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symmetry, SUð4Þ R-symmetry and a Uð1Þ global symmetry. The results can be written in terms of a 3-
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N ¼ 6 theories that have been recently proposed as models for M2-branes in an R8=Zk orbifold

background.
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I. INTRODUCTION

M2-branes have recently been enjoying a period of
considerable interest. One hopes that an understanding of
the dynamics of multiple M2-branes will lead to a deeper
and more microscopic understanding of M-theory.
Motivated by the papers [1,2], in [3] we proposed a field-
theory model of multiple M2-branes. This model was
shown to admit N ¼ 8 supersymmetry (16 supercharges)
in [4] and in [5], where the Lagrangian was also given. In
this approach, the scalars and fermions take values in a 3-
algebra A.

A 3-algebra is a vector space with basis Ta, a ¼
1; . . . ; N, endowed with a triple product [5],

½Ta; Tb; �T �c� ¼ fab �cdT
d: (1)

Note that here we take the 3-algebra to be a complex vector
space, and we have used a slightly different notation to
keep track of the fact that, in this paper, ½�; �; �� need only be
antisymmetric in the first two indices. Furthermore, we
require the fab �cd to satisfy the following fundamental

identity:

fef �gbf
cb �a

dþffe �abf
cb �g

dþf� �g �af
�b
fce

�b
dþf� �a �ge

�b
fcf

�b
d¼0:

(2)

[We will give an alternative characterization of this condi-
tion in Eq. (40) below.] In [5] (and also [4]), we also
required the fabcd to be real and antisymmetric in a, b,
c. In that case, for any such triple product, one finds
equations of motion that are invariant under 16 supersym-
metries and SOð8Þ R-symmetry.

To construct a Lagrangian we require a trace form on the
3-algebra that is linear in the second entry and complex
antilinear in the first. This provides an inner product,

h �ab ¼ Trð �T �a; TbÞ: (3)

For hab and fabcd real, gauge invariance implies that

fabcd ¼ fabceh
ed is totally antisymmetric. This leads to a

Chern-Simons Lagrangian with 16 supersymmetries and
SOð8Þ R-symmetry [5]. When hab is also positive definite,
it was recently shown that the one known example, in
which fabcd / "abcd, is essentially unique.1 In [6,7] this
maximally supersymmetric field theory was identified as
describing two M2-branes in an R8=Z2 orbifold
background.
Recently, there have been several attempts to relax these

assumptions and construct additional models. In [8] it was
suggested that fabcd need not be totally antisymmetric, just

antisymmetric a, b, c, and indeed this leads to an infinite
number of models using the 3-algebra given in [9]. The
equations of motion of [5] are still invariant under the 16
supersymmetries, but there is no gauge-invariant metric so
it is not clear how to construct physical quantities such as
energy.
More recently there have been proposals in which the

metric hab has a Lorentzian signature [10–12]. This allows
one to construct an associated 3-algebra for any Lie alge-
bra, and the corresponding N ¼ 8 Lagrangian [5] has
been proposed to describe M2-branes in flat R8 [10–12].
Although these models are built on a 3-algebra without a
positive definite norm, the corresponding quantum theories
have been argued to be unitary [10–12] and there are some
encouraging features [13–17]. The current status of these
models is unclear. In particular, one method for removing
the negative norm states leads back to maximally super-
symmetric Yang-Mills theory [18,19], although in a form
that possesses both SOð8Þ and spontaneously broken con-
formal symmetry.
Another option is to look for theories with a reduced

number of supersymmetries. In [20–22] a class of Chern-
Simons Lagrangians with N ¼ 4 supersymmetry (eight
supercharges) was constructed. More recently, in [23] an
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1All other 3-algebras are direct sums of the minimal four-
dimensional 3-algebra [42–44].
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infinite class of brane configurations was given whose low
energy effective Lagrangian is a Chern-Simons theory with
SOð6Þ R-symmetry andN ¼ 6 supersymmetry (12 super-
charges). These theories are related to N M2-branes in
R8=Zk, including k ¼ 1. The Lagrangians were studied
in detail in [24–32]. More theories withN ¼ 5 andN ¼
6 have also recently appeared in [33].

Thus it is of interest to generalize the construction of our
model, based on 3-algebras, to the case of N ¼ 6 super-
symmetry. We will see that this can be accomplished by
relaxing the conditions on the triple product so that it is no
longer real and antisymmetric in all three indices. Rather it
is required to satisfy

fab �c
�d ¼ �fba �c

�d and fab �c
�d ¼ f� �c �d ab: (4)

The triple product is also required to satisfy the fundamen-
tal identity (2).

The rest of this paper is organized as follows. In Sec. II
we revisit the analysis of [5], trying to be as general as
possible. We will see that the model presented there is the
most general with N ¼ 8 supersymmetry, scale invari-
ance, and SOð8Þ R-symmetry. Section III contains the main
results of this paper. We follow the construction of [5], but
only impose N ¼ 6 supersymmetry, scale invariance,
SUð4Þ R-symmetry, and a global Uð1Þ. We find the super-
symmetry transformations, the invariant Lagrangian, and

the conditions on the structure constants fab �c
�d. In Sec. IV

we discuss the associated 3-algebra and show that a spe-
cific choice of triple product leads directly to the models in
[23], as presented in [24]. As a result, we are able to
provide the complete expressions for the Lagrangians in
[23], including all the supersymmetry transformations, in a
manifestly SUð4Þ covariant form (see also [31,33]).
Section V contains our conclusions. We collect our spinor
conventions and some useful identities in an Appendix.

II. N ¼ 8

Before presenting the main results of this paper, we
reexamine the closure of the N ¼ 8 supersymmetry trans-
formations given in [5] (see also [4]). In particular, we
relax as many assumptions as possible to find the minimum
requirements on fabcd. We proceed by assuming scale
invariance and an SOð8Þ R-symmetry. The most general
form for the supersymmetry transformations is then

�XI
d ¼ i ���I�d

��d ¼ D�X
I
d�

��I�� 1
6X

I
aX

J
bX

K
c f

abc
d�

IJK�

þ 1
2X

J
aX

J
bX

I
cg

abc
d�

I�

� ~A�
c
d ¼ i �����IX

I
a�bh

abc
d;

(5)

where D� is a covariant derivative, and gabcd and habcd
define triple products on the algebra that are not antisym-
metric (a possibility that was mentioned in [3]). Without
loss of generality we may assume that fabcd is antisym-

metric in a, b, c, while gabcd is symmetric in a, b. All
quantities are taken to be real.
To begin we consider the closure on XI

d,

½�1; �2�XI
d ¼ v�D�X

I
d þ ~�c

dX
I
c þ�IJc

dX
J
c ; (6)

where

v� ¼ �2i ��2�
��1 ~�c

d ¼ �i ��2�JK�1X
J
aX

K
b f

abc
d

�IJc
d ¼ i ��2�

IJ�1X
K
a X

K
b g

abc
d: (7)

The first two terms are familiar from [5]. The last trans-
formation, however, mixes an internal symmetry with an
R-symmetry, although we note it becomes a pure R-
symmetry if gabcd takes the form

gabcd ¼ kab�c
d: (8)

This implies that R-symmetry must be gauged. A similar
extension was successfully used in [34,35] except that the
additional term was linear in XI. As a result, the R-
symmetry was not gauged, and the theory described a
mass deformation that preserved all supersymmetries but
broke the R-symmetry to SOð4Þ � SOð4Þ.
R-symmetries cannot be gauged in rigid supersymmetry

because the supercharges rotate into each other (by defini-
tion) and hence would have to become local symmetries.
Thus we are forced to set gabcd ¼ 0.
We now consider the fermions. Evaluating ½�1; �2��d

and using the Feirz identity (see the Appendix), we find
four terms involving ��2���LMNP�1. After some manipu-

lations, we reduce these terms to

�� 1���LMNP�2�
��I�LMNP�JXI

cX
J
aðfabcd � habcdÞ�b:

(9)

Closure implies that (9) must vanish and hence

habcd ¼ fabcd: (10)

Thus we are left with just one tensor fabcd. As in [5], the

algebra closes on the fermions using the on-shell condition

��D��d þ 1
2�IJX

I
aX

J
b�cf

abc
d ¼ 0: (11)

Next we turn to ½�1; �2� ~A�
c
d. Here we find a term that is

fourth order in the scalars:

ð ��2���IJKL�1ÞXI
aX

J
eX

K
f X

L
gf

efg
bf

abc
d: (12)

This term vanishes provided that

f½abcefd�efg ¼ 0: (13)

Given the antisymmetry of fabcd in a, b, c, this is equiva-
lent to the fundamental identity (2). Continuing, we find
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½�1; �2� ~A�
c
d ¼ 2ið ��2���1Þ����

�
XI
aD

�XI
b

þ i

2
��a�

��b

�
fabcd

� 2ið�2�IJ�1ÞXI
aD�X

J
bf

abc
d: (14)

Gauge invariance requires that the last line be equal to

D�
~�c

d. Writing ~A�
c
d ¼ fabcdA�ab, this implies the con-

dition

fabcef
fge

d ¼ ffgaef
ebc

d þ ffgbef
aec

d þ ffgcef
abe

d;

(15)

which ensures that the gauge symmetry acts as a deriva-
tion. Equation (15) is equivalent to (13) (e.g. see [8]), so we
have recovered all the ingredients of [5].

III. N ¼ 6

In this section we relax the constraints on fab �cd to

construct an infinite class of theories with fewer super-
symmetries. We will construct a Lagrangian with 12 super-
charges (N ¼ 6 supersymmetry), SUð4ÞR-symmetry, and
a Uð1Þ internal symmetry. We continue to assume that h �ab

is positive definite, although no substantial changes arise if
h �ab has a different signature.

We use a complex notation in which the SOð8Þ R-
symmetry of the N ¼ 8 theory is broken to SUð4Þ �
Uð1Þ. The supercharges transform under the SUð4Þ R-
symmetry; the Uð1Þ provides an additional global symme-
try. We introduce four complex 3-algebra valued scalar
fields ZA

a , A ¼ 1, 2, 3, 4, as well as their complex con-
jugates �ZA �a. Similarly, we denote the fermions by c Aa and
their complex conjugates by c A

�a . A raised A index indi-
cates that the field is in the 4 of SUð4Þ; a lowered index
transforms in the �4. We assign ZA

a and c Aa aUð1Þ charge of
1. Complex conjugation raises or lowers the A index, flips
the sign of the Uð1Þ charge, and interchanges a $ �a. The
supersymmetry generators �AB are in the 6 of SUð4Þ with
vanishing Uð1Þ charge. They satisfy the reality condition
�AB ¼ 1

2"
ABCD�CD.

We postulate the following supersymmetry transforma-
tions (our spinor conventions are listed in the Appendix):

�ZA
d ¼ i ��ABc Bd

�c Bd ¼ ��D�Z
A
d�AB þ fa

�bc
1 dZ

C
a
�ZC �bZ

A
c �AB

þ fab �c2 dZ
C
aZ

D
b
�ZB �c�CD

� ~A�
c
d ¼ i ��AB��Z

A
ac

B
�b
fa

�bc
3 d þ i ��AB��

�ZA �ac Bbf
�abc
4 d;

(16)

where fa
�bc

1 d, f
ab �c
2 d, f

a �bc
3 d, and f �abc

4 d are tensors on the 3-

algebra. Without loss of generality, we assume that

fðabÞ �c2 d ¼ 0. The covariant derivative is defined by

D�Z
A
d ¼ @�Z

A
d � ~A�

c
dZ

A
c . Therefore we require that

D�
�ZA �d ¼ @� �ZA �d � ~A� �c

� �d
�ZA �c. Supersymmetry then re-

quires that D�c
A
�d
¼ @�c

A
�d
� ~A� �c

� �d
c A

�c and D�c Ad ¼
@�c Ad � ~A�

c
dc Ac. These are the most general transfor-

mations that preserve the SUð4Þ, Uð1Þ, and conformal
symmetries.
In [3] the N ¼ 8 theory (without gauge fields) was

written in terms of such a complex notation with manifest
SUð4Þ �Uð1Þ symmetry. However, the supersymmetries
�AB were not considered in detail; the discussion focused
on the other four supersymmetry generators " that are
SUð4Þ singlets with Uð1Þ charge �2. These supersymme-
tries have a natural N ¼ 2 superspace interpretation; they
require that fabcd be real and totally antisymmetric. These
supersymmetries will not, in general, be preserved in the
models presented here. Indeed, imposing these as super-
symmetries leads to the originalN ¼ 8 theory (written in
complex notation).
To begin, we first consider the closure of (16) on the

scalars. Using the identities listed in the Appendix, we find
that ½�1; �2�ZA

d only closes onto translations and a gauge

symmetry if

fa
�bc

1 d ¼ fac
�b

2 d: (17)

In this case we find

½�1; �2�ZA
d ¼ v�D�Z

A
d þ��cbf

ab �c
2 dZ

A
a ; (18)

where

v� ¼ i

2
��CD2 ���1CD;

��cb ¼ ið ��DE
2 �1CE � ��DE

1 �2CEÞ �ZD �cZ
C
b :

(19)

The second term in (18) is a gauge transformation:
��Z

A
d ¼ ��cbf

ab �c
2 dZ

A
a .

Next we examine the closure of the algebra on the
fermions. After some work, we find that if

f �abc
4 d ¼ �fb �ac3 d; (20)

and

fa
�bc

3 d ¼ fac
�b

2 d; (21)

then

½�1; �2�c Dd ¼ v�D�c Dd þ��baf
ca �b
2 dc Dc � i

2
ð ��AC1 �2AD

� ��AC2 �1ADÞECd þ i

4
ð ��AB1 ���2ABÞ��EDd;

(22)

where

ECd ¼ ��D�c Cd þ fab �c2 dc CaZ
D
b
�ZD �c

� 2fab �c2 dc DaZ
D
b
�ZC �c � "CDEFf

ab �c
2 dc

D
�c Z

E
aZ

F
b :

(23)
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Thus we see that the supersymmetry algebra closes if we
impose the on-shell condition ECd ¼ 0.

Finally we look at the gauge field ~A�
c
d. In the closure

there is a term that is fourth order in the scalars that
vanishes when fab �c2 d satisfies the fundamental identity

(2). At quadratic order in the fields, closure of the super-
symmetry transformations gives

½�1; �2� ~A�
c
d ¼ �fa

�bc
3 dD�ð��baÞ þ "���v

�ðD�ZA
a
�ZA �b

� ZA
aD

� �ZA �b � i �c A
�b
��c AaÞfa �bc

3 d: (24)

Thus if we impose the on-shell condition

~F ��
c
d ¼ �"���ðD�ZA

a
�ZA �b � ZA

aD
� �ZA �b

� i �c A
�b
��c AaÞfca �b

2 d; (25)

we see that the supersymmetry algebra closes onto trans-
lations and gauge transformations

½�1; �2� ~A�
c
d ¼ v� ~F��

c
d þD�ð��baf

ca �b
2 dÞ; (26)

provided that D�ðfca �b
2 dÞ ¼ 0. This is just the statement

that fca
�b

2 d is an invariant tensor of the gauge algebra. In

general it provides an additional condition on fca
�b

2 d.

However, we will see that it follows directly from the
fundamental identity whenever there is a Lagrangian.

Let us summarize our results so far. Henceforth we drop
the subscript 2 on fab �c2 d, which we take to be an invariant

tensor of the gauge algebra that satisfies (2); the remaining
tensors fa �cb1 d, f

a �cb
3 d, and f

�cab
4 d are related to f

ab �c
d through

(17), (20), and (21). The supersymmetry transformations
are

�ZA
d ¼ i ��ABc Bd

�c Bd ¼ ��D�Z
A
d�AB þ fab �cdZ

C
aZ

A
b
�ZC �c�AB

þ fab �cdZ
C
aZ

D
b
�ZB �c�CD

� ~A�
c
d ¼ �i ��AB��Z

A
ac

B
�b
fca

�b
d þ i ��AB��

�ZA �bc Baf
ca �b

d:

(27)

In the case that fabcd is real and antisymmetric in a, b, c,
we recover the supersymmetry transformations of the
N ¼ 8 theory.

Let us now construct an invariant Lagrangian. We have
seen that the supersymmetry algebra closes into a trans-
lation plus a gauge transformation. On the field �ZA �d, we
find

½�1; �2� �ZA �d ¼ v�D�
�ZA �d þ��

c �b
f� �a �b c

�d
�ZA �a; (28)

with v and ��cb given in (19). The second term is a

gauge transformation, ��
�ZA �d ¼ ��

c �b
f� �a �b c

�d
�ZA �a ¼

���bcf
� �a �b c

�d
�ZA �a. To construct a gauge-invariant

Lagrangian (or, for that matter, any gauge-invariant ob-
servable), we need the metric to be gauge invariant, namely
��ðh �ab �ZA �aZ

A
b Þ ¼ 0. Therefore we must require

fab �c
�d ¼ f� �c �dab; (29)

where fab �c
�d ¼ fab �ceh

�de. This implies that ð~�c �dÞ� ¼
�~�d �c, where

~� c �d ¼ ��baf
ca �b �d; (30)

so the transformation parameters ~�c
d are elements of uðNÞ,

although they are not in general all of uðNÞ.
The first term in (28) contains the translation. Note that it

appears as part of a covariant derivative, v�D�
�ZA �d ¼

v�@� �ZA �d � v� ~A� �c
� �d

�ZA �c The first part is the translation,

while the second is another gauge transformation, with

parameter ~�� �c
�d ¼ �v� ~A� �c

� �d
. This implies that the gauge

field also takes values in uðNÞ.
With these results, it is not hard to show that an invariant

Lagrangian (up to boundary terms) is given by

L ¼ �D� �Za
AD�Z

A
a � i �c Aa��D�c Aa � V þLCS

� ifab �c
�d �c A

�d
c AaZ

B
b
�ZB �c þ 2ifab �c

�d �c A
�d
c BaZ

B
b
�ZA �c

þ i

2
"ABCDf

ab �c �d �c A
�d
c B

�c Z
C
aZ

D
b

� i

2
"ABCDfcd �a

�b �c Acc Bd
�ZC �a

�ZD �b; (31)

where the potential is

V ¼ 2
3�

CD
Bd

��Bd
CD; (32)

where

�CD
Bd ¼ fab �cdZ

C
aZ

D
b
�ZB �c � 1

2�
C
Bf

ab �c
dZ

E
aZ

D
b
�ZE �c

þ 1
2�

D
Bf

ab �c
dZ

E
aZ

C
b
�ZE �c: (33)

The zero-energy solutions correspond to �CD
Bd ¼ 0. This is

equivalent to �CD
Bd �CD ¼ 0 for arbitrary �CD, which im-

plies that the zero-energy solutions preserve all 12
supersymmetries.
The ‘‘twisted’’ Chern-Simons term LCS is given by

L CS ¼ 1
2"

���ðfab �c �dA� �cb@�A� �da

þ 2
3f

ac �d
gf

ge �f �bA� �baA� �dcA� �feÞ: (34)

It satisfies

�LCS

� ~Aa �b
�

fac
�d �b ¼ 1

2
"��� ~F��

c �d; (35)

up to integration by parts, where ~F��
a
b ¼ �@� ~A�

a
b þ

@� ~A�
a
b þ ~A�

a
e
~A�

e
b � ~A�

a
e
~A�

e
b. Just as in [5], this term

can be viewed as a function of ~A�
c
d and not A�c �d.

Note that the Lagrangian (31) is automatically gauge
invariant since it is supersymmetric and supersymmetries
close into gauge transformations. One can also confirm that
the equations of motion give the on-shell conditions that
we found above for closure of the supersymmetry algebra.
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IV. THREE-ALGEBRAS AND THEIR
CONSTRUCTION

A given tensor fab �cd defines a triple product on the

algebra with (complex) generators Ta:

½Ta; Tb; �Tc� ¼ fab �cdT
d; (36)

which is linear and antisymmetric in the first two entries
and complex antilinear in the third. In a sense one may
think of ½�; �; �� as generating a map from the 3-algebra A
into the space of endomorphisms ofA, i.e. for a fixed pair
Y, �Z 2 A, ½�; Y; �Z� defines a linear map of A into itself.
We then obtain a triple product of any three elements X, Y,
�Z 2 A by evaluating the map ½�; Y; �Z� on X.
For the case at hand, the triple product generates a gauge

symmetry

�ZA
d ¼ ��baf

ca �b
dZ

A
c : (37)

This is similar to the gauge symmetry in [5], but there are
some important differences. Let us generalize the discus-
sion of [36]. In what follows, we assume the existence of a
gauge-invariant metric, so �a

b extracted from (19) is an

element of uðNÞ. The symmetries (4) imply that ~�c
d ¼

fca
�b
d��ba is also an element of uðNÞ (where we assume for

concreteness that the metric is positive definite). Thus

fca
�b
d defines a map f: uðNÞ ! uðNÞ;

fð�Þcd ¼ ��baf
ca �b

d: (38)

Let G be the vector space generated by the image of f.
The fundamental identity (2) implies that

½fð�1Þ; fð�2Þ� ¼ fð�3Þ; (39)

where �3�ab ¼ �1�ae�2�gff
ef �g

b ��1�eb�2�gff
� �e �g f

�a. In other

words, the space G of gauge transformations is closed
under the ordinary matrix commutator and is therefore a
Lie subalgebra of uðNÞ. In the special case that fabcd ¼
�facbd, we see that fabcd is real and totally antisymmetric.
In that case G is generated by antisymmetric elements of
uðNÞ. These are necessarily real and hence we recover the
construction of [5] in whichG is a Lie subalgebra of soðNÞ.

Using the metric and the condition (30), we write the
fundamental identity (2) as

fab �cef
ef �g

d ¼ faf �gef
eb �c

d þ fbf �gef
ae �c

d � f �e
f �g �cfab �ed;

(40)

which says that the gauge symmetry acts as a derivation. In
particular, if we contract (40) with ��gf it is equivalent to

the condition

�½ZA; ZB; �ZC� ¼ ½�ZA; ZB; �ZC� þ ½ZA; �ZB; �ZC�
þ ½ZA; ZB;� �ZC�; (41)

where �ZA ¼ ~�a
bZ

A
aT

b. Thus we see that the gauge sym-
metry acts as a derivation.

To continue we give a characterization of tensors fab �c
�d

that satisfy (2) and (4) by adapting a discussion from [37].

As we have noted, fab �c
�d generates the Lie algebra G of

gauge transformations. For any two generators Ta and Tb,
we write

½X; Ta; �T
�b�d ¼ �a �b

A ðtAÞcdXc; (42)

where the �a �b
A are constants and the tA are a matrix repre-

sentation of G inside uðNÞ. In particular, the tA are anti-
Hermitian. We note that

fab �c
�d ¼ Trð �T �d; ½Ta; Tb; �T �c�Þ; (43)

and thus

fab �c
�d ¼ �b �c

A ðtAÞa �d; (44)

where we have used the metric to raise an index. Since

fab �c
�d ¼ f� �c �dab, we also see that the �a �d

A must be such that

fab �c
�d ¼ X

AB

�ABðtAÞa �dðtBÞb �c (45)

for some real and symmetric�AB. If we now substitute this
expression into the fundamental identity, we find

0 ¼ X
ABCDE

�CDðcCBE�AB þ cCBA�EBÞðtAÞa �bðtEÞc �dðtDÞfg;

(46)

where the cABC are the structure constants of G, i.e.

½tA; tB� ¼ cABCt
C. Defining ðjAÞBC ¼ cABC to be the usual

adjoint representation of G, we see that the fundamental
identity implies

½�; jC� ¼ 0 (47)

for all C, provided that �AB is invertible. Thus by Schur’s
lemma, �AB must be proportional to the identity in each
simple component of G. In particular, if the Lie algebra G
is of the form

G ¼ ��G�; (48)

where G� are commuting subalgebras of G, then we find

fab �c
�d ¼ X

�

!�

X
�

ðt�� Þa �dðt�� Þb �c; (49)

where the t�� span a uðNÞ representation of the generators
of G� and the !� are arbitrary constants.
This would seem to furnish us with a very large class of

N ¼ 6 Lagrangians. However, the fab �c
�d that we con-

structed in (49) do not necessarily satisfy fab �c
�d ¼

�fba �c
�d. This condition must be imposed by hand as an

additional constraint.

This form for fab �c
�d allows us to write the ‘‘twisted’’

Chern-Simons term as follows:

LCS ¼
X
�

1

4d�!�

Tr

�
~Að�Þ ^ d ~Að�Þ

þ 2

3
~Að�Þ ^ ~Að�Þ ^ ~Að�Þ

�
: (50)
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Here ~Að�Þ
c
d ¼ ~A��ðt�� Þcddx� is the projection of the gauge

field onto the eigenspace G� and d� is defined by the

normalization Trðt��t�� Þ ¼ d��
��. We are free to rescale

the generators t�� so that dk agrees with the same quantity
as calculated when the trace is taken to be in the funda-
mental representation of G�. For the path integral to be
well defined, the coefficient of a Chern-Simons term must
be k=4	, where k 2 Z [38]. This leads to a quantization
condition of the form !� ¼ 	=d�k.

With these results, the Lagrangian can be written as

L ¼ �TrðD� �ZA;D�Z
AÞ � iTrð �c A; ��D�c AÞ

� V þLCS � iTrð �c A; ½c A; Z
B; �ZB�Þ

þ 2iTrð �c A; ½c B; Z
B; �ZA�Þ

þ i

2
"ABCD Trð �c A; ½ZC; ZD; c B�Þ

� i

2
"ABCD Trð �ZD; ½ �c A; c B; �ZC�Þ; (51)

where

V ¼ 2
3 Trð�CD

B ; ��B
CDÞ;

�CD
B ¼ ½ZC; ZD; �ZB� � 1

2�
C
B½ZE; ZD; �ZE�

þ 1
2�

D
B ½ZE; ZC; �ZE�; (52)

and LCS is given in (50).
We close this section by constructing an infinite class of

examples. Let V1 and V2 be complex vector spaces with
dimensions N1 and N2, respectively. Consider the vector
spaceA of linear maps X: V1 ! V2. In general there is no
natural notion of a product on A, but there is a natural
notion of a triple product:

½X; Y; �Z� ¼ �ðXZyY � YZyXÞ: (53)

Here y denotes the transpose conjugate and � is an arbi-
trary constant. If we introduce the inner product

Tr ð �X; YÞ ¼ trðXyYÞ; (54)

where tr denotes the ordinary matrix trace, then one sees

that fab �c
�d satisfies the correct symmetry properties as well

as the fundamental identity.
From the Lie-algebra point of view, V1 ffi CN1 and V2 ffi

CN2 can be regarded as the vector space of the fundamental
representation ofUðN1Þ andUðN2Þ, respectively. The maps
X: V1 ! V2 can then be viewed as states in the bifunda-
mental representation ðN1; �N2Þ. It is easy to see that the Lie
algebra G acts on X by

�X ¼ XM1 �My
2X; (55)

where M1, M2 are elements of uðN1Þ and uðN2Þ, respec-

tively. Thus we see that G ¼ uðN1Þ � uðN2Þ. Finally one
can check that

�½X; Y; �Z� ¼ ½X; Y; �Z�M1 �My
2 ½X; Y; �Z�; (56)

which is a manifestation of the fundamental identity.
With this choice of 3-algebra, the action (51) becomes

L ¼ �trðD�Zy
AD�Z

AÞ � i trð �c Ay��D�c AÞ
� V þLCS � i� trð �c Ayc AZ

y
BZ

B � �c AyZBZy
Bc AÞ

þ 2i� trð �c Ayc BZ
y
AZ

B � �c AyZBZy
Ac BÞ

þ i�"ABCD trð �c AyZCc ByZDÞ
� i�"ABCD trðZy

D
�c AZ

y
Cc BÞ: (57)

ForN1 ¼ N2 this is theN ¼ 6 action of [23], as written in
component form in [24]. For N1 � N2 we obtain the
UðN1Þ �UðN2Þ models proposed in [39].

V. CONCLUSIONS

In this paper we have studied the general form of three-
dimensional Lagrangians with N ¼ 6 supersymmetry,
SUð4Þ R-symmetry, and a Uð1Þ global symmetry. The
resulting Lagrangians are of Chern-Simons form, with
interacting scalars and vectors that take values in a so-
called 3-algebra. As with the N ¼ 8 model previously
constructed, the Lagrangian is entirely determined by spec-
ifying a triple product on a 3-algebra that satisfies the

fundamental identity. For N ¼ 6, the tensor fab �c
�d that

defines triple product need not be real or totally
antisymmetric.2

We believe that the N ¼ 6 theories relevant for mul-

tiple M2-branes are classified by tensors fab �c
�d that satisfy

the fundamental identity (2) and possess the symmetry
properties (4). There is at least one very natural form for
the triple product that leads to the models of [23] with
gauge group UðNÞ �UðNÞ. It would certainly be interest-
ing to see if there are any other examples and hence other
models. For example, N ¼ 6 models with gauge group
Spð2NÞ �Oð2Þ have appeared in [33]. In addition, perhaps
there is a connection to the embedding tensor approach
studied in [40], or to the work of [14,41] that classifies
totally antisymmetric 3-algebras.
We note that we have emphasized the role of triple

products and 3-algebras even though the resulting
Lagrangians can be viewed as relatively familiar Chern-
Simons gauge theories based on Lie algebras with matter
fields. From our point of view, the dynamical fields have
interactions that are most naturally defined in terms of a
triple product. Thus even though the 3-algebra may not be

2In the special case that fabcd is totally antisymmetric, it is
also real and the Lagrangian becomes that of the N ¼ 8 theory.
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an independent structure apart from a Lie algebra, we
believe the triple product is the central concept behind
the M2-brane dynamics. For example in [6], the light states
on the Coulomb branch of the N ¼ 8 theory were found
to have masses, at least in the classical theory, that are
proportional to the area of a triangle whose vertices end on
the M2-branes. This is a consequence of the appearance of
the triple product in the dynamics and hints to underlying
M-theory degrees of freedom analogous to the open strings
that arise in D-branes.
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APPENDIX

In this paper all spinor quantities in lower case letters are
those of three-dimensional Minkowski space with real two-
component spinors. Spinor quantities with capitol letters
refer to 11-dimensional Minkoswki space with 32 compo-
nent spinors (although the supersymmetry generators are
always denoted by a lower case �). In both cases ��, � ¼
0, 1, 2 and �m, m ¼ 0; 1; 2; . . . ; 10 are sets of real �
matrices with �012 ¼ 1 (respectively �012345678910 ¼ 1)
and �� ¼ �T�0 (respectively �� ¼ �T�0). The eight trans-
verse directions are labeled by the scalars XI, I, J ¼ 1; ::; 8
or in terms of four complex scalars ZA, A, B ¼ 1, 2, 3, 4,
with complex conjugates �ZA.

In three dimensions the Fierz transformation is

ð ��
Þc ¼ �1
2ð ��c Þ
� 1

2ð ����c Þ��
: (A1)

Furthermore, we note the following useful identities:

1
2
��CD1 ���2CD�

A
B ¼ ��AC1 ���2BC � ��AC2 ���1BC

2 ��AC1 �2BD � 2 ��AC2 �1BD ¼ ��CE1 �2DE�
A
B � ��CE2 �1DE�

A
B

� ��AE1 �2DE�
C
B þ ��AE2 �1DE�

C
B

þ ��AE1 �2BE�
C
D � ��AE2 �1BE�

C
D

� ��CE1 �2BE�
A
D þ ��CE2 �1DE�

A
D

(A2)

1
2"ABCD ��EF1 ���2EF ¼ ��1AB���2CD � ��2AB���1CD

þ ��1AD���2BC � ��2AD���1BC

� ��1BD���2AC þ ��2BD���1AC:

(A3)

In 11 dimensions the Fierz transformation is

ð ��2
Þ�1 � ð ��1
Þ�2 ¼ � 1

16

�
2ð ��2���1Þ��


� ð ��2�IJ�1Þ�IJ


þ 1

4!
ð ��2���IJKL�1Þ���IJKL


�
;

(A4)

where �1, �2, and 
 have the same chirality with respect to
�012.
We also found the following identities useful:

�M�
IJ�M ¼ 4�IJ

�M�
IJKL�M ¼ 0

�IJP�KLMN�P ¼ ��I�KLMN�J þ �J�KLMN�I

�I�KL�J � �J�KL�I ¼ 2�KL�IJ � 2�KJ�IL þ 2�KI�JL

� 2�LI�JK þ 2�LJ�IK � 4�KJ�IL

þ 4�KI�JL

�IJM�KL�M ¼ 2�KL�IJ � 6�KJ�IL þ 6�KI�JL

� 6�LI�JK þ 6�LJ�IK þ 4�KJ�IL

� 4�KI�JL: (A5)
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