð�0:6�0Þ for the Skyrme model. If one can relate
the phase transition in the Skyrme model with the decon-
finement of the baryon in QCD, it might propose, e.g., that
quark degrees of freedom are already manifest in the
normal nuclei. This unreasonable results may come from
the fact that semiclassical quantization procedure corre-
sponds to extracting higher order contributions OðN�1

c Þ
from the leading order Skyrme action OðN1

cÞ as for the
large-Nc expansion.
The same comments can also be applied to the holo-

graphic model if one tries to perform the semiclassical
quantization as the baryon analysis. In fact, holographic
QCD is derived as the large-Nc effective theory even by
starting from superstring framework. Higher order effects
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of the large-Nc expansion like the baryon mass splitting
correspond to the string loop effects beyond the classical
supergravity, which should be fairly intractable. With these
considerations above, we do not intentionally proceed to
the semiclassical quantization of Skyrme soliton in the
present work, and we employ the experimental inputs
(87) and Skyrme parameter (88) in the analysis of the
critical densities with recovering the physical units.
Actually, due to the scaling property of the BIS model
discussed in Sec. II, all the results in ANW units in the
previous sections should not be altered, being independent
of the definite values for f� and m�.

VII. SUMMARYAND OUTLOOK

We have studied baryonic matter in holographic QCD

with D4=D8=D8 multi-D brane configurations, by analyz-
ing the system of a single brane-induced Skyrmion on the
three-dimensional closed manifold S3. By changing the
size of S3, the density dependence of the baryon properties
are examined from a holographic point of view.

First we begin with the Dirac-Born-Infeld (DBI) action
of the probe D8 brane with D4 supergravity background.
With the dimensional reductions, we get the five-
dimensional Yang-Mills action with a curved fifth dimen-
sion, as the leading order of the large-Nc and large ’tHooft
coupling expansions in dual nonperturbative (strong-
coupling) QCD. Through the mode expansions of the
five-dimensional gauge fields, we get the four-dimensional
meson effective action from holographic QCD. In particu-
lar, we emphasize the appearance of the ultraviolet cutoff
scaleMKK � 1 GeV in the holographic approach to be dual
of QCD. Therefore, we construct the four-dimensional
meson effective action with pion and �meson fields below
the cutoff scale MKK.

Next we discuss the baryon in holographic QCD as the
‘‘brane-induced Skyrmion’’ in the four-dimensional meson
effective action. The analyses of the baryon in the meson
effective action with restricted degrees of freedom below
the cutoff scale MKK is called the ‘‘truncated-resonance
model’’ for the baryon. Taking the hedgehog configuration
Ansatz for pion and � meson fields, we can investigate
many properties of a single baryon as the brane-induced
Skyrmion, which are inclusively summarized in Ref. [9].

Then we consider the baryonic matter in holographic
QCD, as the extension of the holographic approach to
dense QCD. Specifically, we treat the baryonic matter
with large-Nc, because holographic QCD is derived as
the large-Nc effective theory, in dual of the classical su-
pergravity. For sufficiently large Nc, the kinetic energy and
the quantum effects can be suppressed relative to the static
mass from simple large-Nc countings [8], where the bar-
yonic matter comes into the static Skyrme matter. In this
sense, we analyze the static Skyrme matter to see the
typical features of the baryonic matter with large-Nc

conditions.

In order to analyze the static Skyrme matter on the flat
coordinate space R3, we alternately treat the system of a
single brane-induced Skyrmion on the three-dimensional
closed manifold S3. The interactions between the baryons
are simulated by the curvature of the closed manifold S3,
and, as the size of S3 decreases, the baryon-number density
increases in this modeling. Actually, through the projection
procedure from the flat spaceR3 onto the curved space S3,
we get the hedgehog mass and also the Euler-Lagrange
equations for pion and �meson fields of the brane-induced
Skyrmion on S3.
By numerically solving the Euler-Lagrange equations

for pion and � meson fields on S3, we find a stable soliton
solution as the brane-induced Skyrmion on S3. By using
this solution, we analyze many properties of the baryon
within the baryonic matter. Especially by comparing the
standard Skyrme model without � mesons and the brane-
induced Skyrme (BIS) model, the roles of (axial) vector
mesons in dense QCD are discussed from a holographic
point of view.
First we show the baryon-number density dependence of

the energy density and the field configuration profiles of a
single baryon by changing the size of S3. As the size of S3

decreases, the localized energy density distribution of a
single baryon becomes uniform as the identity map, which
is called the ‘‘delocalization phase transition.’’ The critical

radii of the phase transitions are given as R ¼ R
Skyrme
crit ¼ffiffiffi

2
p ½ 1

ef�
� for the Skyrme model and R ¼ RBIS

crit ¼ 1:19½ 1
ef�

�
for the BIS model. Because of the shrinkage of the baryon
size due to the � meson effects [9], the smaller critical
radius of S3, i.e., the larger baryon-number density is
needed for the BIS model to give the delocalization phase
transition. We also find that the � meson field absolutely
disappears and only the pion field survives near the critical
density. Then, with the mathematical arguments, we pro-
pose a remarkable conjecture that all the (axial) vector
meson fields would disappear and only the pion field
survives near the critical density, referred as the ‘‘pion
dominance’’ in dense baryonic matter.
We also investigated the baryon-number density

dependence of the mass and the root-mean-square (RMS)
mass radius of single baryon. We find the swelling phe-
nomenon of the baryon, as the nonlinear increase of the
RMS mass radius near the critical density. Actually, the-
nonperturbative QCD vacuums around the baryons are
closely packed as the baryon-number density increases.
Therefore, the nonperturbative effect with long wavelength
like the bag pressure is blocked out from such definite
region to give the swelling of the baryon. Such swelling
provides the decrease of the baryon mass splitting,
indicating the loss of the individualities for the baryons
as the precursor of the deconfinement. We also propose the
stable N-� mixed matter in dense QCD because of the
swelling, which could, e.g., soften the EOS of the neutron
stars.
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The features of the delocalization phase transition and
the chiral symmetry restoration are also analyzed with the
order parameters in the holographic QCD. We conjecture
with careful arguments that the delocalization phase tran-
sition can be related with the deconfinement of the baryons
in QCD. Then we find the coherence of the deconfinement
and the chiral symmetry restoration through the meson
field configurations. Such coherence of the two phase
transitions are also suggested in the lattice QCD study in
the finite temperature [42], the PNJL model as a low-
energy effective theory of QCD [64], and also the Sakai-
Sugimoto model as one of the reliable holographic ap-
proaches [9].

We also calculate the critical densities of the phase
transitions with the experimental inputs for the pion decay
constant f� and � meson mass m� as f� ¼ 92:4 MeV and

m� ¼ 776:0 MeV. We find the critical densities as

�
Skyrme
B ’ 4:26�0 for the Skyrme model and �BIS

B ’
7:12�0 for the BIS model. We can see that the larger
baryon-number density is needed for the BIS model to
give the phase transitions because of the shrinkage of total
size of the baryon with heavy � mesons in its core region.

Finally, we compare our truncated-resonance approach
for the baryons with the other works of baryons as the
instantons in holographic QCD. In fact, there seem to exist
some conflicts for the baryon analysis in holographic QCD,
especially between the truncated-resonance model and the
instanton models. In Refs. [11–14], the baryons are studied
as the instantons on the five-dimensional gauge theory of
the probe D8 brane with D4 supergravity background as
the holographic dual of QCD. The properties of the bar-
yonic matter are also analyzed by the system of the single
instanton on the three-dimensional closed manifold S3 as
the Wigner-Seiz approximation [15]. In these analyses, the
instanton is found to shrink into zero size only for the DBI
sector of the effective action of the D8 brane, which
corresponds to the leading order of large-Nc and large
’tHooft coupling expansions. In the holographic approach,
an infinite tower of color-singlet modes with mesonic
quantum numbers as �; a1; �

0; a01; �00; 	 	 	 , appears in the

mode expansions of the five-dimensional gauge field
A�ðx; zÞ on the D8 brane as in Eq. (7). In this sense, the

baryon as the instanton on the five-dimensional gauge
theory before the mode expansion is, in principle, to be
composed by the infinite tower of such color-singlet modes
with mesonic quantum numbers. Therefore, the instability
of the instanton only with the DBI sector is often regarded
that the infinite number of (axial) vector mesons
�; a1; �

0; a01; �00; 	 	 	 , would affect the low-energy soliton

feature to give the zero size. Then, in order to describe the
baryon as an instanton with finite size in the holographic
approach, the inclusion of the Chern-Simons (CS) sector of
the effective action of the D8 brane is claimed, whereas the
CS sector corresponds to the higher order contribution of
the ’tHooft coupling expansion relative to the DBI sector.

However, as emphatically noted in Sec. II, the appear-
ance of certain cutoff scales like MKK � 1 GeV should be
essential for the holographic model to be dual of QCD. In
fact, the mesonic mass spectra predicted from holographic
QCD starts to deviate from the experimental data beyond
theMKK scale, indicating that the holographic duality with
QCD is mainly maintained almost below MKK. This ten-
dency of the mass spectra also denotes that such color-
singlet modes beyond cutoff scale MKK do not directly
correspond to physical mesons in QCD. Therefore, one
cannot manifestly conclude that the instability of the in-
stanton only with the DBI sector really arises from the
physical effect in QCD.
Furthermore, there also exists the infinite number of

non-QCD modes, e.g., the Kaluza-Klein modes with large
mass �OðMKKÞ through the Kaluza-Klein compactifica-
tion of the D4 brane [3]. Therefore, if the baryon as the
instanton is to be really composed by the infinite tower of
the color-singlet non-QCD modes even beyondMKK, there
is no reason to cast away the Kaluza-Klein modes in the
baryon analysis. In fact, such Kaluza-Klein modes still
have the possibility to affect baryon properties, giving,
e.g., the stability of the instanton even without the CS
sector of the effective action of the D8 brane, though it is
not to be manifestly proved yet. As a whole, there still
seems to remain puzzling conflicts between the truncated-
resonance model and instanton models for the baryon
analyses in holographic QCD.
By looking back over the long history of hadron physics,

baryons seem to have inherent difficulties being described
relative to mesons. For example, the quark model suc-
ceeded in the systematic classification of the hadrons in
terms of their valence quarks [65,66]. However, while the
dynamics of mesons as the two-body composites can be
relatively easily analyzed by solving the Bethe-Salpeter
equation [67], we have to treat the complicated Faddeev
equation [68] to describe the dynamics of the baryons as
the three-body composites. The same difficulties are also
found in the lattice QCD studies, for instance, with respect
to the interquark potential of mesons [69] and baryons [70].
In fact, the quark-antiquark potential as the internal nature
of the meson could be successfully measured in lattice
QCD in 1980 [71], while it took almost 20 years after
that to find a good measurement of the three-quark poten-
tial with the appearance of gluonic Y-type flux tube as the
internal nature of the baryon [72]. The difficulty of the
baryons gets more apparent in the large-Nc QCD [8],
which has provided a powerful perturbative treatment
with the 1=Nc expansion for the nonperturbative aspects
of the strong interaction. In fact, large-Nc QCD achieved
large successes in the explanations for the hadron phe-
nomenology, e.g., the Okubo-Zweig-Iizuka (OZI) rule
[50], the �I ¼ 1=2 rule [73], and the narrowness of meson
resonances [8,50]. It also provided a quantitative formula
for the large �0 meson mass as the Veneziano-Witten
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formula [74]. On the other hand, the baryon does not even
appear as the dynamical degrees of freedom in the large-Nc

QCD because the baryon mass is proportional to OðNcÞ. In
other words, Nc quarks are needed to construct the SUðNcÞ
color-singlet composite as a baryon only from quarks,
while a meson can still be constructed as the two-body
color-singlet composite from a quark and an antiquark. In
the end, the baryon appears as a ‘‘nonlocal object,’’ i.e., the
soliton of the meson fields in the large-Nc QCD. As a
whole, the baryons tend to suffer from the many-body
difficulties relative to the mesons by seeing the long hadron
history.

Now, we suppose here that the recent baryon analyses in
holographic QCD may suffer from the same kind of diffi-
culties inherent in the baryon itself. In fact, meson prop-
erties are successfully described in the framework of
holographic QCD as the Sakai-Sugimoto model [3],
whereas the baryons seem to be not sufficiently described
yet. One should note that the baryon mass splitting corre-
sponds to the higher-order contributions of the large-Nc

expansion. In terms of the superstring theory, such baryon
mass splitting corresponds to the string loop effect beyond

the classical supergravity, which is fairly intractable. These
naive considerations imply that the baryon still drags the
essential difficulties even by starting from the superstring
theory. We have to sincerely reconsider the meaning of the
difficulty existing in the baryon itself and identify an origin
of the problems, which would inspire us to cure the recent
conflicts of the baryon analyses in the holographic ap-
proach for the future.
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