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We show that at the level of linear response the low-frequency limit of a strongly coupled field theory at

finite temperature is determined by the horizon geometry of its gravity dual, i.e., by the ‘‘membrane

paradigm’’ fluid of classical black hole mechanics. Thus, generic boundary theory transport coefficients

can be expressed in terms of geometric quantities evaluated at the horizon. When applied to the stress

tensor this gives a simple, general proof of the universality of the shear viscosity in terms of the

universality of gravitational couplings, and when applied to a conserved current it gives a new general

formula for the conductivity. Away from the low-frequency limit the behavior of the boundary theory fluid

is no longer fully captured by the horizon fluid even within the derivative expansion; instead, we find a

nontrivial evolution from the horizon to the boundary. We derive flow equations governing this evolution

and apply them to the simple examples of charge and momentum diffusion.
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I. INTRODUCTION

The anti-de Sitter space/conformal field theory (AdS/
CFT) correspondence [1] is a powerful tool for under-
standing the dynamics of strongly coupled quantum field
theories. Given the rapidly increasing number of models
exhibiting such dualities, it would be desirable to be able to
extract features that are independent of the specific model.
Any interacting quantum field theory at finite temperature
should be described by hydrodynamics when viewed at
sufficiently long length scales. For those with a gravity
dual, the bulk geometry involves a black hole with a non-
degenerate horizon, and the UV/IR connection suggests
that the field theory physics at long scales should be
governed by the near-horizon portion of the dual geometry.
In fact, classical general relativity tells us that there is a
precise sense in which any black hole has a fictitious fluid
living on its horizon, in the so-called ‘‘membrane para-
digm’’ [2]. It is thus tempting to identify the membrane
paradigm fluid on the horizon with the low-energy descrip-
tion of the strongly coupled field theory. This connection
was first made by [3] and other related work includes [4–
6]. See also [7] for a general review of the hydrodynamic
limit in AdS/CFT and related references on the subject.

In this paper we aim to clarify this connection by com-
paring the linear response (to small external perturbations)
of the horizon membrane fluid to that of the boundary
theory fluid. Since in the hydrodynamic regime one is
interested in conserved quantities (or Goldstone modes),
which in turn correspond to massless modes in the bulk, we
will concentrate only on massless bulk modes in this paper.
These cover almost all interesting situations so far dis-
cussed in the literature. The only exception is the bulk
viscosity, as it cannot be associated with a massless degree
of freedom in the bulk (see also comments in Sec. VII). We
will leave discussion of the bulk viscosity and sound modes
to a future publication.

We show here that regardless of the specific model in
question, the low-frequency limit1 of linear response of the
boundary theory fluid is indeed completely captured by
that of the horizon fluid. In particular, this enables us to
express a generic transport coefficient of the boundary
theory solely in terms of geometric quantities evaluated
at the event horizon of the black hole. For example, this
gives a simple proof of the universality of the shear vis-
cosity in terms of the universality of the coupling of a
transverse graviton. We also give a new explicit expression
for the conductivity of an arbitrary conserved current in the
dual theory.
When moving away from the low-frequency limit, how-

ever, the behavior of the boundary fluid cannot be fully
captured by the horizon fluid even within the derivative
expansion: even at generic frequency and momenta, the
horizon response always corresponds to that of the low-
frequency limit of the boundary theory. Thus, away from
the low-frequency limit, the full geometry of the spacetime
plays a role. To explore this we consider a fictitious mem-
brane at each constant-radius hypersurface and introduce a
linear response function for each of them. One can then
derive a flow equation for the radius-dependent response
function; at generic momenta this evolves nontrivially
from the horizon to the boundary, where it determines
the response of the dual field theory. As an application of
the flow equation we consider hydrodynamic diffusion. We
give a simple derivation of the diffusion constants for
charge and momentum diffusions and illustrate the differ-
ence between the diffusion phenomena observed at the
horizon and at the boundary.
The plan of the paper is as follows. For the rest of this

section, we introduce our conventions and notations for the
gravity and field theory sides. In Sec. II, we give a quick

1Here, by low-frequency limit, we mean the lowest order term
in the derivative expansions of frequency and spatial momenta.
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review of the classical black hole membrane paradigm. In
Sec. III, we express linear response in AdS/CFT in a
language similar to that of the membrane paradigm.
Section IV applies this language to the evaluation of
zero-frequency transport coefficients in AdS/CFT.
Sections Vand VI are devoted to results at finite frequency,
such as the flow equation and hydrodynamic diffusion. We
conclude with a brief discussion in Sec. VII.

A. Gravity setup

On the gravity side, we will be examining very general
black brane backgrounds, which we take to have the form

ds2 ¼ grrdr
2 þ g��dx

�dx�

¼ �gttdt
2 þ grrdr

2 þ gijdx
idxj: (1)

Indices fM;Ng run over the full dþ 1-dimensional bulk,
f�; �g over each d-dimensional constant-r slice, and fi; jg
over spatial coordinates. We assume the above metric has
an event horizon at r ¼ r0, where gtt has a first order zero
and grr has a first order pole. We assume that all other
metric components are finite (i.e., neither zero nor infinite)
at the horizon.

We take the boundary at r ¼ 1 and assume that the
metric asymptotes to a structure that supports a gauge-
gravity duality. We assume that all metric components
and position-dependent couplings depend on r only so
that we have translational invariance in t and xi directions.
We also assume the full rotational symmetry between xi

directions, i.e.,

gij ¼ gzz�ij; (2)

with z one of the spatial direction.
Note that the metric (1) does not have to be a spacetime

metric, it could also be (for example) the induced metric on
the world volume of a D brane or a fundamental string in
AdS.

We will often work in Fourier space on each constant-r
slice. For example, for a scalar field �, we write

�ðr; x�Þ ¼
Z ddk

ð2�Þd �ðr; k�Þeik�x� ; k� ¼ ð�!; ~kÞ:
(3)

For simplicity of notation, we will distinguish �ðr; x�Þ
from its Fourier transform �ðr; k�Þ by its argument only.

B. Field theory setup

We will be relating these gravity backgrounds to quan-
tum field theories taken at finite temperature. Consider a
field theory containing an operator O with an external
classical source �0. At the level of linear response theory
the one-point function of O is linear in �0, and when
expressed in Fourier space the proportionality constant is
simply the thermal retarded correlator GR of O

hOð!; ~kÞiQFT ¼ �GRð!; ~kÞ�0ð!; ~kÞ; (4)

where ! and ~k denote the frequency and spatial momen-
tum, respectively, (see, e.g., [8]). The low-frequency limit
of this correlator is of physical importance, as it defines a
transport coefficient �:

� ¼ � lim
!!0

lim
~k!0

1

!
ImGRð!; ~kÞ: (5)

Note that this definition essentially means that if we apply
a time varying source �0ðtÞ, then in the low-frequency
limit the response of the system is2

hOiQFT ¼ ��@t�0ðtÞ: (6)

These transport coefficients are typically parameters in an
effective low-energy description (such as hydrodynamics
or Langevin equations) and once specified they completely
determine the macroscopic behavior of the medium. A
well-known example is the shear viscosity �, for which
one takes O ¼ Txy, the off-diagonal component of the

stress tensor. For DC conductivity � one takes O ¼ Jz,
where Jz is a component of the electric current. For quark
diffusion constants characterizing the motion of a heavy
quark moving in a quark-gluon plasma, O is given by the
forces acting on the quark [9].

II. THE CLASSICAL BLACK HOLE MEMBRANE
PARADIGM

We begin our discussion with a brief review of the
classical black hole membrane paradigm. Our treatment
will not do sufficient justice to this elegant subject and will
mostly follow the formulation of the paradigm put forth in
[10]; for a more detailed exposition see [2].
Imagine that we are observers hovering outside the

horizon of a black hole. Since there is no (classical) way
for the region inside the black hole to affect us, our
effective action can be written as

Seff ¼ Sout þ Ssurf ; (7)

where Sout involves an integration over the portion of
spacetime outside the horizon and Ssurf is a boundary
term on the horizon, which can be determined by demand-
ing that Seff be stationary on a solution to the equations of
motion. Physically, Ssurf represents the influence that the
black hole horizon has on the external Universe. In prac-
tice, it is often more convenient to define Ssurf on the
‘‘stretched horizon,’’ which is a timelike surface of fixed
r just outside the true horizon (see [11] for an extended
discussion). This is also more concrete, since no observer
can hover at the genuine horizon: the stretched horizon acts
as a cutoff for the spacetime outside the black hole.

2Note that the real part of GR is even in!, and we set the zero-
frequency part of GR to be zero since it gives rise to a contact
term.
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A. The membrane conductivity

Let us consider a bulk Uð1Þ gauge field with standard
Maxwell action (see Sec. I A for our index conventions)

Sout ¼ �
Z
r>r0

ddþ1x
ffiffiffiffiffiffiffi�g

p 1

4g2dþ1ðrÞ
FMNF

MN; (8)

where we have allowed a r-dependent gauge coupling
gdþ1. The variation of this bulk action results in a boundary
term at the horizon, which can only be canceled if

Ssurf ¼
Z
�
ddx

ffiffiffiffiffiffiffiffi�	
p �

j�ffiffiffiffiffiffiffiffi�	
p

�
A�; (9)

where j� is the conjugate momentum (with respect to r
foliation) of the field A�

j� ¼ � 1

g2dþ1

ffiffiffiffiffiffiffi�g
p

Fr�; (10)

and 	�� is the induced metric on the stretched horizon �.

Equation (9) suggests that an observer hovering near the
horizon will find that the horizon is carrying a membrane
current

J�mb �
�
j�ðr0Þffiffiffiffiffiffiffiffi�	
p

�
¼ � 1

g2dþ1

ffiffiffiffiffiffiffi
grr

p
Fr�ðr0Þ: (11)

Note that the ‘‘Gauss’s law’’ that we obtain by treating r as
‘‘time’’ becomes a conservation of the currents J�mb and j

�

on any constant-r slice.

@�J
�
mb ¼ @�j

� ¼ 0: (12)

While a priori the current Jimb (or ji), which is deter-

mined by Fir, and the electric field Ei ¼ Fit are indepen-
dent variables, they are in fact proportional to each other at
the horizon. This can be seen as follows. Since the horizon
is a regular place for free in-falling observers, the electro-
magnetic field observed by them must be regular. This
implies that near the horizon, AM can only depend on r
and t through their nonsingular combination, the
Eddington-Finkelstein coordinate v defined by

dv ¼ dtþ
ffiffiffiffiffiffiffi
grr
gtt

s
dr: (13)

This implies that

@rAi ¼
ffiffiffiffiffiffiffi
grr
gtt

s
@tAi; r ! r0 (14)

and with gauge choice Ar ¼ 0, we then have3 (with r !
r0)

Fri ¼
ffiffiffiffiffiffiffi
grr
gtt

s
Fti ! Jimb ¼ � 1

g2dþ1

ffiffiffiffiffiffi
gtt

p
Fi
t ¼ 1

g2dþ1

Êi: (15)

Here, Êi is an electric field measured in an orthonormal
frame of a physical observer hovering just outside of the
black hole. From (15), it is natural to interpret Jimb as the

response of the horizon membrane to the electric field Êi,
leading to a membrane conductivity

�mb ¼ 1

g2dþ1ðr0Þ
: (16)

Note that (unlike those arising from conventional quantum
field theories) this conductivity is frequency independent
and depends only on the gauge coupling at the horizon.

B. The scalar membrane and the shear viscosity of the
membrane paradigm fluid

Now, consider a massless bulk scalar field with action

Sout ¼ � 1

2

Z
r>r0

ddþ1x
ffiffiffiffiffiffiffi�g

p 1

qðrÞ ðr�Þ2; (17)

where qðrÞ can be considered an effective (r dependent)
scalar coupling. The boundary term on the horizon result-
ing from variation of this action requires the addition of a
surface action at the horizon

Ssurf ¼
Z
�
ddx

ffiffiffiffiffiffiffiffi�	
p �

�ðr0; xÞffiffiffiffiffiffiffiffi�	
p

�
�ðr0; xÞ; (18)

where � is again the momentum conjugate to � with
respect to a foliation in the r direction,

� ¼ �
ffiffiffiffiffiffiffi�g

p
qðrÞ g

rr@r�: (19)

Following the discussion of an electromagnetic field,
Eq. (18) now implies that to an external observer the
horizon appears to have a ‘‘membrane � charge’’ �mb

given by

�mb �
�
�ðr0Þffiffiffiffiffiffiffiffi�	
p

�
¼ �

ffiffiffiffiffiffiffi
grr

p
@r�ðr0Þ
qðr0Þ : (20)

Again, for a freely in-falling observer to find a nonsingular
�, near the horizon, � should have the form �ðr; t; xiÞ ¼
�ðv; xiÞ, where v is the Eddington-Finkelstein coordinate

(13). This implies that @r� ¼
ffiffiffiffiffi
grr
gtt

q
@t� and

�mb ¼ � 1

qðr0Þ
ffiffiffiffiffiffi
gtt

p
@t�ðr0Þ ¼ � 1

qðr0Þ@t̂�ðr0Þ; (21)

where in the last equality we have passed to an orthonormal
basis. As in the electromagnetic case we can interpret�mb

as the response of the horizon membrane induced by a
local bulk field � around the hole, leading to a membrane
transport coefficient �mb [compare with (6)]

3This equation can be derived in a number of ways, e.g., see
[10] for a gauge-invariant derivation.
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�mb ¼ 1

qðr0Þ : (22)

We emphasize that in deriving (21) we did not take a low-
frequency or momentum limit; (22) is the full response for
generic momenta and frequencies.

We can now apply this discussion to the computation of
the shear viscosity of the horizon membrane by taking� ¼
hyx, the off-diagonal component of the graviton. We assume
that there is no spatial momentum in x� y directions and
that the background matter stress tensor does not mix with
hyx. Then the graviton is transverse and its action is simply
that of (17) with q ¼ 16�GN, where GN is the bulk
Newton’s constant. �mb can now be interpreted as
ðTmbÞxy, a component of the membrane stress tensor. From

(21) and (22) we thus conclude that [2,10]

�mb ¼ 1

16�GN

;! �mb

smb

¼ 1

4�
; (23)

where smb ¼ 1=4GN is (by definition) the entropy density
per unit volume of the membrane fluid.

We see that the influence of the black hole on its sur-
roundings can be taken into account by placing fictitious
charges and currents on its horizon. Furthermore, these
currents are related to applied fields in a very simple
way, fixed completely by the condition of horizon regular-
ity. This leads to simple expressions for transport coeffi-
cients such as �mb and �mb, although it is not immediately
clear whether these coefficients are in any way related to
those that we calculate from AdS/CFT.

III. LINEARRESPONSE INADS/CFT: TAKINGTHE
MEMBRANE TO THE BOUNDARY

Let us now turn to the corresponding problem in AdS/
CFT. The massless bulk field � with action (17) is now
dual to an operatorO in the boundary theory. Recall that in
Euclidean signature, the relation between the dual theory
generating functional and the on-shell supergravity action4

is given by

�
exp

�
�
Z

ddx�0O
��

QFT
¼ e�Sgrav½�ðr!1Þ¼�0�: (24)

In other words, we must find a classical solution for � that
is regular in the bulk and asymptotes to a given value�0 at
the boundary; derivatives of the on-shell gravity action
with respect to this boundary value �0 will give us corre-
lators for O. Equation (24) implies that the one-point
function in the presence of source �0 can be written as5

hOðx�Þi�0
¼ lim

r!1�ðr; x�Þ; (25)

where we have used the well-known fact in classical me-
chanics that the derivative of an on-shell action with re-
spect to the boundary value of a field is simply equal to the
canonical momentum conjugate to the field, evaluated at
the boundary.
In Lorentzian signature the story is more intricate since

one also needs to impose appropriate boundary conditions
for � at the horizon and the analytic continuation of (24)
will only yield Feynman functions. A simple prescription
for directly calculating boundary retarded two-point func-
tions was given in [12] and later confirmed in [13]. Here,
we briefly summarize the prescription:
(1) Find a solution to the equations of motion that is in-

falling at the horizon and asymptotes to a constant

�ðr; k�Þ ! �0ð!; ~kÞ at the boundary r ! 1.

(2) To evaluate the on-shell action, we plug this solution
into the action (17) and integrate by parts. The
action is reduced to surface terms at the boundary
and horizon, which can be written as

S ¼ � X
r¼r0;1

1

2

Z ddk

ð2�Þd �0ð�k�ÞF ðk�; rÞ�0ðk�Þ

(26)

for some function F . The prescription is that the
retarded Green’s function is

GRðk�Þ ¼ lim
r!1F ðk�; rÞ: (27)

Writing �ðr; k�Þ ¼ fðr; k�Þ�0ðk�Þ so that fðr; kÞ is
normalized as fðr ! 1; kÞ ¼ 1, (27) can be written
more explicitly as

GRðk�Þ ¼ 1

qðrÞ
ffiffiffiffiffiffiffi�g

p
grr@rfðr; k�Þ: (28)

Note that the above prescription for calculating retarded
two-point functions cannot be obtained from an action
principle like (24).
Our observation here is that the above prescription is in

fact equivalent to (25) at the linear level, now evaluated in
Lorentzian signature, with the requirement that � satisfy
in-falling boundary conditions at the black hole horizon.
To see this explicitly, taking a Fourier transform of (25) and
comparing with (4), we obtain a simple formula for the
thermal retarded correlator GR:

GRðk�Þ ¼ � lim
r!1

�ðr; k�Þ
�ðr; k�Þ : (29)

Using (19) one immediately sees that (29) is equivalent
to (28).

4In this paper we will only consider the gravity limit.
5Note that the limit on the right hand should be taken with

some care. For example, for a massless field, one should take the
part of �, which goes to Oð1Þ at infinity.
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We believe (25) and (29) provide a more fundamental
prescription, as they are expressed in terms of quantities of
clear geometric and physical meaning.6 We note that with a
different choice of boundary conditions at the horizon (29)
can also be used to calculate Feynman functions: this
essentially follows from analytic continuation of (24) to
Lorentzian signature.7 It can also be immediately general-
ized to fields of higher spin or fields with more general
action. For a vector field, O is replaced by a boundary
current J � and � by j� defined in (10). For metric
fluctuations O is replaced by the boundary stress tensor
T �� and � by

T�� ¼
ffiffiffiffiffiffiffiffi�	

p
16�GN

ðK�� � 	��K


Þ; (30)

whereK�� is the extrinsic curvature of a constant r surface.

Comparing (25) with (20), we see that (25) expresses the
AdS/CFT response in a language almost identical to that of
the membrane paradigm, except that the ‘‘membrane’’ in
question is no longer at the horizon but at the boundary
r ! 1. The object �, which was loosely interpreted as a
‘‘membrane response,’’ is now actually the response of an
operator O in the dual theory; in other words, if we move
the membrane from the horizon to the boundary, mem-
brane paradigm quantities become concrete gauge theory
observables. Furthermore, as can be checked explicitly, the
in-falling boundary condition for � at the horizon is pre-
cisely the regularity condition discussed for the membrane
paradigm, i.e., � can only depend on r and t through the
Eddington-Finkelstein coordinate v (13). This is an ex-
pression of the physical statement that a local observer
hovering at the horizon only sees things falling in, not
coming out. An example illustrating this is given in
Appendix A.

IV. LOW-FREQUENCY LIMIT

In this section, we first show that the field theory trans-
port coefficient defined in (5) can be expressed solely in
terms of quantities at the horizon. This immediately gives a
general proof of the universality of shear viscosity. We then
turn to a Uð1Þ vector field in the bulk and calculate the DC
conductivity of the corresponding conserved boundary
current.

A. General formula for transport coefficients

Using (29), Eq. (5) can now be written as

� ¼ lim
k�!0

lim
r!1

�ðr; k�Þ
i!�ðr; k�Þ : (31)

To compute (31) we write the equations of motion for � in
a Hamiltonian form as

� ¼ �
ffiffiffiffiffiffiffi�g

p
qðrÞ g

rr@r�; (32)

@r� ¼
ffiffiffiffiffiffiffi�g

p
qðrÞ g

rrg��k�k��: (33)

Note that in the low-frequency limit (i.e., k� ! 0, with!�

and � fixed), Eqs. (32) and (33) become trivial

@r� ¼ 0þOðk�!�Þ @rð!�Þ ¼ 0þOð!�Þ: (34)
Thus, in the zero-momentum limit the evolution in r is
completely trivial and (31) can in fact be evaluated at any
value of r! We will evaluate it the horizon where the in-
falling boundary condition should be imposed. As we
noted at the end of Sec. III, the in-falling boundary condi-
tion for � at the horizon is in fact equivalent to the
condition of horizon regularity in the membrane paradigm,
which from (19)–(21) gives

�ðr0; k�Þ ¼ 1

qðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s ��������r0

i!�ðr0; k�Þ: (35)

We thus find the simple result

� ¼ 1

qðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s ��������r0

¼ 1

qðr0Þ
A

V
; (36)

where A is the area of the horizon and V is the spatial
volume of the boundary theory. Given that entropy density
s of the boundary theory is given by s ¼ A

4GNV
, � can also

be written as

�

s
¼ 4GN

qðr0Þ : (37)

We find that the ratio �=s is given by the ratio of the
Newton constant GN , which characterizes the gravitational
coupling, to the effective coupling qðr0Þ for � at the
horizon. This is the result for the boundary fluid, but we
see that it is closely related to the corresponding result for
the horizon fluid, simply because the bulk evolution
Eqs. (32) and (33) are trivial in the low-frequency limit.
Note that [provided that some form of gauge-gravity dual-
ity exists so that (25) and (29) make sense] the precise
asymptotic structure of the spacetime does not play an
important role in our analysis.
Though we have used the example of a massless scalar

field above, the discussion clearly applies to components of
more general tensor fields. Our treatment can be applied to

6For a massive field in AdS, (25) and (29) become

hOðkÞi ¼ lim
r!1r

��d�ðrÞ; GRðkaÞ ¼ lim
r!1r

��d �ðrÞ
�0ðkaÞ ;

where � is the dimension of the corresponding operator O.
7An important subtlety here is that the proper Euclidean

continuation gives the so-called Hartle-Hawking vacuum and
not the naive Schwarzschild vacuum.

UNIVERSALITY OF THE HYDRODYNAMIC LIMIT IN . . . PHYSICAL REVIEW D 79, 025023 (2009)

025023-5



very general effective actions of the form

S ¼ � 1

2

Z d!dd�1k

ð2�Þd dr
ffiffiffiffiffiffiffi�g

p �
grrð@r�Þ2
Qðr;!; ~kÞ þ Pðr;!; ~kÞ�2

�
;

(38)

provided that the flow equations (34) remain trivial in the
zero-momentum limit. This implies that Q should go to a
nonzero constant at zero momentum and Pmust be at least
quadratic in momenta, so a mass term would not be al-
lowed. For (38) the corresponding transport coefficient is
given by

�

s
¼ 4GN

Qðr0; k� ¼ 0Þ : (39)

It is also straightforward to generalize the discussion to
multiple coupled fields.

B. Universality of shear viscosity

The most obvious application of (36) and (37) is to the
shear viscosity. For Einstein gravity coupled to matter
fields, in the absence of a background off-diagonal com-
ponent of the metric, the effective action for the transverse
off-diagonal gravitons hyx, which is dual to T xy in the

boundary theory, is simply that of a massless scalar with
effective coupling

qðrÞ ¼ 16�GN: (40)

From (37) we thus find the celebrated result

�

s
¼ 1

4�
: (41)

Note that the universality of (41) can now be attributed to
the universality of the effective coupling (40) for a graviton
hyx.

The proof here is very general, applying to all Einstein
gravity duals known so far, including charged black holes
dual to theories with chemical potential, the near-horizon
region of general Dp branes, and recently discovered ge-
ometries dual to nonrelativistic CFTs [14].8

It is also useful to compare this proof to earlier calcu-
lations. By considering diffusive shear modes on the
stretched horizon [3] derived a formula for the diffusion
constant �=ð�þ pÞ in terms of an integral from the hori-
zon to the boundary, where � and p are energy and pressure
density. Reference [16] showed that �=s is universal
among a certain family of metrics by reducing the integral
to a total derivative and then evaluating it at the horizon. A

simpler proof along a similar line was given in [7]. The
proofs of [7,16] do not include theories with nonzero
chemical potentials, which have been checked separately
[17–21]. Note that there is no conflict with the integral
formula of [3] and our result (37) since the diffusion
constant �=ð�þ pÞ involves a factor �þ p, which generi-
cally cannot be expressed in terms of quantities at the
horizon. Our proof is closer in spirit to the discussions in
[20,22,23], which use the Kubo formula and are related to
the universality of the absorption cross section of a mini-
mally coupled scalar [24]. The treatment given here is
more general and technically simpler. It also highlights
the importance of the effective coupling at the horizon as
the source of universality.
It has been conjectured [22] that the value of �=s in (41)

is in fact a lower bound for all realistic matter. Equa-
tion (39) hints at how the bound could be violated. We
need to find a theory whose ‘‘effective’’ gravitational cou-
pling for the hxy polarization at the horizon is stronger than

the universal value (40) for Einstein gravity. Gauss-Bonnet
gravity as discussed in [25,26] (see also [27]) is an example
of this. There the effective action for hyx has the form of
(38) with the effective couplingQðrÞ at the horizon satisfy-
ing (see 3.10 in [25])9

1

Qðr0Þ ¼ ð1� 4
GBÞ
16�GN

: (42)

Thus, for 
GB > 0 the graviton in this theory is more
strongly coupled than that of Einstein gravity and the value
of �=s dips below the value (41). This also indicates that
for �=s to be arbitrarily small, the graviton has to be
strongly coupled, which was indeed observed in the
Gauss-Bonnet example [25].
Note that the formula (37) for the specific case of shear

viscosity in higher-derivative gravity theories has been
conjectured recently in [29], where the authors also discuss
the importance of the strength of the coupling for hyx and its
relation to the violation of the viscosity bound.

C. Gauge fields and the DC conductivity

As another example of application of (37), we now turn
to the DC conductivity. The bulk gauge field AM in AdS is
now dual to a conserved current J � in the boundary
theory. The action is given by (8), and the momentum
conjugate to this gauge field is given by (10). From (25)
and (29), the conductivity can be written as

8An interesting example that violates our assumptions but still
satisfies (41) is the gravity dual to noncommutative N ¼ 4
plasma studied in [15]. This system has broken rotational in-
variance and a boundary stress tensor that is dual not to the bulk
graviton but to a linear combination of graviton and B fields, and
thus our analysis does not apply, though it would be interesting
to see if it could be extended.

9We note that while the formula (39) does not immediately
apply to more general higher-derivative gravity theories such as
the R4 theory studied in [28] due to the presence of terms in the
action that are higher than quadratic in derivatives, it is con-
ceivable that with some effort the discussion may generalized to
include that case as well.
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hJ iðk�ÞiQFT ¼ jiðr ! 1Þðk�Þ � �ijðk�ÞFjtðr ! 1Þ:
(43)

Equation (43) defines AC conductivities that are related to
the retarded Green function of the boundary current J i by

�ijðk�Þ ¼ �Gij
R ðk�Þ
i!

: (44)

The DC conductivity is obtained by the zero-momentum
limit of the above equations. Clearly at zero momentum
due to rotational symmetry, �ij ¼ ��ij.

10 Below � with-

out an explicit argument always refers to the DC
conductivity.

The in-falling boundary condition at the horizon, which
translates into Eq. (15), gives us the ratio at the horizon

jiðr0Þ ¼ 1

g2dþ1

ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s
gzzjr0Fitðr0Þ: (45)

It can be readily checked that in the zero-momentum limit
the bulk Maxwell equations give (see, e.g., Eqs. (B4) and
(B6) of Appendix B)

@rj
i ¼ 0þOð!FitÞ; @rFit ¼ 0þOð!jiÞ; (46)

implying that the relation (45) actually holds for all r.
Combining (43) and (45), we see that the zero-frequency
AdS/CFT conductivity is given by

� ¼ 1

g2dþ1

ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s
gzzjr0 : (47)

One can also derive the above result by writing down an
effective action for Ai in the gauge Ar ¼ 0, in which case
one finds an effective action of the form (17) with effective
scalar coupling given by�

1

q

�
EM

¼ 1

g2dþ1

gzz: (48)

From (36), we again find (47). While the DC conductivities
for various specific backgrounds have been found in the
literature (see, e.g., [30–32]), the general formula (47)
appears to be new.

Now let us specialize to d ¼ 3, (2þ 1)-dimensional
field theories, in which case the metric dependence in
(47) completely cancels and we find

� ¼ 1

g24ðr0Þ
: (49)

This formula was previously derived for (2þ 1)-
dimensional CFTs (in which g4 is necessarily constant)
[31,32]. We have now shown that it applies to any theory
(conformal or not) with a gravity dual. This formula dis-

plays a sort of ‘‘bulk universality’’ in that it appears very
general from the gravity point of view but (unlike �=s)
does not lead to any universality predictions from the field
theory perspective, in this case because the bulk gauge
coupling g24 typically does not have a model-independent
dual interpretation. We note however that if we restrict
attention to CFTs, then g24 can be related to the two-point
function of the current at zero temperature, which has the
form

hJ �ðxÞJ �ð0ÞiCFT ¼ k

x4

�
��� � 2

x�x�

x2

�
; (50)

with k given by k ¼ 2
�2g2

4

[33]. We thus have the following

general expression for the conductivity of any CFT3 with a
gravity dual11

� ¼ �2k

2
: (51)

The existence of such a relation is nontrivial. For a related
discussion see [31,32].
For completeness, we also note that in d ¼ 3, one can

add to the Lagrangian (8) a theta term given by,

1

4

Z
d4x�ðrÞ�MNPQFMNFPQ; (52)

where we have allowed the � parameter to depend on r.
With this addition, the canonical momentum with respect
to a r foliation for A� becomes

j� ¼ � 1

g24ðrÞ
ffiffiffiffiffiffiffi�g

p
Fr� þ �ðrÞ

2
���
F�
: (53)

We immediately see that now �ij has an off-diagonal
component (Hall conductivity) given by

�12 ¼ ��21 ¼ �ðr ! 1Þ: (54)

This result is exact and (unlike the corresponding result for
the diagonal conductivity) does not depend on conditions
of horizon regularity or the low-frequency limit. Note that
if �ðrÞ is a nontrivial function, (54) differs from the horizon
response, which is ð�mbÞ12 ¼ �ðr0Þ.
For other dimensions the metric dependence in (47) no

longer cancels. Nevertheless, we find that the dependence
on the metric is essentially dictated by dimensional analy-
sis, and one can still write the conductivity in a form
similar to (49). We first rewrite (47) as

� ¼ 1

g2dþ1

ðgzzÞðd�3Þ=2jr¼r0 : (55)

Now recall that in d dimensions� has mass dimension d�
3 (so does 1=g2dþ1) and ðgzzðr0ÞÞ1=2 is the conversion factor

10Except in two spatial dimensions when we can also have an
antisymmetric component proportional to �ij.

11In writing down both (49) and k ¼ 2
�2g2

4

we have assumed a

specific normalization for the boundary current J �. But Eq. (51)
is normalization independent.
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between a boundary length scale and the corresponding
proper length at the horizon. Now suppose l is a character-
istic scale in the boundary theory (e.g., the inverse tem-

perature), then lhor ¼ ðgzzÞ1=2l is the corresponding proper
length scale at the horizon. We can now write (55) as

~� ¼ 1

~g2dþ1ðr0Þ
; ~� ¼ �ld�3;

1

~g2dþ1ðr0Þ
¼ ld�3

hor

g2dþ1ðr0Þ
:

(56)

We have constructed the dimensionless conductivity ~� by
rescaling � by a boundary length scale l and similarly
constructed the dimensionless horizon gauge coupling
~gdþ1ðr0Þ by rescaling gdþ1ðr0Þ by the corresponding hori-
zon length scale lhor. Equation (56) now again shows ‘‘bulk
universality’’ with a dimensionless conductivity solely
determined by a dimensionless effective coupling constant.
The nonuniversal metric dependence in (55) is hidden in
the conversion factor between the length scales of the
boundary and horizon.

As a concrete example, let us look at a CFT with a
gravity dual given by AdSdþ1 with d � 3, in which a black
hole (with flat section) has the metric

ds2 ¼ r2

R2
ð�fðrÞdt2 þ d~x2pÞ þ R2

fðrÞr2 dr
2; (57)

with fðrÞ ¼ 1� ðr0=rÞd. The Hawking temperature is

given by T ¼ dr0
4�R2 . Applying (55) we find (as shown ear-

lier in [31]) that

�CFTd
¼ 1

g2dþ1ðr0Þ
�
r0
R

�
d�3

: (58)

The corresponding dimensionless conductivity and hori-
zon coupling constant are ~�CFTd

¼ �CFTd
T3�d and

1
~g2
dþ1

ðr0Þ ¼ ð4�d Þd�3 Rd�3

g2
dþ1

ðr0Þ , respectively. Note that it is natural
to define the dimensionless coupling constant at the hori-
zon by normalizing it with the AdS curvature scale. The
dimension-dependent prefactor ð4�d Þd�3 reflects the dimen-

sion dependence of the conversion from a boundary length
scale to that at the horizon.

To conclude this section, we see that a generic transport
coefficient of an operatorO dual to a massless mode in the
bulk can be expressed in terms of geometric quantities at
the horizon. We emphasize that our analysis depends criti-
cally on the existence of a nondegenerate horizon; e.g., for
extremal black holes our results do not apply and the
behavior of transport coefficients can be quite different.
While here we have only discussed the shear viscosity and
DC conductivity explicitly, there could be many other
applications including, e.g., the calculation of the quark
diffusion coefficients 
T and 
L discussed in [9]. The
understanding developed here should also make it easier

to search for other transport coefficients that exhibit
universality.

V. FLOW FROM THE HORIZON TO THE
BOUNDARY

In the previous section we saw that in the low-frequency
limit the response of the boundary fluid is precisely cap-
tured by that of the horizon fluid in the membrane para-
digm. This happened because the evolution of � and @t�
(or ji and Fti for a vector field) along the radial direction
from the horizon to the boundary is trivial, and thus the
AdS/CFT response depends only on the structure of the
horizon. Note nonetheless that the natural definitions of the
classical membrane paradigm currents �mb and J�mb differ

from their AdS/CFT counterparts � and j� by factors offfiffiffiffiffiffiffiffi�	
p

, different index placements, etc. The differences are

physically relevant; for example, for d � 3, the boundary
conductivity contains extra temperature dependence,
which should be contrasted with the perspective of a local
observer at the horizon membrane who always observes
that the conductivity is given by the inverse of the local
coupling constant.
The membrane shear viscosity over entropy density ratio

(23) does agree exactly with that of the boundary theory
since �mb and smb differ from the corresponding boundary
theory quantity by a common factor that cancels in the
ratio. This relation has been noted before [5,34] and the
connection between this and the AdS/CFT result is now
clear. As is discussed in the conclusion to this paper, the
connection between the membrane paradigm bulk viscos-
ity and that of the dual theory is more subtle.
Away from the low-frequency limit, the evolution (32)

and (33) from the horizon to the boundary becomes non-
trivial and depends on the full geometry. Indeed, the finite
frequency/momentum response of an actual strongly
coupled quantum field theory is expected to display com-
plicated structure that simply does not exist in the
frequency-independent classical membrane paradigm and
should arise as we move outwards from the horizon.
To see this more explicitly, we consider a fictitious

membrane at each constant radius along the radial direc-
tion and introduce a linear response function for each of
them,

��ðr; k�Þ ¼
�ðr; k�Þ
i!�ðr; k�Þ : (59)

Note the above expression is defined for all r and k�. At

r ! 1, ��ðr ! 1; k�Þ ¼ � GRðk�Þ
i! , which is the finite mo-

mentum boundary response function, and at the horizon
r ! r0, ��ðr ! r0; k�Þ ¼ �, as a result of (35) and (36).

From (32) and (33), one can derive a flow equation for
��ðr; k�Þ, which governs its evolution from the horizon to

the boundary
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@r ��ðrÞ ¼ i!

ffiffiffiffiffiffiffi
grr
gtt

s �
��2

��ðrÞ � ��ðrÞ
�
1� k2

!2

gzz

gtt

��
; (60)

where

��ðrÞ ¼ 1

qðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s
; k2 ¼ ~k � ~k: (61)

The above equation makes manifest that as k ! 0 and
! ! 0, �� is independent of r. Furthermore, as r ! r0 in
order for the solution to be regular the bracketed quantity
in (60) must vanish, from which we recover

��ðr0; k�Þ ¼ ��ðr0Þ ¼ �; (62)

where in the second equality we have used (36). It is
important to emphasize that the full momentum response
at the horizon ��ðr0; k�Þ automatically corresponds to only

to the zero-momentum limit of the boundary response, i.e.,
��ðr0; k�Þ ¼ ��ðr ! 1; k� ! 0Þ.
With ‘‘initial condition’’ (62) the flow equation (60) can

then be integrated from the horizon to infinity to obtain the
AdS/CFT response for all !, k. The evolution to infinity
represents a gradual incorporation of higher-momentum
modes. It would be nice to find a precise connection
between the flow Eq. (60) and the boundary renormaliza-
tion group flow, possibly in the framework of an exact
renormalization group equation [35]. Note that in general
the solution to (60) will involve divergences as r ! 1;
these are the familiar UV divergences of the field theory
and can be removed by the usual procedure of holographic
renormalization.

We now turn to a Uð1Þ vector field. Without loss of
generality, we can take the momentum to be along the z
direction. The conductivities introduced in (43) and (44)
then naturally separate into two groups, the longitudinal
conductivity �Lðk�Þ ¼ �zzðk�Þ along z direction, and the

transverse conductivity �Tðk�Þ ¼ �xxðk�Þ along spatial

directions not z, i.e., ðx; y; . . .Þ. As for the scalar case, this
motivates us to introduce longitudinal and transverse
r-dependent ‘‘conductivities,’’ respectively,

��Lðr; k�Þ ¼
jzðr; k�Þ
Fztðr; k�Þ ; ��Tðr; k�Þ ¼

jxðr; k�Þ
Fxtðr; k�Þ :

(63)

��L;Tðr ! 1; k�Þ are the boundary theory responses, and

are related to the full retarded correlator G��
R of J � as in

(44).
The Maxwell equations for the vector field in the bulk

similarly separate into two groups: a ‘‘longitudinal’’ chan-
nel involving fluctuations along ðt; zÞ and a ‘‘transverse’’
channel involving fluctuations along all other spatial direc-
tions. Using the Maxwell equations in the respective chan-
nel we can then derive the flow equation for ��L;T . Defining

�AðrÞ ¼ 1

g2dþ1

ffiffiffiffiffiffiffiffiffiffiffiffi�g

grrgtt

s
gzz; (64)

we show in Appendix B that ��L satisfies an equation of the
form

@r ��L ¼ i!

ffiffiffiffiffiffiffi
grr
gtt

s �
��2
L

�AðrÞ
�
1� k2

!2

gzz

gtt

�
��AðrÞ

�
: (65)

��T satisfies the same equation as (60), but with �� re-

placed by �A. Regularity at the horizon membrane again
provides the initial data at the horizon

��T;Lðr0; k�Þ ¼ �Aðr0Þ ¼ �: (66)

There is a curious relation between the flow equations
for ��L and ��T . It can be readily checked from (60) and (65)
that the quantity 1

��L
satisfies an equation that is identical to

that of ��T after the replacement�AðrÞ ! 1
�AðrÞ . This can be

interpreted as a relation between the conductivities of two
different theories, and is discussed in Appendix C.

VI. DIFFUSION AT THE BOUNDARYAND AT THE
HORIZON

In Sec. IV, we showed that in the low-frequency limit the
linear response at the boundary is fully captured by the
response of the horizon. In Sec. V we showed that finite
frequency/momentum response of the boundary cannot be
captured by that at the horizon since the horizon response
always corresponds to the low-frequency limit of the
boundary theory. In this section we examine linear re-
sponse at the next order in the derivative expansion using
the examples of diffusion of charge and momentum den-
sity. The discussion serves to highlight the differences
between the diffusion at the horizon and the boundary. It
also provides a straightforward application of the flow
equations derived in the last section, which we use to
give a simple derivation of the diffusion constant.

A. Charge diffusion

Consider disturbing the thermal equilibrium of the
boundary theory by a small nonuniform perturbation of
charge density varying along the z direction. The charge
gradient generates a nonvanishing current J z and eventu-
ally the charge diffuses away back into thermal equilib-
rium. To lowest order in the derivative expansion the
diffusion process is governed by the dispersion relation

! ¼ �iDk2; k ¼ kz; (67)

where D is the diffusion constant. In the linear response
regime (43) and (44), Eq. (67) appears as a pole in the
retarded Green function Gzz

R , since there is a nonzero
current J z even in the absence of an external field.
To study the diffusion process from gravity we should

thus examine the longitudinal channel in the regime
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!� k2 and !=T � 1, k=T � 1. Assuming this scaling
and taking ��L �Oð1Þ, we obtain from (65)

@r ��L

��2
L

¼ � ik2

!

ffiffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
�Agzz

: (68)

The solution to this equation with initial condition given by
(45) is

1

��LðrÞ ¼ 1

�
þ i

k2

!

Z r

r0

dr0
ffiffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
gzz

�A

; (69)

where we have used that the DC conductivity � is given by
� ¼ �Aðr0Þ. Now recalling that �zzðk�Þ ¼ �Lðk�Þ ¼
��Lðr ! 1; k�Þ and using (44), we find that

Gzz
R ðk�Þ ¼

!2�

i!�Dk2
; (70)

where the diffusion constant D is given by the integral

D ¼ �
Z 1

r0

dr0
grrgttffiffiffiffiffiffiffi�g
p g2dþ1: (71)

Equation (71) is equivalent to the diffusion constant de-
rived in [3,5] once we substitute the explicit expression
(47) for �.

Note that the diffusion constant D (71) cannot be ge-
nerically written in terms of horizon quantities. Now using
the Einstein relation 12

�D ¼ �; (72)

where � is the charge susceptibility, we find a general
expression for �,

� ¼
�Z 1

r0

dr0
grrgttffiffiffiffiffiffiffi�g
p g2dþ1

��1
: (73)

In Appendix D, we give an alternative derivation of (73) for
an arbitrary charged black brane; thus the logic of this
section can also be viewed as a proof that any black brane
obeys the Einstein relation.

Having derived the retarded Green function (70) in the
diffusion regime, let us now find bulk solutions to the
Maxwell equations that are dual to these diffusive modes
in the gauge theory. This, in particular, will enable us to
compare the explicit diffusion processes on the horizon
membrane and at the boundary. For this purpose we again
examine the longitudinal channel Maxwell Eqs. (B4) and
(B6) in the limit of small ! and k but finite !� k2,

@rj
z ¼ Oð!FztÞ; (74)

@rFzt ¼ ik2

!

grrgttg
2
dþ1ffiffiffiffiffiffiffi�g

p jz þOð!jzÞ: (75)

The above equations can be immediately integrated to give

jzðrÞ ¼ jzðr0Þ ¼ const; (76)

FztðrÞ ¼ Fztðr0Þ
�
1þ �

ik2

!

Z r

r0

dr0
grrgttg

2
dþ1ffiffiffiffiffiffiffi�g

p
�
; (77)

where we have used the boundary condition jzðr0Þ ¼
�Fztðr0Þ at the horizon.
Since we are interested in a diffusion process we should

be looking for gauge theory configurations where the
applied electric field is zero. Requiring Fztðr ! 1Þ ¼ 0
enforces a relation between ! and k that is exactly the
dispersion relation (67) with D given by (71). When this
relation is satisfied, in the dual picture we see standard
diffusion with no electric field and hJ ziQFT decaying with

time.
This should be contrasted with the behavior observed at

the horizon. As jz is constant throughout the spacetime, an
observer at the horizon membrane will also see a current
evolving with precisely the same behavior as that at the
boundary. Indeed, diffusive behavior on stretched horizons
has been noted before [3,4]. However, the electric field Fzt

at the horizon is not zero; indeed, we know that at the
horizon the electric field exactly tracks the current via the
boundary condition (45)

jiðr0Þ ¼ �Fitðr0Þ; (78)

and thus cannot be zero. Thus, a local observer at the
horizon has a rather different interpretation; he sees a
nonzero electric field that is decaying with time as it falls
into the horizon, and this electric field directly induces a
membrane current via the simple response (78). As em-
phasized before, (78) in fact exists for all !; k; however, if
!, k satisfy the diffusion relation (67) with (71), then the
electric field perturbations will vanish at infinity and the
boundary interpretation of this configuration will be
diffusion.

B. Momentum diffusion

For momentum diffusion one considers in the boundary
theory a small nonuniform perturbation in momentum
density �T at varying along the z direction, where a is
any spatial direction x,y, etc. not equal to z. The diffusion
current is given by �T az and the diffusion constantDs can
be written in terms of boundary quantities as (for a recent
review see [7])

Ds ¼ �

�þ p
; (79)

where � and p and energy and momentum density.
The gravity modes corresponding to these components

are hat, haz, which decouple from the other components in

12Note that with the Einstein relation below (70) precisely has
the form that one expects from hydrodynamics

GR
zz ¼ !2�D

i!�Dk2
:
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the gauge har ¼ 0. The corresponding bulk canonical mo-
menta are Ta� given by (30), now with � ¼ ðz; tÞ. As
pointed out in [3], the quickest route to the bulk equations
of motion in this channel is via a Kaluza-Klein reduction in
the a direction. In this case, the relevant modes ha� (� ¼
ðt; zÞ) can be considered components of a gauge field A�

with a metric-dependent gauge coupling. The precise map-
ping is

ha� ¼ A�; T
�
a ¼ j�;

1

g2dþ1ðrÞ
¼ gxxðrÞ

16�GN

; (80)

whose derivation we review in Appendix E. We can now
immediately take over all of the results of the previous
section: e.g., the corresponding ‘‘DC conductivity’’ is
given by the entropy density s

4� and the retarded correlator

of T z
a with itself is given by the analog of (70)

Gaz;az
R ¼ s

4�

!2

i!�Dsk
2
; (81)

with the diffusion constant Ds given by

Ds ¼ �

�þ p
¼ 4GNs

Z 1

r0

dr0
grrgttffiffiffiffiffiffiffi�g

p
gxx

: (82)

This equation is again equivalent to that in [3]. From (41)
and (82) we now derive a general formula for �þ p,

1

�þ p
¼ 16�GN

Z 1

r0

dr0
grrgttffiffiffiffiffiffiffi�g

p
gxx

: (83)

Note that the analog of the ‘‘electric field’’ is a gauge-
invariant13 combination Ez of metric coefficients

E z � @zðhat Þ � @tðhaz Þ: (84)

We will not repeat here the analysis of the last subsec-
tion. Everything can be carried over with a change of
notation as described above. We do emphasize again that
the diffusion process at the boundary is different from that
on the horizon. An observer at the horizon will see that the
horizon metric is deformed; this deformation is directly
inducing a fluid flow on the membrane via the response
Tz
aðr0Þ ¼ s

4� Ez.

Finally, note that diffusive behavior is not specific to the
examples considered. Given a general pair ð�; @t�Þ, the
essential ingredient in this analysis is the existence of a
scaling limit for!, k, where the response� is constant in r
but the source @t� is not [see (76) and (77)]. This can be
translated into a constraint on general effective actions
such as (38): we would like a limit where Pðr; k�Þ=! !
0 but Qðr;!; kÞ! ! Oð1Þ. This allows us to construct a
bulk solution where the source �ðr ! 1Þ vanishes but
�ðr ! 1Þ does not.

VII. CONCLUSION AND DISCUSSION

We have shown that there is a precise sense in which the
long-wavelength limit of a boundary theory at finite tem-
perature is determined by the horizon geometry of its
gravity dual. We derived expressions for various transport
coefficients in terms of components of the metric evaluated
at the horizon; this sheds light on the origin of the univer-
sality of the shear viscosity and resulted in a general
formula for the conductivity (47). At finite frequency/
momentum, however, propagating the information from
the horizon to the boundary requires solving a nontrivial
flow equation that describes how the full AdS geometry
encodes the higher-momentum degrees of freedom of the
boundary theory. The examples of charge and momentum
diffusion provide illustrations of this flow in a very simple
context.
Note that the relation between the membrane paradigm

bulk viscosity (which is negative) and the bulk viscosity of
a conformal fluid (which is exactly zero) is more subtle.
Here, the relevant degree of freedom hii does not satisfy a
simple equation like hyx. Instead, it enters in a nontrivial
way into the Hamiltonian constraint of general relativity in
the bulk and thus (in the absence of a background scalar
profile) is not actually a propagating degree of freedom,
leading to a vanishing bulk viscosity for conformal theo-
ries. If one turns on a nontrivial massive scalar background
(corresponding to a deviation from conformality) then
fluctuations of this field can mix with the graviton hii,
bringing it to life and allowing a nonzero bulk viscosity.14

Thus, a systematic study of bulk viscosity will involve
fluctuations of massive fields. This will dramatically
change the structure of flow equations such as (60); in
particular, the flow will no longer be trivial even in the
low-frequency limit and it is likely that the membrane
response will not adequately capture the low-frequency
AdS/CFT response. We defer such complications to a
future publication.
We close by noting that the classical membrane para-

digm fluid can be seen to play a satisfying new role in the
holographic description of a strongly coupled field theory
at finite temperature. We hope that it may be a practically
useful role as well, both for identifying what quantities are
expected to display universal behavior and as a technical
tool for simplifying future hydrodynamic computations in
gauge-gravity duality.
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APPENDIX A: IN-FALLING BOUNDARY
CONDITIONS AND HORIZON REGULARITY

Here, we demonstrate using the example of a scalar field
that the in-falling boundary condition used in standard
AdS/CFT calculations is equivalent to the condition of
horizon regularity used in the membrane paradigm. At
the horizon r ! r0, the metric may be written as

gtt ¼ c0ðr� r0Þ; grr ¼ cr
r� r0

: (A1)

One finds that near the horizon the equation for � is given
by

ffiffiffiffiffi
c0
cr

s
ðr� r0Þ@r

� ffiffiffiffiffi
c0
cr

s
ðr� r0Þ@r�

�
þ!2� ¼ 0; (A2)

which gives

� / e�i!ðt�xÞ; dx ¼
ffiffiffiffiffiffiffi
grr
gtt

s
dr: (A3)

The in-falling boundary condition implies that we should
take the positive sign in the exponent. In that case, it is
clear that the solution can be written only in terms of the
Eddington-Finkelstein coordinate v defined in (13):

� / e�i!v; dv ¼ dtþ
ffiffiffiffiffiffiffi
grr
gtt

s
dr: (A4)

The fact that� depends only on the nonsingular coordinate
v at the horizon is precisely the condition of horizon
regularity used in the membrane paradigm. Note if we
integrate the definition of v in a small neighborhood of
the horizon and use the formula for the inverse Hawking

temperature � ¼ 4�
ffiffiffiffi
cr
c0

q
, we obtain

v ¼ tþ �

4�
lnðr� r0Þ ! � / ðr� r0Þ�ði!�=4�Þe�i!t;

(A5)

which is recognizable as the standard form of the in-falling
boundary condition.

APPENDIX B: BULKMAXWELL EQUATIONS AND
FLOW EQUATIONS FOR CONDUCTIVITIES

Here, we assemble the relevant components of the bulk
Maxwell equations, given by the variation of the action

S ¼ �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p 1

4g2dþ1ðrÞ
FMNF

MN: (B1)

As before j� is the momentum conjugate to A� with

respect to a foliation by constant-r slices (10):

j� ¼ � 1

g2dþ1

ffiffiffiffiffiffiffi�g
p

Fr�: (91)

Rather than working with the gauge potentials AM, we will
write all equations in terms of gauge-invariant objects such
as F�� and j�; this involves the manipulation of a larger

number of equations but makes the physical interpretation
more transparent. We will also assume that the background
configuration of the gauge field is trivial; in principle
fluctuations around a nontrivial gauge field background
can couple to the metric or other fields and require a
more detailed analysis. Note that in (B1) g2dþ1ðrÞ can be

given by the background value of a nontrivial scalar field,
as symmetry arguments guarantee that fluctuations of such
a scalar will decouple from the Maxwell perturbations.
If we take the momentum to be along the z direction,

these equations naturally separate into two groups; a ‘‘lon-
gitudinal’’ channel involving fluctuations along ðt; zÞ and a
‘‘transverse’’ channel involving fluctuations along all spa-
tial directions not z, i.e., ðx; y; . . .Þ. Defining G ¼ffiffiffiffiffiffiffi�g
p

=g2dþ1 for notational convenience, we find that the

longitudinal channel is governed by two dynamical equa-
tions:

� @rj
t �Ggttgzz@zFzt ¼ 0; (B3)

� @rj
z þGgttgzz@tFzt ¼ 0; (B4)

as well as the conservation of j� and the Bianchi identity

@tj
t þ @zj

z ¼ 0; (B5)

� grrgzz
G

@tj
z � grrgtt

G
@zj

t þ @rFzt ¼ 0: (B6)

We would like to derive a flow equation for ��Lðr; k�Þ �
jz=Fzt. We begin by taking a single derivative

@r ��L ¼ @rj
z

Fzt

� jz

F2
zt

@rFzt: (B7)

We now use attack the right-hand side, using (B5) to
eliminate jt in favor of jz, (B6) to eliminate @rFzt in favor
of jz, and (B3) to eliminate @rj

z in favor of Fzt. The final
differential equation for ��L is

@r ��L ¼ i!

ffiffiffiffiffiffiffi
grr
gtt

s �
��2
L

�AðrÞ
�
1� k2

!2

gzz

gtt

�
� �AðrÞ

�
; (B8)
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where as in the text (64) we have defined �AðrÞ ¼ 1
g2
dþ1

�ffiffiffiffiffiffiffiffiffi�g
grrgtt

q
gzz.

Similarly, the transverse channel is governed by a dy-
namical equation and two constraints from the Bianchi
identity.

� @rj
y �Ggttgyy@tFty þGgzzgyy@zFzy ¼ 0; (B9)

@rFyt �
grrgyy
G

@tj
y ¼ 0; (B10)

@zFty þ @tFyz ¼ 0: (B11)

To find the flow equation for ��T � jy=Fyt we follow a

procedure directly analogous to that above, using (B11) to
eliminate Fyz in favor ofFyt, (B9) to eliminate @rj

y in favor

of Fyt, and (B10) to eliminate @rFyt in favor of jy. The

resulting equation is

@r ��T ¼ i!

ffiffiffiffiffiffiffi
grr
gtt

s �
��2
T

�AðrÞ � �AðrÞ
�
1� k2

!2

gzz

gtt

��
: (B12)

APPENDIX C: A CURIOUS RELATION AND
ELECTRIC-MAGNETIC DUALITY

Examination of (B8) and (B12) shows that the quantity
1
��L
satisfies an equation that is identical to that of ��T after

the replacement �AðrÞ ! 1
�AðrÞ . Following analogous dis-

cussion to that around (55) and (56), one can also interpret
�AðrÞ as an ‘‘effective dimensionless coupling constant’’ at
each r hypersurface. In other words, if we have two bulk
theories 1, 2 whose dimensionless couplings�i

A are related
by

�1
AðrÞ ¼

1

�2
AðrÞ

; (C1)

then the respective conductivities of these two theories are
related by

�1
Tðk�Þ ¼

1

�2
Lðk�Þ

�1
Lðk�Þ ¼

1

�2
Tðk�Þ

: (C2)

This is a peculiar relation, which we now explain, starting
with the special case when d ¼ 3 and g24 is constant. Here,
�A ¼ 1=g24 is independent of position and the inversion
�AðrÞ ! 1=�AðrÞ only involves an inversion of the cou-
pling constant g24. At the quadratic level in the supergravity
action this coupling can be scaled out and does not affect
the dynamics, and so (C2) actually relates �L to �T in the
same theory: g24�T ¼ 1=ðg24�LÞ. This symmetry of the
equations of motion is actually a consequence of electric-
magnetic duality in four bulk dimensional electromagne-
tism. Switching E and B is equivalent to interchanging

longitudinal electric fields Ez for transverse currents j
x and

vice versa. This relates the two sides of the relations in
(C2); this connection has been emphasized previously
in [32].
To understand why a similar relation might hold in

higher dimension, we should note that the bulk dynamics
can always be reduced to an effective four-dimensional
system by dimensional reduction along all dimensions not
equal to r, t, x, z. The kinetic term for the gauge field is
then

S ¼
Z

ddx
1

g2dþ1ðrÞ
ffiffiffiffiffiffiffi�h

p
gðd�3Þ=2
xx FabF

ab; (C3)

where a, b are in the four-dimensional space parametrized
by r, t, x, z and hab is the metric on this space. The
equations of motion from this action are identical to those
of four-dimensional electromagnetism with position-
dependent gauge coupling

1

g24ðrÞ
¼ 1

g2dþ1ðrÞ
gðd�3Þ=2
xx ¼ �A: (C4)

On the other hand, this theory is dual by standard four-
dimensional electric-magnetic duality to a theory with
inverted gauge coupling g24ðrÞ. Thus, if two (dþ 1) dimen-
sional bulk theories satisfy (C1), then the effective four-
dimensional dynamics of these two theories are related by
electric-magnetic duality. This relation manifests itself in
(C2). For d ¼ 3 and constant g2dþ1 such an expression is

thought to be related to a non-Abelian generalization of
particle-vortex duality in the boundary theory [32]; it
would be interesting to find a similar boundary interpreta-
tion for the d � 3 case (C2).

APPENDIX D: THE EINSTEIN RELATION FOR
ARBITRARY CHARGED BLACK BRANES

In the text we computed independent expressions for �
and D, the conductivity and diffusion constant for an
arbitrary conserved current in any field theory with a
gravity dual. To complete our discussion we now compute
the charge susceptibility � for an arbitrary charged black
brane.
The charge density of the dual theory is � ¼ jtðr ! 1Þ

and the chemical potential is � ¼ Atðr ! 1Þ. To evaluate
the susceptibility we require � to linear order in �,
�ðT;�Þ � �ðTÞ�. We consider a static bulk field configu-
ration depending only on r. Examining (B3) and (B4), we
obtain

@rj
t ¼ 0; (D1)

@rAt ¼ grrgtt
G

jt; (D2)

with the immediate solution

jtðrÞ ¼ � ¼ const; (D3)
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AtðrÞ ¼ Atðr0Þ þ �
Z r

r0

dr0
grrgtt
G

: (D4)

Horizon regularity requires Atðr0Þ ¼ 0, giving us � ¼
Atðr ! 1Þ ¼ ���1 with

� ¼
�Z 1

r0

dr0
grrgttg

2
dþ1ffiffiffiffiffiffiffi�g

p
��1

: (D5)

Comparing with (47) and (71), we see that the Einstein
relation

� ¼ �D (D6)

is indeed satisfied for any black brane.

APPENDIX E: DIMENSIONAL REDUCTION FOR
GRAVITATIONAL SHEAR MODE

As emphasized in [3], the relevant equations for gravi-
tational shear mode fluctuations can be mapped onto an
electromagnetism problem. Consider a metric perturbation
of the form

ga�ðrÞ ! ga�ðrÞ þ gaaðrÞha�ðr; t; zÞ; (E1)

where a is a spatial direction that is not equal to z. Compare
this to the standard form of the metric used in a Kaluza-
Klein reduction along the a direction:

ds2 ¼ gMNdx
MdxN

¼ g��dx
�dx� þ gaaðdxa þ A�dx

�Þ2; (E2)

where the indices �, � omit the a direction and A� is an

effective (d� 1) dimensional gauge field. This is exactly
the form of the perturbation (E1), provided we set A� ¼
ha�. However, since nothing depends on the a direction, we

can integrate out a from the Einstein-Hilbert action con-
structed from (E2). Standard dimensional reduction for-
mulae (see, e.g., [38]) give us the kinetic term for A

S ¼ � 1

16�GN

Z
dxa

Z
dd�1x

ffiffiffiffiffiffiffi�g
p

gaaF��F
��; (E3)

where F is the field strength tensor of A, which in terms of
metric perturbations is F�� ¼ @�h

a
� � @�h

a
�. Here, the

determinant
ffiffiffiffiffiffiffi�g

p
is that of the full d-dimensional metric.

This action is of exactly the standard Maxwell form (B1)
with an effective coupling for the gauge field

1

g2dþ1

¼ 1

16�GN

gxx; (E4)

as claimed in the text.
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