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The recent introduction of a deformed nonminimal version of the noncommutative standard model in

the enveloping-algebra approach, having a one-loop renormalizable gauge sector involving a higher order

gauge term, motivates us to consider the possibility of extending the fermion sector with additional

deformations, i.e. higher order fermionic terms. Since the renormalizability properties of the fermion

sector of the model are not yet fully known, we work with an effective fermion Lagrangian, which

includes noncommutative higher order terms involving a contraction with the noncommutative � tensor

aside from the star products, so that these terms annihilate in the commutative limit. Some of these terms

violate CPT in the weak sector, and some violate CP in the strong and hypercharge sectors. We apply this

framework to the re-evaluation of the decay rates of quarkonia ( �qq1 ¼ J=c , �) into two photons. These

decays, which are forbidden in the ordinary standard model, had been previously studied as possible

signals for noncommutativity, but not in the framework of the better behaved deformed nonminimal

version of the noncommutative standard model. Weak CPT or strong-hypercharge CP violating inter-

actions do not contribute to the result. If the parameters of the model take natural values, for the vast

majority of configurations the resulting branching ratios are enhanced with respect to their values in the

minimal version of the noncommutative standard model. Also for more than half of the parameter space,

the rates are larger than the maximal rates that were calculated in the undeformed version of the

nonminimal noncommutative standard model. Tuning the dimensionless parameters the predicted

branching ratios can fall within the current experimental bounds.
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I. INTRODUCTION

The standard model (SM) of particle physics and the
theory of gravity describe very well, as far as we know
today, all physical phenomena from cosmological pro-
cesses to the properties of subnuclear structures.
Nevertheless, at extreme energies and/or very short dis-
tances—at the Planck scale—these theories fail to be com-
patible, which motivates the study of modified or
alternative space-time structures that could help to solve
the above-mentioned difficulties or at least shed some light
on them. These modified space-time structures arise in
settings such as the quantized coordinates in string theory
or in the general framework of deformation quantization.
The idea of noncommutative (NC) space-time, which can
be realized in both of the above settings, has recently found
more and more interest. In this paper we deal with non-
commutative theories defined by means of the enveloping
algebra approach, which allows to define gauge theories
with arbitrary gauge groups, in particular, that of the
standard model. The research on these theories so far has
successfully dealt with some theoretical and also phenome-
nological aspects, which might allow the confrontation of
the theory with experiments.

On the theoretical side, in the enveloping algebra ap-
proach developed in [1] following the ideas of the seminal
paper [2], we can emphasize the construction of noncom-
mutative minimal and nonminimal versions of the standard

model (mNCSM and nmNCSM) [3–5], and grand unifica-
tion theories [6]. Of particular interest is the deformed
version of the nmNCSM with renormalizable pure gauge
interactions discussed in Refs. [7,8], which involves an
extension of the pure noncommutative gauge Lagrangian

F̂ ? F̂ with a deformation or higher order term. These
noncommutative extensions of the SM are anomaly free
[9,10]. In contrast with the gauge sector, the renormaliz-
ability of the fermion sector has not yet been completely
addressed, despite some encouraging partial results [11].
Nevertheless, the results in the pure gauge sector motivate
to consider the possible effects of introducing higher order
fermionic terms; in this paper we will initiate the study of
an extended fermion sector by introducing a general class
of the fermionic deformations in the noncommutative ac-
tion of the nmNCSM and obtaining some of the corre-
sponding Feynman rules.
On the other hand, on the phenomenological side, it is

known that noncommutative field theories can predict non-
zero rates for processes that are forbidden in the standard
model due to the Lorentz invariance and Bose symmetry
(Landau-Pomeranchuk-Yang or LPY theorem). These new
effects follow from the violation of Lorentz invariance in
the presence of noncommutativity, and the observation of
these forbidden decays could be taken as a signal for it.
Some of the SM forbidden processes that have been
studied, at the level of tree diagrams, include Z !
��=gg [4]; J=�, � ! �� [12], and K ! �� [13]. For
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other phenomenological studies, including limits on the
noncommutative scale �NC, see [14]. The recent introduc-
tion of the deformed nmNCSM calls for a reevaluation of
the results, which so far has only been done for the Z ! ��
process [15]. In this paper we will apply our framework of
a deformed fermionic sector to study the quarkonia decays
into two photons J=�,� ! ��. There are other processes
involving quarkonia in which noncommutativity induces
rare decays. An example is the decay into two photons of
quarkonia polarized in some direction, say the x3 axis. In
such a polarized rate the contributions proportional to the
third components ðE3

�Þ2 and ðB3
�Þ2 should be enhanced by a

large factor, similarly as in the Z ! �� case [15]. In
addition, one could study decays of quarkonia in other
gauge bosons. In general, we expect that any quark-
antiquark state with the same quantum numbers as those
of J=� and � ðIGðJPCÞ ¼ 0�ð1��ÞÞ will decay into two
gauge bosons through noncommutative interactions. We
restrict ourselves to quarkonia decays into two photons
because their detection could in principle be achieved
within very high-resolution calorimeters by applying
more stringent conditions in the selection of the photon
candidates when searching for �� events. We could also
have decays into a pair of gluons, but these would hadron-
ize into hadron jets, whose detection would be much more
problematic due to a lack of localization of the jets or
interference with other signals. Of course there could be
also decays into two Z bosons, but, on the one hand, they
would not be produced for quarkonia at rest due to the
heaviness of the Z bosons, and, on the other, these would
rapidly decay into other particles.

The paper is organized as follows. First, we give some
more detailed fundamental and phenomenological motiva-
tions for our work, and we introduce the theoretical frame-
work. Next, we introduce the action of the renormalizable
pure gauge sector of deformed nmNCSM, after which we
deal with the matter sector, extending the fermion action
with higher order deformations and examining their C, P, T
transformation properties. Following this, we study
whether field redefinitions in the fermion sector can help
to get rid of some of the extra terms introduced. Finally, we
give the Feynman rules relevant to the calculation of the
quarkonia decay rates and we present our results, which are
then discussed.

II. MOTIVATION AND FRAMEWORK

Our main goal in this paper is, following the recent
introduction of the deformed version of the gauge sector
of the NCSM, to consistently define the action of an
extended fermion sector of the nmNCSM from an
effective-theory point of view, by adding higher order
terms, and derive relevant Feynman rules. This is certainly
important for future investigations about the renormaliz-
ability properties of entire NCSM, which are interesting in
their own right and could introduce constraints on our

‘‘effective’’ deformed fermion sector. The second goal of
this paper is to apply this framework to the calculation of
the decay rates of the simplest processes, which are for-
bidden in the ordinary SM, that is the C symmetry violating
decay of quarkonia into two photons, ( �qq1 ¼ J=c , �).
These processes are of theoretical interest because their
tree-level contributions come from two different types of
diagrams, these being s-channel gauge bosons ex-
changes—involving interactions from the pure gauge sec-
tor of the NCSM—and t-channel quark exchanges—
involving interactions from the fermion sector. Of course,
it should not be forgotten that this proposed processes are
also important because they violate the LPY theorem that
holds in the ordinary SM, and thus their hypothetical
detection could be taken as a possible signal of
noncommutativity.
The first construction of the NCSM was undertaken in

Ref. [3], where it was already noted that there was an
ambiguity in the choice of traces for the gauge kinetic
terms, leading to a minimal version (with traces taken in
the adjoint representation), and a nonminimal version in-
cluding traces over the representations of all the massive
particle multiplets charged under any of the gauge groups
[4]. The interaction vertices and Feynman rules of these
models were further analyzed in Ref. [5]. As was said,
some of the processes studied in this framework include
Z ! ��=gg [4,15]; J=�, � ! �� [12], K ! �� [13],
and �plasmon ! ��� [16].

At one-loop order, the investigations so far were con-
cerned with renormalizability properties [7,8,15]; remark-
ably, it was found that the pure gauge interactions of the
nmNCSM could be rendered one-loop renormalizable at
first order in the noncommutativity parameters ��� by
adding an extra deformation term to the Lagrangian in-
volving only gauge fields and their derivatives contracted
with one ���. This term was introduced at the level of the
noncommutative action [8,15], yielding an extended ver-
sion of the nmNCSM [7]. This result was reached by
considering only gauge field contributions to the loop
integrals. When matter fields are included, the results of
Ref. [17] show that, when computing the matter contribu-
tions to the one-loop diagrams with external gauge fields in
a generic noncommutative gauge theory with Dirac fermi-
ons or complex scalars, the divergences can be absorbed in
the bare Lagrangian whenever the representations of the
matter fields are included in the choice of representations
for the traces in the pure gauge terms of the action.
This result motivates the following comments. First, it

suggests that there is virtually no hope of getting renorma-
lizability of the gauge sector in the mNCSM case when
Dirac fermions run in the loops, since the model only
involves traces in the adjoint representation of the gauge
fields. However, in the pure gauge sector of the nmNCSM
[4,5] the traces include the representations of the matter
fields, so that one could say that it is likely that the
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nmNCSM gauge sector will still be renormalizable if one
includes the effects of the matter fields in the loops. This
motivates even more to favor the use of the nmNCSM, and,
in particular, its deformed version, over the mNCSM.

Regarding the renormalizability properties of the
nmNCSM, we would like to make some clarifying obser-
vation. The NC SU(N) pure gauge theory [8] showed
renormalizability for two choices of the free deformation
parameter a, associated with the higher order term, SHg ðaÞ
that is present in the deformed nmNCSM: a ¼ 1 and a ¼
3. However, this result cannot be extrapolated directly to
the NCSM, because the gauge fields mix after the Seiberg-
Witten (SW) map and it is not a sum of NC SU(N) theories.
In fact, the gauge sector of the nmNCSM is only renorma-
lizable for a ¼ 3, even more, the one-loop quantum cor-
rections are finite for a ¼ 3.

The above arguments clearly favors the nmNCSM over
the mNCSM if one wants to have a better behaved theory,
where the quantum corrections are more under control
even when working in an effective theory approach. In
particular, predictions of the theory involving pure gauge
boson interactions will be more robust under changes of
scale.

All these new results call for a re-evaluation, in the
framework of the deformed nmNCSM, of the possible
signals for noncommutativity that were commented upon
before. As was said before, this has already been done in
Ref. [15] for the Z ! �� decay. In this paper we will focus
on the disintegration J=�, � ! ��. Now, since the re-
normalizability properties of the fermion sector of de-
formed nmNCSM are essentially unknown, despite
promising results for some diagrams involving chiral fer-
mions [11], and since the results for the pure gauge sector
make us expect that a renormalizable fermion sector could
only be achieved by adding deformed fermionic contribu-
tions to the action, it makes sense to treat this sector
effectively and consider, aside from the fermion
Lagrangian employed in both mNCSM and nmNCSM,
higher order contributions involving contractions with
��� outside the star product and compatible with the non-
commutative gauge symmetry. We will demand that these
deformed fermionic contributions do not introduce further
violations of parity than those coming from the ordinary
SUð2ÞL gauge fields; also, we will require that they do not
alter the tree-level fermion two-point function. This modi-
fication of the propagator could be achieved, for example,

with terms like i �̂c �����fD̂2; D̂�g ? ĉ . The problem is

that, when computing S-matrix elements, one ordinarily
uses the Lehmann-Symanzik-Zimmermann (LSZ) formal-
ism, which is constructed by using Lorentz invariance and
implies that the S-matrix elements are obtained by identi-
fying the poles in momentum space of some Green func-
tions. This happen at points satisfying the Lorentz invariant
constraint p2 ¼ m2 for somem. In noncommutative space-
time Lorentz-invariance is broken, which means that the

poles of the Green functions need not satisfy the constraint
p2 ¼ m2; a � dependence may appear and then one should
be more careful when computing S-matrix elements. An
alternative definition is needed, perhaps along the lines of
the work done in Ref. [18] for noncommutative theories
formulated without SW maps. Nevertheless, if the tree-
level propagator still has a pole of the ordinary type, we
expect that the usual way of deriving matrix elements will
be valid to some approximation. Here, we pretend to
compute S-matrix elements at tree level only.

III. PURE GAUGE SECTOR

A. Renormalizable pure gauge sector action

The pure gauge part of the deformed nmNCSM is given
by [15]

Sg ¼ Smin
g þ SHg ðaÞ;

Smin
g ¼ � 1

2
Tr

Z
d4xF̂�� ? F̂��;

SHg ðaÞ ¼ a� 1

4
Tr

Z
d4xh��� ? F̂�� ? F̂�	 ? F̂�	;

(1)

where the trace Tr is taken over all the particle representa-

tions. As usual, the Moyal-Weyl ? product is given by f ?

g ¼ fðexpi2h���

Q
@� ~@�Þg, which implements the space-time

noncommutativity as x� ? x� � x� ? x� ¼ ih���. The
noncommutative deformation parameter h ¼ 1=�2

NC sets

the noncommutative scale. The noncommutative field

strength F̂�� depends on the enveloping-algebra valued

noncommutative gauge field V̂� as

F̂ ��ðxÞ ¼ @�V̂� � @�V̂� � i½V̂�
?; V̂��; (2)

and in turn, V̂� depends on the ordinary gauge bosons

through the Seiberg-Witten map

V̂ �ðxÞ ¼ V�ðxÞ � h

4
�	�fV	ðxÞ; @�V�ðxÞ þ F��ðxÞg

þOðh2Þ; (3)

V�ðxÞ ¼ g0A�ðxÞY þ g
X3
a¼1

B�;aðxÞTa
L

þ gs
X8
b¼1

G�;bðxÞTb
S; (4)

where V�ðxÞ is the standard model gauge potential taking

values in the Lie algebra of SUð3ÞC � SUð2ÞL � Uð1ÞY .
The pure gauge action defined by Eq. (1), after expanding
to order h with the SW map of Eq. (3) leads to

Sg ¼ Tr
Z

d4x

�
� 1

2
F��F

��

þ h���

�
a

4
F��F�	 � F��F�	

�
F�	

�
: (5)

After taking traces in the above action over all massive
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particle representations with different quantum numbers
that appear in the total Lagrangian of the model with
covariant derivatives acting on them, the gauge action (5)
produces triple neutral gauge boson interactions [4,5],
which are not present in the mNCSM; in this paper we
are interested in the ��� and Z�� couplings, which arise
from the following terms in the Lagrangian [15]

LnmNCSM
��� ðaÞ ¼ e

4
sin2�WK���h�

�	A��ðaA��A�	

� 4A��A�	Þ;
LnmNCSM

Z�� ðaÞ ¼ e

4
sin2�WKZ��h�

�	½2Z��ð2A��A�	

� aA��A�	Þ þ 8Z��A
��A�	

� aZ�	A��A
���:

(6)

See Fig. 1 for details on the allowed values for the con-
stants K��� and KZ�� and their dependence on other

parameters of the model [4]. The remarkable result of
Ref. [7] is that the gauge action (5) is one-loop renorma-
lizable up to order h for a ¼ 3, with the OðhÞ quantum
corrections being finite. Thus, we will be mainly interested
in the a ¼ 3 case.

IV. MATTER SECTOR

A. Minimal fermion action

Next we turn our attention to the fermion sector. In both
the mNCSM and nmNCSM models, the chosen minimal
fermion action was

Smin
c ¼

Z
d4x �̂c ? i ^6D ? ĉ þ ŜYukawa;

D̂� ¼ @� � iV̂�?;

(7)

which depends on the ordinary fields V� and c through the

SW map of Eq. (3) and the fermion SW map

ĉ ¼ c � h

2
�	�

�
V	@� � i

4
½V	; V��

�
c þOðh2Þ: (8)

The Yukawa sector in the NCSM, when expanded in terms
of ordinary fields, involves quite complicated interactions
[5]. However, if we consider the noncommutative contri-
butions to the fermion field interactions in the QED sector
only, (as turns out to be sufficient for our purpose of
obtaining rate for the quarkonia decay into two photons),
we can use, as noted in [5] and used in [12], the simplified
fermion Lagrangian

Smin
c ;A �

Z
d4x �̂c ? ði ^6DA �mfÞ ? ĉ

¼ SSMc ;A þ S�c ;A þOðh2Þ;
SSMc ;A ¼

Z
d4x �c ði 6DA �mfÞc ;

S�c ;A ¼ � eh

4

Z
d4x �cA��ði����DA

� �mf�
��Þc ;

(9)

where DA
� ¼ @� � ieA� and

���� ¼ ����� þ ����� þ �����: (10)

B. Deformed fermion action

Motivated by the unknown renormalizability properties
of the NC fermion sector, and since in the case of the gauge
sector the addition of the higher order term dependent on
the free deformation parameter a made the model surpris-
ingly well behaved, we will consider adding deformation
terms to the minimal fermion Lagrangian (9), either to treat
it in an effective theory approach or to prepare the grounds
for future investigations of renormalizability. Thus, we set
to find all the possible deformations contributing to the
fermion action, and satisfying the following conditions:
(a) They are real and include two fermions fields,
(b) are invariant under noncommutative gauge

transformations and thus involve star products, non-
commutative gauge covariant derivatives and non-
commutative field strengths,

(c) involve a contraction with a ��� tensor outside
the star product—as in the a-dependent term in
Eq. (1)—,

(d) they do not alter the tree-level two-point function of
fermion propagator,

− 0.5 − 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1 0.2

− 0.6

− 0.4

− 0.2

0.0

0.2

K

K

FIG. 1 (color online). Allowed values for the couplings KZ��

and K��� in the nmNCSM.
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(e) they only generate P-symmetry violating contribu-
tions coming from the ordinary weak SU(2) gauge
fields,

(f) include zero or positive powers of some mass
parameter.

In order to write down all the possible terms satisfying
the conditions above, we have to consider a basis of
matrices in spinor space. Since the � matrices are con-
strained by the identity f��; ��g ¼ 2g��, we can consider
a basis formed by antisymmetrized products of �matrices:
fI; ��; 	��; ����; �5g, where we are using the following
definitions:

	�� ¼ 1

2
ð���� � ����Þ;

���� ¼ 1

6
ð������ þ ������ þ ������ � ������

� ������ � ������Þ;
������ ¼ g���� � g���� þ g���� � i
���	�5�	;

�5 ¼ � i

4!

���	�

������	: (11)

With this in mind, it can be seen that the terms satisfying
the conditions stated above are given by sums of integrals
of the following monomials ti multiplied by real coeffi-
cients

t1 ¼ h��� �̂c ? ��ðD̂�F̂��Þ ? ĉ ;

t2 ¼ h��� �̂c ? ��ðD̂�F̂��Þ ? ĉ ;

t3 ¼ ih��� �̂c ? ��ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t4 ¼ ih��� �̂c ? ��ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t5 ¼ ih��� �̂c ? ��ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t6 ¼ ih��� �̂c ? ���
�ðD̂�F̂��Þ ? ĉ ;

t7 ¼ ih��� �̂c ? ��
��ðD̂�F̂��Þ ? ĉ ;

t8 ¼ h��� �̂c ? ���
�ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t9 ¼ h��� �̂c ? ��
��ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t10 ¼ h��� �̂c ? ��
��ð2F̂�� ? D̂� þ ðD̂�F̂��ÞÞ ? ĉ ;

t11 ¼ mh��� �̂c ? F̂�� ? ĉ ;

t12 ¼ imh��� �̂c ? 	�
�F̂�� ? ĉ ;

t13 ¼ imh~��� �̂c ? �5F̂�� ? ĉ ;

(12)

with ~��� � 1
2 


���	��	, and D̂� ¼ @� � iV̂� ? , D̂� ¼
@� � i½V̂�

?; �. Note that we can identify the mass parame-

ter m with any of the fermion masses mf; this means no

loss of generalization because in principle we will be add-

ing these mass-dependent terms to the action multiplied by
arbitrary dimensionless coefficients.
In order to check the C, P, T transformations of the above

terms, we consider the following:
(i) ��� transforms under discrete space-time symme-

tries as a U(1) field strength F�� [6].
(ii) The ordinary fields are the ones that define the

theory, so that we have to deal with their C, P, T
transformation properties. However, the analysis
can be simplified because of the fact that the SW
maps that we use are such that the C, P, T trans-
formations of the noncommutative fields are equal
to their commutative counterparts [6]. However,
there is a subtlety since the noncommutative vector
field in the matter representations, given the expan-
sion of Eq. (4), includes some chiral projectors that
come together with the weak gauge fields B�;aðxÞ.

Taking this into account, it can be seen that the above terms
are P invariant save for the contributions involving the
ordinary SU(2) gauge fields, as was required from the start.
Moreover, all terms in Eq. (12) are CPT invariant except
for t11, t12, t13. In the terms t11, t12, t13 the CPT violating
contributions come exclusively from the chiral projectors
of the weak gauge fields. However, in the strong and
hypercharge sectors the contributions from all terms in
(12) remain CPT invariant. Interestingly, the terms t1, t2,
t8, t9, t10, t12 originate both C and T violations in the strong
and hypercharge sectors, with CT conserved in these sec-
tors. All other violations of C, P, or T come from the weak
fields exclusively. We will not worry about these violations
of discrete symmetries and will proceed considering all of
the terms in Eq. (12). Thus, we will consider an additional
piece of the action given by a sum of the above terms,

SHc ðxiÞ ¼
Z

d4x
X
i

xiti; xi 2 R; (13)

where xi’s are the fermion sector free deformation parame-
ters, to be constrained via considerations of renormaliz-
ability or by phenomenology.
Before plunging into the computation of the Feynman

rules and their phenomenological application, we would
like to analyze whether any of the terms in Eq. (12) can be
reabsorbed by means of field redefinitions. This is interest-
ing for two reasons:
(i) Possible future investigations about renormalizabil-

ity would require to take into account the effects of
field redefinitions in the action, which we will com-
pute here in the fermion sector.

(ii) Field redefinitions should not affect S-matrix ele-
ments, and since we aim to calculate quarkonia
decay rates it is desirable to eliminate as many of
the xi parameters in Eq. (13) as possible.

To proceed, we consider the most general field redefini-
tions of order � of the commutative gauge and fermion
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fields, involving zero or positive powers of the mass pa-
rameter and not affecting the tree-level propagator, and
compute the associated change in the action. We parame-
terize the most general field redefinitions up to order � as

�v� ¼ X
yi�

iv�; �c ¼ X
zi�

ic ; (14)

where yi are real, zi complex, and �iv� and �ic are given

next

�1v� ¼ ���D�F��; �2v� ¼ ��
�D�F��;

�1c ¼ ���F��c ; �2c ¼ ���	�
�F��c ;

�3c ¼ ~����5F��c :

(15)

Since the field redefinitions are of order h, to see their
effect on the action to this same order we only need to
compute the variation of the Oðh0Þ action, which for fer-
mions and vector fields is just

SSMv;c ¼ SSMg þ
Z

d4x �c ði 6D�mfÞc þ SYukawa; (16)

we will ignore the Yukawa couplings since they do not
contribute to the tree-level quarkonia decay amplitudes
that we want to compute. The change of the total action
turns out to be

�

�
SSMg þ

Z
d4x �c ði 6D�mfÞc

�

¼
Z

d4x
X
i

ðyi�yiLþ Rezi�
zi;RLþ Imzi�

zi;ILÞ

þOðh2Þ; (17)

with

�y1L ¼ t1; �y2L ¼ �t2; �z1;RL ¼ t3 � 2t11;

�z1;IL ¼ �t1; �z2;RL ¼ �t4 þ t5 � 1
2t7;

�z2;IL ¼ �1
2t1 � t2 � t10 � 2t12; �z3;RL ¼ �t8 � t9;

�z3;IL ¼ �t6 � t7 � 2t13; (18)

where the ti’s are given in Eq. (12). In the language of
Eq. (13), the above result is equivalent to the following
change in the action SHc ðxiÞ:

SHc ðxiÞ ! SHc ðxi þ �xiÞ; (19)

with

�x1 ¼ y1 � Imz1 � 1
2 Imz2; �x2 ¼ �y2 � Imz2;

�x3 ¼ Rez1; �x4 ¼ �Rez2; �x5 ¼ Rez2;

�x6 ¼ �Imz3; �x7 ¼ �1
2 Rez2 � Imz3;

�x8 ¼ �Rez3; �x9 ¼ �Rez3; �x10 ¼ �Imz2;

�x11 ¼ �2Rez1; �x12 ¼ �2 Imz2;

�x13 ¼ �2 Imz3: (20)

In order to check whether the field redefinitions above
can be used to eliminate some of the terms ti of the action
in Eq. (13), we have to examine the system of equations
that follows

�xi½yj;Rezj; Imzj� ¼ �xi; (21)

where xj are to be treated as fixed and yi, Rezi, Imzi as the

unknown variables. Now, the 13� 8 matrix associated to
the previous linear system of equations can be seen to be of
rank 7. This means that at most 7 of the ti terms in the
action can be eliminated with adequate field redefinitions,
with 6 terms remaining. It is easily seen that a viable choice
of 6 terms that survive the field redefinitions is given by t4,
t5, t6, t8, t10, t11—note that, as was commented before, t11
violates CPT in the weak sector and t8, t10 violate C and T
in the strong and hypercharge sectors.

V. FEYNMAN RULES TO COMPUTE S-MATRIX
ELEMENTS

From the discussions above it follows that, in order to
compute the amplitudes of the desired physical processes,
the relevant pieces of the action are those given by the
ordinary standard model fermion-photon and fermion-Z
boson interactions, plus the following noncommutative
�-dependent interactions: the three boson interactions of
Eq. (6), the fermion-photon interaction in Eq. (9), and the
contribution to the action of the terms of Eq. (13) surviving
the fermion field redefinitions, i.e.,

SHc ðxiÞ ¼
Z

d4x½x4t4 þ x5t5 þ x6t6 þ x8t8

þ x10t10 þ x11t11�: (22)

The noncommutative interactions originate, among other
vertices, a triple neutral gauge boson vertex, a 2 fermion-
photon vertex and a 2 fermion-2 boson vertex. From the
modified gauge and fermion actions, (1), (5), (6), (9), and
(22)

S ¼ Sg þ Sc ¼ Smin
g þ SHg ðaÞ þ Smin

c þ SHc ðxiÞ þOðh2Þ;
(23)

we obtain the following Feynman rules:
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Here, ���� was given in Eq. (10), while the tensor ����
3 ½a; k1; k2; k3�, is given by [15]

����
3 ½a; k1; k2; k3� ¼ �ðk1�k2Þ½ðk1 � k2Þ�g�� þ ðk2 � k3Þ�g�� þ ðk3 � k1Þ�g��� � ���½k�1 ðk2k3Þ � k�2 ðk1k3Þ�

� ���½k�2 ðk3k1Þ � k
�
3 ðk2k1Þ� � ���½k�3ðk1k2Þ � k�1ðk3k2Þ� þ ð�k2Þ�½g��k23 � k�3k

�
3 �

þ ð�k3Þ�½g��k22 � k�2k
�
2 � þ ð�k3Þ�½g��k21 � k

�
1 k

�
1 � þ ð�k1Þ�½g��k23 � k

�
3 k

�
3 �

þ ð�k1Þ�½g��k22 � k
�
2 k

�
2� þ ð�k2Þ�½g��k21 � k

�
1 k

�
1� þ ða� 1Þðð�k1Þ�½g��ðk3k2Þ � k�3k

�
2 �

þ ð�k2Þ�½g��ðk3k1Þ � k
�
3 k

�
1 � þ ð�k3Þ�½g��ðk2k1Þ � k

�
2 k

�
1�Þ: (28)

VI. APPLICATION OF THE PROPOSED
FRAMEWORK TO QUARKONIA DECAYS:

�qq1 ! ��

A. Quarkonia decay amplitudes

The diagrams that contribute to the quarkonia decay
amplitude are shown in Figs. 2 and 3. Note that the vertices
with fermions including noncommutative effects (with
black dots), only involve photons; that is why we may
safely use (9). The diagram in Fig. 3 also involves a
fermion-fermion-Z boson vertex, but it is given by the
ordinary SM contribution.

Using the Feynman rules (24)–(27) obtained from the
modified gauge (6) and fermion (23) actions, we have
evaluated the diagrams from Figs. 2 and 3, yielding am-
plitudes that we call A1 and A2, respectively.

As in Ref. [12], in order to hadronize the free quarks into
the quarkonium bound state, we apply the following pre-

scription for the transition amplitude of the operator q�i �q
�
j

(q ¼ c, b and i, j are color indices) from the vacuum to the
quarkonium state

h0jq�i �q�j j �qq1ðPÞi ¼ � j��qq1ð0Þjffiffiffiffiffiffiffiffiffiffi
12M

p ½ðP6 þMÞ
6 ����ij; (29)

where j��qqð0Þj represents the quarkonia wave function at

the origin defined in [12],

j��qq1ð0Þj2 ¼
�ð �qq1 ! ‘þ‘�ÞM2

16��2e2q
: (30)

We use a collinear approximation for the quarks in the
quarkonium state, and we identify the mass of the quark-
onium as M ¼ 2mq. The resulting amplitudes are shown

next:
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A1ðx4; x5; x11Þ ¼ ih�4
ffiffiffiffiffiffiffiffi
3M

p
�e2qj��qq1ð0Þj
�ðk1Þ
�ðk2Þ
�ðPÞ

�
ðk2 � k1Þ�

�
ð1� 4x4Þ

�
��� � 2g�� ðk1�k2Þ

M2

�

� 4x5

�
��� � k

�
2 ðk1�Þ� � k�1ðk2�Þ�

M2

��
� 4x5ðP�Þ�

�
g�� � 2

M2
k�2 k

�
1

�

þ ð1� 4x4 � 2x5Þ
�
2g��

�
ðk1�Þ� � 2k�1

ðk1�k2Þ
M2

�
þ 2g��

�
ðk2�Þ� þ 2k�2

ðk1�k2Þ
M2

��

þ ð4x11Þ
�
ðk1�Þ�

�
g�� þ k�1k

�
1 � k�2k

�
1

M2

�
þ ðk2�Þ�

�
g�� þ k�2k

�
2 � k�1k

�
2

M2

���
; (31)

which turns out to be independent of x6, x8, x10 due to the external momenta being on-shell, and

A2ðaÞ ¼ �ih�
16

ffiffiffi
3

p

M3=2
�j��qq1ð0Þj
�ðk1Þ
�ðk2Þ
�ðPÞ

�
eq sin2�WK��� þ

�
M

MZ

�
2
cqVKZ��

�
�

���
3 ½a;P;�k1;�k2�

¼ �ih�8
ffiffiffiffiffiffiffiffi
3M

p
�j��qq1ð0Þj
�ðk1Þ
�ðk2Þ
�ðPÞ

�
eq sin2�WK��� þ

�
M

MZ

�
2
cqVKZ��

�

�
�
ðk2 � k1Þ�

�
��� � 2g�� ðk1�k2Þ

M2

�
þ 2g��

�
ðk1�Þ� � 2k�1

ðk1�k2Þ
M2

�
þ 2g��

�
ðk2�Þ� þ 2k�2

ðk1�k2Þ
M2

�

� ða� 1Þ
�
ðP�Þ�

�
g�� � 2

M2
k�2 k

�
1

�
þ ðk1�Þ�

�
g�� þ k�1k

�
1 � k�2k

�
1

M2

�
þ ðk2�Þ�

�
g�� þ k�2k

�
2 � k�1k

�
2

M2

���
: (32)

The coupling constants appearing in the above amplitudes
are evaluated at the MZ scale [4,19]. Here, P ¼ k1 þ k2,
ðki�Þ� ¼ ki��

��, and k1�k2 ¼ k1��
��k2�, while M and P

are the mass and the total momentum of the discussed
quarkonium state, respectively.

Both of the above amplitudes satisfy separately the usual
Ward identities that follow from gauge invariance and the
pole structure of the diagrams. Note that this would have

been a problematic issue had we included in our deformed
fermion Lagrangian terms that contributed to the tree-level
fermion propagator. It is also worth noticing that, despite
the dependence of the Feynman rules of Eqs. (24) and (25)
on the parameters x6, x8, x10—where x8 and x10 were
associated to C, T violating contributions in the strong
and hypercharge sectors—this dependence disappears in
the amplitude A1 after evaluating the external momenta
on shell. In fact, the amputated Green function evaluated at
generic momenta can be seen to depend on x6, x8, x10, thus
not contradicting the expectations of Ref. [20], which
stated the necessity of adding a term involving ���� to
get one-loop renormalizability. Indeed, despite not contrib-
uting to the calculated amplitude, the associated terms in
the basis of Eq. (12) might influence other S-matrix ele-
ments or may be relevant to renormalizability properties. It
is also worth noting the dependence of the amplitude A1

in Eq. (31) on the parameter x11, which induces CPT
violations in the weak sector. However, as can be seen
from the diagrams of Fig. 2, the noncommutative vertices
with fermion fields appearing in them only involve pho-
tons—no weak fields—, so that our computation is not
affect by CPT violating interactions.
In Ref. [12], when computing the amplitudes for the

above diagrams in the nmNCSM without the
a-deformation of Eq. (1) and without the additional defor-
mations, xi, of the fermionic terms, (22), it was found that
the on-shell, amputated A1 amplitude, corresponding to
the sum of the five quark-exchange diagrams in Fig. 2, was
proportional to the on-shell, amputated amplitude A2 of
the boson-exchange Green functions represented in Fig. 3,
which could hint at a possible symmetry. This was made
manifest by the fact that the S-matrix amplitudes in

FIG. 3. Additional contributions to the A2ð �qq1 ! ��Þ ampli-
tude.

FIG. 2. Contributions to the A1ð �qq1 ! ��Þ amplitude.
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Ref. [12] are given by some factor squared. In the present
calculation, for a ¼ 3, which is the one making the gauge
sector of deformed nmNCSM one-loop renormalizable,
this result cannot be recovered for any value of the free
deformation parameters x4, x5, x6, x8, x10, x11; in fact,
proportionality is only achieved for a ¼ 1 and xi ¼ 0.
The fact that we eliminated some of the freedom parame-
ters xi should not be relevant to this result, since we are
concerned with on-shell, amputated amplitudes, which are
not affected by the field redefinitions that allowed us to
eliminate some of the xi.

With respect to the possibility of considering terms
deforming the tree-level fermion propagators, which have
been ignored here, we would like to point out again that
they would not only modify the on-shell conditions, but
also cast serious doubt about the validity of the usual
procedure of constructing the S-matrix amplitudes in terms
of amputated diagrams; further considerations on these
issues are beyond the scope of this paper.

B. Quarkonia decay rate

To obtain the quarkonia decay rates we have to compute

�ð �qq1 ! ��Þ ¼ 1

2E �qq1

1

4�2

Z d3k1
2E1

d3k2
2E2

�4ðP� k1 � k2Þ

� 1

2si þ 1

X
spins

jMj2 1
2
; (33)

where M is the total amplitude, i.e., M ¼ A1 þA2.
Summing over the initial spins and averaging over their
final values in the square absolute value of the amplitude
gives

X
spins

jMj2 ¼ 3e4M3j�j2
ðM2 �M2

ZÞ2
½Að������Þ þ Bð������k�1 k�2 Þ

þ Cð������k�1 k�1 þ ����
�
�k

�
2 k

�
2 Þ

þDð���k�1 k�2 Þ2�; (34)

A ¼ �½�2CvK��ZM
2 þ e2qð4x4 þ 4x5 � 1ÞðM2 �M2

ZÞ
þ 2eq sinð2�WÞK���ðM2 �M2

ZÞ�2; (35)

B ¼ 8

M2
½ð5a2 � 22aþ 25ÞC2

vK
2
��ZM

4 þ 2e2qCvK��ZðM2 �M2
ZÞM2ð�28x4 � 28x5 þ að12x4 þ 12x5 � 4x11 � 3Þ

þ 12x11 þ 7Þ þ e2qsin
2ð2�WÞK2

���ðM2 �M2
ZÞ2ð5a2 � 22aþ 25Þ þ 2e4qð16x24 þ 8ð4x5 � 2x11 � 1Þx4 þ 18x25 þ 2x211

þ 4x11 � 4x5ð3x11 þ 2Þ þ 1ÞðM2 �M2
ZÞ2 � 2 sinð2�WÞK���ðM2 �M2

ZÞðeqð5a2 � 22aþ 25ÞCvK��ZM
2

þ e3qð�28x4 � 28x5 þ að12x4 þ 12x5 � 4x11 � 3Þ þ 12x11 þ 7ÞðM2 �M2
ZÞÞ�; (36)

C ¼ 8

M2
½ð3a2 � 10aþ 11ÞC2

vK
2
��ZM

4 þ 2e2qCvK��ZðM2 �M2
ZÞM2ð�12x4 � 11x5 þ að4x4 þ 5x5 � 3x11 � 1Þ

þ 5x11 þ 3Þ þ e2qsin
2ð2�WÞK2

���ðM2 �M2
ZÞ2ð3a2 � 10aþ 11Þ þ e4qðM2 �M2

ZÞ2ð16x24 þ 8ð3x5 � x11 � 1Þx4
þ 12x25 þ 4x211 þ 2x11 � 2x5ð4x11 þ 3Þ þ 1Þ � 2 sinð2�WÞK���ðM2 �M2

ZÞðeqð3a2 � 10aþ 11ÞCvK��ZM
2

þ e3qð�12x4 � 11x5 þ að4x4 þ 5x5 � 3x11 � 1Þ þ 5x11 þ 3ÞðM2 �M2
ZÞÞ�; (37)

D ¼ � 16

M4
½ð3a2 � 14aþ 15ÞC2

vK
2
��ZM

4 þ 4e2qCvK��ZðM2 �M2
ZÞM2ð�8x4 � 8x5 þ að4x4 þ 4x5 � 2x11 � 1Þ

þ 6x11 þ 2Þ þ e2qsin
2ð2�WÞK2

���ðM2 �M2
ZÞ2ð3a2 � 14aþ 15Þ þ e4qðM2 �M2

ZÞ2ð16x24 þ 8ð4x5 � 4x11 � 1Þx4
þ 20x25 þ 4x211 þ 8x11 � 8x5ð3x11 þ 1Þ þ 1Þ � 2 sinð2�WÞK���ðM2 �M2

ZÞðeqð3a2 � 14aþ 15ÞCvK��ZM
2

þ 2e3qð�8x4 � 8x5 þ að4x4 þ 4x5 � 2x11 � 1Þ þ 6x11 þ 2ÞðM2 �M2
ZÞÞ�: (38)

Considering the quarkonia at rest and using the phase-space integrals
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ð��2Þ
Z d3k1

2E1

d3k2
2E2

�4ðP� k1 � k2Þ ¼ 2

�4
NC

ð ~B2
� � ~E2

�Þ�2 ;

ðP�2PÞ
Z d3k1

2E1

d3k2
2E2

�4ðP� k1 � k2Þ ¼ M2

�4
NC

ð ~E2
�Þ�2 ;

Z d3k1
2E1

d3k2
2E2

�4ðP� k1 � k2Þðk1�2k1Þ ¼ M2

�4
NC

ð ~E2
� þ ~B2

�Þ �12 ;
Z d3k1

2E1

d3k2
2E2

�4ðP� k1 � k2Þðk1�k2Þ2 ¼ M4

�4
NC

ð ~E2
�Þ �24 ;

(39)

starting from (33), for general a, xi, we obtain the follow-
ing decay rate

�nmNCSMð �qq1 ! ��Þ

¼ �

24

�2M2j�j2
ðM2 �M2

ZÞ2�4
NC

½ð24Aþ 4M2ðBþ CÞ þM4DÞ ~E2
�

� ð24Aþ 2M2ðB� 2CÞÞ ~B2
��: (40)

The above rate turns into Eq. (12) from [12] for a ¼ 1,
xi ¼ 0. We would like to analyze Eq. (40) and study the
effects of having added to the action of the nmNCSM the
extra terms that have been discussed in the previous sec-
tions, in order to compare the results with those calculated
in Ref. [12]. In order to obtain some numerical values, we
will look for the maxima and minima of the decay rates in
the allowed region for KZ�� and K���— Fig. 1—with the
assumption that the xi parameters are ‘‘natural’’ and only
take values between zero and one, and with two possible
scenarios for the dimensionless constants ~E2

� and ~B2
�: either

both of them are of order one (space-time and space-space
noncommutativity), or ~E2

� ¼ 0 and ~B2
� is of order one (only

space-space noncommutativity). Moreover, as was done in
Ref. [12], we will consider that the scale of noncommuta-
tivity varies between�NC ¼ 0:25 TeV and�NC ¼ 1 TeV.

In order to compute branching ratios, we use the follow-
ing data taken from [19]: in the J=c case, �exp:ðJ=c !
eþe�Þ ¼ ð5:55� 0:14� 0:02Þ keV and �exp:

tot ð�Þ ¼
ð93:2� 2:1Þ keV, whereas for the � case, �exp:ð� !
eþe�Þ ¼ ð1:340� 0:018Þ keV and �exp:

tot ð�Þ ¼ ð54:02�
1:25Þ keV. Recall that the wavefunction at the origin
�ð0Þ is related to the lepton decay rate by Eq. (30).

First, since in the minimal NCSM (mNCSM) there are
no Z�� and ��� couplings, the formula (40) can be used
to recover the branching rations in the minimal NCSM—
see Ref. [12], Eqs. (19) and (20)—by taking KZ��� ¼
K��� ¼ 0, which yields, for ~E2

� ¼ ~B2
� ¼ 1 and

0:25 TeV � �NC � 1 TeV,

5:1 � 10�13 & BRmNCSM
½J=c!��� & 1:3 � 10�10;

4:6 � 10�12 & BRmNCSM
½�!��� & 1:2 � 10�9:

(41)

The values at ~E2
� ¼ 0, ~B2

� ¼ 1 are suppressed by a factor of
3=10.
In Ref. [12], the computation in undeformed nmNCSM

was also done for ~E2
� ¼ ~B2

� ¼ 1, yielding

�a¼1ð �qq1 ! ��Þ
�ð �qq1 ! ‘þ‘�Þ ¼ 5

24
e2q

�
M

�NC

�
4
�
1� 2

eq
sin2�WK���

� 2

e2q

�
M

MZ

�
2
cqVKZ��

�
2
: (42)

This corresponds to setting a ¼ 1, xi ¼ 0 in the deformed
version of the nmNCSM of this paper.
Computing the maximal values of the above rate for

0:25 TeV � �NC � 1 TeV yields

3:1 � 10�12 & BRa¼1;xi¼0
½J=c!���;max & 7:8 � 10�10;

1:7 � 10�11 & BRa¼1;xi¼0
½�!���;max & 4:3 � 10�9;

(43)

as was obtained in Eqs. (23, 24) from [12].
On the other side, the minimal values in the same range

of �NC are

2:3 � 10�13 & BRa¼1;xi¼0
½J=c!���;min & 5:9 � 10�11;

1:0 � 10�26 & BRa¼1;xi¼0
½�!���;min & 2:6 � 10�24:

(44)

By taking ~E2
� ¼ 0, ~B2

� ¼ 1 all the results are suppressed by
a factor of 3=10.
To see the effect of adding to the action the extra pure

gauge term associated with the choice a ¼ 3 in Eq. (5),
corresponding to the deformed nmNCSMwith renormaliz-
able pure gauge interactions, we can start from (40) and fix
a ¼ 3 and x4 ¼ x5 ¼ x11 ¼ 0. The resulting expression is
more complicated than (42),

�a¼3ð �qq1 ! ��Þ
�ð �qq1 ! ‘þ‘�Þ ¼ M4

48e2q�
4
NCðM2 �M2

ZÞ2
ðR ~B2

� þ S ~E2
�Þ;

R ¼ 3ðM2 �M2
ZÞ2eq4 þ 36sin2ð2�WÞK2

���ðM2 �M2
ZÞ2eq2 þ 20cqVM

2KZ��ðM2 �M2
ZÞeq2

� 4 sinð2�WÞK���ðM2 �M2
ZÞð5ðM2 �M2

ZÞeq2 þ 18cqVM
2KZ��Þeq þ 36cqV

2M4K2
Z��

S ¼ 7ðM2 �M2
ZÞ2eq4 þ 36sin2ð2�WÞK2

���ðM2 �M2
ZÞ2eq2 � 20cqVM

2KZ��ðM2 �M2
ZÞeq2

þ 4 sinð2�WÞK���ðM2 �M2
ZÞð5eq2ðM2 �M2

ZÞ � 18cqVM
2KZ��Þeq þ 36cqV

2M4K2
Z��: (45)
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The maximal values in the allowed regions for KZ�� and
K��� of the branching ratios, for 0:25 TeV � �NC �
1 TeV, ~E2

� ¼ ~B2
� ¼ 1 become

2:4 � 10�12 & BRa¼3;xi¼0
½J=c!���;max & 6:3 � 10�10;

7:5 � 10�11 & BRa¼3;xi¼0
½�!���;max & 1:9 � 10�8;

(46)

whereas for the minimal values we get

5:1 � 10�13 & BRa¼3;xi¼0
½J=c!���;min & 1:3 � 10�10;

4:6 � 10�12 & BRa¼3;xi¼0
½�!���;min & 1:2 � 10�9:

(47)

They remain more or less in the same order of magnitude
as those of Eq. (43), safe for the minimal values of the �
branching ratio, which are hugely increased. In particular,
the minimal values are always above those of the mNCSM
of Eq. (41). In the case of ~E2

� ¼ 0, ~B2
� ¼ 1 the rates are

again suppressed but in a different way:

1:9 � 10�12 & BRa¼3;xi¼0
½J=c!���;max & 4:8 � 10�10;

2:3 � 10�11 & BRa¼3;xi¼0
½�!���;max & 5:9 � 10�9;

3:5 � 10�14 & BRa¼3;xi¼0
½J=c!���;min & 9:0 � 10�12;

1:0 � 10�13 & BRa¼3;xi¼0
½�!���;min & 2:6 � 10�11:

(48)

In particular, the minimal values are no longer above the
ones corresponding to the mNCSM with ~E2

� ¼ 0, ~B2
� ¼ 1

but there is still a dramatic increase in the minimal possible
values for the � branching ratio.

So far, the effect of the extra pure gauge term in the
deformed nmNCSM with respect to the undeformed ver-
sion is essentially an enhancement of the minimal allowed
values of the � branching ratio.

Next, we move on to see the effect of the extra terms in
the fermionic action depending on x4, x5, x11, when these
parameters take natural values between 1 and 1. We set to
calculate the maximal and minimal values that the branch-
ing ratios obtained from Eq. (40) can have for xi 2 f�1; 1g
within the allowed values of KZ�� and K���.

In the case of ~E2
� ¼ ~B2

� ¼ 1, we obtain the following
results, as before for scales 0:25 TeV � �NC � 1 TeV:

4:5 � 10�11 & BRa¼3;jxij�1
½J=c!���;max & 1:2 � 10�8;

5:6 � 10�10 & BRa¼3;jxij�1
½�!���;max & 1:4 � 10�7;

BRa¼3;jxij�1
½J=c!���;min � 0; BRa¼3;jxij�1

½�!���;min � 0:

(49)

As an explanation of the previous values, for example,

the first expression 4:5 � 10�11 & BRa¼3;jxij�1
½J=c!���;max &

1:2 � 10�8 means that the maximum of the J=c branching
ratio, for the range of scales 0:25 TeV � �NC � 1 TeV,
for all xi 2 f�1; 1g and for all allowed KZ�� and K���,

varies between 4:5 � 10�11—reached at the scale �NC ¼
1 TeV, and 1:2 � 10�8, reached at �NC ¼ 0:25 TeV. Note
that the dependency of the rates on �NC factorizes, as seen
in Eq. (40). Each value is reached for a particular value of
xi, KZ��, K���:

Maxima J=c : x4 ¼ �1:00; x5 ¼ �1:00;

x11 ¼ 1:00; KZ�� ¼ �0:254;

K��� ¼ 0:129;

maxima�: x4 ¼ �1:00; x5 ¼ �1:00;

x11 ¼ 1:00; KZ�� ¼ 0:00 950;

K��� ¼ �0:576; (50)

whereas for the minima the numerical results are not
reliable due to precision issues. Figs. 4 through 7 show
the resulting branching ratios as functions of KZ�� and

K��� for the particular values of the xi that yielded the

above maxima and (approximate) minima, respectively, at
the scale �NC ¼ 1 TeV. The maxima of Figs. 4 and 5
correspond to the values appearing at the left of the in-

FIG. 4 (color online). J=� ! �� branching ratio as a function
ofKZ�� and K���, for ~E2

�, ~B
2
� � 1, x4 ¼ x5 ¼ �x11 ¼ �1, at the

scale �NC ¼ 1 TeV.

FIG. 5 (color online). � ! �� branching ratio as a function of
KZ�� and K���, for ~E2

�, ~B2
� � 1, x4 ¼ x5 ¼ �x11 ¼ �1, at the

scale �NC ¼ 1 TeV.
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equalities in Eq. (49). The minima of Figs. 6 and 7 are
practically zero.

For completeness we show the corresponding results in

the ~E2
� ¼ 0, ~B2

� ¼ 1 case:

2:0 � 10�11 & BRa¼3;jxij�1
½J=c!���;max & 5:1 � 10�9;

2:0 � 10�10 & BRa¼3;jxij�1
½�!���;max & 5:0 � 10�8;

BRa¼3;jxij�1
½J=c!���;min � 0; BRa¼3;jxij�1

½�!���;min � 0:

(51)

The previous values are reached for the following values
of the parameters:

Maxima J=c : x4 ¼ �1:00; x5 ¼ �1:00;

x11 ¼ �1:00; KZ�� ¼ 0:00 950;

K��� ¼ �0:576;

maxima�: x4 ¼ 1:00; x5 ¼ 1:00;

x11 ¼ 1:00; KZ�� ¼ 0:00 950;

K��� ¼ �0:576; (52)

where again we do not display the position of the minima
since our numerical results are not reliable. The effect of
the xi terms is clearly to allow for much larger maximum
values and much lower minimum values of the branching
ratios with respect to the results in the undeformed
nmNCSM or the mNCSM. The maximum values are in-
creased up to 2 orders of magnitude with respect to the
mNCSM result of Eq. (41) and 1 order of magnitude with
respect to the results in Eq. (43) corresponding to the
undeformed version of the nmNCSM.
Despite the fact that the allowed values for the minima

experience an important decrease, for typical values of the
parameters KZ��, K���, x4, x5, x11 the rates are enhanced

with respect to the mNCSM result. To justify this claim we
have computed the branching ratios for random values of
the above parameters in the allowed region for KZ��, K���

displayed in Fig. 1 and for xi 2 f�1; 1g. For up to 1� 106

configurations of these parameters, at the scale �NC ¼
1 TeV, we found that, for ~E2

� ¼ ~B2
� ¼ 1, ð ~E2

� ¼ 0; ~B2
� ¼

1Þ, 96(88)% of the configurations yield J=c branching
ratios larger than their corresponding values in the
mNCSM, whereas in the � case the percentages are 97
(89)%. The percentage of configurations yielding a 10�
increase over the mNCSM values are 44(42)% in the J=c
case and 55(40)% in the � case. There is a 50� increase
for 2(4)% of the J=c configurations and for 4(3)% of the�
configurations.
We have also estimated the portion of the parameter

space which, at the scale �NC ¼ 1 TeV, yields values of
the branching ratios that are larger than the maximum
values in the undeformed version of the nmNCSM, which
are given in Eq. (43). The percentage of configurations that

satisfy this requirement for ~E2
� ¼ ~B2

� ¼ 1, ð ~E2
� ¼ 0; ~B2

� ¼
1Þ, is given in the J=c case by 62(55)%, whereas in the �
case it is equal to 84(67)%.
To complete our numerical estimates, we should con-

sider the case when the parameters xi take values that are
necessarily non-natural, i.e., not necessarily restricted to be
between 1 and 1. An analysis of the dependence of the
branching ratios on the parameters KZ��, K���, xi shows

that, independently of the xi, the branching ratios as a
function of KZ�� and K��� define a concave parabolic

surface (in the J=� case) or a hyperbolic surface (�
case). Thus, the maxima always appear in the boundary
of the region of the parameter space, as has happened with
our results in Eqs. (50) and (52). It is clear that allowing a
wider range of the xi will directly yield greater maxima;
since the dependence of the branching ratios is quadratic in
the xi, we expect that an increase of an order of magnitude
in the range of the xi yields a 2 orders of magnitude
increase in the maximum values of the branching ratios.
By doing some numerical computations this seems to be
roughly the case (modulo a factor between 0.45 and 0.77).

In particular, taking xi 2 f�100 100g, we get, for ~E2
� ¼

~B2
� ¼ 1 and for scales 0:25 TeV � �NC � 1 TeV:

FIG. 7 (color online). � ! �� branching ratio as a function of
KZ�� and K���, for ~E2

�, ~B2
� � 1, x4 ¼ 0:25, x5 ¼ �2:85 � 10�7,

x11 ¼ 2:86 � 10�7, at the scale �NC ¼ 1 TeV. The horizontal
plane represents the mNCSM branching ratio of 4:6 � 10�12.

FIG. 6 (color online). J=� ! �� branching ratio as a function
of KZ�� and K���, for ~E2

�, ~B2
� � 1, x4 ¼ 0:25, x5 ¼ �2:85 �

10�7, x11 ¼ 2:86 � 10�7, at the scale �NC ¼ 1 TeV. The hori-
zontal plane represents the mNCSM branching ratio of 5:1 �
10�13.
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3:5 � 10�7 & BRa¼3;jxij�100
½J=c!���;max & 9:4 � 10�5;

3:2 � 10�6 & BRa¼3;jxij�100
½�!���;max & 8:1 � 10�4:

(53)

The values at the scale � ¼ 0:25 TeV are within the
experimental bounds: BRðJ=c ! ��Þ< 2:2� 10�5 [19]
and BRð� ! ��Þ & 10�4 [21].

VII. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a deformed fermion
Lagrangian for the nmNCSM, and we have applied it to the
phenomenological estimate of the quarkonia decay rates
into two photons.

First of all, let us recall that the nonminimal version of
the NCSM gauge sector includes traces over the represen-
tations of all the massive particle multiplets with different
quantum numbers that appear in the total Lagrangian of the
model with covariant derivatives acting on them, i.e., with

terms of the type i �̂c ? ^6D ? ĉ , ðD̂��̂Þy ? ðD̂��̂Þ, [4,5].
Second, we have argued why the use of the nmNCSM,

and, in particular, its deformed version, should be favored
over the mNCSM; this is because of the proven renorma-
lizability of the pure gauge sector and the existing hints
that this property might not be spoiled when the effects of
matter loops are taken into account. The motivations for
introducing deformation terms in the fermion Lagrangian
come essentially from our lack of knowledge of the renor-
malizability properties of the matter sector of the full
nmNCSM, and also from the fact that, for the gauge
interactions, renormalizability—and even finiteness for
the first noncommutative corrections—was only achieved
by adding a deformation term to the starting Lagrangian.
Thus, our deformed fermion Lagrangian should be taken as
an effective Lagrangian for the nmNCSM as long as the
renormalizability properties are unknown. From the effec-
tive theory point of view, the values of the xi parameters
could be constrained by experimental measurements.

It should be noted that the photon polarization is known
to be modified by noncommutativity, which causes vacuum
birefringence [22], at least in the standard approach to
noncommutative theories. This follows from computations
of the one-loop photon self-energy. It should be interesting
to analyze this issue in the enveloping algebra approach. Of
course our new fermion-photon interactions, coming from
the xi-dependent terms, will also affect the photon polar-
ization at one-loop, which could be used for further ex-
perimental tests. However this is not straightforward since,
according to Ref. [23], the photon two point function, due
to gauge invariance, will only be modified at order �2 and
beyond, so that a consistent computation would imply the
use of SW maps up to Oð�2Þ.

Aside from possible experimental measurements, there
is hope that further investigations about renormalizability
properties could impose constraints on the free deforma-
tion parameters xi; it could happen that some or all of them

were fixed uniquely, as happened for the gauge sector of
the nmNCSM, and in that case the new fermion sector
would not be effective but part of a theory well defined in
the ultraviolet.
In deriving the deformed fermion Lagrangian, we did

not consider terms that altered the tree-level fermion
propagator. This was done because, on the one hand, we
should expect noncommutative effects to appear as weak
quantum corrections, and thus we do not find it desirable to
break the usual Lorentz-invariance matter dispersion rela-
tion p2 ¼ m2 at tree level. On the other hand, we wanted to
apply the framework to the computation of decay rates,
which implies the calculation of S-matrix elements. In
ordinary space-time one uses the LSZ formula, which
relies on general properties of the pole structure of the
Green functions of the theory (and, in particular, the two-
point function), which follow only from Poincaré invari-
ance. In noncommutative space-time the usual Lorentz-
invariance does not hold, and thus a proper all-order defi-
nition of S-matrix elements seems challenging (in the case
of noncommutative theories that do not make use of
Seiberg-Witten maps, some advances have been done in
this respect, see, for example, Ref. [18]). Nevertheless,
since we were computing S-matrix elements at tree level
and we were not altering the tree-level two-point function,
we believe that the usual LSZ formalism should hold at this
level. As a consistency check, our S-matrix amplitudes
satisfy the usual Ward identities associated with U(1)
gauge invariance, which are derived in ordinary space-
time as a consequence of gauge symmetry and the pole
structure of the diagrams. Nevertheless, a deeper under-
standing of the S-matrix and the LSZ formalism in non-
commutative theories is still needed. We also recall that
some of the terms considered in Eq. (12) violate CPT
exclusively in the weak sector; also, there appear C, T
violations in the strong and hypercharge sectors. This
could be of phenomenological interest for searches of
Physics beyond the standard model; note that the violations
are very small since they appear purely as noncommutative
effects.
Concerning our results for the quarkonia decay ampli-

tudes, it should be noticed first that the on-shell amplitudes
turned out to be independent of the C, T violating terms t8,
t10; also, though they are dependent on x11, which is
associated to CPT violations in the weak sector, no CPT
violating interactions contributed to the result. Ref. [20]
argued that to get one-loop renormalizability in noncom-
mutative QED, the term t7 of Eq. (12) should be added
to the bare Lagrangian. This does not conflict with the
fact that the quarkonia decay amplitudes are not apparently
influenced by the terms with three �� matrices in Eq. (12):
first, we absorbed the contributions of t7 in the terms t4 �
t6, t8, t10, t11 by using field redefinitions, and, though the
on-shell amplitudes did not depend on the parameters x6,
x8, x10, the amplitudes evaluated at arbitrary momenta did.
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With respect to the numerical results obtained for the decay
rates, we showed that the effect of the extra gauge term in
the action of the extended nmNCSM is essentially to raise
the minimum allowed values of the � ! �� decay rate,
masking the destructive contributions that were found in
the undeformed nmNCSM in Ref. [12]. However, when the
new terms of our deformed fermion Lagrangian are taken
into account, this effect disappears, and both the minimum
and maximum allowed values for the decay rates experi-
ence high decreases and increases, respectively.

Having very low allowed values for the quarkonia decay
rates is no good news for the possibility of comparison with
experiments in order to confirm or falsify the theoretical
predictions: in principle, nonzero q �q1 ! �� decay rates
could be taken as a signal of noncommutativity, but if the
models allow for extremely small values it would be
difficult to discard them. However, the panorama is more
promising because, despite the minimum possible values
are very small, for most configurations of the parameters
(between 88 and 97% at �NC ¼ 1 TeV for natural values
of the parameters) we obtain branching ratios that are
greater than the ones that were computed for the
mNCSM. Furthermore, for a big portion of the parameter
space (between 55 and 84% under the same conditions),
the decay rates, computed from deformed nmNCSM, are
actually larger than the maximum values that were found in
the case of the undeformed nmNCSM.

Thus, in general we get constructive contributions to the
decay rates and the model allows for greater values of the
branching ratios that the ones that had been previously
found; the maximum values increase by up to 2 orders of
magnitude. Possible future studies of the renormalizability
of the matter sector could help to restrict the allowed values
in the parameter space, as happens in the gauge sector with
the ambiguity parameter a of Eq. (5) forced to be equal to
3, and this could make the model more predictive or
falsifiable. Again, we recall the result of Ref. [20], which
in the QED case argues that one-loop renormalizability
demands to add only the term t7 of Eq. (12) to the
Lagrangian; this may also happen in the NCSM but the
result cannot be directly extrapolated since, after the ex-
pansion with the SW map, the NCSM Lagrangian is not
given by a sum of Lagrangians for the different gauge
groups due to the appearance of interactions between the
different gauge fields.

Today’s existing experimental limit for the branching
ratio of the J=c ! �� decay can be found in ‘‘Review of
particle physics,’’ under the C symmetry violating modes,
and is BRðJ=c ! ��Þ< 2:2� 10�5 [19].
With respect to the � case, as it was commented in

Ref. [12], the existing limit for the branching ratio of the
� ! �� decay comes from a very old CLEO-III experi-
ment [21] and it indicates that with present data the detec-
tion of BRð� ! ��Þ below 10�4 would be hopeless.
As follows from Eq. (53), the previous experimental

bounds are reachable in our model at the scale � ¼
0:25 TeV for values of xi tuned to be around 100, and
for lower scales for higher values of the xi. Thus, there is
some hope that the phenomenology of our model could be
relevant.
Furthermore, despite the fact that all experiments in-

cluding hadrons are extremely hard to perform and analyze
due to the huge background signals, the large number of
heavy quark-antiquark pairs harvested at LHCb; i.e., 1012

B �B pairs per year [24], and probably (1014 D �D; 1018 K �K),
give us hope that experimental branching ratios BRð� !
��Þ � 10�9 and BRðJ=c ! ��Þ � 10�11 could be acces-
sible, thus reaching our maximum predicted values for the
rates for jxij � 1 (46)–(51). Certainly these experiments
would produce at least reliable (and much lower) bounds;
perhaps they could even measure these processes, depend-
ing on the scale of noncommutativity. We hope that the
importance of a possible discovery of space-time noncom-
mutativity will convince experimentalists to look for SM
forbidden decays in hadronic physics.
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