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An explicit and simple solution representing the wormhole formation is presented. The spacetime is

constructed by gluing the Minkowski and Roberts spacetimes at null hypersurfaces in a regular manner.

The parameters in the Roberts solution are required to give the negative kinetic term for the massless

scalar field. Although a curvature singularity appears at the moment of the wormhole formation, it

disappears instantaneously. This instantaneous singularity is weak in the senses of both Tipler and Królak

along radial causal geodesics.
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I. INTRODUCTION

Along with black holes, wormholes are intriguing ob-
jects in general relativity which have been attracting
people even not working in gravitational physics. Aworm-
hole is locally characterized by a ‘‘throat,’’ i.e., a two-
dimensional compact spatial surface of minimal area on
an achronal hypersurface, connecting some asymptotic
regions or infinities. Wormholes admit the (apparent)
superluminal travel as a global effect of the spacetime
topology [1–3]. Moreover, they are available to make
time machines [4,5]. (The readers should refer to [2] for
a standard textbook and [3] for a nice recent review.)

The Morris-Thorne static traversable wormhole con-
necting two asymptotically flat spacetimes is now a well-
known classic in general relativity [6]. (Static wormhole
metrics were obtained even before Morris and Thorne [7].)
It is known that an exotic matter violating the null energy
condition is necessary for static traversable wormholes in
general relativity [2,8,9]. This is also a natural conse-
quence of the topological censorship in the asymptotically
flat case [10]. Thus, to construct wormhole solutions with
small or even without violation of the energy condition has
been a big challenge in wormhole physics [11,12]. In fact,
it was shown that the wormhole spacetime can be con-
structed with an arbitrarily small amount of matter which
violates the averaged null energy condition [13]. This
result suggests that the wormhole configuration could be
realized in the universe by some quantum effects violating
the energy conditions.

Then, a natural question is the stability of the wormhole
solutions. A wormhole could be formed from the gravita-
tional collapse of matter fields possibly violating the en-
ergy conditions. Also, it may be formed by some quantum
tunneling effect. The stability analysis is important in order

to clarify the stable stationary configuration of a wormhole.
In the case of the static wormhole solution with thin shells,
there exist linearly stable configurations depending on the
parameter(s) of the solution [14]. On the other hand, no
stable and analytic wormhole solutions have been reported
in the studies of mode analyses and numerical simulations
so far [15–18].
Independent of the stability of the stationary wormhole

configurations, the formation of a wormhole is a highly
nontrivial problem because it is a dynamical process of
the topology change. Actually, the dynamical aspects of
wormholes have not been well understood so far. Although
there is a lot of static wormhole solutions obtained in the
literature, there are few works on the exact model of
wormhole formation from the regular initial data.
Because the formation or the growth of a wormhole is
essentially a quite complicated dynamical and inhomoge-
neous process, numerical methods have been often used to
study such problems. In these surroundings, exact analytic
models are important to give a transparent picture of the
phenomenon. They become test beds for the future re-
search and should be intensively investigated to comple-
ment the numerical works.
The purpose of the present paper is to give a simple

analytic model of wormhole formation with a massless
ghost scalar field. The rest of the present paper is consti-
tuted as follows. In the following section, basic equations
and a review of the Roberts solution are presented. In
Sec. III, we construct our model and study its global
structure. In Sec. IV, properties of the curvature singularity
in the Roberts spacetime are studied. Concluding remarks
and discussions including future prospects are summarized
in Sec. IV. In Appendix A, the relation between the Roberts
and the Gutman-Bespal’ko solutions is explicitly shown. In
Appendix B, the global structure of the Roberts solution for
the nonghost case is reviewed. We adopt the units such that
c ¼ G ¼ 1. The metric signature convention is taken to be*hideki@cecs.cl
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ð�;þ;þ;þÞ, and greek indices run over all spacetime
indices. The conventions of the curvature tensors are
½r�;r��V� ¼ R�

���V
� and R�� :¼ R�

���.

II. MODEL AND THE SOLUTION

We begin with the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�
R� 1

2
��;��

;�

�
; (2.1)

where � ¼ 1 and �1 respectively correspond to the real
and ghost massless scalar field. The energy-momentum
tensor for a scalar field is given by

T�� ¼ �ð�;��;� � 1
2g���;��

;�Þ: (2.2)

The Einstein equation is

R �
� ¼ 8���;��;�; (2.3)

while the equation of motion for � is

h� ¼ 0: (2.4)

We see from the basic Eqs. (2.3) and (2.4) that if the scalar
field in one solution with � ¼ 1 is purely imaginary, it can
be interpreted as a solution with a ghost scalar field (� ¼
�1).

In this paper, we consider the spherically symmetric
spacetime ðM4; g��Þ which is a warped product of a

two-dimensional constant curvature space ðS2; �ijÞ and a

two-dimensional orbit spacetime ðM2; gABÞ under the
isometry of ðS2; �ijÞ. Namely, the line element is given by

ds2 ¼ gABdx
AdxB þ RðxAÞ2d�2; (2.5)

where A, B ¼ 0, 1; i, j ¼ 2, 3 d�2 :¼ �ijdx
idxj ¼ d	2 þ

sin2	d’2. Here R is a scalar on ðM2; gABÞ with R ¼ 0
defining its boundary, and �ij is the unit metric on

ðS2; �ijÞ with its sectional curvature k ¼ 1. The Misner-

Sharp mass [19] is defined by

mMS :¼ R

2
ð1� R;AR

;AÞ: (2.6)

Under the assumption that ðM2; gABÞ is Minkowski, the
general homothetic self-similar spherically symmetric so-
lution for a massless scalar field with � ¼ 1 is given by

ds2 ¼ �2dudvþ ð�uvþ C1v
2 þ C2u

2Þd�2; (2.7)

where C1 and C2 are real constants. For C1C2 ¼ 1=4, it is
the Minkowski spacetime. ForC1C2 � 1=4, the scalar field
is given by

� ¼ �0 � 1

2
ffiffiffiffi
�

p arctanh

�
1� 2C1ðv=uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C1C2

p
�

(2.8)

for C1 � 0 and

� ¼ �0 � 1

4
ffiffiffiffi
�

p ln

��������
v

u
� C2

�������� (2.9)

for C1 ¼ 0, where the value of the constant �0 is mean-
ingless. The Misner-Sharp mass (2.6) is given by

mMS ¼ � ð1� 4C1C2Þuv
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�uvþ C1v
2 þ C2u

2
p : (2.10)

The Kretschmann invariant K is given by

K :¼ R����R���� ¼ 3u2v2ð1� 4C1C2Þ2
ð�uvþ C1v

2 þ C2u
2Þ4 : (2.11)

The expression (2.8) is convenient to understand the
codomain of � because arctanhðwÞ is real, complex, and
purely imaginary for 0 � ðRewÞ2 < 1 with Imw ¼ 0,
ðRewÞ2 > 1 with Imw ¼ 0, and Rew ¼ 0, respectively.
The scalar field is real for

0 � ½1� 2C1ðv=uÞ�2
1� 4C1C2

< 1 (2.12)

in the case of C1C2 < 1=4 otherwise � becomes complex.
We write the condition (2.12) in terms of the square of the
areal radius R2 ¼ �uvþ C1v

2 þ C2u
2 as

0 � 4C1R
2

u2ð1� 4C1C2Þ
þ 1< 1: (2.13)

Therefore, under C1C2 < 1=4, the scalar field is real and
complex for C1 � 0 and C1 > 0, respectively. In the case
of C1C2 > 1=4, on the other hand, Eq. (2.8) with �0 ¼ 0
can be rewritten as

� ¼ � i

2
ffiffiffiffi
�

p arctan

�
1� 2C1ðv=uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C1C2 � 1

p
�
; (2.14)

where i2 :¼ �1. Therefore, the scalar field is purely imagi-
nary corresponding to a ghost scalar field for C1C2 > 1=4.
Here we must give some comments on the history of this

solution. The solution with C1 � 0 was obtained by
Roberts in 1989 [20]. Unfortunately, the metric in the
double null coordinates was erroneously written and the
correct form was found later by several authors [21–24]. In
this case, we can set jC1j ¼ 1 without loss of generality by

the coordinate transformations �v :¼ ffiffiffiffiffiffiffiffiffijC1j
p

v and �u :¼
u=

ffiffiffiffiffiffiffiffiffijC1j
p

, so it is a one-parameter family of solutions. On
the other hand, the solution with C1 ¼ 0 was obtained by
Brady in 1994 [23]. (See also [25,26].) In fact, we can show
that the metric of the solution found by Gutman and
Bespal’ko for a stiff fluid in 1967 [27] covers half of the
spacetime (2.7). (See Appendix A.) This is because a
massless scalar field is equivalent to a stiff fluid if the
gradient of the scalar field is timelike [28]. Keeping in
mind the history, we call this solution the Roberts solution
in the present paper.
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III. AN ANALYTIC MODEL OF WORMHOLE
FORMATION

In this section, we construct a simple analytic model of
wormhole formation by gluing the Roberts and Minkowski
spacetimes in a regular manner. We focus on the case of
C1C2 > 1=4 corresponding to a ghost scalar field, which is
required for this construction. The properties of the
Roberts solution in the case of C1C2 � 1=4 is reviewed
in Appendix B.

In the case of C1C2 > 1=4, C1 > 0 and C2 > 0 are
required for the areal radius to be non-negative. The areal
radius becomes zero only at u ¼ v ¼ 0. Thus, it is seen in
Eq. (2.11) that only u ¼ v ¼ 0 may be a curvature singu-
larity. We also see in Eq. (2.10) that the region with uv >
ð<Þ0 has positive (negative) mass. On a null hypersurface
of u ¼ 0 or v ¼ 0, the Kretschmann invariant and the
quasilocal mass are zero and the derivative of the scalar
field becomes null.

The trapped region is given by R< 2mMS. SincemMS �
0 is satisfied for uv � 0, the trapped region is located in the
region of uv > 0. The trapping horizon [29] defined by
R ¼ 2mMS is given by

v ¼ �ð1þ 4C1C2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8C1C2

p
4C1

u (3.1)

for C1 � 0, while u ¼ 0 and v ¼ 2C2u for C1 ¼ 0. Thus,
there are two timelike trapping horizons (3.1) for C1C2 >
1=4 with C1; C2 > 0 in the region of uv > 0.

It is easy to know the global structure of the Roberts
solution because ðM2; gABÞ is the Minkowski spacetime. u
and v are affine parameters along radial null geodesics, and
then null infinities are represented by u ! �1 or v !
�1. The Penrose diagram of the Roberts spacetime for
C1C2 > 1=4 with C1; C2 > 0 is given in Fig. 1. This space-
time represents a dynamical wormhole. (Several (quasi-)

local definitions of a dynamical wormhole have been in-
dependently proposed so far [30–32].)
Now we show that the Roberts spacetime can be at-

tached to the Minkowski spacetime at u ¼ 0 or v ¼ 0 in
a regular manner, i.e., without a massive thin shell on the
hypersurface. (See [33,34] for the matching condition on a
null hypersurface.) We consider a null hypersurface u ¼ 0
as a matching surface, which we call �. (The argument is
similar for v ¼ 0.) The induced metric hab on � is given
by

ds2� ¼ habdy
adyb :¼ C1v

2d�2; (3.2)

where ya ¼ ðv; 	; ’Þ is a set of coordinates on�. The basis
vectors of � defined by e�a :¼ @x�=@ya are given by

e�v
@

@x�
¼ @

@v
; (3.3)

e�i
@

@x�
¼ 
�

i

@

@xi
: (3.4)

The basis is completed by N�dx
� ¼ �dv satisfying

N�e
�
v ¼ �1 and N�e

�
i ¼ 0 on �. The only nonvanishing

component of the transverse curvatureCab :¼ N�;�e
�
a e�b of

� is

Cij ¼ �1
2v�ij: (3.5)

The regular attachment on � requires the continuity of
hab and Cab on both side of �. Since there is no C2 in the
expressions of hab and Cab, two Roberts spacetimes with
the same nonzero C1 but different C2 can be attached in a
regular manner at u ¼ 0. Thus, as a special case, the
Roberts spacetime (2.7) with C1 ¼ �C1ð� 0Þ and C2 ¼ �C2

can be attached to the past Minkowski spacetime at u ¼ 0
in a regular manner, of which metric is given by Eq. (2.7)
with C1 ¼ �C1 and C2 ¼ 1=ð4 �C1Þ � �C2. Similarly, it is
shown that two Roberts spacetimes with the same nonzero
C2 but different C1 can be attached in a regular manner at
v ¼ 0.
By gluing the Roberts spacetime with 4C1C2 > 1, C1,

C2 > 0 and the Minkowski spacetime(s) at u ¼ 0 and/or
v ¼ 0 in a regular manner, we can construct spacetimes
representing wormhole formation from the initial data with
a regular center. The Penrose diagrams for these space-
times are given in Fig. 2.
The attachment of the Roberts spacetime to the

Minkowski spacetime in the case of the ghost scalar field
has been mentioned in [35] without detailed calculations. It
is claimed there that the instantaneous singularity u ¼ v ¼
0 in the Roberts spacetime can be removed by gluing the
Minkowski spacetime at u ¼ 0 or v ¼ 0. Obviously, the
curvature invariants do not blow up if an observer ap-
proaches there from the Minkowski region, however, they
certainly blow up along some causal geodesics emanating
from u ¼ v ¼ 0 in the Roberts region. As a result, there is

fu
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FIG. 1. The Penrose diagram of the Roberts solution (2.7) for
C1C2 > 1=4 with C1 > 0 and C2 > 0. A star corresponds to an
instantaneous curvature singularity at u ¼ v ¼ 0. The quasilocal
mass is positive (negative) in the regions II and IV (I and III).
The trapping horizons (3.1) are located in the regions II and IV.
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still a naked singularity at u ¼ v ¼ 0 in the resulting
spacetime. The details will be presented in the next section.

IV. PROPERTIES OF THE INSTANTANEOUS
SINGULARITY

In the last section, we constructed a spacetime represent-
ing the wormhole formation. One problem in this space-
time is an instantaneous curvature singularity at u ¼ v ¼ 0
which appears at the moment of the wormhole formation.
In this section, we show that it is a naked but weak
singularity.

A. Nakedness

First we show that both radial and nonradial causal
geodesics emanate from u ¼ v ¼ 0, i.e., it is certainly a
naked singularity. The Lagrangian to give the geodesic
equations is

L ¼ 1
2g�� _x

� _x�

¼ � _u _vþ1
2ð�uvþ C1v

2 þ C2u
2Þð _	2 þ sin2	 _’2Þ;

(4.1)

where a dot denotes the derivative with respect to the affine
parameter � along a geodesic. Because of spherical sym-
metry, we can set 	 � �=2 without loss of generality. The
metric (2.7) is independent of ’, so that from the Lagrange
equation

0 ¼ @

@�

@L

@ _x�
� @L

@x�
; (4.2)

we obtain a conserved quantity along a geodesic as

� :¼ @L

@ _’
¼ ð�uvþ C1v

2 þ C2u
2Þ _’: (4.3)

Then, the geodesic equations (4.2) are written as

0 ¼ €vþ ð�vþ 2C2uÞ�2

2ð�uvþ C1v
2 þ C2u

2Þ2 ; (4.4)

0 ¼ €uþ ð�uþ 2C1vÞ�2

2ð�uvþ C1v
2 þ C2u

2Þ2 : (4.5)

The tangent vector of a nonspacelike geodesic k� :¼ _x�

satisfies

k�k� ¼ "; (4.6)

where " is 0 and �1 for null and timelike geodesics,
respectively. This equation is written as

" ¼ �2 _u _vþð�uvþ C1v
2 þ C2u

2Þ�1�2: (4.7)

The Roberts spacetime admits a homothetic Killing
vector ��ð@=@x�Þ ¼ uð@=@uÞ þ vð@=@vÞ satisfying

L �g�� :¼ ��;� þ ��;� ¼ 2g��: (4.8)

Then, we obtain

d

d�
ð��k�Þ ¼: ð��k�Þ;�k� ¼ ��;�k

�k� þ ��k�;�k
�

¼ ��;�k
�k� ¼ g��k

�k� ¼ "; (4.9)

where we used the fact that k� is tangent to a geodesic and
Eq. (4.8). Hence we obtain ��k� ¼ D0 þ "�, or equiva-

lently

� u _v� v _u ¼ D0 þ "�; (4.10)

whereD0 is a constant. Equation (4.10) is integrated to give

� uv ¼ D1 þD0�þ 1
2"�

2; (4.11)

where D1 is a constant.
We are now interested in the geodesics emanating from

u ¼ v ¼ 0. Without loss of generality, we can set � such
that � ¼ 0 corresponds to u ¼ v ¼ 0. Thus, we consider
the case with D1 ¼ 0. Now the geodesic equations reduce
to

" ¼ �2 _u _vþð�uvþ C1v
2 þ C2u

2Þ�1�2; (4.12)

� uv ¼ D0�þ 1
2"�

2: (4.13)
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FIG. 2. The Penrose diagrams representing wormhole forma-
tion from the initial data with a regular center. The Roberts
spacetime with C1C2 > 1=4, C1 > 0, and C2 > 0 (the shadowed
region) is attached to the past Minkowski spacetimes at
(a) u ¼ 0 with v > 0 and v ¼ 0 with u > 0, (b) u ¼ 0,
(c) v ¼ 0 with u > 0, and (d) u ¼ 0 with v < 0 and v ¼ 0
with u < 0. A thick line corresponds to a symmetric center in a
Minkowski spacetime. t1 represents a spacelike hypersurface
with a regular symmetric center, while t2 represents a spacelike
hypersurface with distinct spacelike infinities without a regular
center.

HIDEKI MAEDA PHYSICAL REVIEW D 79, 024030 (2009)

024030-4



We obtain the master equation for uð�Þ from above equa-
tions as

du

d�
¼ Auð"�þD0Þ � u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A½D2

0Aþ 4��2u2ð"�þ 2D0Þ�
q

�Að"�þ 2D0Þ ;

(4.14)

A :¼ 4C2u
4 þ 2�u2ð"�þ 2D0Þ þ C1�

2ð"�þ 2D0Þ2:
(4.15)

First we consider radial geodesics (� ¼ 0). For the null
geodesics (" ¼ 0), the solutions of Eqs. (4.12) and (4.13)
passing through u ¼ v ¼ 0 are u ¼ 0 or v ¼ 0. Along
these radial null geodesics, the Kretschmann invariant
and the quasilocal mass are identically zero. For the time-
like geodesics (" ¼ �1), the general solution of Eq. (4.14)
is given by u ¼ u0� and u ¼ u0ð2D0 � �Þ, where u0 is a
nonzero constant. These two coincide for D0 ¼ 0 and the
latter does not pass through u ¼ 0 for D0 � 0. Finally, the
solution passing through u ¼ v ¼ 0 is given by

u ¼ u0�; v ¼ 1

2u0
�; (4.16)

which corresponds to D0 ¼ 0 in Eq. (4.13). The
Kretschmann invariant along these radial timelike geode-
sics is given by

K ¼ 192u80ð1� 4C1C2Þ2
ð�2u20 þ C1 þ 4C2u

4
0Þ4�4

; (4.17)

which diverges at � ¼ 0, i.e., u ¼ v ¼ 0. Along these
radial timelike geodesics, the quasilocal mass is given by

mMS ¼ � ð1� 4C1C2Þu0�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2u20 þ C1 þ 4C2u

4
0

q ; (4.18)

which converges to zero at � ¼ 0.
For the nonradial geodesics (� � 0), there is a solution

of Eqs. (4.12) and (4.13) passing through u ¼ v ¼ 0,
which is given by

u2 ¼ ��ð2D0 þ "�Þ½ðD2
0 þ 2�2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

0 þ 2�2Þ2 � 4D4
0C1C2

q
�

4D2
0C2

; (4.19)

v2 ¼ ��ð2D0 þ "�Þ½ðD2
0 þ 2�2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

0 þ 2�2Þ2 � 4D4
0C1C2

q
�

4D2
0C1

: (4.20)

Under 4C1C2 � 1> 0 and C1; C2 > 0, the conditions for
u2 and v2 to be real and positive are D0 < 0 and

1

4
<C1C2 � ðD2

0 þ 2�2Þ2
4D4

0

: (4.21)

Because D0 and � are independent parameters which
characterize a geodesic, the right-hand side of Eq. (4.21)
varies from 1=4 to infinity. Hence, for any values of C1 and
C2 satisfying C1C2 > 1=4 and C1; C2 > 0, there are non-
radial causal geodesics passing through u ¼ v ¼ 0.

Along these nonradial geodesics, the Kretschmann in-
variant diverges around u ¼ v ¼ 0 as

lim
�!0

K ’ 3u0v0ð1� 4C1C2Þ2
ð�u0v0 þ C1v

2
0 þ C2u

2
0Þ4�2

; (4.22)

u20 :¼
�ðD2

0 þ 2�2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

0 þ 2�2Þ2 � 4D4
0C1C2

q

2D0C2

;

(4.23)

v2
0
:¼ �ðD2

0 þ 2�2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

0 þ 2�2Þ2 � 4D4
0C1C2

q

2D0C1

;

(4.24)

while the quasilocal mass converges to zero at u ¼ v ¼ 0
as

lim
�!0

mMS ’ � ð1� 4C1C2Þu0v0�
1=2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u0v0 þ C1v

2
0 þ C2u

2
0

q : (4.25)

We note that Eqs. (4.22) and (4.25) are exact expressions
for nonradial null geodesics.

B. Strength

Next we consider the strength of the singularity at u ¼
v ¼ 0. As definitions of the strength of singularities, the
strong curvature condition (SCC) [36] and the limiting
focusing condition (LFC) [37] were proposed by Tipler
and Królak, respectively. We consider a geodesic (N),
affinely parametrized by �, with the tangent vector k�,
terminating at or emanating from a singularity, where � ¼
0. SCC and LFC imply that N is emanating from or
terminating in the Tipler’s strong and the Królak’s strong
curvature singularities, respectively [38]. The physical
content of the Tipler strong is that the volume element of
physical objects (constructed by the Jacobi fields along N)
converges to zero at the singularity. On the other hand, the
physical content of the Królak strong is that the expansion
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along N diverges at the singularity, but still the volume
element remains finite. (See also [39,40] for the textbook.)

The necessary conditions for SCC and LFC are available
[38]. Let E�

ðIÞðI ¼ 1; 2; 3; 4Þ a parallelly propagating frame

along N satisfying E
�
ð1ÞEð1Þ� ¼ E

�
ð2ÞEð2Þ� ¼ E

�
ð3ÞEð3Þ� ¼

�E
�
ð4ÞEð4Þ� ¼ 1 if N is timelike and E

�
ð1ÞEð1Þ� ¼

E�
ð2ÞEð2Þ� ¼ �E�

ð3ÞEð4Þ� ¼ �E�
ð4ÞEð3Þ� ¼ 1 if N is null.

All other products vanish and Eð4Þ� :¼ k�. If SCC is

satisfied along N, then lim�!0�
2RðIÞ

ð4ÞðJÞð4Þ does not con-
verge for I, J ¼ 1, 2, 3 and I, J ¼ 1, 2 in the cases where N

is timelike and null, respectively, where RðIÞ
ðJÞðKÞðLÞ is the

Riemann tensor in the parallelly propagating frame. If LFC

is satisfied along N, then lim�!0�RðIÞ
ð4ÞðJÞð4Þ does not

converge for I, J ¼ 1, 2, 3 and I, J ¼ 1, 2 in the cases
where N is timelike and null, respectively.

We show that the singularity at u ¼ v ¼ 0 in the
Roberts spacetime is weak in the senses of both Tipler
and Królak for radial causal geodesics. For the radial
causal geodesics, of which tangent vector has the form of
k� ¼ ðku; kv; 0; 0Þ ¼: E

�
ð4Þ, where k

ukv ¼ 0 is satisfied for

null geodesics, the angler bases E
�
ðIÞ (I ¼ 1, 2) are given as

E�
ð1Þ

@

@x�
:¼ 1

R

@

@	
; (4.26)

E�
ð2Þ

@

@x�
:¼ 1

R sin	

@

@’
; (4.27)

which satisfy E
�
ðIÞEðJÞ� ¼ 
IJ. The only nonzero compo-

nent of R�
ð4Þ�ð4Þ :¼ R�

���k
�k� is

R i
ð4Þjð4Þ ¼ � ð4C1C2 � 1Þðvku � ukvÞ2

4ð�uvþ C1v
2 þ C2u

2Þ2 

i
j: (4.28)

Thus, the only nonzero component of RðIÞ
ð4ÞðJÞð4Þ is

R ð1Þ
ð4Þð1Þð4Þ ¼ Rð2Þ

ð4Þð2Þð4Þ

¼ � ð4C1C2 � 1Þðvku � ukvÞ2
4ð�uvþ C1v

2 þ C2u
2Þ2 : (4.29)

These quantities are identically zero both for radial null
geodesics (u ¼ 0 or v ¼ 0) and radial timelike geodesics
(4.16). Hence, it is concluded that the singularity at u ¼
v ¼ 0 is weak in the senses of both Tipler and Królak for
radial causal geodesics.

For nonradial geodesics, it seems to be cumbersome to

examine RðIÞ
ð4ÞðJÞð4Þ. Instead, we here consider the behav-

ior of Rð4Þð4Þ :¼ R��k
�k�, which is used in the sufficient

conditions for SCC and LFC. SCC is satisfied if
lim�!0�

2Rð4Þð4Þ > 0 and LFC is satisfied if

lim�!0�Rð4Þð4Þ > 0 [38,40]. The nonzero components of

the Ricci tensor of the Roberts spacetime are given by

R uu ¼ � v2ð4C1C2 � 1Þ
2ð�uvþ C1v

2 þ C2u
2Þ2 ; (4.30)

R uv ¼ uvð4C1C2 � 1Þ
2ð�uvþ C1v

2 þ C2u
2Þ2 ; (4.31)

R vv ¼ � u2ð4C1C2 � 1Þ
2ð�uvþ C1v

2 þ C2u
2Þ2 : (4.32)

Finally, for nonradial causal geodesics k� ¼ ð _u; _v; 0; _’Þ,
where _u, _v, and _’ are obtained from (4.3), (4.19), and
(4.20), respectively, we obtainRð4Þð4Þ � 0, which immedi-

ately implies �2Rð4Þð4Þ � 0 and �Rð4Þð4Þ � 0 along the

geodesics. Although this result does not directly mean
that neither SCC nor LFC is satisfied, it would suggest
that the singularity at u ¼ v ¼ 0 is weak also along non-
radial causal geodesics.

V. SUMMARYAND DISCUSSIONS

In this paper, we constructed an explicit and simple
model of wormhole formation from the initial data with a
regular center. The spacetime represents the wormhole
formation with a massless ghost scalar field. In this con-
struction, the matter region represented by the Roberts
spacetime is attached to the past Minkowski spacetimes
at null hypersurfaces in a regular manner.
This construction has been mentioned in [35] without a

detailed analysis. Actually, unlike the authors’ claim in
[35], a naked curvature singularity appears at the moment
of the wormhole formation. However, we showed that it is
only instantaneous and weak in the senses of both Tipler
and Królak. This class of weak singularities could be
harmless because it would be dealt with in some distribu-
tional sense.
In this context, Hayward and Koyama constructed an

analytic model representing the wormhole ‘‘formation’’
from the Schwarzschild black hole [41]. Although their
model does not contain a singularity at the moment of
‘‘formation,’’ it does not represent the wormhole formation
from the initial data with a regular center, i.e., there is no
topology change in their model. While they defined a
wormhole throat by a class of trapping horizons [30,31],
there is a wormhole throat on any spacelike hypersurface in
their model. (See [32] for the discussions of the (quasi-)
local definition of a wormhole throat on a spacelike
hypersurface.)
In the spatially compact spacetime, the wormhole for-

mation necessarily requires the appearance of singularities
or closed timelike curves. This is a consequence of the
result by Geroch about the topology change of spacetimes
[42]. Hence, under the suitable chronology condition, the
singularity formation is inevitable. In this paper, on the
other hand, the wormhole formation in the spatially non-
compact spacetime is considered. The singularity forma-
tion would be also inevitable for the wormhole formation
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in this case, however, as far as the author knows, this is an
open question.

The solution presented in this paper will be a simple
analytic model to study the formation of a wormhole. In
this context, the stability of the wormhole formation is an
important future work. While the stability of the Roberts
solution was studied in the case of the positive kinetic term
of the scalar field [43], it is still an open question for the
ghost scalar field.
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APPENDIX A: THE RELATION BETWEEN THE
GUTMAN-BESPAL’KO AND THE ROBERTS

SOLUTIONS

In 1967, Gutman and Bespal’ko obtained a spherically
symmetric solution for a stiff fluid, i.e., a perfect fluid with
an equation of state p ¼ �, where p and� are the pressure
and energy density, respectively [27]. (See also [44,45] for
the generalized solution.) The energy-momentum tensor
for a perfect fluid is given by

T�� ¼ pg�� þ ðpþ�Þu�u�; (A1)

where u� is the four-velocity of the fluid element. The
Gutman-Bespal’ko solution is given in the comoving co-
ordinates as

ds2 ¼ �z2dt2 þ dz2 þ 1
2z

2ð1þ C1e
2t þ C2e

�2tÞd�2;

(A2)

p ¼ � ¼ 1� 4C1C2

8�z2ð1þ C1e
2t þ C2e

�2tÞ2 ; (A3)

where the constants C1 and C2 satisfy C1C2 � 1=4 for
non-negative energy density. In the case of 4C1C2 ¼ 1,
the solution gives the Minkowski solution. The Gutman-
Bespal’ko spacetime admits a homothetic Killing vector
��ð@=@x�Þ ¼ zð@=@zÞ satisfying L�g�� ¼ 2g��.

We show that the Gutman-Bespal’ko spacetime covers
half of the Roberts spacetime. In 1988, Madsen showed the
equivalence between a massless scalar field and a stiff fluid
[28]. This is easily generalized to the ghost case as shown

below. The energy-momentum tensor for a stiff fluid is

T�� ¼ �ð2u�u� þ g��Þ: (A4)

If u� is vorticity free, which is satisfied in the spherically
symmetric spacetime, one can show that this matter field is
equivalent to a massless scalar field �, of which gradient
�;� is timelike. The corresponding energy density and 4-

velocity are given by

� ¼ �1
2��

;��;�; (A5)

u� ¼ � �;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��;��
;�

p ; (A6)

with which Eq. (A4) coincides with Eq. (2.2), where the
sign in (A6) is chosen so that u� is future-directed.
For the Gutman-Bespal’ko solution, the corresponding

scalar field with � ¼ 1 is

� ¼ �0 � 1

2
ffiffiffiffi
�

p arctanh

�
1þ 2C1e

2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C1C2

p
�

(A7)

for C1 � 0 and

� ¼ �0 � 1

4
ffiffiffiffi
�

p lnj � e2t � C2j (A8)

for C1 ¼ 0.
In the Gutman-Bespal’ko spacetime, the metric on

ðM2; gABÞ is Minkowski in the Rindler coordinates, while
it is also Minkowski but in the double null coordinates in
the Roberts solution. By the coordinate transformations

t ¼ arctanh

�
T

X

�
; z ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � T2

p
; (A9)

of which inverse transformations are

T ¼ z sinht; X ¼ z cosht; (A10)

the two-dimensional Rindler metric ds22 ¼ �z2dt2 þ dz2

is transformed into ds22 ¼ �dT2 þ dX2. Adopting the null
coordinates such as

u ¼ T � Xffiffiffi
2

p ; v ¼ T þ Xffiffiffi
2

p ; (A11)

we obtain ds22 ¼ �2dudv.
Indeed, by the direct transformations

u ¼ � 1ffiffiffi
2

p ze�t; v ¼ � 1ffiffiffi
2

p zet; (A12)

of which inverse is

t ¼ arctanh

�
vþ u

v� u

�
; z ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi�2uv

p
; (A13)

the Roberts metric (2.7) is transformed to the Gutman-
Bespal’ko metric (A2). Therefore, we may call the
Gutman-Bespal’ko metric (A2) the Rindler chart of the
Roberts metric. Because of uv < 0, the Rindler chart
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covers only half of the Roberts spacetime. (The regions I
and III in Figs. 1 and 3.)
On the other hand, by the coordinate transformations

T ¼ ~t cosh~z; X ¼ ~t sinh~z; (A14)

of which inverse is

~t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � X2

p
; ~z ¼ arctanh

�
X

T

�
; (A15)

the two-dimensional Minkowski spacetime ds22 ¼�dT2 þ dX2 is transformed to the Milne form ds22 ¼�d~t2 þ ~t2d~z2. Thus, by the direct transformations

u ¼ � 1ffiffiffi
2

p ~te�~z; v ¼ � 1ffiffiffi
2

p ~te~z; (A16)

of which inverse is

~t ¼ � ffiffiffiffiffiffiffiffiffi
2uv

p
; ~z ¼ arctanh

�
v� u

vþ u

�
; (A17)

the Roberts solution is transformed to

ds2 ¼ �d~t2 þ ~t2d~z2 þ 1

2
~t2ð�1þ C1e

2~z þ C2e
�2~zÞd�2;

(A18)

� ¼ �0 � 1

2
ffiffiffiffi
�

p arctanh

�
1� 2C1e

2~zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C1C2

p
�

(A19)

for C1 � 0. For C1 ¼ 0, the scalar field is transformed to

� ¼ �0 � 1

4
ffiffiffiffi
�

p lnje2~z � C2j: (A20)

We may call this metric the Milne chart of the Roberts
metric. Because of uv > 0, the Milne chart covers the
regions II and IV in Figs. 1 and 3. This spacetime admits
a homothetic Killing vector ��ð@=@x�Þ ¼ tð@=@tÞ satisfy-
ing L�g�� ¼ 2g��.

APPENDIX B: THE ROBERTS SOLUTION FOR
C1C2 � 1=4

In this appendix, we review the properties of the Roberts
spacetime with C1C2 � 1=4 corresponding to the positive
kinetic term of the scalar field. First we see in Eq. (2.10)
that the region with uv > 0 has negative mass. In the case
with C1 � 0, C2 � 0, and C1C2 � 1=4, there are non-null
central curvature singularities located at

u ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C1C2

p
2C1

v: (B1)

If C1C2 > 0, both of them are timelike or spacelike, while
if C1C2 < 0, one is spacelike and the other is timelike. For
C1 ¼ 0 and C2 � 0, there are null and non-null central
curvature singularities at u ¼ 0 and u ¼ ð1=C2Þv, respec-
tively. For C2 ¼ 0 and C1 � 0, there are null and non-null
central curvature singularities at v ¼ 0 and v ¼ ð1=C1Þu,
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FIG. 3. The Penrose diagrams of the Roberts solution for
(a) C1C2 ¼ 1=4 (Minkowski), (b) C1 ¼ C2 ¼ 0, (c) C1 ¼ 0
and C2 < 0, (d) C1 ¼ 0 and C2 > 0, (e) C2 ¼ 0 and C1 < 0,
(f) C2 ¼ 0 and C1 > 0, (g) C1 > 0 and C2 < 0, (h) C1 < 0 and
C2 > 0, (i) 0<C1C2 < 1=4 and C1 > 0, and
(j) 0<C1C2 < 1=4 and C1 < 0. A thick line in (a) corresponds
to the symmetric center. A zigzag curve corresponds to a
curvature singularity. The areal radius is negative in the shad-
owed region, which is unphysical.
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respectively. For C1 ¼ 0 and C2 ¼ 0, there are null central
curvature singularities at u ¼ 0 and v ¼ 0. The Penrose
diagram of the Roberts spacetime for C1C2 � 1=4 is given
in Fig. 3.

As shown in the main text, the Roberts spacetime can be
attached to the Minkowski spacetime at a null hypersurface

u ¼ 0 or v ¼ 0 in a regular manner if that hypersurface is
regular. The resulting spacetime can be a model of the
gravitational collapse leading to the naked singularity for-
mation. This model has been considered in the context
of critical phenomena or cosmic censorship [20,23–
25,43,46,47].
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