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We present a numerical investigation of the dynamics of symmetry breaking in both Abelian and non-

Abelian ½SUð2Þ� Higgs models in three spatial dimensions. We find a class of time-dependent, long-lived

nonperturbative field configurations within the range of parameters corresponding to type-1 super-

conductors, that is, with vector masses (mv) larger than scalar masses (ms). We argue that these emergent

nontopological configurations are related to oscillons found previously in other contexts. For the Abelian-

Higgs model, our lattice implementation allows us to map the range of parameter space—the values of

� ¼ ðms=mvÞ2—where such configurations exist and to follow them for times t�Oð105Þm�1. An

investigation of their properties for ẑ-symmetric models reveals an enormously rich structure of

resonances and mode-mode oscillations reminiscent of excited atomic states. For the SUð2Þ case, we
present preliminary results indicating the presence of similar oscillonic configurations.

DOI: 10.1103/PhysRevD.79.025016 PACS numbers: 11.10.Lm, 11.27.+d

I. INTRODUCTION

The mechanism of spontaneous breaking of local gauge
symmetries plays a fundamental role in our current under-
standing of high-energy particle physics [1] and of con-
densed matter systems [2]. In very general terms, it can be
stated that a spontaneously broken symmetry is always
associated with the existence of degenerate vacuum states:
the theory predicts the existence of discrete or continu-
ously degenerate vacua while nature chooses one of them.
Strictly speaking, the mixed matrix elements describing
possible transitions between vacuum states only vanish in
the infinite-volume limit. However, since mixed matrix
elements scale with volume V as exp½�cV �, where c is
a positive constant, for all practical purposes symmetries
do get broken for large enough volumes.

In the realm of relativistic quantum field theories, the
particle spectrum of a given model is computed as small
perturbations about a broken-symmetric vacuum state. In
addition to these, models with nontrivial nonlinear cou-
plings may also have nonperturbative, solitonic solutions
to their equations of motion [3]. These usually come in two
kinds: for models with nontrivial vacuum structure, there
can exist static solutions that owe their stability to the
topology of the vacuummanifold, the so-called topological
defects [4,5]. For example, models with a 1d (one spatial
dimension) real scalar field with a double-well potential
have kink solutions, while Abelian-Higgs models in 2d
have Nielsen-Olesen vortices. In both cases, symmetry is
restored at the core of the topological defect. In contrast,
nontopological solitons owe their stability to the conserva-
tion of a global charge [6,7]. The distinctive signature of
both topological and nontopological solitons is their time

independence: they are effectively static solutions to the
equations of motion, even in the case of Q balls, where the
complex scalar field is written as �� exp½�i!t� so as to
transform the time-dependent term in the equation of mo-
tion to a mass term �!2�2.
Given the vast richness of spatiotemporal phenomena in

nature [8], one should suspect that other possible non-
perturbative configurations exist in relativistic field theo-
ries once we allow for their time dependence. Usually,
these are not taken into account, as they are expected to
be short-lived and hence dynamically uninteresting.
However, if long-lived configurations do exist, they are
bound to play a crucial role when fields are far from
equilibrium and, in particular, during symmetry breaking.
If present, they will change our understanding of the
vacuum, as they comprise, together with possible topologi-
cal and nontopological extended field configurations
(EFCs), nonperturbative fluctuations about it: for example,
if we are to sum over possible contributions to the path
integral, these must be included. In a cosmological setting,
if we are to study the approach to thermalization during
post-inflationary reheating [9,10], these configurations
could possibly be very important [11,12].
As more recent research has shown, there are abundant

examples of such long-lived solutions [13–19,21]. The first
hint was the discovery of breathers in 1d kink-antikink
scattering (see, e.g., Ref. [22]): for certain relative veloc-
ities a new time-dependent configuration, a breather, would
form. Remarkably, breathers were never seen to decay.
Their demise may only occur through highly suppressed
nonperturbative decay modes. Even before that, spheri-
cally symmetric configurations called ‘‘pulsons’’ were
found by Bogolyubsky and Makhankov [23,24]. These
were the first examples of the configurations later called
oscillons in Refs. [13,14], where it became clear that such
oscillating large-amplitude real scalar-field solutions are
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present in any 3d model with amplitude-dependent non-
linearities, as long as the potential has a region of negative
concavity, V 00 < 0. For more details on the properties of
scalar-field oscillons, see Ref. [25].

The more recent extension of oscillons to the standard
model presented in Refs. [15,18] prompted us to search for
oscillons in the Abelian-Higgs model. In our first work
[19], we found that vortex-antivortex annihilation in 2d
can, for a range of parameters, generate remarkably long-
lived oscillonlike configurations. These are characterized
by a seesaw oscillation in the z component of the magnetic
field and seem to owe their stability to a gauge-field
induced mass gap for the scalar field, although an in-depth
study is still lacking.

In the present work we explore the existence of oscillon-
like states in 3d Abelian-Higgs models. We find that they
not only exist but are quite easily found in the context of
type-1 superconductors, that is, for gauge-field masses
substantially larger than Higgs-field masses. As in 2d, we
construct an effective phase diagram mapping the range of
parameters where oscillons are found. Using extrapolation,
we obtain an approximate critical value of the control
parameter � ¼ ðms=mvÞ2 beyond which we conjecture
that no oscillons are produced during symmetry breaking.

The crucial point, though, is that these configurations
emerge spontaneously during symmetry breaking. We do
not start with an approximate spherically symmetric solu-
tion and see it relax into oscillons, as has been the rule in
such studies. The Uð1Þ oscillons literally condense dy-
namically, as the system transitions from its symmetric to
its broken-symmetric state. Although it is true that we take
advantage of the formation of flux tubes to facilitate the
formation of oscillons—a 3d analog of the vortex-
antivortex annihilation in 2d—those flux tubes occur natu-
rally during the symmetry-breaking process. It is quite
remarkable that, in a model where there is no topologically
stable defect, flux-antiflux-tube annihilation will form
long-lived EFCs. Even though they do not show the same
symmetry restoration at the core as do topological defects,
we show that in 3d Uð1Þ oscillons clearly probe into the
V 00 < 0 part of the potential. We also briefly discuss the
remarkably rich structure of these objects, which display
resonant mode-mode fluctuations reminiscent of excited
atomic states. We briefly comment on preliminary results
in the context of SUð2Þ Higgs models where, although we
were not able to find long-lived configurations, there is a
strong indication that they exist in the type-1 regime.

This paper is organized as follows: in Sec. II we present
the model and our conventions. In Sec. III we describe our
search for Uð1Þ oscillons and how we managed to isolate
them to investigate their longevity. In Sec. IV we present
the phase diagram for 3d Uð1Þ oscillons and obtain the
critical value of the control parameter �. In Sec. V we
describe the rich resonant structure of these configurations,
stressing the similarities with excited atomic states. In

Sec. VI we briefly comment on preliminary results for
type-1 SUð2Þ models. In Sec. VII we present our conclu-
sions and a brief summary of our results. Finally, the
appendixes describe the technical details and issues of
the lattice implementation of Abelian and non-Abelian
models. Particular attention is paid to the proper imple-
mentation of gauge constraints in the presence of stochas-
tic forcing terms.

II. Uð1Þ & SUð2Þ EQUATIONS AND CONVENTIONS

We use the continuum Lagrangian

L ¼ D��
y �D��� 1

4F
�� � F�� þ 1

4�ð�y ��� �2Þ2;
(1)

where D� ¼ @� þ igA� and A� is either the Abelian

Uð1Þ or non-Abelian SUð2Þ gauge field. The context within
which we will be using one or the other will be clear. The
operation � does nothing for Uð1Þ but is equal to a � b �
1
2 Tra

yb for SUð2Þ matrices. Performing the scaling A� !
��1A�, � ! ��1�, and x ! �gx, there is only one in-

dependent parameter in these models, the ratio of scalar to
vector masses, � � ðms=mvÞ2 ¼ �=ð2g2Þ. For conve-
nience, we will keep � ¼ 2 and vary the gauge coupling
g so that all times are quoted in units of the scalar mass,
½t� ¼ m�1

s .
Note that this choice of conventions can be related to

condensed matter models that use the hopping parameter �

(for example, see Ref. [26]) by � � 1=
ffiffiffi
2

p
g. The critical

parameters separating type 1 (small�) and type 2 (large �)

for Uð1Þ superconductivity are � ¼ 1 and � ¼ 1=
ffiffiffi
2

p
.

The continuum equations for this system are

D �D�� ¼ @�yV; (2)

D �F
�� ¼ J�; (3)

where J� ¼ ið�yD����D��yÞ is the conserved cur-
rent. We will solve these equations numerically in the
temporal gauge A0 ¼ 0, which makes the time component
of the last equation a nondynamical constraint. This gauge
also allows the definition of simple functions for the con-
jugate momenta and hence for a Hamiltonian lattice im-
plementation. Details of the lattice implementation can be
found in the appendixes.

III. FINDING OSCILLONS IN THE Uð1Þ THEORY

In a previous work, we showed that in 2d it is possible to
find long-lived, time-dependent oscillon configurations
from the annihilation of vortex-antivortex pairs (hence-
forth vav) [19]. These remarkable EFCs are characterized
by a persistent seesaw oscillation of the magnetic field Bz

and very little emitted radiation. (The interested reader can
see an animation in Ref. [20].) We were also able to show
that the formation of Uð1Þ oscillons can be described as a
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phase transition in field configuration space with � as the
control parameter: oscillons were shown to form from vav
annihilation only for � � �c ’ 0:13ð6Þ � 2. We con-
structed an order parameter Eosc=Ev, where Eosc is the

oscillon energy and Ev ’ 2��1=5 is the Nielsen-Olesen

vortex energy, showing that Eosc=Ev � ðj�� �cjÞ0:2ð2Þ�2.
Figure 1 shows a few relevant observables during the

oscillon phase. Note the constancy of the total energy
(black line), integrated over a finite volume surrounding
the oscillon. The top (blue) line denotes the local maxi-
mum of the total Hamiltonian density, max½H ðt; x; yÞ�.
The program scans the lattice at each time step to find
the local maximum of the energy density. The dashed
(green) curve displays the value of the effective radius of

the configuration, computed as R2
eff �

R
r0
0
r2H ðrÞdrR

r0
0
H ðrÞdr , with

r0 � few m�1
s . The bottom (continuous, red) curve

denotes the minimum amplitude of the scalar field,
min½�y�ðt; x; yÞ�. Here, it is important to notice that the
vacuum is at �y�jvac ¼ 1, while the inflection point is at
�y�jinf ¼ 0:5. Thus, the 2d oscillon is marginally non-
perturbative as the field amplitude hovers just around the
inflection point. We will see that this will not be the case
in 3d.

It is natural to search for similar oscillonlike EFCs in 3d.
However, as soon as this is attempted, one meets a few
obvious challenges. First, contrary to 2d, there are no stable
topological vortices in 3d. We can find Uð1Þ flux tubes, but

they do not share the stability of 2d Nielsen-Olesen vorti-
ces. Second, it is computationally much harder to search
for EFCs in 3d. As wewill see, if we start from a symmetric
initial state and quench to the broken-symmetric state,
there will be an excess of energy that makes potential
candidates harder to isolate.
Generally, finding an oscillon involves some method of

confining enough energy within a small spatial region and
then seeing if the energy remains localized without any or
with very little dissipation to infinity. This method implies
that oscillons can be thought of as attractors in field con-
figuration space: through their natural dynamical evolu-
tion, the interactions among the fields will conspire to
create an oscillon solution. This property of oscillons has
recently been demonstrated analytically in the context of
pure real scalar-field models [25]. A similar proof for the
gauge models is lacking, but our numerical results indicate
that this property will also hold for these more realistic
models.
From our experience with the 2d theory, we know that

for small � ¼ m2
s=m

2
v oscillons can form from vav decay.

We can try to extend this result to 3d. Note that the fact that
oscillons form easily from vav annihilation for small �
does not mean that they only form for small �: we have
observed that they can also form from a zero-phase
Gaussian initial condition in � for larger �, � ¼
1��0 exp½�r2=R2�, where �0 is the departure from the
vacuum at j�j2 ¼ 1 and R its spatial extension.
We stress that there is a fundamental difference in these

two approaches. Using a Gaussian as an initial condition
relies on our knowledge of the approximate oscillon be-
havior and is equivalent to coaxing the solution into ex-
istence by letting the fields relax into it from a nearby point
in field configuration space. This is commonly done in
numerical relaxation techniques. A quench, on the other
hand, does not assume any initial profile for the solutions:
the oscillons emerge spontaneously as the system works to
minimize its energy and maximize its entropy dynamically.
Thus, finding oscillons through this dynamical approach
offers strong evidence of their existence as attractors in
field configuration space. This means we should expect
them to be present during symmetry breaking.
We now describe the procedure to form oscillons from

vav annihilation. We first thermalize the fields in a sym-
metric single-well potential at low temperature T and with
viscosity 	 ¼ 1. We do this using the stochastic Langevin
approach described in the appendixes. We then switch to
the double-well potential, while at the same time turning
off the stochastic noise but maintaining the viscosity. The
viscosity will dampen excessive energy and will allow a
more transparent identification of the many vortices and
antivortices formed on the lattice. The steps are as follows:
(i) Following the lattice implementation in Ap-

pendixes A and B, set all fields ðA�;�Þ and their

derivatives to zero.

FIG. 1 (color online). A few observables characterizing the
2d Uð1Þ oscillon. The top (blue) line is the maximum energy
density of the EFC, while the black line is the total energy within
a radius of R ¼ 4. The lower plot shows both the expected radius
of the EFC Reff (green, dashed line) and the minimum value of
��� within the EFC (red, solid line). All of these observables
except the energy are oscillatory in time and have a nontrivial
Fourier space distribution of frequencies.

CLASS OF NONPERTURBATIVE CONFIGURATIONS IN . . . PHYSICAL REVIEW D 79, 025016 (2009)

025016-3



(ii) Thermalize using Langevin dynamics in a quadratic
potential with a minimum at � ¼ 0. The tempera-
ture T should be chosen to generate a distribution of
fluctuations across k space. A typical number is T �
0:1ms. Using 	 ¼ 1 (in units of ms), the system
should thermalize well within t� 10m�1

s . We take
the system to be thermalized when @th�2i � 0,
where � ¼ @t� and the brackets denote a volume
average.

(iii) Switch to T ! 0 while keeping 	 ¼ 1 and simul-
taneously switch to the double-well (Higgs)
potential.

(iv) Then evolve for t� 15m�1 until the vortices and
antivortices form.

(v) Set 	 ¼ 0, and then evolve conservatively.
Nearby vortices (antivortices) will then interact to form

higher-N vortices (antivortices) while nearby vav pairs
annihilate. In 2d, for strongly type-1 parameters (� �
0:136) the process of vav annihilation has a good proba-
bility of forming gauged oscillons [19]. Whether they form
this nontopological, time-dependent, radially symmetric
bound state depends on both the size of the perturbative
modes around the structure and on the relative velocity of
the vortices as they interact. Our strategy in 2d was to
minimize as much as possible their relative velocity using
the viscosity. We also noticed the robustness of the formed
oscillons against perturbative radiative modes.

A. Uð1Þ oscillons in 3d: Breaking the symmetry

In 3d the dynamics is significantly different, as the flux
tubes are not topologically stable as are vortices in 2d.
Also, there are more decay paths, and more surface energy
to compensate for in higher dimensions. Attempts using
the Gaussian ansatz initial condition were not successful.
As an aside, we note that our approach to find new time-
dependent nonperturbative solutions is applicable to a
variety of nonlinear partial differential equations. The
same way that oscillons could never have been predicted
with the perturbative analytical techniques commonly used
to study nonlinear equations, we conjecture that many
nonperturbative time-dependent solutions remain un-
known. Small-amplitude, spatially extended oscillons
were recently found in the context of real scalar-field
theories a posteriori, after they were numerically discov-
ered. These objects are amenable to a small-amplitude
treatment, as has been shown in Refs. [11,27].

The ansatz is � ¼ 1��0e
r2=R2

, with �0 ¼ 1 and R ¼
4 and for � ¼ 0:04. No information was put in the gauge
fields; that is, we took Ai ¼ 0. We tried many different
combinations of radii, amplitudes, and couplings g, but
none of the configurations were stable. Even though this
same type of ansatz was successful in the equivalent 2d
theory for a large range of �, it is clearly too simplistic for
3d. As we know that 3d Uð1Þ oscillons exist (see below), a
longer-lived oscillon should be found with the ansatz

method, although one would need to incorporate the gauge
fields in a more sophisticated way. As we are more inter-
ested in the dynamical emergence of oscillons, we will not
pursue this further. It is worth mentioning that although the
configuration decays in t � 700m�1

s , this is still enough
time for the object to dramatically affect macroscopic
physics. It is important to keep this in mind when judging
the possible implications of short-lived nonperturbative
resonances.
Our next attempt involved making a string network and

letting those strings interact to see if long-lived, localized,
nontopological, spatiotemporally complex objects were
formed. To do this, we followed the same steps outlined
above: first, we thermalized the field to Tlatt ¼ T
x�d in a
quadratic potential; second, we quenched it by switching to
the double-well potential to seed the formation of strings;
third, we maintained the viscosity long enough so that the
strings stabilized and the scalar field approached its vac-
uum expectation value. The viscosity dynamically de-
creased the temperature T ! 0. As in 2d, the only
consideration when choosing an initial T is to generate
enough excited modes to seed the formation of a sufficient
density of strings upon symmetry breaking while not so
high that they are overdense. Specific parameters are given
below. Finally, after the string network formed, the friction
was turned off and the strings interacted. We then had to
search for nontrivial structures resulting from these inter-
actions. We started to explore at very small �, since in 2d
that is when structures are more likely to form. Also, we
expect �c to be smaller than in 2d, as there will be more
surface tension to compensate for. In what follows, we
describe the details of two searches, characterized by the
initial parameters as configurations 1 and 2, respectively.
This should allow our results to be reproducible by other
groups.

1. Configuration C1

The details of configuration C1 were

fd;NL; L; 
x; 
t; g; �; �; TlattgC1

� f3; 96; 19:2; 0:2; 0:05; 4; 2; 1; 0:25g; (4)

where the various symbols stand for the following: d—
spatial dimensionality; NL—number of lattice points; L—
lattice length; 
x—lattice spacing; 
t—time discretiza-
tion; g—gauge coupling; �—scalar coupling; �—viscos-
ity; Tlatt—lattice temperature. As remarked, the basic
procedure for constructing this configuration is similar to
how we formed vortices in 2d, although we have more
sensitive dependence on the time scales for string forma-
tion in 3d. For clarity, the steps are as follows:
(i) Set all fields to their vacuum configurations, �� 0

in the quadratic potential V ¼ �y�.
(ii) Thermalize using Langevin dynamics with 	 ¼ 1

for t� 10m�1
s at Tlatt ¼ 0:25.
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(iii) Set T ¼ 0 (no Langevin kicks), 	 ¼ 0:25, and
simultaneously switch to the double-well (Higgs)
potential. Evolve for t ¼ 3m�1

s .
(iv) Evolve with 	 ¼ 1:0 for t� 12m�1

s until string
loops form.

(v) Switch 	 ! 0, and satisfy the condition in
Eq. (A13) (the Gauss constraint) by setting all the
momenta to zero.

(vi) The remainder of the run is now energy conserving,
and we evolve this portion with an Oð
t8Þ sym-
plectic integration scheme.

Configuration C1 nicely generates an initial string net-
work. As shown in Fig. 2, due to the small lattice size, the
strings annihilate quickly into a loop which then violently
decays into a few oscillon candidates. Because some of
these candidates are relativistically boosted away from the
string annihilation region, they are also Lorentz contracted
in the direction of motion. Some of these decay and we are
left with a fairly hot background with three spatially local-
ized configurations show in Fig. 3. One of these objects still

moves quite fast and is noticeably Lorentz contracted (top
left of Fig. 3); it decays after colliding with the larger slow-
moving one which has quickly taken a spherical shape
(center right of Fig. 3). The second fast structure then
decays at t� 200m�1

s (not visible in the figure), after
interactions with the hot background, while the spheroidal
object remains until t� 1000m�1

s . This is our oscillon
candidate.
There are a few points to address. First, we call the fast-

moving, localized object (on the top left of Fig. 3) an
oscillon candidate and not a radiation wake because we
observed that it does not decay according to an expected
dispersion relation in the direction of travel or perpendicu-
lar to it. One would expect a wake to disperse at least
perpendicularly to the direction of travel. The full simula-
tion shows that one can easily distinguish and identify the
radiation wakes. For simulation, see Ref. [28].
Second, if these relativistically boosted structures decay

in about �100–200m�1 time units, does it mean they are
not very stable? It is hard to say in the context of this

FIG. 2 (color online). Four snapshots (t ¼ f12; 18; 24; 43gm�1
s increasing from left to right) for configuration C1. The energy density

is plotted with an isosurface of H x̂ ¼ 0:275 (blue, dark grey), �y� ¼ 0:45 (red, grey), 1
2 ðE2 þ B2Þ ¼ 0:275 (green). (The energy

isosurface is 25% transparent and, when outside of red, appears purple). In black and white, the plots give an approximation for the
median energy isosurface. At the first time-slice the friction has just been turned off. As the string network twists and accelerates, it
generates violent changes in the magnetic field at its sharp corners. The shrinking of the toroid forces the flux to get radiated out of
these sharp edges, generating the magnetic wakes seen in the last time slice. See Ref. [28] for simulation.
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simulation. We have seen in 2d that even configurations
that will evolve to become oscillons, forming at rest and
without a hot background (in a near vacuum), can take a
long timeOð102m�1

s Þ to settle down into a coherent object.
Thus, if they were boosted with relative velocities to a
large-amplitude radiation bath at birth or soon after, they
may never have settled into an oscillon state. Of course,
since this is a Lorentz invariant theory, we can boost any
configuration across the vacuum without affecting its
stability. But if the boost exposes the object to a relatively
fast-moving and large-amplitude set of radiation modes
(so, not near vacuum), its decay may be catalyzed. Here
is an intuitive justification for this fact. Consider a
configuration-space attractor characterized by a coherent
object. Consider further that it is possible to attach a
measure in configuration space, so that there is a well-
defined ‘‘distance’’ from any configuration to this attractor
point. In the presence of large perturbations, the probabil-
ity of an initial configuration settling into the attractor will
decrease with its distance to it. Back to our simulation, we
see that candidate configurations far from reaching the
oscillon state may not be stable enough to settle into it in
the presence of large perturbations. However, our surviving
configuration clearly does.

The third point is that any stability arguments have to
take into account stochastic thermal effects. This particular

configuration (radiative fields over whole volume plus EFC
contributions) has an average energy density hH i �
0:062 67 and an approximate temperature of the same order
of magnitude. While the approximate energy density of the
oscillon is more than an order of magnitude higher in the
core, much of the lower-energy modes which make up the
structure will be disrupted by such a temperature. As has
been shown in the context of real scalar-field oscillons, it is
not surprising that thermal noise will compromise the life-
time of coherent states [29].
Even though no similar stability analysis has been per-

formed in the context of gauged oscillons, temperature
effects may be a serious obstacle to the formation of
oscillons and to their stability. This is not really that
surprising, since we expect symmetries to be restored at
high temperatures. The crucial question, then, is if the
gauged oscillons can sustain stochastic thermal effects. In
other words, if they are present, at what fraction of Tc do
they get destroyed?
Back to our simulation, after �250m�1

s only one oscil-
lon is left on the lattice. It can be treated as a single
object with some residual velocity in the midst of a thermal
bath. To characterize this object we can look at a
few observables. The maximum energy density is
max½H ðt; x; y; zÞ� � 4. The fraction carried by the gauge
fields is quite large at some times, H max

E2þB2 � 3. Similarly

to the 2d gauged oscillons, it is clear that the gauge fields
play a fundamental role in the oscillon dynamics. The
maximum amplitude of scalar-field oscillations is �y��
0:27. This is very important: although symmetry is not
quite restored at the oscillon core as it is in usual topologi-
cal defects, it still qualifies as a large nonperturbative
coherent fluctuation away from the vacuum state, since
the inflection point of the potential is at �y�jinf ¼ 0:5.
This particular configuration then dies at t� 1000m�1

s .

2. Configuration C2

The details of configuration C2 are

fd;NL; L; 
x; 
t; g; �; �; TlattgC1

� f3; 96; 19:2; 0:2; 0:05; 5; 2; 1; 0:25g: (5)

We prepare this simulation very similarly to configuration
C1: the gauge coupling is increased from g ¼ 4 to g ¼ 5,
and we also extend the time in which the dissipation is
present for formation of the string loop from t� 12m�1

s to
t� 26m�1

s .
(i) Set all fields to their vacuum configurations in the

quadratic potential �y�.
(ii) Thermalize using Langevin dynamics with 	 ¼ 1

for t� 10m�1 at Tlatt ¼ 0:25.
(iii) Switch T ! 0 and 	 ! 0:25 and simultaneously

switch to the double-well (Higgs) potential. Evolve
for t ¼ 3m�1

s .

FIG. 3 (color online). Residual oscillon candidates from con-
figuration C1 after the radiation from the flux-tube decay has
dissipated throughout the lattice. In black and white, the plots
give an approximation for the median energy isosurface. The
time slice is at t ¼ 74m�1

s ; the energy-density isosurface is at
H x̂ ¼ 0:275 (blue); the scalar-field amplitude is at�y� ¼ 0:45
(red is not visible since it is inside the energy isosurface); and the
gauge field energy density is at 1

2 ðE2 þ B2Þ ¼ 0:275 (green).
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(iv) Evolve with 	 ¼ 1:0 for t� 26m�1
s until string

loops form.
(v) Set 	 ¼ 0, and satisfy condition (A13) by setting all

the momenta to zero.
(vi) The remainder of the run is now energy conserving,

and we evolve this portion with an Oð
t8Þ sym-
plectic integration scheme.

An oscillon is formed from this configuration, and we
observed it for a time of t� 15 000m�1

s . At this point we
stopped the simulation as the oscillon had not changed for
thousands of time units, continuing to drift across the
lattice. In Fig. 4 we plot for a short time the evolution of
two important observables related to this oscillon: maxi-
mum of energy density,max½H �, and minimum amplitude
of scalar field, min½�y��. Compare with a similar plot for
an equivalent oscillon in 2d in Fig. 1. Cleaner data will be
obtained below.

Now that we know that these objects exist in 3d, we can
move on to a more in-depth study of their properties. The
problem with the two previous configurations is that they
leave too much energy on the lattice, making it hard to
study the oscillon accurately. This extra energy also cata-
lyzes their decay. Next, we propose an approach to remove
all the spurious energy so that we can investigate Uð1Þ
oscillons in more detail.

B. Isolating the 3d Uð1Þ solution
In order to isolate the oscillon, we take an initial con-

figuration that we know allows for at least one EFC from
flux-tube annihilation, that is, for the annihilation of
two long strings with opposite magnetic fluxes inside, the
equivalent of 2d vortex-antivortex annihilation. After
the flux tubes interact and annihilate, we search the

lattice for the maximum value of the energy density,
max½H ðt; x; y; zÞ�, which hopefully correlates with the
presence of an oscillon. After finding the maximum and
tracking it for a while to make sure it is sufficiently long-
lived, we place a spherical friction wall at a radius r 	 Rf

from it (the choice of Rf to be made explicit soon) to

FIG. 4 (color online). The left panel shows the minimum value of�y� for the � ¼ 0:04 oscillon configuration in Fig. 6. On the right
is the maximum of the energy density H ðt; x; y; zÞ.

FIG. 5 (color online). Time evolution of the total energy
(dashed line) and of the energy within a sphere of R ¼ 4 for a
� ¼ 0:01 oscillon. After a quick shedding of a large amount of
energy, the onset of the oscillon stage at a time t� 103 is
characterized by a very slow energy decay accurately fitted by
_EðtÞ ¼ �c1t

�c2 , where c2 ’ 1:2. The inset shows the numerical
value of the energy and the fitted curve (indistinguishable) for
t 	 104.
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dissipate all modes outside the EFC, effectively ‘‘mop-
ping’’ the lattice from possible destructive perturbations
that may affect the formation and longevity of the oscillon.
The fields within the cavity at r < Rf settle into an oscil-

lon, which moves about the lattice carrying the friction
wall along. When the energy for r 	 Rf is only very

slowly decreasing, we know that we have dissipated most
of the excess energy in the lattice volume; any residual
energy within the cavity is contributed by the oscillon
itself. Once the average energy density outside the cavity
has decreased to �Oð10�4Þ times the oscillon’s energy
(that is, the energy for r < Rf), we can turn the friction

off and watch the oscillon drift about the lattice. Using this
method, we have seen oscillons live for longer than t 	
69 000m�1

s for � ¼ 0:04 without showing any signs of
instability. In Fig. 5 we show the oscillon energy as a
function of time for a simulation with � ¼ 0:01, where
its long time behavior can be explicitly seen. Note that
even though our phase diagram stops at � ¼ 0:04, this

does not mean that there are no oscillons formed for
smaller�. This is why we include the example in the figure
with � ¼ 0:01. The small � analysis is incomplete due to
CPU limitations and not physics, as is the case for �>�c.
This method also allows the approximate determination of
the oscillon’s energy, obtained by a volume integral over
the lattice [Eoscð� ¼ 0:04Þ � 9], and the value of the en-
ergy at the oscillon’s core, which is the tracked value
max½H ðt; x; y; zÞ�. This value and the value of the mini-
mum of �y� are plotted in Fig. 4 a short time after the
oscillon has formed and the friction wall has been turned
off (marking the t ¼ 0 in the plots.) These plots correspond
to the isosurface plots in Fig. 6.
More specifically, the friction is implemented by con-

structing a shell around the location of max½H ðt; x; y; zÞ�
which vanishes for a radius r � Rf ¼ 4:0 and equals 	 ¼
tanhðr� RfÞ=2 for r 	 Rf. The oscillon is safely localized

within this shell. Although the implementation of the
friction wall does a great job isolating the oscillon solution,

FIG. 6 (color online). Four snapshots (t ¼ f0; 1; 16; 90gm�1
s ) of the initial stages of a long-lived 3d Uð1Þ oscillon. The total energy

density (blue, dark grey) at an isosurface of 0.05 is plotted. The energy-density isosurface in the gauge fields (green, not visible in black
and white) is also at 0.05, while for the scalar-field magnitude�y� ¼ 0:9 (red, dark grey). The size of the plotted area is 1906m�3

s and
� ¼ 0:04. The energy of the resulting oscillon is about Eosc � 9. The spherical shell (magenta, light grey) in the lower plots denotes
the friction wall which follows the oscillon throughout the lattice. Because of the toroidal boundary conditions, the nearly spherical
profile of the low-energy outer surface of the oscillon is visible as a cross section at t ¼ 90 (lower right diagram). Note also that a
second oscillon candidate is present at t ¼ 1 (top right panel), but does not survive long due to the friction. For simulation, see
Ref. [30].
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it obviously violates the Gaussian constraint (A13), as one
can see by rederiving current conservation from the equa-
tions of motion with this nontrivial form of 	. However, the
fact that what violates Gauss’s constraint is a viscosity term
only acting in a region with a negligible energy-density
contribution from the configuration of interest is helpful. If
the violations are far enough from the region of interest—
that is, for r < Rf—then the simulation is trustworthy

since the violations continue to decrease in magnitude as
r increases. We also note that usually, when there are
numerical instabilities or violations in constraint equa-
tions, these will tend to create exponential instabilities.
This is not the case here, as our numerical method is
perfectly stable in the presence of these nonpropagating
charge densities.

To investigate the violation in Gauss’s constraint we take
the absolute value of Eq. (A13). We then plot this along
with the friction wall and the localized structure which has

formed inside of it, the oscillon. Hopefully, from this
experiment we can gain some understanding of what ef-
fect, if any, the Gaussian constraint violation has on the
dynamics. In Fig. 7 we show the oscillon (in blue and
green) up to t� 500m�1

s as it moves through regions of
Gaussian violation (in orange) at about the 10�3 level
without any discernible variation of its observable
max½H � and minj�y�j oscillations as compared to os-
cillons formed in systems with Gaussian violations at the
10�12 level of absolute magnitude. As the friction wall is
turned off at t� 200m�1

s (bottom left), the extra charge
density from the Gaussian violation stays fixed in space,
while the oscillon keeps moving about the lattice with no
discernible effect (bottom right). For simulation, see
Ref. [31].
In Fig. 8 we plot the expectation value of the violation

of Gauss’s constraint �ðtÞ ¼ hj 1

x

P
iðEi

x̂ � Ei
x̂�î

Þ �
2g Imð�y

x�Þji as a function of simulation time. At

FIG. 7 (color online). Four snapshots (t ¼ f1; 45; 192; 520gm�1
s ) of a 3d Uð1Þ oscillon displaying violation of the Gaussian

constraint. The energy density (blue, dark grey) is plotted with an isosurface of 1.00 marked for scale. The energy density in the
gauge fields (green, dark grey) is also marked at 0.10, while �y� ¼ 0:4 (red, dark grey). The absolute value of the violation of the
Gaussian constraint is shown in orange (light grey, nontransparent) at an isosurface of 5
 10�3. The size of the plotted area is
1906m�3

s . This is also a � ¼ 0:04 configuration. The energy of the resulting oscillon is about Eosc � 9. The spherical shell (purple,
light grey and transparent, bottom plots) denotes the friction wall that follows the oscillon throughout the lattice. After t 	 200m�1

s we
turn the friction wall off, but we plot its last position to highlight that the region of Gaussian violation stays anchored in space. For
simulation, see Ref. [31].
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200m�1
s we turn off the spherical wall of friction, and then

any violation left on the lattice is frozen due to conserva-
tion of charge to our numerical precision.

Based on these observations, we did not see any unde-
sirable effect due to the presence of small amounts of
violations in �ðx; tÞ. What we gain from this relaxation
of numerical rigor is a path to investigate the EFC for a
long time.

IV. CONSTRUCTING A 3D Uð1Þ PHASE DIAGRAM
IN CONFIGURATION SPACE

Once we have numerically shown the existence of a
time-dependent EFC in a given theory, the next step is to
categorize the region of parameter space in which this
solution is an attractor configuration. From our experience,
it is almost impossible in some regions to actually find an
object, despite hints that it might exist. So, the method we
chose to predict where the object lives in configuration
space is to pick an observable which can be used to
characterize certain properties of EFCs in a region where
they are known to exist, and then study that observable as a
function of parameter space. With this we can predict, by
extrapolation, the regions with no EFCs. As in 2d, the
results can be usefully organized in a phase diagram.

The observables we choose must vanish when no oscil-
lons are present. Since, when oscillons are present, the
maximum local energy density on the lattice
max½H ðt; x; y; zÞ� is much larger than the background
noise, and because we are searching for large-amplitude
structures, we will use the maximum energy density and
the minimum min½�y�� amplitude as order parameters.

Our basic method will be to form an oscillon following
similar steps to configuration C2 in Sec. III A, except that
we will repeat the procedure for various �. On the lattice,
we track max½H � and min½�y�� as a function of time,
and take a running average of these oscillating observables.
As they converge to a near-constant value (usually at times
t 	 103m�1

s ), we plot them in a phase diagram as shown in
Fig. 9. We can then use the diagram to extrapolate and find
the critical parameter �c beyond which oscillons do not
form. The basic method can be summarized as follows:
(i) Prepare a configuration similar to C2 in Sec. III A. If

an EFC is formed (confirmed by identifying a per-
sistent local maximum in energy density), then mea-
sure max½H � and min½�y�� to confirm it is an
oscillon. If not, repeat with a different Langevin
realization using the same initial temperature.

(ii) If an oscillon forms then introduce the moving
friction wall until the energy density outside the
coherent object is negligible compared to
max½H �. (t� 250m�1

s has proven to be sufficient.)
(iii) Turn off the friction and allow the system to evolve

using an Oð
t8Þ symplectic integration routine.
(iv) Track max½H � and min½�y�� for 2500m�1

s .
(v) Construct a running average of these quantities call-

ing them Emax and �y�min, respectively. If this
running average converges to a near-constant value,
then take this value as a point in the phase diagram.

FIG. 8 (color online). Global expectation of the violation
�ðtÞ ¼ hj 1


x

P
iðEi

x̂ � Ei
x̂�î

Þ � 2q Imð�y
x�Þji for the simulation

in Fig. 7. For simulations without a spatiotemporally complex
support function for friction, �ðtÞ � 10�12ðatÞb, where a and b
are small numbers.

FIG. 9 (color online). Phase diagram for the 3d Uð1Þ flux-
antiflux tube annihilation ! oscillon transitions. Plotted as a
function of � are the order parameters OEð�Þ �
Emaxð�Þ=Emaxð0Þ with numerical values in boxes, and O�ð�Þ �
ð1��y�minð�ÞÞ=ð1��y�minð0ÞÞ in circles. The continuous
lines are fits which we use to extrapolate to the critical value
where no oscillons are expected to form from this mechanism.
We find �c � 0:0893 and �c � 0:0908 for theOEð�Þ andO�ð�Þ
order parameters, respectively.
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It is essential that within a reasonable amount of time the
time-averaged observables show only negligible time
variation. If we cannot (after some reasonable amount of
attempts) find an oscillon, we move to a lower � since our
intuition from the 2d work indicates this favors their pro-
duction. Fortunately, there is a regime in which the ob-
servables converge well in a short time, allowing us to fit a
function and extrapolate to the critical point in � above
which no oscillon should form.

In Fig. 9, we present the averaged order parameters

OEð�Þ � Emaxð�Þ
Emaxð0Þ ; (6)

where Emaxð�Þ (blue curve) is the value take from the
running average of max½H �, and in the green curve we
plot

O�ð�Þ � 1��y�minð�Þ
1��y�minð0Þ

: (7)

The numerical values are fitted from the region where we
trust the data and then extrapolated to an effective �c. We
find �E

c � 0:0893 and ��
c � 0:0908 for the energy and �

order parameters, respectively. These are higher than the
region in which we actually see the oscillons form.

Take, for example, ��
c obtained from the fit to�y�. We

extrapolated to when the min½�y�� ! 0, thus matching
the vacuum. This is not restrictive enough. Generally, these
oscillons decay if their core oscillations do not probe near
the inflection point of the potential. If we had extrapolated

to the inflection point �� 1=
ffiffiffi
2

p
, �c would change to

�c � 0:078. This more restrictive criterion moves �c to

almost exactly where we stop seeing oscillons from flux-
tube decay.
In Fig. 10, the time evolution of these (unscaled) ob-

servables is presented for � ¼ 0:04. This configuration is
at about the limit of what we can resolve numerically due
to the extended time it takes to settle into an object with a
well-defined maximum and minimum for the observables.
It is possible to define a three-parameter fit to the data,

hmaxðH Þi � c0 þ c1e
�c2

ffiffi
t

p
; (8)

while

hminð�y�Þi � c0 þ c1ð1� e�c2
ffiffi
t

p Þ: (9)

This parametrization can be useful in identifying the
asymptotic value of the order parameter early in the simu-
lation, as we know that hOiðt ! 1Þ � c0. It would be
instructive, but beyond the scope of this work, to recreate
Fig. 9 for a wider range of � to test if our extrapolation to
�c indeed works as we expect it to.
In this section we have shown examples of oscillons

forming in various configurations from flux-tube decay in
the 3d Uð1Þ theory. We have also defined order parameters
to identify their presence and properties, and mapped out
the region where we observed them numerically. Using
these results, we have predicted the range of � where we
can expect to see oscillons. For �< 0:04 we have not
found oscillons but predict their existence. It is a challeng-
ing numerical problem, as we have two very different
scales in this regime (the scalar and vector masses).

FIG. 10 (color online). The left panel plots the minimum value of �y� for a � ¼ 0:04 oscillon configuration. The right panel is the
maximum energy density H . These correspond to t ¼ 2
 104m�1

s in data and highlight the very slow leaking of energy from
oscillons. When min½�y�� 	 1=

ffiffiffi
2

p
we expect the oscillon to decay completely. The red (light grey) lines are three-parameter fits to

the data which are identified in Eqs. (8) and (9).
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V. FORMATION MECHANISMS AND FINE
STRUCTURE

In the previous sections we described how Uð1Þ oscil-
lons form directly from flux-antiflux-tube interactions with
no residual topology. On large lattices, there is a high
probability of forming a complex flux-tube network which
will include the needed precursor loops to form such
oscillons.

To better investigate the properties of these oscillons,
even if only preliminarily, we use a simple initial condition
inspired by our 2d work on vav annihilation [19]. In that
work, we placed a vortex and an antivortex nearly at rest
and at a short distance away from each other. The vav pair
interacts, attempts to annihilate and, depending on the
parameters, forms a very long-lived gauged oscillon.
Once this happens we put a friction wall a certain radius
away from the oscillon to damp any outside energy in
radiative modes that may interfere with its motion across
the lattice. As we have seen in the previous sections, this
method allows the determination of the EFC’s energy and
structure.

In 3d, our initial setup is similar since we can extend the
field in the ẑ direction without affecting the dynamics. The
oscillon that forms from a flux-antiflux-tube annihilation is
just like the 2d one except for the ẑ symmetry. To break the
ẑ symmetry we then introduce a spherical friction wall

which effectively pinches off and dissipates the energy
density at two polar regions away from the soon-to-be
center of the 3d oscillon. Essentially, we are repeating
the procedure of Sec. III but implementing the spherical
friction wall early so as to not only absorb radiative modes,
but to break the ẑ symmetry and catalyze decay into the
spherical oscillon.
Since the stability of a time-dependent EFC is inherently

linked to the exchange of energy between conjugate mo-
mentum (�) and potential energy (V½��), adding friction
at the edges catalyses its decay. An example of an oscil-
lonic flux-tube decay catalyzed by friction is shown in
Fig. 11 where a flux tube of length 12:5m�1

s is pinched
by a centered wall of friction of diameter d ¼ 8m�1

s . We
display snapshots of both the scalar-field condensate am-
plitude (red isosurface at�y� ¼ 0:5) and the electric field
contributions to the energy density (light-blue isosurface at
1
2
~E � ~E ¼ 0:03). Notice how the scalar-field condensate

oscillates between tubelike and bubblelike configurations,
while the low-energy electric field alternates between com-
plex oscillatory patterns. From this figure, it is clear that
the path to oscillon formation is far from trivial, even if the
final configuration will display, as we will show, near-
spherical symmetry.
It should also be noted in passing that the number of

(nearly) independent EFC’s that form is sensitive to the
length of the initial flux tube and to where we pinch it. If,

FIG. 11 (color online). Eight snapshots (t ¼ f78; 79; 81; 83; 84; 90; 94; 106gm�1 increasing from left to right) for a � ¼ 0:01
oscillon. A low-energy electric energy-density isosurface of 1

2Ei � Ei ¼ 0:03 (cyan, light grey) and the condensate density �y� ¼
0:5 (red, dark grey) are plotted. Each slice represents an area of 12:5
 9m�2

s .
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for example, we were to take a longer line, then, as shown
in Fig. 12, nearly spherical oscillons would form at the
edges, connected by a flux tube between them.
Perturbations during the formation process propagate
down the structure creating an interesting pattern of oscil-
lating magnetic and electric fields. Looking at the lower
isosurface plot in Fig. 12 we see that the magnetic and
electric fields create a chainlike structure that is oscillating
in both time and space. This chain then clumps into a
certain number of oscillons per unit length. Although quite
interesting, we do not pursue the study of these hybrid
objects any further.

Back to the oscillon structure with � ¼ 0:01 of Fig. 11,
once the flux-antiflux-line oscillon relaxes into the ap-
proximately spherical oscillon and we have also absorbed
much of the external radiative and thermal modes, we can
look at the fine structure of the low-energy fields to inves-
tigate the mechanism by which energy is being slowly

radiated at large times, as shown in Fig. 5. From Fig. 5,
we note that at large times the energy within a shell
surrounding the oscillon can be written as

EðtÞ ’ c0 þ c1t
�c2 ; (10)

where we chose a radius R ¼ 4 around the maximum
energy density. Extrapolating to t ! 1, we can see that
the radiation will approach zero and there will be a finite
energy left in the EFC, namely, Eð1Þ ’ c0. Inspecting the
nonspherical fine structure of the energy density, we find
that the surviving large time structure is very nearly spheri-
cally symmetric and that a small fraction of its energy is
bound up in a combination of oscillatory modes in the
electric and magnetic fields which resemble transitions
between excited atomic states.
From the continuing snapshots of Fig. 13, we see that the

energy density in the electric fields resembles a superpo-
sition of alternating mixed spherical harmonics. As time
increases, the amplitude of the higher harmonics decreases
and the energy in the electric field becomes more spheri-
cally symmetric (s-orbitals dominate). If we look at the
magnetic field contribution, as in Fig. 14, we observe that
the low-energy component assumes a toroidal shape (see
the t ¼ 202m�1

s plot from Fig. 14). Because the oscillon is
intrinsically time dependent, the actual asymptotic profile
of the magnetic energy BðxÞ � BðxÞ is unclear, although we
do see signs of a toroid with a continual precession as well
as an oscillation in amplitude. We stress, however, that
these remarks are very preliminary and that a more detailed
analysis is still lacking.
It is also important to stress that these fine-structure

harmonics only account for less than a percent of the actual
energy of the EFC. This can be seen by considering that the
isosurfaces in electric and magnetic field energies are
plotted at a radius of �2:5, while the effective radius of

FIG. 12 (color online). Formation dynamics of an elongated ẑ
symmetric 3d oscillon. H ðx; y; zÞ ¼ 1:6 is represented by the
dark-blue (dark grey) isosurface. The electric energy density
E2 ¼ 0:2 (cyan, light grey), and the magnetic energy density
B2 ¼ 0:1 (green, light grey). The bottom configuration is 11m�1

s

forward in time from the top. The plots represent�11m�1
s across

the longest direction. Note that the energy-density tube between
the two oscillons in the extremities oscillates between being
dominated by its electric and magnetic contributions.

FIG. 13 (color online). Eight snapshots (t ¼ f129; 143; 155; 156; 158; 164; 166; 202gm�1
s increasing from left to right) for a � ¼ 0:01

oscillon. A low-energy electric energy-density isosurface of 1
2Ei � Ei ¼ 0:015 (cyan, light grey) and the scalar condensate amplitude

�y� ¼ 0:5 (red, dark grey) are plotted. Each slice represents an area of 25m�2
s . The radius of the scalar condensate isosurface is

approximately r� 0:75m�1.
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the structure, as calculated by the ratio

R2
eff �

R
r2H ðrÞdrR
H ðrÞdr ; (11)

is much smaller (Reff � 0:6 for � ¼ 0:04, for example). In
Fig. 15, we plot various total energy-density isosurfaces at
late times: violet at H ¼ 5; magenta at H ¼ 0:25; blue
at H ¼ 0:01. It is clear that most of the energy is spheri-
cally symmetric and concentrated in a very small radius,
although there are departures from sphericity at large radii.
We also present the time-dependent observables for the 3d

configuration in Fig. 16. This figure is to be compared with
the 2d version for the same parameters in Fig. 1. Note how
in 3d the scalar-field amplitude probes well within the
V00 < 0 part of the double-well potential.

FIG. 14 (color online). Eight snapshots (t ¼ f133; 155; 166; 172; 178; 185; 202gm�1
s increasing from left to right) for a � ¼ 0:01

oscillon. Plotted is a low-energy magnetic energy-density isosurface of 1
2Bi � Bi ¼ 0:0125 (green, light grey) and the total energy

density H ¼ 2:5 (blue, dark grey). Each slice represents an area of 25m�2
s . The radius of the energy-density isosurface is

approximately r� 0:75m�1
s .

FIG. 15 (color online). Energy-density isosurfaces for a � ¼
0:01 oscillon at t� 1600m�1

s after formation. Isosurfaces shown
are at H ¼ f0:01ðblue, dark greyÞ; 0:25ðmagenta, light greyÞ;
5:0ðviolet, lightest greyÞg. The effective radius of the structure
is Reff � 1:15m�1

s , and the total energy in a shell of R ¼ 4 is
ER�4 � 6:9. Note that the majority of the energy density is
nearly spherically symmetric, although there is some time-
dependent wobbling which is more pronounced at lower-energy
isosurfaces.

FIG. 16 (color online). A few observables characterizing the
3d Uð1Þ oscillon. The blue (top) line is the maximum energy
density of the EFC, while the black line is the total energy within
a radius of R ¼ 4. The lower plot shows both the expected radius

of the EFC R2
eff �

R
r2H ðrÞdrR
H ðrÞdr (green, dashed line) and the mini-

mum value of��� within the EFC (red, bottom solid line). Note
that, contrary to the 2d case, the scalar-field amplitude probes
well beyond the inflection point of the double-well potential.
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VI. AN INITIAL SUð2Þ 3D LOW � SEARCH

In the context of non-Abelian models, the most distinc-
tive searches for oscillons were performed in Refs. [15,18].
Using ansatze that approximate a spherically symmetric
oscillon, the authors found a stable oscillon in the bosonic
sector of the full SUð2ÞXUð1Þ electroweak model in 3d for
the particular mass ratio mHiggs ¼ 2mW . Given that this

value of the Higgs mass is well within the reach for the
upcoming LHC, the result has considerable relevance.
Interestingly, any deviation from this mass ratio causes
the structure to destabilize. We note that this mass ratio
corresponds to type-2 behavior in superconductor
phenomenology.

In this section, we present an initial search in the type-1
region where the vector particle is much more massive than
the scalar. Of course, this is not where we expect to see a
scalar field in the standard model. However, given that non-
Abelian models are an integral part of any extension to the
standard model, or of higher level unification, it is impor-
tant to map the possible nonperturbative structures that
might emerge from large fluctuations about the vacuum.
Only a few years back the Higgs itself could still have been
much lighter than the W boson. Based on our Uð1Þ work,
the type-1 region is where we expect a coherent object to
exist. Obviously, the non-Abelian theory is significantly
different as there are no topological or even quasitopolog-
ical structures which carry as much energy as the flux tubes
in the 3d Uð1Þ theory. This presents a challenge to our

method as there are no flux tubes to lock energy in the
initial part of the simulation.
Instead of using excessive dissipation to clean up the

system during the initial moments of the simulation, we
will go another route. To generate spatiotemporal complex-
ity, we start the scalar fields at the unstable symmetric point
of the potential of Eq. (1), adding only small-amplitude
thermal perturbations to excite the various modes. As the
fields evolve, they probe the unstable (spinodal) portion of
the potential. The amplified instabilities—which can be
viewed as isosurfaces of the energy density—create local-
ized quasibubbles connected by quasistrings. In Fig. 17 we
show a few observables: the red curve corresponds to the
volume-averaged amplitude of the SUð2Þ Higgs field
which, after the initial large-amplitude fluctuations, oscil-
lates about h�y�i � 0:85. The blue curve corresponds to
the total energy and the cyan and green curves at the
bottom correspond to the ‘‘electric’’ and ‘‘magnetic’’ por-
tions of the energy, respectively. It is clear that we have
achieved good energy conservation in our simulation.
The complex network settles into a few large-amplitude

(max½���� � 0) high-energy localized objects, which
then decay at about t� 400m�1

s . Visualizations of the
simulations can be found in Ref. [33]. We expect that
simulations with fewer large-amplitude propagating modes
will generate longer-lived SUð2Þ oscillons.

VII. SUMMARYAND OUTLOOK

We have presented a numerical study of symmetry
breaking in the 3d Abelian-Higgs model. In particular,
we searched for nontopological, time-dependent, long-
lived configurations that may emerge dynamically as the
system relaxes to the lower-energy asymmetric vacuum.
Our results indicate that such oscillonlike solutions to the
equations of motion can be easily found for a wide range of
parameters. For the Uð1Þ model, the control parameter is
� ¼ ðms=mvÞ2. We found that oscillons exist within the
type-1 regime, for �< 0:09. It remains to be seen if this
range can be extended for larger�. One shortcoming of our
approach is that it dumps too much energy in the initial
state, as we quench from the symmetric to the broken-
symmetric vacuum. It should be possible to extract the
approximate field behaviors that characterize oscillons
from our numerical solutions and use them as ansatze in
cleaner searches as, say, was done in Ref. [14] or [15]. This
way, we could probe into the type-2 regime in search of
oscillons. Our preliminary study of their rich resonances
and of possible oscillons in type-1 SUð2Þ models suggests
that there is much more to be explored. Although analytical
results are very challenging, it is possible that some may be
achievable extending the procedure of Ref. [25] to models
with gauge fields.
The fact that oscillonlike configurations emerge sponta-

neously during symmetry breaking should not be over-
looked. There is very poor understanding of the

FIG. 17 (color online). Global observables for an SUð2Þ
quench at g ¼ 4:0 on a lattice of volume 28:83m�3

s . The system
is thermalized on a Higgs potential for t ¼ 5m�1

s and then
cooled with 	 ¼ 1 for the same amount of time. After that,
the system is evolved conservatively. h�y�i (top, red), hH i
(middle, blue), and the electric and magnetic components of
energy (bottom, cyan and green, respectively) are plotted.
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dynamical aspects of symmetry breaking in gauge theories,
as they involve complex nonlinear and possibly nonequi-
librium physics. The emergence of oscillonlike EFCs in the
Abelian-Higgs model indicates that the thermodynamics of
these systems is far from trivial. In cosmology or in col-
liders, the presence of these configurations will delay
equipartition and thus the final approach to equilibrium.
They may, for example, affect the calculation of the reheat-
ing temperature in inflationary models [10]. They may also
affect the structure of the vacuum and thus the computation
of transition amplitudes between vacuum states [1]. We are
now entering an era where even desktop computers have
enough power to perform such simulations. It is clear that
much new physics remains to be explored.
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APPENDIX A: LATTICE IMPLEMENTATION

In order to construct gauge invariant objects in a
Hamiltonian lattice formulation we will be using the
Wilson loop formalism [32]. For the lattice Laplacian,
we use the second-order version of the covariant derivative
[34]

D 2
��ðxÞ � 1


x2
fU�

x̂ �x̂þ�̂ þUy�
x̂��̂�x̂��̂ � 2�x̂g

þOð
x2Þ; (A1)

where the hatted variables x̂ denote spacetime lattice posi-
tions and �̂ denote a lattice displacement by one lattice
spacing 
x. The gauge-field strengths are constructed from
the unitary link variables Uðx;�Þ satisfying the lattice
gauge transformations

Uðx;�Þ � U�
x̂ ! �x̂U

�
x̂ �

y
x̂þ�̂: (A2)

We can use the link variables to construct the unitary tensor

Uij
hðxÞ � UiUj

þî
Uiy

þĵ
Ujy; (A3)

which is the fundamental lattice gauge invariant object
from which to derive the field strengths. Here, i, j represent
spatial indices. The magnetic contributions to the
Hamiltonian can be found from the combination

1

2
~B � ~B ¼ 1

4
Fij � Fij ’ 1

g2
x4

�
1� Re

TrðUij
hÞ

�

�
; (A4)

where � ¼ 2 for SUð2Þ and � ¼ 1 for Uð1Þ. The field
strength is

Fij ’ 1

g
x2
ImUij

h: (A5)

The scalar field will be a nonunitary complex matrix
which transforms as

�ðxÞ � �x̂ ! �x̂�x̂: (A6)

The covariant derivative of the force tensor needed for
the equations of motion can be found from the variation





A�ðyÞ
X
x

U
��
h ðxÞ: (A7)

The same result can be obtained from constructing the
covariant derivative of the field strength in the adjoint
representation by taking a gauge invariant backward de-
rivative on the field strength tensor,

D �F
�� ’ 1

g
x3
ImfU��

h ðxÞ �U
�
x̂��̂U

��
h ðx� �̂ÞU�y

x̂��̂g;
(A8)

where for an Abelian theory the extra U
�
x̂��̂’s drop out to

unity.
The momentum components are just simple complex

matrices at each point in space for the scalar, and a vector
of complex nonunitary matrices for the electric fields.
Since we are in a gauge in which the temporal vector
potential is set to zero, derivatives with respect to time
are simply Ei ¼ @tAi. We can then write the gauge equa-
tions of motion on the lattice as

@tE
j
x̂ ¼ DiF

ij
x̂ þ Jjx̂; (A9)

@tA
j
x̂ ¼ Ej

x̂; (A10)

where the current is

J� ¼ 2g


x
Imð�y

x̂ U
�
x̂ �x̂þ�̂Þ: (A11)

This equation is now in a perfect form for our higher-
order symplectic integration scheme, and works also with
the link formalism, provided that we change Eq. (A10) to
the form

Ujðx; tþÞ ¼ Ujðx; tÞe�ig
x
tEjðx;tÞ: (A12)

That is, provided our numerical exponential is accurate
(and the electric field stays within its group during simu-
lations with stochastic forcing, see below) then the links
stay unitary at all times. The gauge condition A0 ¼ 0
giving the time component of Eq. (3) becomes a nondy-
namical constraint equation, the Gaussian constraint,

1


x

X
i

ðEi
x̂ � Ei

x̂�î
Þ ¼ 2q Imð�y

x�Þ: (A13)

Provided that this is satisfied initially, then it is maintained
to numerical accuracy at all times for the Uð1Þ theory.
There are some issues in exact convergence for the non-
Abelian theories.
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The scalar equations are also split into conjugate mo-
mentum fields to give

@t�x̂ ¼ D2
latt�x̂ ��x̂ð�y

x̂�x̂ � 1Þ; (A14)

@t�x̂ ¼ �x̂ (A15)

where D2
latt� is defined in Eq. (A1). The Hamiltonian

density H x̂ that corresponds to these equations is then
given by

H x̂ ¼�y
x̂ ��x̂ þDi�

y
x̂ �Di�x̂ þ 1

2
Ei �Ei

þ 1

g2
x4
X
i�j

�
1�Re

�
TrðUij

hÞ
�

��
þ 1

2
ð�y

x̂ ��x̂ � 1Þ2:

(A16)

The Langevin implementation of these equations is ex-
plained in the next two appendixes.

APPENDIX B: GAUGE LANGEVIN
IMPLEMENTATION 1: FORCING MOMENTA

In this appendix we summarize the two methods of
implementing stochastic noise and friction terms in sys-
tems with local gauge symmetries and thus Gaussian con-
straints. The methods differ in that, whereas one couples
noise to the fields, the other couples noise to the conjugate
field momenta. We also explain how the implementation
which forces the fields can be made to satisfy the Gaussian
constraint equation at all times. Conversely, the method of
forcing the momenta destroys this constraint and thus the
system must be ‘‘stopped’’ (that is, one must set all mo-
menta to zero) before the true simulation (symmetry break-
ing) begins.

It is useful at times to run simulations with only the
dissipative terms present and no thermal noise in order to
relax to a ground state or specific configuration. We also
present a proof which shows that spatially homogeneous
friction does not affect the Gaussian constraint and is safe
to use in a simulation.

Consider a Uð1Þ gauge field coupled to a complex scalar
field with some Hamiltonian H ¼ P

xH which is a func-
tion of the conjugate momentum fields for the scalar and

the vector, �� � f�; ~Eg, and the respective fields �� �
f�; ~Ag. The Langevin dynamics for this system is

@t�
�
x þ 	��

x ¼ �@�x

X
x

H ð��
x ;�

�
x Þ þ ��;

@t�
�
x ¼ @�x

X
x

H ð��
x ;�

�
x Þ

(B1)

with  ¼
ffiffiffiffiffiffiffiffiffi
2	T

xd
t

q
rndGðÞ, where rndGðÞ is a Gaussian random

number of zero mean and unit variance. Since �0 ¼ � is a
complex number, we must add a random kick for each
degree of freedom and thus �0 ¼ Re þ iIm, where both

the real and imaginary components of �0 are identical
except for their random numbers. Numerically, they are
just sequential calls to the random number generator. If we
had written the set of equations as a scalar field of OðnÞ
symmetry, then we would just call the random number  n
times and couple that force linearly to each component of
the OðnÞ field. This is also the same for the vector field, as
each �i ¼ Ei component gets its own random kick.
This Langevin evolution violates locally the Gauss con-

straint,

1


x

X
i

ðEi
x�i � Ei

xÞ ¼ ið�0
xð�0

xÞy � ð�0
xÞy�0

xÞ: (B2)

Since this equation is preserved by the equations of motion
without the forcing noise, to satisfy it we can just set all the
momenta to zero at the beginning of a simulation.
Although this procedure also destroys the thermal state,
it will approximately be restored after the energy is quickly
transferred from the spatial derivatives to the temporal
ones as the system tries to reach equipartition. We stress
that we are not interested in enforcing a strict thermal state
anyway, only in using the Langevin approach to excite a
large spectrum of field modes.
Note that the 	 frictional coefficient is not a problem, as

it scales smoothly in k space as e�	t and so does not change
any spatially local term.We can show that this has no effect
by considering the equations

@t�þ 	� ¼ D2��m2
eff�; (B3)

@tE
i þ 	Ei ¼ @iF

ij þ Ji; (B4)

@iE
i ¼ J0: (B5)

Taking the divergence of the second equation and the time
derivative on the last and then subtracting the two gives

0þ 	@iE
i ¼ 0þ @iJ

i � @tJ
0: (B6)

In order to get the appropriate correction that should cancel
the 	 term, we expand

@tJ
0 ! 2g Im@t�

y� (B7)

! 2g Imðð�	�y þD2�y �m2
eff�

yÞ�Þ (B8)

! @iJ
i � 2g	 Im�y�: (B9)

So Eq. (B6) can be expressed as

	@iE
i ¼ 	J0; (B10)

which means that the continuity equation is of the same
form as the initial 	 ¼ 0 constraint equation (B5).
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APPENDIX C: GAUGE LANGEVIN
IMPLEMENTATION 2: FORCING FIELDS

Recently we became aware of the work by Krasnitz on
how to maintain constraints on gauge fields during
Langevin evolution [35]. After some experimentation
with the algorithms in Ref. [35], we were able to find a
simpler and less computationally demanding method of
maintaining the Gaussian constraint on the Uð1Þ gauged
scalar system. While not as general as the methods of [35],
for at least a subset of the Abelian systems our method is a
simpler and numerically faster Langevin-type thermaliza-
tion method. In Krasnitz’s method, the force function must
be called twice per time step, and the simulation time
almost doubles.

For clarity, we repeat the basic equations for an Abelian
system with friction,

@tAi ¼ Ei; (C1)

@t� ¼ �; (C2)

@tEi ¼ @jF
ji � 	Ei þ 2g Im�Di�

�; (C3)

@t� ¼ D2�� 	�� V0½��; (C4)

and the Gaussian constraint equation

@iE
i ¼ 2g Im���; (C5)

where it is implied that we use the lattice version of the
operators.

The method works as follows: instead of adding a sto-
chastic force which satisfies a fluctuation-dissipation rela-
tion to the momentum evolution equations, we add a
random perturbation to the field equations. Thus, the am-
plitude perturbations are written as

@tAi ¼ Ei þ E; (C6)

@t� ¼ �þ �: (C7)

It is obvious that a change in amplitude of Ai cannot affect
the electric field and so the divergence in Eq. (C5) is not
modified. Let us look at the charge density at two separate
times to see what conditions on � will maintain the right
side of the constraint equation (C5). Writing �ðtþ 
tÞ �
�þ ¼ �þ�
tþ �
t gives the charge density at half a
leapfrog step,

J0þð�þÞ ¼ J0ð�þ�
tþ �
tÞ; (C8)

2g Im���þ ¼ 2g Im��ð�þ�
tþ �
tÞ (C9)

¼ J0 þ 2g
t Im���; (C10)

where we only need to advance � ! �þ because of the
leapfrog scheme of integration. If J0 is locally conserved at
this half step, then although it is modified in the next half

step, it is not changed in any way which violates Eq. (C5).
With this we can get the necessary form of � which makes
Im��� ¼ 0 and thus maintains the local Gauss con-
straint. If we choose a real stochastic variable  and define

� � �ffiffiffiffiffiffiffiffiffiffiffiffi
���

p ; (C11)

we can add random fluctuations at any time during the
simulation without having to set all momenta to zero to
regain the Gaussian constraint as we must with the first
type (momentum forcing) of implementation.
It should be noted that this particular implementation

will not randomize the phase of an ungauged complex
scalar, since it ends up being only a density perturbation
which relies on the gauge field to randomize the phase. So
to thermalize a complex scalar, use a complex  ¼ R þ
iI instead of �.

Criticisms and challenges

There is one obvious criticism to the thermalization
technique presented in this section. Examining the equa-
tions, we see that we are in effect only modifying the
spatially dependent degrees of freedom. This is done by
generating fluctuating charge and magnetic densities but
not doing anything that would make the charge-anticharge
and electric distributions come to equilibrium.
For example, in Ref. [35] the forcing does change both

sides of Eq. (B2) but in a way that is balanced. This seems a
better way of doing things at the cost of a few more
computational steps, as it does not change the equilibrium
configuration that the forcing directs the system towards.
Just because we are not modifying either side of Eq. (B2)
does not mean that the charge densities remain trivial.
Energy flows very quickly and effectively from the current
to charge-anticharge and from magnetic to electric degrees
of freedom inherently because of the equations of motion.
So, a thermal equilibrium distribution of @iEi and spatially
varying charge densities does in fact form.
Another issue to be careful of is that when thermaliza-

tion comes from the amplitude perturbations, the most
energy we can deposit into the electric field contributions
to temperature is hEiE

ii ¼ hBiB
ii. This restriction follows

from the minimization of the Lagrangian, and not from
equipartition, that is, from distributing T

2 per degree of

freedom in the Hamiltonian.
This happens anyway if we maintain the Gauss con-

straint by setting all the momenta to zero. None of these
techniques give a perfect thermal distribution.
With both techniques, we see that generally the mo-

menta thermalize well, h���i / hEiE
ii / T, as do the

surface kinetic terms h@i��@i�i. But the energy mixture
can have issues between the magnetic and the electric
terms. These issues are present in every form of real time
classical thermalization that we have tried.
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Rev. D 78, 025003 (2008).
[28] http://media.dartmouth.edu/~mgleiser/3dU1g4.mov.
[29] M. Gleiser and R. Haas, Phys. Rev. D 54, 1626 (1996).
[30] http://media.dartmouth.edu/~mgleiser/3d_q5_osc_F.mov.
[31] http://media.dartmouth.edu/~mgleiser/3dU1gauss.mov.
[32] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[33] http://media.dartmouth.edu/~mgleiser/SU2.mov.
[34] J. Smit, Introduction to Quantum Fields on a Lattice

(Cambridge University Press, Cambridge, England,
2001).

[35] A. Krasnitz, Nucl. Phys. B455, 320 (1995).

CLASS OF NONPERTURBATIVE CONFIGURATIONS IN . . . PHYSICAL REVIEW D 79, 025016 (2009)

025016-19


