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The Hamiltonian of classical anti–de Sitter gravity is a pure boundary term on-shell. If this remains true

in nonperturbative quantum gravity then (i) boundary observables will evolve unitarily in time and (ii) the

algebra of boundary observables is the same at all times. In particular, information available at the

boundary at any one time t1 remains available at any other time t2. Since there is also a sense in which the

equations of motion propagate information into the bulk, these observations raise what may appear to be

potential paradoxes concerning simultaneous (or spacelike separated) measurements of noncommuting

observables, one at the asymptotic boundary and one in the interior. We argue that such potentially

paradoxical settings always involve a breakdown of semiclassical gravity. In particular, we present

evidence that making accurate holographic measurements over short time scales radically alters the

familiar notion of causality. We also describe certain less intrinsically paradoxical settings which illustrate

the above boundary unitarity and render the notion more concrete.
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I. INTRODUCTION

Understanding quantum information in the context of
black hole evaporation is a long-standing issue in gravita-
tional physics [1]. One wishes to know whether informa-
tion initially sent into the black hole is again available after
the evaporation is complete and, if so, by what mechanism.
At least in the context of string theory with anti–de Sitter
(AdS) boundary conditions, the advent of the AdS/confor-
mal field theory (CFT) correspondence [2] appears to
resolve at least the first question by establishing a dual
formulation in terms of a unitary field theory associated
with the AdS boundary. In particular, this unitarity implies
that the information can be recovered from operators in the
dual theory and, by the usual rules assumed for AdS/CFT
[3], such operators are associated with observables of the
asymptotically AdS string theory at the AdS boundary.
Thus, in this context, it would appear that the information
remains available after the evaporation is complete.

Nevertheless, an important puzzle remains: By what
mechanism and in what form does the information in the
CFT remain available in the gravitational description?
Until this question is answered, some skepticism of the
above-cited ‘‘usual rules’’ of AdS/CFT must necessarily
remain. Furthermore, there is a sense in which this AdS/
CFT puzzle is even more acute than the original black hole
question. The intriguing point here is that AdS/CFT sug-
gests that information sent into the spacetime through the
AdS boundary at any early time t1 remains available at the
boundary at any later time t2 > t1, whether or not enough
time has passed for an energy flux (Hawking radiation or
otherwise) to return to the boundary; see Fig. 1. It is this
AdS puzzle that we will study below.

A bulk explanation (reviewed in detail in Sec. II below)
of how the information can remain available at the bound-
ary was recently offered in [4]. Building on [5,6], it was
noted that the desired properties follow naturally if the on-
shell quantum gravity Hamiltonian is a pure boundary
term. In the classical theory, this well-known property
follows directly from bulk diffeomorphism invariance.
The resolution of [4] merely requires that the property
continues to hold at the quantum level. Now, many re-
searchers expect that smooth spacetimes, and thus diffeo-
morphism invariance per se, may play no fundamental role
in the quantum theory. However, there must be some
structure that leads to diffeomorphism invariance in the
classical limit and whose consequences are similar. It is
plausible this quantum structure again implies that the on-
shell Hamiltonian is a pure boundary term.
We shall follow [4] in assuming that this is the case. In

particular, we assume the Hamiltonian to be a self-adjoint
generator of time translations on the boundary (though we
make no a priori commitment to the particular Hilbert
space on which it is self-adjoint). By exponentiating this
Hamiltonian, it follows immediately that the algebra of
boundary observables is independent of time and that
information present at an AdS boundary at any one time
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FIG. 1 (color online). A conformal diagram of global AdS4
with the S2 suppressed. A signal leaves the boundary at time t1.
The information is still present in the CFT at time t2 though no
signal has returned to the boundary.*marolf@physics.ucsb.edu

PHYSICAL REVIEW D 79, 024029 (2009)

1550-7998=2009=79(2)=024029(16) 024029-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.024029


t1 is also present there at any other time t2. For example, for
systems invariant under time translations, any boundary
observable Oðt1Þ at time t2 can be represented as

e�iHðt1�t2ÞOðt2ÞeiHðt1�t2Þ whereOðt2Þ is the same boundary
observable at time t2 and the Hamiltonian H is also a
boundary observable at time t2. An analogous statement
holds in the time-dependent case; see Appendix A.

This conclusion may cause some readers to question the
extent to which the above assumptions are in fact reason-
able. Recall, however, that without making any assump-
tions, [4] also showed that perturbative gravity about a
collapsing black hole background is ‘‘holographic’’ in the
sense that (i) in the asymptotically flat context a complete
set of observables is available within any neighborhood of
spacelike infinity (i0) and (ii) in the asymptotically AdS
context, a complete set of observables is contained in the
algebra of boundary observables at each time (technically,
within any neighborhood of any Cauchy surface of the
conformal boundary). The perhaps surprising conclusions
to which our nonperturbative assumptions lead are thus
established facts at the perturbative level, suggesting that
these assumptions are worth investigating more deeply.

This is precisely the purpose of our work below. We
have three goals: to show more concretely the sense in
which information is holographically encoded at the
boundary, to begin to investigate what sort of observers
can access this information, and to resolve certain potential
paradoxes. In particular, while information remains present
at the boundary as noted above, it is clear that this infor-
mation also propagates deep into the bulk. As discussed in
[4], there is no claim that quantum information has been
duplicated (which would violate the ‘‘no quantum xerox
theorem’’ [7]) but rather that the same qubit can be ac-
cessed from two spacelike separated regions of spacetime.
Nevertheless, this raises interesting questions about non-
commuting measurements performed in the two regions:
Thinking of the qubit as a single spin, what happens if an
observer in the interior (say, Bob) measures the
x-component of the spin and a spacelike separated asymp-
totic observer (say, Alice) measures the z-component?
Similar issues were considered in [8–10] with Bob inside
a black hole, in which case it was argued that the destruc-
tion of the interior observer at the black hole singularity
prevents comparison of these measurements and prohibits
any true contradiction. However, some other resolution is
clearly required in the absence of black holes, or more
generally when Bob can communicate with Alice.

The first class of measurements we study gives rise to
just such potential paradoxes. Each experiment involves a
strong coupling to the Coulomb part of the gravitational
field and, in particular, to a certain flux�. For reasons to be
explained below, we refer to these experiments as the
�-subtraction protocol (Sec. III) and the �-projection
protocol (Sec. IV). The couplings to � turn out to resolve
the apparent paradox by causing the usual semiclassical

framework to break down; such couplings are simply not
compatible with smooth nondegenerate metrics. Moreover,
if such couplings can be described in some more complete
theory, we argue that this description would involve a
radical modification of the naive causal structure which
allows Alice’s measurement to affect Bob’s results. The
second class of experiments (Sec. V) is less intrinsically
paradoxical, but is consistent with smooth nondegenerate
metrics. As such, they serve to make our notion of bound-
ary unitarity more concrete. Interestingly, these latter ex-
periments rely on a certain ‘‘operational density of states’’
being finite, while the measurements of Secs. III and IV
succeed without any such assumption. The general frame-
work for our experiments is described in Sec. II, while the
measurements themselves are analyzed in Secs. III, IV, and
V. This part of our work will be based purely on bulk
physics; no use will be made of AdS/CFT. We then close
with some final discussion in Sec. VI. In particular, Sec. VI
will use AdS/CFT to suggest that, despite taking us out of
the usual semiclassical framework, the �-projection pro-
tocol of Sec. IV should nevertheless be allowed in a full
theory of quantum gravity.
Before beginning, we comment briefly on the issue of

quantum fluctuations: Our discussion above has assumed a
definite causal structure for the space and ignored any
quantum fluctuations of the causal structure. This is in
part because the issues of interest concern large weakly
curved regions of spacetime near the AdS boundary where
one would expect such quantum fluctuations to be small.
Indeed, our main analysis below will make no explicit use
of such quantum fluctuations. We therefore defer discus-
sing the possible role of quantum causal structure fluctua-
tions until near the end of Sec. VI.

II. A TALE OF TWO BOUNDARIES

The goal of this section is to set up a general framework
useful for discussing various holographic thought experi-
ments. Our main concern will be diffeomorphism invari-
ance, the gravitational gauge invariance. This is clearly a
key issue since, in the classical theory, it is this symmetry
that guarantees the Hamiltonian to be a pure boundary term
and leads to boundary unitarity.
As a result, we must be careful to measure only fully

gauge-invariant observables. The construction of
diffeomorphism-invariant observables is in general diffi-
cult in nonperturbative gravity, but the task is greatly
simplified by the presence of a boundary. Typical boundary
conditions (e.g., fixing the boundary metric) break diffeo-
morphism invariance so that the behavior of bulk fields
near the boundary readily defines gauge-invariant observ-
ables. This is true both at finite boundaries and at asymp-
totic boundaries such as the AdS conformal boundary. In
the second case, boundary operators are defined by suitably
rescaled limits of bulk fields as in e.g. [3,11]. The reader
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should consult these references for details; we will use this
construction without further comment.

We therefore place one observer (Alice) at, or perhaps
more properly outside, an asymptotic AdS boundary. Aside
from Alice’s measurements (discussed below), the bound-
ary condition at boundary A is of the familiar type which
fixes the leading Fefferman-Graham coefficient [12]. For
example, in 3þ 1 dimensions we take the metric near
boundary A to be of the form

ds2 ¼ gabdx
adxb

¼ ‘2

r2
dr2 þ

�
gð0ÞCD

r2

‘2
þ gð1ÞCD

r

‘
þ gð2ÞCD

þ gð3ÞCD
‘

r
þ � � �

�
dxCdxD; (2.1)

where gð0ÞCD is fixed and gð1ÞCD, gð2ÞCD are determined by

gð0ÞCD and the Einstein equations. See e.g. [13] for various

generalizations. For simplicity, we consider the case where
gð0ÞCD takes the simple form

gð0ÞCDdxCdxD ¼ �N2
Adt

2
A þ�IJdy

IdyJ; (2.2)

with yI coordinates on S2,�IJ the round unit metric on S2,
and NA a function only of tA. We will take NA to be a
constant when Alice’s couplings are turned off.

We envision Alice as an experimenter with the following
characteristics:

(i) She has a notion of time-evolution which coincides
with that of some preferred coordinate tA on the
asymptotic boundary. Reparametrizations of tA are
not a gauge symmetry.

(ii) At her disposal are additional degrees of freedom
(ancilla) which are not part of the gravitating AdS
spacetime. We encourage the reader to envision
Alice as having a large laboratory which contains
the gravitating AdS system in a (conformally com-
pactified) box. The ancilla are various useful appa-
ratus and quantum computers in this laboratory
which exist outside the AdS box. See Fig. 2.

(iii) Alice can couple her ancilla to AdS boundary ob-
servables as described by any time-dependent
Hamiltonian. Classically, this Hamiltonian is again
a boundary term (see Appendix A for details) and

we assume this to be true in the nonperturbative
quantum theory as well. A detailed example of
coupling the AdS space to such external degrees
of freedom was recently studied in [14], though we
will not need that level of detail.
We will assume that Alice can choose the coupling
arbitrarily, so long as it is local in tA. In particular,
we allow Alice to couple to boundary observables
which are nonlocal in space (e.g., integrals over
tA ¼ constant surfaces, spacelike Wilson lines,
etc.). One might say that we impose only a non-
relativistic notion of causality on Alice’s ancilla.1

We also allow such couplings to depend explicitly
on tA. This gives Alice the ability to explicitly
inject both information and energy into the AdS
space (at, say, time tA ¼ t1) which were not present
in the AdS space before tA ¼ t1. A simple example
is discussed in detail in Appendix B.

These assumptions provide an interesting and relatively
simple framework for exploration. We defer any discussion
of the extent to which they model a realistic observer to
Sec. VI.
It remains to introduce our second experimenter (Bob).

It might seem natural to place Bob at Alice’s boundary.
However, doing so would reduce any discussion of mea-
surements to one familiar from nonrelativistic quantum
mechanics. The point is that, in this case, Alice and Bob
would share a common notion of time generated by a
common Hamiltonian H, and this Hamiltonian would
transfer information between the AdS space and both ex-
perimenter’s ancilla. The issues then boil down to the
extent that we allow Alice and Bob to couple to each
other’s ancilla. For example, if Alice cannot examine
Bob’s apparatus, then despite the unitarity of eiHt and the
fact that the information remains available to a sufficiently
boundary-powerful observer, Alice simply does not have
access to all information and Bob’s measurements will
tend to disturb Alice’s. Similarly, Alice’s measurements
will tend to disturb Bob’s.
On the other hand, placing Bob in the bulk raises two

issues. First, it becomes complicated to describe the gauge-
invariant observables to which Bob can couple. Second,
such a placement raises the possibility that all of Bob’s
apparatus may be holographically encoded in boundary
observables accessible to Alice. Alice then has the ability
to interact directly with Bob’s ancilla and, in particular, to
undo any measurement that Bob may have made. In this
context no paradoxes need arise.

AdS
Box 

12:42 pm 

g = 3.24 

FIG. 2 (color online). Our AdS system lives in a (conformal)
box in Alice’s laboratory. Outside the AdS box are various
ancilla. A clock and a measuring device with adjustable coupling
are shown.

1Some readers may desire a more concrete model which
allows such couplings. One such model is to suppose that
Alice’s lab has more dimensions than the AdS space, and that
she can embed the AdS box in her lab in such a way that events
on the AdS boundary can be connected by causal curves in her
lab even when no such curve exists on the AdS boundary itself.
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We therefore add a second (interior) boundary (B) to the
AdS spacetime. We locate Bob at this boundary and endow
him with properties at boundary B in direct analogy with
properties (i, ii, iii) assumed for Alice at her boundary (A).
The one difference between the two boundaries is that we
take boundary B to have a fixed finite metric; i.e., it is not
an asymptotic conformal boundary, but instead lies at a
finite distance from points in the interior. This is a useful
framework because classical spacetimes allow signals re-
specting bulk causality to be exchanged between the two
boundaries. In contrast, two asymptotic AdS boundaries
tend to be separated by horizons in any classical solution,
as occurs, for example, in the maximally extended AdS-
Schwarzschild black hole. Such horizons limit (and plau-
sibly remove) any settings for potential paradoxes.

As we stress below and in Appendix A, even in the
presence of a second boundary the Hamiltonian boundary
term at boundary A generates time translations along
Alice’s boundary alone. Bob’s boundary remains invariant.
Similarly, the Hamiltonian boundary term at boundary B
generates time translations along Bob’s boundary but
leaves boundary A invariant. Again, these statements
hold in classical gravity and we assume they continue to
hold at the nonperturbative quantum level (in the same
spirit as our original assumption concerning the Hamil-
tonian as a boundary term). Readers unfamiliar with these
classical statements may see them most quickly by noting
that Gauss’s law defines gravitational fluxes that are sepa-
rately conserved at each boundary when appropriate
boundary conditions are imposed; further details and refer-
ences are given in Appendix A.

As explained in detail below, the result of the above
assumptions is that information Alice injects into the AdS
spacetime through boundary A at time t1 still remains
available at boundary A at time t2 no matter what Bob
does at boundary B, e.g., even if Alice injects the infor-
mation as spins that travel to boundary B where they are
measured by Bob. We investigate various such settings
below.

We are most interested in cases where Alice’s measure-
ment does not commute with Bob’s. In Secs. III and IV,
Alice performs a holographic measurement at what ap-
pears to be a spacelike separation from Bob’s experiment,
leading to the potential paradox described in the introduc-
tion. In particular, in Sec. III, Alice attempts to directly
measure the somewhat artificial-looking observable

e�i�Aðt1�t2ÞOðt2Þei�Aðt1�t2Þ, whereOðt2Þ is a local boundary
observable at tA ¼ t2 and �A is the gravitational flux at
boundary A which gives the associated boundary term in
the Hamiltonian. For reasons explained in Sec. III, we refer
to this experiment as the �-subtraction protocol. Since, in
the absence of Alice’s measurements, �A is the full gen-
erator of tA translations, this measurement allows Alice to
recover information about O an the earlier time tA ¼ t1.
Despite the unfamiliar nature of this experiment, it serves

as a simple, clean example to illustrate the consequences of
Alice’s coupling to �A: Such couplings necessarily alter
the boundary conditions at boundary A and, for large
enough couplings of the right sign, are inconsistent with
smooth nondegenerate metrics. It is of course an open
question whether such couplings can be described in non-
perturbative quantum gravity and we save discussion of
this issue for section VI. However, assuming for the mo-
ment that they are allowed, we argue in Sec. III that they
alter the naive notion of causality so that Alice’s measure-
ment can in fact affect Bob’s.
In Sec. IV, Alice performs a somewhat more physical

measurement, again at apparent spacelike separation from
that of Bob.We refer to this experiment as the�-projection
protocol. In rapid succession, Alice simply measures�A, a
local boundary observable O, and �A again, all with high
resolution. After a final interference experiment, and after
repeating this protocol many times on identically prepared
AdS systems, Alice obtains enough data to compute
AðE; �; E0Þ :¼ h�jP�A¼EPOðt2Þ¼�P�A¼E0 j�i. Here j�i is

the quantum state of the system,2 P�A¼E, P�A¼E0 are

projections onto the eigenspaces of �A with eigenvalues
E, E0, and PO¼� is the projection onto the eigenspace ofO
with eigenvalue �. Integrating AðE; �; E0Þ against

e�iðE�E0Þðt1�t2Þ, Alice computes h�jPOðt1Þj�i and again

recovers information about O at any other time t1.
However, the couplings to �A required for Alice to per-
form measurements of the desired accuracy again impose
boundary conditions inconsistent with smooth invertible
metrics and lead to the same discussion as in Sec. III.
It is therefore of interest to ask if Alice can recover the

information using couplings compatible with smooth in-
vertible bulk metrics. Section V describes two experiments
where this is possible, provided that a certain operational
density of states for Alice is finite. This density of states
counts only states distinguishable from boundary A, but
allows Alice to reason as if the spectrum of �A were
discrete. The first experiment is just a weak-coupling ver-
sion of the �-projection protocol in which Alice compen-
sates for the weak coupling by letting the experiment run
for an exponentially long time. Because of this long time,
her experiment is causally connected to Bob’s, avoiding
the potential paradoxes of Secs. III and IV. In the second
experiment, Alice uses a generic coupling to drain infor-
mation from the AdS space into a universal quantum
computer (where she may then analyze the information
at will). This experiment also requires enough time to
make what is effectively causal contact with Bob’s mea-
surement, though in principal polynomial times will
suffice.

2Even if this state is not pure, there is no harm is using notation
appropriate to a pure state. We may consider the state to have
been ‘‘purified’’ by adding appropriate ancilla. Using pure state
notation simplifies certain formulas in Sec. IV.
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III. MEASURING THE PAST

As described in Sec. II, we consider two observers
(Alice and Bob), with Alice at an asymptotic (conformal)
AdS boundary (A) and Bob at a finite inner boundary (B).
We suppose both Alice and Bob to be interested in a qubit
associated with the boundary value O of a local field at
time t1, say, a spin degree of freedom, with O being the
z-component of the spin. The spin then travels inward and
arrives at boundary B. There Bob’s apparatus detects the
arrival of the spin and measures some noncommuting
observable (say, the x-component Sx of the spin), though
it will not be necessary to model Bob’s measurements in
detail. For simplicity, it is perhaps best to consider a spin
introduced at t1 into the AdS space from outside. In this
case it is clear that Bob has no prior access to the spin. As
discussed in detail in Appendix B, such an injection may be
accomplished via a time-dependent coupling to one of
Alice’s ancilla.

As noted above, Alice wishes to couple directly to

e�i�Aðt1�t2ÞOðt2Þei�Aðt1�t2Þ. To model this measurement, it
is convenient to write the AdS action in canonical form
(see e.g. [15]):

Stotal ¼
Z
��R

ð� _�� NH � NiH iÞ �
Z

dtANA�A

þ
Z

dtBB; (3.1)

where �, � denote the full set of bulk fields and momenta,
including metric degrees of freedom, and a sum over fields
is implied. We require no details of the B-boundary termB
except that it is independent of both Alice’s ancilla and the
A-boundary observables. We denote the usual lapse and
shift byN,Ni whileH ,H i are the usual (densitized) bulk
constraints, with i running over directions on a hypersur-
face � of the AdS space. The boundary term �A takes the
usual form [16]

�A ¼ 1

16�G

Z
S2
d2y

ffiffiffiffiffi
�

p
ðraPbc

AdSDb � rbPac
AdSDbÞgac;

(3.2)

where ra is a radial unit normal, Da is the covariant
derivative defined by a fixed metric gAdSab on exact (global)

anti–de Sitter space, andPbc
AdS is the projector orthogonal to

@
@tA

defined by gAdSab . This flux�A can also be written [17] in

terms of the boundary stress tensor of [18,19] or in terms of
the electric part of the Weyl tensor at the A-boundary [20].

We emphasize for later use that (3.2) depends only on
the spatial part of gab and is independent of NA. We also
emphasize that the action (3.1) is finite, and that it provides
a valid variational principle for the above boundary con-
ditions for any NAðtAÞ. Furthermore, given an action of the
form (3.1), stationarity of the action for fixed (conformal)
boundary metric gð0ÞCD requires this metric to be of the

form (2.2), in particular, fixing the relationship between

gð0ÞCD and the fixed NAðtAÞ in (3.1). However, for now we

takeNA ¼ 1 so that the boundary conditions are manifestly
tA-translation invariant.
Since the spin travels into the bulk at time t1, it might

appear that Alice can no longer access the desired qubit
after this time. Such a conclusion would hold in a local
nongravitational theory. But gravity changes this conclu-
sion since both �Aðt2Þ and Oðt2Þ are accessible to Alice at
any time t2. As a result, she needs only to measure

e�i�Aðt2�t1ÞOðt2Þei�Aðt2�t1Þ ¼ Oðt1Þ. Here we have used
the fact (briefly reviewed in Appendix A) that �A is the
on-shell generator of tA translations for NA ¼ 1.
Now, to the extent that the bulk metric is in a semiclas-

sical state with a well-defined causal structure,3 Alice can
choose t2 to be spacelike separated from the event where
Bob measures the qubit of interest. This situation may
seem to give rise to a paradox. On the one hand, since
Alice is just measuring Oðt1Þ, it seems clear that the effect
of Alice’s measurement must be identical to what would
have occurred if she had measured the qubit directly at
time t1. Such a measurement would have correlated Oðt1Þ
(say, the z-component of a spin) with Alice’s measuring
device, so that Bob would receive the spin in what was
effectively a mixed state. Even if the spin was in a Sx
eigenstate before t1, Bob would find equal probability for
both Sx eigenstates when the spin reaches his boundary. On
the other hand, Alice’s measurement occurred at time tA ¼
t2, which by construction was spacelike separated from
Bob’s experiment. So, how did this decoherence occur?
Answering this question requires a model of the cou-

plings Alice engineers to perform her experiment, i.e., of
the relevant modifications to (3.1). Recall that Alice wishes

to couple to e�i�Aðt2�t1ÞOðt2Þei�Aðt2�t1Þ. Since the action is
a function of c-number field histories, it is not natural to
include such a commutator directly in the action. However,
the same effect is achieved by modifying the action in three
steps:
(i) At time t2 � � for small �, add a term ��ðt2 � ��

tAÞ�Aðt2 � t1Þ to the Hamiltonian; i.e., addR
dtA�ðt2 � �� tAÞ�Aðt2 � t1Þ to the action.

(ii) At time t2, couple Alice’s apparatus to the new
Oðt2Þ so that she measures this observable.

(iii) At time t2 þ �, add a term ��ðt2 þ ��
tAÞ�Aðt2 � t1Þ to the Hamiltonian; i.e., addR
dtA�ðt2 þ �� tAÞ�Aðt2 � t1Þ to the action.

The point of steps (i–iii) is that with these new
couplings we have

O ðtAÞ ¼ ei�AfðtAÞOðt1Þe�i�AfðtAÞ; (3.3)

where fðtAÞ ¼ tA � t1 � ðt2 � t1Þ��ðtAÞ and ��

is the characteristic function on the interval

3As noted in the introduction, since we are concerned with
large, weakly curved regions of spacetime, one expects quantum
fluctuations of the causal structure to be small.
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jtA � t2j< �; i.e., �� ¼ 1 for jtA � t2j< � and
�� ¼ 0 for jtA � t2j> �. In particular, step (ii)
now measures Oðt2Þ ¼ Oðt1Þ as desired. That
(3.3) is the correct solution is manifest from the
relation

dO
dtA

ðtAÞ ¼ i½�Af
0ðtAÞ;OðtAÞ� ¼ i½HAðtAÞ;OðtAÞ�;

(3.4)

where HAðt0Þ is the time-dependent Hamiltonian
defined by steps (i–iii).4

We will need to analyze only step (i) in detail. Because it
subtracts a term from the Hamiltonian, we refer to this
experiment as the �-subtraction protocol. Now, due to the
observations after Eq. (3.2), adding the specified term to
the action is completely equivalent to shifting the lapse on
boundary A by NA ! 1� �ðt2 � �� tAÞðt2 � t1Þ. Thus,
NA becomes a function of tA which, in particular, must
become negative. This can also be seen in the fact that
f0ðtAÞ becomes negative in (3.4). Even if the delta function
is replaced by a smooth approximation, the lapse must still
change sign and, in the smooth case, must pass through
zero. Such boundary conditions are incompatible with
smooth invertible metrics, and any attempt to define the
theory requires input beyond our usual notion of semiclas-
sical gravity; i.e., we learn that the desired experiment
cannot be described within the framework we have been
using thus far.

It is of course an open question whether such boundary
conditions can be described in nonperturbative quantum
gravity. We will discuss this issue in Sec. VI taking some
input from AdS/CFT. However, having assumed that Alice
has the ability to add arbitrary couplings [and, in particular,
the one associated with step (i)], for now we simply
suppose that such couplings are allowed and press onward
with our discussion.

We must therefore supply the required additional dy-
namical input by hand. We shall do so using a certain
analytic continuation. To begin, consider a less drastic
version of steps (i–iii) associated with an A-boundary lapse
NA ¼ 1� �NAðtÞ, where this time we take �NAðtÞ< 1. In
this case the analogues of steps (i–iii) above merely imple-
ment a measurement of O at what for NA ¼ 1 have been
called time t2 � �t, where�t ¼ R

�NAðtÞ. The shiftNA !
1� �NAðtÞ is essentially a change in the relationship
between proper time on boundary A and the time tA which
governs the behavior of Alice’s ancilla, including any
clocks present in Alice’s laboratory.

It is therefore natural to suggest that the effect of (i–iii)
above can be obtained by analytic continuation in �t: We

declare that the net effect of the original steps (i–iii) is
equivalent to Alice simply measuringOðt1Þ directly at time
t1 except that, due to the above shift, the relevant informa-
tion appears in her measuring device only at time t2. In
particular, although Alice’s measurement occurs at tA ¼ t2
and thus would appear to have been causally separated
from Bob’s measurement, the fact that Bob’s measurement
occurs in the causal future of time tA ¼ t1 nevertheless
allows it to be influenced by Alice’s. Alice’s experiment
has fundamentally altered causality in this system.

IV. A MORE PHYSICAL MEASUREMENT

The �-subtraction protocol of Sec. III involved cou-
plings designed to allow Alice to recover information
apparently sent into the bulk at a much earlier time.
While these couplings may strike some readers as rather
contrived, the discussion served to illustrate a fundamental
point: Coupling directly to the gravitational flux �A

changes the boundary conditions, and such strong cou-
plings (of the correct sign) are incompatible with smooth
invertible boundary metrics. Furthermore, if the system can
in fact be defined with such boundary conditions, one
expects the effective causal structure to be radically
altered.
Since it is precisely the inclusion of �A that makes the

algebra of A-boundary observables complete at each time,
one might expect this to be a generic feature of Alice’s
attempts to holographically recover information at time t2
which was previously present on the A-boundary at time t1.
Below, we investigate this conjecture by analyzing a some-
what more physical experiment in which Alice simply
performs nondemolition measurements of �A, O, and
�A again in quick succession. We refer to this experiment
as the�-projection protocol. As will be explained in detail
below, if her measurements are of sufficient accuracy, and
if she repeats such measurements on a large number of
identically prepared systems, she can recover information
associated with the operator OðtÞ any earlier time t2 � �.
However, such experiments raise issues quite similar to
those of Sec. III. The key point is that any direct measure-
ment of �A involves a coupling to �A, and that measuring
�A to high accuracy requires a coupling that is in some
sense strong.
To be specific, consider a model in which Alice has 4

distinct ancilla systems. The first is simply a spin, i.e., a
j ¼ 1=2 representation of SU(2). The associated SU(2)
generators will be denoted Sx, Sy, Sz, and we assume the

spin to be prepared in the Sz ¼ þ1=2 state. The other
ancilla are 3 pointer variables described by canonical pairs
Xi, Pi (with canonical commutation relations) for i ¼
1; 2; 3. These ancilla are initially prepared in Gaussian
wave packets of widths �i centered about Xi ¼ 0. For
simplicity we take all ancilla operators to be independent
of time except as dictated by their couplings to the AdS
space; i.e., the free Hamiltonians of Alice’s ancilla vanish.

4In the last equality of (3.4), we have used the fact that step (ii)
adds a term to the Hamiltonian proportional to �ðt� t2ÞOðt2Þ.
Since this term commutes with Oðt2Þ and vanishes for t � t2, it
does not affect the evolution of OðtAÞ.
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We again take the A-boundary metric to be (2.2) with
NA ¼ 1, except as modified by Alice’s experiment below.

We model Alice’s nondemolition measurements by
von Neumann couplings [21] to the pointer variables X1,
X2, X3. The spin will be used to produce certain important
interference terms in the final stage of the experiment. In
particular, although the spin is prepared in a spin up state
(with definite z-component Sz ¼ þ1=2), Alice will design
her measurements to take place only if the x-component of
the spin satisfies Sx ¼ þ1=2. At the end of the experiment,
Alice measures the probability that the spin and pointer
variables take various values. The resulting interference
terms between the Sx ¼ �1=2 states will allow her to
determine AðE; �; E0Þ :¼ h�jP�A¼EPOðt2Þ¼�P�A¼E0 j�i
where j�i is the quantum state of the system (see foot-
note 2). The probability distribution of Oðt1Þ may then be

recovered by integrating AðE; �; E0Þ against e�iðE�E0Þðt1�t2Þ.
As usual in quantum mechanics, Alice must have access to
arbitrarily many identically prepared copies of the AdS
space to measure the above probabilities. We assume that
this is the case.

The details of the �-projection protocol can be de-
scribed in the Schrödinger picture as a sequence of unitary
transformations and projections onto apparatus variables.
The procedure is:

(i) Apply expðig1�AðSx þ 1=2ÞP1Þ. If Sx ¼ þ1=2, this
implements a von Neumann measurement of �A by
X1 with coupling g1.

(ii) Apply expðig2OðSx þ 1=2ÞP2Þ. If Sx ¼ þ1=2, this
implements a von Neumann measurement of O by
X2 with coupling g2.

(iii) Apply expðig3�AðSx þ 1=2ÞP3Þ. If Sx ¼ þ1=2,
this implements a von Neumann measurement of
�A by X3 with coupling g3.

(iv) Choose parameters x1, x2, x3, and apply
expð�iðSx � 1=2Þðx1P1 þ x2P2 þ x3P3ÞÞ. If Sx ¼
�1=2 (so that none of the above measurements
took place), this translates X1, X2, X3 by x1, x2, x3.

(v) Project onto eigenstates of X1, X2, X3 with eigen-
values x1, x2, x3 (more properly, onto corresponding
spectral intervals); i.e., measure the operators X1,
X2, X3 and abort the experiment unless the same
values are obtained as were chosen in step (iv).

(vi) Choose a unit vector ~v 2 R3 and project onto states

with ~v � ~S ¼ þ1=2; i.e., measure ~v � ~S and abort
the experiment unless the values þ1=2 are
obtained.

By the usual rules of quantum mechanics, the probabil-
ity that the experiment succeeds [i.e., that the experiment is
not aborted in either stage (v) or stage (vi)] is given by

Pðx1; x2; x3; ~vÞ ¼ 1

2
j�j�i þ 	PHA¼x3PO¼x2PHA¼x1 j�ij;

(4.1)

where, with appropriate conventions for the spin eigen-

states, we have

� ¼ ih ~v � ~S ¼ þ1=2jSx ¼ �1=2i;
	 ¼ h ~v � ~S ¼ þ1=2jSx ¼ þ1=2i:

(4.2)

By repeating the experiment many times on identically
prepared systems and varying the choice of x1, x2, x3, ~v,
Alice can determine the entire function (4.1) to arbitrary
accuracy. Note that j�j2 þ j	j2 ¼ 1, but that � and 	 may
otherwise be chosen arbitrarily. From her measurements of
Pðx1; x2; x3; ~vÞ, Alice may thus calculate the term in (4.1)
proportional to ��	; i.e., she may calculate the amplitude

Aðx1; x2; x3; ~vÞ ¼ h�jPHA¼x3PO¼x2PHA¼x1Þj�i: (4.3)

The probability distribution of Oðt2 � �Þ may be then
recovered by integrating (4.3) against e�i�x1ei�x3 .
Similarly, any other data that Alice might have accessed
at time t� � can be accessed at time t by simply replacing
step (ii) with the procedure to measure this data directly,
conditioned as above on having Sx ¼ þ1=2:
As in Sec. III, we wish to understand the impact of

Alice’s measurements on dynamics and, in particular, on
the boundary conditions. Each step in the �-projection
protocol is of course associated with the addition of an
appropriate term to the action. The terms of most interest
will be those associated with steps (i) and (iii) which take
the form

SðiÞþðiiiÞ ¼ �
Z

dtAðf1ðtAÞ�AðSx þ 1=2ÞP1

þ f3ðtAÞ�AðSx þ 1=2ÞP3Þ; (4.4)

where
R
dtAf1ðtAÞ ¼ g1 and

R
dtAf3ðtAÞ ¼ g3. Such

terms resemble the couplings of Sec. III with the magni-
tude of the coupling being set by f1ðtAÞðSx þ 1=2ÞP1 and
f3ðtAÞðSx þ 1=2ÞP3.
When f3ðtÞ ¼ 0, the boundary term (4.4) forces the A-

boundary lapse to be NA ¼ 1� f1ðtAÞðSx þ 1=2ÞP1. Since
the case of interest is Sx ¼ þ1=2, the lapse remains posi-
tive only if f1ðtAÞP1 < 1. Imposing such a requirement
would restrict the resolution of the measurement in terms
of the time �tA which elapses during the experiment. In
particular, it would require g1�P1 < �tA, where �P1 ¼
1=�1 is the momentum-space width of the Gaussian initial
state for this pointer variable. Since the position-space
width is �X1 ¼ �1, and since the interaction translates
X1 by g1�A, Alice’s experiment measures �A with a
resolution��A ¼ 1

g1�P1
. Keeping the lapse positive would

thus require ��A > 1
�tA

: While this is reminiscent of an

energy-time Heisenberg uncertainty relation, it is impor-
tant to recall that other quantum systems do allow better
measurements of energy on much shorter time scales [22].
We will save for Sec. VI any discussion of whether
��A�tA > 1 constitutes a fundamental restriction in the
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AdS context or merely limits the familiar semiclassical
framework.

Now, how accurately does Alice need to measure �A in
order to recover information at tA ¼ t1? If she makes no
assumptions about the spectrum of �A, she must allow for
frequencies of order 1

t2�t1
, where t2 is the time at which

stage (ii) is performed. Alice thus needs ��A � 1
t2�t1

to

obtain even rough information, and she will require
��A � 1

t2�t1
to obtain high resolution. But if t1 occurs

before the experiment begins, then since stage (i) itself
takes time�tA we have t2 � t1 > �tA. Thus��A�tA � 1
for a precision measurement. In summary, if she makes no
assumptions about the spectrum of �A, obtaining signifi-
cant information about observables before her experiment
began requires Alice to use couplings strong enough to
raise the same issues as in Sec. III. Again, if we assume that
such couplings are nevertheless allowed, the natural con-
clusion is that they alter the naive notion of causality so
that Alice’s experiment can effect Bob’s. While Alice
measures a coherent qubit, the qubit Bob receives is in a
mixed state as if the z-component of its spin had already
been measured.

V. OPERATIONALLY DISCRETE SPECTRA

Section IV discussed the �-projection protocol making
no assumptions about the spectrum of �A. Of course, it is
also interesting to suppose that Alice does know something
about the spectrum of�A. An interesting case arises if this
spectrum is discrete, so that any resolution finer than the
smallest level spacing suffices to obtain information about
the very distant past. Thus, Alice may be able to complete
her measurement using couplings compatible with familiar
AdS asymptotics and avoiding radical effects on the causal
structure.

In fact, we will require finiteness only of the A-
boundary’s operational density of states. The idea is that
only states which can be actively probed from boundary A
are relevant, and that we discard any other states in com-
puting this density. After introducing this notion below, we
reconsider the �-projection protocol in Sec. VA. We also
consider a new experiment (the quantum computer proto-
col) in Sec. VB which does not involve direct couplings
to �A.

To define Alice’s operational density of states, we first
suppose that Alice has access to a large number of AdS
systems which define identical states 
 on the A-boundary
observables. We explicitly allow 
 to be a mixed state and
use the notation of density matrices. We emphasize that
only the restriction of the state to A-boundary observables
is relevant, and that these states need not be identical in any
deeper sense.

Now consider the Hilbert space defined by the Gelfand-
Naimark-Segal construction (see e.g. [23]) using 
 and this
observable algebra; i.e., for each (bounded) observableOA

at Alice’s boundary we define a state jOAi and introduce
the inner product

hO1
AjO2

Ai ¼ Trð
ðO1
AÞyO2

AÞ: (5.1)

The right-hand side is positive semidefinite and sesqui-
linear. We may thus quotient by the zero-norm states and
complete to define Alice’s ‘‘operational’’ Hilbert space
H A. We take her operational density of states to be the
entropy SðEÞ defined by the operator�A onH A. If SðEÞ is
finite, we say that the density of AdS states is operationally
finite. In cases where some AdS states cannot be distin-
guished by A-boundary observables, the true number of
states can be far larger than SðEÞ.
The entropy SðEÞ counts the density of states with�A ¼

E that can be distinguished using A-boundary observables.
It is thus tempting to use the gravitational thermodynamics
of asymptotically AdS spaces to conclude, at least in the
absence of an inner boundary, that SðEÞ must be finite and
that for large E it is given by the AdS Bekenstein-Hawking
entropy SBHðEÞ. This conclusion will hold if time-
independent couplings of the AdS system to Alice’s
finite-entropy ancilla generically lead to thermodynamic
equilibrium states in which the AdS system is well-
described by semiclassical calculations. However, we
saw in Secs. III and IV that strong couplings to �A take
us outside the usual framework of semiclassical gravity.
Thus, this framework cannot be said to probe generic
couplings. We will return to this issue in Sec. VI, but for
the rest of this section we simply assume that SðEÞ is finite
without imposing any particular restriction on its form.
The discussion above has not explicitly mentioned either

Bob or any inner boundary. If they are present, Bob and his
ancilla are merely part of the system that Alice probes
through her couplings to the AdS boundary, and Alice need
not distinguish them from the bulk AdS system. This is
another reason not to specify the form of SðEÞ; this density
will generically depend on the ancilla that Bob couples to
the AdS space.
Even just taking SðEÞ to be finite imposes certain re-

strictions on Bob’s couplings. In particular, it forbids most
explicitly time-dependent couplings at boundary B. The
point is that acting with expði��AÞ translates boundary A
relative to boundary B. As a result, if Alice can send signals
which probe Bob’s measuring devices and return, and if
Bob’s couplings determine a preferred time t0 in the origi-
nal state 
, the observables at boundary A are sensitive to
t0 � �. Acting with expði��AÞ then generates an infinite-
dimensional Hilbert space of states distinguished by A-
boundary observables. One exception occurs when Bob’s
couplings are periodic, though in that case any analysis is
much like the time-independent case. One might also
attempt to forbid Alice from actively probing Bob’s cou-
plings, though it is not clear how this can be done. In
particular, if the state 
 was such that Bob’s couplings
turned on only inside a black hole, then acting with
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expði��AÞ can translate the system to a state where the
above t0 occurs before the black hole formed or, for
classically eternal black holes, to when it experienced a
rare quantum fluctuation into a horizon-free spacetime
filled with thermal radiation. One concludes that Bob’s
couplings are not truly hidden and that the operational
density of states will again diverge if his couplings define
a distinguished time t0.

We therefore require Bob’s couplings to be time-
independent below. This makes sense only when the
boundary conditions at boundary B have a time-translation
symmetry; i.e., for Dirichlet-like boundary conditions the
(fixed) metric on boundary B must be stationary. It is not
immediately clear to what extent such boundary conditions
are compatible with the interesting case where Bob enters
(the future-trapped region of) a black hole. A proper treat-
ment of such cases may require more flexible boundary
conditions, and in any case is complicated by failure of
classical physics near the black hole singularity. We there-
fore avoid this setting in Secs. VA and VB below, though
we provide a few brief comments in Sec. VC.

A. A return to projections

We now reconsider the�-projection protocol of Sec. IV
under the assumption that the AdS system has an opera-
tionally finite density of states for �A, and further assum-
ing that Alice knows the spectrum of �A precisely. This
may be either because she has solved the full quantum
theory, or because she has already performed a large
number of experiments to determine this spectrum.

The typical spacing between �A eigenstates is ��A �
�e�SðEÞ, where � is an appropriate energy scale. Thus, by
allowing both stages (i) and (iii) to take time �tA 	
��1 expðSðEÞÞ, Alice can obtain accurate information
about AðE; �; E0; ~vÞ for essentially all eigenvalues E, E0
of�A while still satisfying �tA��A > 1. She can then use
this information to extrapolate back to much earlier times.
The only errors in her calculation arise from the off chance
that she measured an eigenvalue Ei for �A when the
actual result was some other eigenvalue Ej. Since we began

with detectors in Gaussian wave packets / e�x2
1
=�x2

1 ,
the probability for this to occur is Gaussian in Ei � Ej

and is typically of order expð�g21�
2e�2SðEÞ=�x21Þ �

expð��t2A�
2e�2SðEÞÞ, where we have chosen f1ðtÞ such

that �tA��A � 1. Since there are expðSðEÞÞ states, and
since the full state enters quadratically in Alice’s calcula-
tion, her total error is of order

expð2SðEÞ ��t2A�
2e�2SðEÞÞ; (5.2)

and so is exponentially small for �tA 	
ffiffiffiffiffiffiffi
SðEÞ

p
� eSðEÞ. Thus,

provided that no energy levels have an unnaturally small
splitting of eigenvalues, for such�tA there is essentially no
limit to Alice’s lookback time. It is interesting to note that
the same conclusion also holds in the presence of exact

degeneracies (e.g., due to symmetries); for our present
purposes, there is no need to distinguish states with iden-
tical time-dependence.
Because of the long time scale �tA, it is not difficult to

reconcile Alice’s measurements with Bob’s measurement
of a noncommuting observable. We suppose that Bob
arranges a time-independent coupling to his devices at
boundary B, and that this coupling is consistent with the
finiteness of Alice’s operational density of states SðEÞ.
Such an interaction might be triggered by the approach
of spins with certain characteristics, but the coupling re-
mains nonzero at all times. Bob’s device is like a photo-
detector that is always on. As a result, while information
may flow into Bob’s device during the experiment, the
information can leak back out if Alice allows her experi-
ment to run for a long enough time. Since �tA �
expðSðEÞÞ, any information remaining in Bob’s ancilla is
associated with states split in energy by much less than the

typical value e�SðEÞ assumed above. If such states exist,
they limit the success of Alice’s experiment in precisely the
same way as would any other finely tuned near degener-
acies in the spectrum of �A. On the other hand, to recover
the desired information, there will be some time scale over
which all information does leak out of Bob’s ancilla. Alice
simply needs to extend the experiment to run over this
longer period of time.

B. Quantum computers and generic couplings

We noted above that an operationally finite density of
states allows Alice to perform useful holographic experi-
ments without radical alterations of the causal structure at
her boundary. The particular experiment discussed used

measurements over very long times �tA 	 eSðEÞ to mea-
sure �A to great accuracy. It is therefore interesting to ask
if similarly useful experiments can be performed over
shorter time scales or with more generic couplings.
We now argue that this is the case, and that (at least when

Bob does not interfere) one should be able to reduce�tA to
roughly the time scale associated with the evaporation of
black holes in flat space. In this experiment, Alice will
couple a small quantum memory device (QM1, with en-
tropy S1 � SðEÞ) to the A-boundary in a fairly generic
way, let the system equilibrate, and then couple the A-
boundary to a large quantum memory device (QM2, with
entropy S2 	 SðEÞ). If S2 is sufficiently large, almost all of
the information originally available in QM1 will be acces-
sible from QM2 once the system reaches its final equilib-
rium. The argument itself is not particularly novel: we
merely use the idea that there is a unitary generator HA

of time translations along the A-boundary to translate
standard reasoning to our setting from nonrelativistic quan-
tum mechanics. In particular, we will make use of the fact
emphasized in Appendix A that the use of time-dependent
couplings merely makes HA a time-dependent function of
A-boundary observables and Alice’s ancilla.
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As before, we assume Alice’s operational density of
states to be finite. However, for this new experiment, we
also assume the system Alice probes to have an ‘‘opera-
tionally unique ground state’’ (though our argument readily
extends to the case of multiple vacuums so long as Alice
can distinguish such vacuums by nondemolition experi-
ments). Our specific assumption is that, if Alice were to
couple ancilla with an infinite density of states to the A-
boundary, the system generically relaxes to a state such
that

(i) Alice’s boundary observables are uncorrelated with
any of her other degrees of freedom.

(ii) The expectation value Trð
OAÞ of any A-boundary
observable is independent of both the coupling used
and the initial state 
i (so long as it is a density
matrix on H A).

These assumptions again involve only the restriction of the
state to Alice’s observables; we make no assumptions
about any further observables which might be inaccessible
to Alice.

In general, one expects the above relaxation to be rapid

compared with the exponentially long time scales eSðEÞ of
Sec. VA. Certainly, free radiation in AdS will propagate to
where it registers in A-boundary observables on time
scales comparable to the AdS scale. Thus, such radiation
can be rapidly extracted by Alice’s boundary couplings.
While the relaxation proceeds more slowly in the presence
of black holes, the couplings can allow Hawking radiation
to rapidly leak out through the AdS boundary. One there-
fore expects the relevant time scale to be some power law
in the energy resembling the time scale for black hole
decay in flat space.5 As a result, at least when Bob’s ancilla
are not coupled to the system, one expects this experiment
to proceed much faster than that of Sec. VA.

Assuming that the ground state of QM1 is unique, the
argument is now immediate. Alice couples first QM1 and
then QM2 to boundary A and lets the system equilibrate.
Both QM1 and the A-boundary observables are then in
their ground states, and the final state of QM2 is unitarily
related to the initial state of QM1. To see this, one need
only solve the Heisenberg equations of motion at
boundary A (A5) to relate any late time operator OQM2

of QM2 to the early time operators of QM1, QM2, and the
observables at boundary A. The algebra of operators de-
fined byQM1,QM2, and boundary A at an early time tA ¼
t1 thus suffices to compute Trð
OQM2

Þ at any time.

Similarly, any observable of QM1 at t1 can be expressed
in terms of observables for QM2, QM1, and boundary A at
any late time tA ¼ t2. Since the A-boundary relaxes to a
known state and QM1 relaxes to its (known) ground state,
correlators of early time operators for QM1 can be com-
puted in terms of late-time correlators ofQM2; i.e., the full
information in the initial state of QM1 can be recovered
from the observables of QM2.
So long as his couplings do not destroy the above

assumptions, including Bob requires no changes in this
discussion. As in Sec. VA, his measurements are easily
reconciled with those of Alice. Because he leaves all of his
couplings turned on, over the long time it takes Alice’s
experiment to run any information in his ancilla can leak
back out to the AdS boundary. It is true that if Bob’s
couplings are weak or if the entropy of his ancilla is large,
his presence can greatly affect the time required for the A-
boundary to relax to its ground state (and thus for equilib-
rium to be reached). However, since Alice has access to
arbitrarily many identical copies of the AdS system
(coupled identically to Bob’s ancilla), she may simply
measure this relaxation time and then design her experi-
ment accordingly.

C. Experiments inside black holes

Perhaps the most interesting setting for our experiments
occurs when Bob (or, more properly, boundary B) falls into
a black hole. However, as noted earlier, it is unclear to what
extent such situations are consistent with time-translation
invariance at boundary B, and, in particular, with taking
the metric on boundary B to be stationary, which was
assumed for all experiments in this section (the weak
coupling�-projection protocol and the quantum computer
protocol).
Nonetheless, since the experiments above last long

enough for any black hole to either evaporate or to fluctuate
into a horizon-free geometry, the details of Bob’s experi-
ence inside the black hole may not be relevant. Suppose,
for example, that boundary B remains present after the
black hole evaporation or fluctuation, and that it remains
connected to the same asymptotic region of spacetime. In
that case the discussions above continue to apply, though
with new details that may be of interest.
Let us examine these details in the context of the quan-

tum computer protocol (Sec. VB). Recall that Alice cou-
ples only to outgoing radiation, which may consist both of
Hawking radiation and of additional radiation emitted by
Bob’s ancilla after the evaporation of the black hole. In the
absence of boundary B, unitarity would imply that the
von Neumann entropy of the Hawking radiation is the
same as that of the state which formed the black hole.
The mechanism for this was outlined in [4], and the key
step was to relate the A-boundary Hamiltonian to the
Hawking radiation. As the black hole evaporates, one notes
that the gravitational Gauss law relates the radiation stress

5In fact, as noted in [8,9], with certain additional assumptions
(concerning either the form of SðEÞ or the ‘‘mixing time’’),
versions of this experiment with Bob inside a black hole may
in fact be conducted over much shorter time scales, in some
cases only logarithmically longer than the light-crossing time of
the black hole. However, for simplicity we avoid such extra
assumptions below.
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tensor to the difference between�A and the corresponding
gravitational flux �horizon at the black hole horizon. When
the horizon disappears, �horizon vanishes and �A is com-
pletely encoded in the Hawking radiation.

However, if boundary B remains present after evapora-
tion, the gravitational Gauss law relates �A to both the
radiation stress tensor and to a similar gravitational flux�B

at boundary B. The von Neumann entropy of the Hawking
radiation thus remains linked to that of Bob’s ancilla
through �B. Until Bob’s ancilla spontaneously deexcite
and decorrelate themselves with the bulk AdS space, the A-
boundary observables will not relax to their ground state.
Alice’s experiment must run for a time dictated by Bob’s
ancilla and not just by Hawking evaporation of the black
hole. Similar conclusions can be reached for the
�-projection protocol of Sec. VA.

In contrast, one might also investigate the case where
boundary B ceases to exist after evaporation of the black
hole. Versions of the quantum computer protocol were
studied for such cases in [8–10]. Because of making addi-
tional assumptions about either SðEÞ or the ‘‘mixing time,’’
Refs. [8–10] considered experiments that ran for much
shorter times than ours, though such times were always
at least logarithmically longer than the light-crossing time
of the black hole. We have nothing new to add to this
discussion here and continue to rely on the resolution
suggested in [8–10]. In particular, since the quantum com-
puter protocol couples directly to the Hawking radiation, it
is difficult to see how it could lead to causality-violating
effects of the sort caused by our short-time �-subtraction
and �-projection protocols. Instead, [8–10] argued that no
true paradox could result unless the observers were able to
compare the results of their experiments, and that the time
required for these experiments was long enough to make
comparison impossible before Bob is destroyed in the
black hole singularity.

Finally, one might consider cases where boundary B
continues to exist beyond the black hole singularity, but
where it ceases to be connected to the same asymptotic
region. Perhaps it enters a ‘‘baby universe.’’ In such cases it
is more difficult to reconcile Alice and Bob’s noncommut-
ing measurements, though this might be possible in some
more complete theory. If not, then baby universe produc-
tion may be incompatible with an operationally finite
density of states (and with an operationally unique ground
state).

VI. DISCUSSION

We have explored a number of thought experiments in
asymptotically AdS quantum gravity featuring holographic
measurements performed by a boundary observer (Alice).
Our focus was on experiments in which Alice couples
directly to the gravitational flux � associated with the
boundary term in the gravitational Hamiltonian, as op-
posed to attempts to extract information directly from

outgoing radiation. We also allowed for a second observer
(Bob) who performs a more local measurement. Both
observers were taken to lie outside the spacetime so that
there was no danger of Alice having access to a holo-
graphic encoding of Bob, and so that we could cleanly
discuss gauge-invariant observables. The goal was to make
more concrete the notion of boundary unitarity discussed
in [4] and to resolve various potential paradoxes. It is
clearly also of interest to understand the extent to which
holographic measurements are possible for observers who
are themselves part of the gravitating system, but we have
not pursued this question here.
Interesting cases arise when the two observers measure

operators that do not commute. The first class of settings
(Secs. III and IV) seemed particularly paradoxical as the
measurements occurred at events which, in the absence of
the measurements, would not have been causally con-
nected. But by general principles of quantum mechanics,
noncommuting measurements should interfere with each
other. Moreover, Alice’s holographic measurements were
guaranteed to succeed as planned under the assumptions of
[4]. Thus, it was Alice’s holographic measurement which
must somehow interfere with Bob’s familiar local mea-
surement, despite the apparent causal structure.
The resolution was that, for each experiment, a complete

analysis was not possible within the usual framework of
semiclassical gravity. Furthermore, the particular form of
this failure suggested radical modifications to the naive
causal structure. In particular, these experiments involved
strong couplings to the gravitational flux �A associated
with the usual Arnowitt-Deser-Misner (ADM)-like bound-
ary term in the Hamiltonian. Such couplings were shown to
alter the boundary conditions in a manner incompatible
with smooth invertible metrics, even at the asymptotic
boundary. Instead, they required the lapseNA at this bound-
ary to pass through zero and become negative. We argued
by analytic continuation that, if this behavior is allowed in
the full theory of AdS quantum gravity, we expect it to
modify the causal structure so that Alice’s experiment can
in fact influence Bob’s. In the scenarios discussed, Alice’s
measurement proceeded as she expected but resulted in
Bob receiving what was effectively a mixed state. That is,
the result was the same as if Alice’s measurement had
occurred in Bob’s causal past.
Given that they force us out of the familiar semiclassical

domain, the reader may wonder whether the couplings of
Secs. III and IV (the �-subtraction and �-projection pro-
tocols) are in fact allowed in any complete theory. Could it
be that we have granted Alice unphysical powers in making
her measurements, perhaps in the same way that certain
measurements are unphysical in relativistic field theory
[24,25]? Since a complete answer requires some input
from quantum gravity, it is enlightening to ask this question
in the context of AdS/CFT: Suppose that the AdS system
has a dual formulation in terms of some large N-gauge
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theory, and that it is this gauge theory which sits in a box in
Alice’s lab. In that context, we see no obstacle to making
precise measurements of the energy on short time scales. In
particular, recall that Aharonov and Bohm showed [22]
how, for nonrelativistic quantum systems, precise measure-
ments of energy can be made arbitrarily rapidly. In the
relativistic case, one expects that any additional restrictions
are set by the light-crossing time of the gauge theory
system in Alice’s laboratory and not by the intrinsic reso-
lution of the measurement. Thus, at least in this context, the
�-projection experiment of Sec. IV seems to be allowed.

The second class of settings (Sec. V) was less intrinsi-
cally paradoxical, but maintained the standard causal struc-
ture on the boundary. In such settings, Alice’s experiments
lasted for long enough intervals of time to place Bob and
Alice in a form of causal contact.6 However, these experi-
ments succeed only if the AdS space has an operationally
finite density of states SðEÞ. We noted that the details of
both SðEÞ and the time scale the experiment requires may
depend on Bob’s choices of ancilla and couplings.

The discussion above allowed Bob to work at a finite
boundary, at finite distance from bulk events. Suppose
however that we imposed more familiar boundary condi-
tions allowing only asymptotic boundaries. Since we know
of no classical solutions in which two asymptotically AdS
boundaries are causally connected, it is natural to assume
that the A-boundary density of states SðEÞ is independent
of any ancilla or couplings at other boundaries. In this
context, one might hope to calculate SðEÞ from semiclas-
sical gravitational physics, and it is tempting to conclude
that it agrees with the Bekenstein-Hawking entropy SBHðEÞ
at large E. In particular, we note that SðEÞ is precisely the
density of states that can affect the exterior of the black
hole, which was advocated to correspond to black hole
entropy in e.g. [26,27]. One possible loophole is that some
dynamical selection mechanism might forbid certain states
described by SðEÞ from appearing in thermal equilibrium,
and it was noted in Sec. V that this might occur if high-
resolution measurements of � are fundamentally forbid-
den. However, we have now argued that such measure-
ments are allowed (at least in the context of AdS/CFT),
making this loophole less plausible.

While our discussion above was cast in terms of effects
on the causal structure due to the influence of Alice’s
experiments, the reader may wonder if quantum fluctua-
tions of the causal structure play any role. On the one hand,
as noted in the introduction, we are largely concerned with
weakly curved regions of spacetime near the AdS bound-
ary where one would expect such quantum fluctuations to
be small. On the other hand, since the causal structure is a
dynamical variable, it does not generally commute with the

Hamiltonian (i.e., with �). As a result, at least in the
interior of the spacetime, one might expect measurements
of � with small uncertainty �� to lead to large fluctua-
tions in the causal structure, and one might further attempt
to interpret our results in these terms. However, recall that
Sec. IV found no tension between precise measurements of
� and a well-defined asymptotic causal structure, so long
as the measurement was carried out over a sufficiently long
time. This argues against the existence of any simple
energy-causal structure uncertainty relation that could re-
place our analysis above. It would, however, be interesting
to analyze the relevance of quantum causal structure fluc-
tuations in more detail.
As a final remark, the reader should note that the reso-

lutions described above are quite different from those
proposed in [8–10] for related thought experiments.
Because they studied the extraction of information from
Hawking radiation, and because the observer outside the
black hole had to wait long enough to collect enough
radiation, these works found that the two observers were
unable to compare their results after the experiments were
completed. The authors argued that, as a result, no true
paradox could arise. In contrast, our settings include those
where the observers can compare results. In particular, we
considered short-time versions of the �-subtraction and
�-projection protocols in Secs. III and IV. Whether or not
comparison is possible, our main conclusion was that a
sufficiently accurate holographic measurement necessarily
causes the boundary metric to degenerate, taking us out of
the realm of familiar gravitational physics. In contexts such
as AdS/CFT where these high-resolution experiments are
nevertheless allowed, we argued that it leads to a radical
change in the effective bulk causal structure. The result is
that the holographic experiment can affect results obtained
by an a priori causally separated second observer deep in
the interior, so that this second (internal) observer receives
a state already decohered by the holographic measurement.
Thus the internal observer effectively receives a mixed
state from which no paradoxes can arise.
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APPENDIX A: DIFFEOMORPHISM INVARIANCE
AND THE HAMILTONIAN

This appendix provides a brief reminder of certain tech-
nical details associated with charges and symmetries in
diffeomorphism-invariant theories. We wish to address
three sorts of complications: (i) situations with multiple
boundaries, (ii) the coupling of external (nongravitating)
degrees of freedom to boundary observables and (iii) time-
dependent boundary couplings (i.e., time-dependent
boundary conditions). Situations of interest will typically
involve all three issues simultaneously. Our treatment of
time-dependent boundary conditions below will be fairly
formal. In contrast, Appendix B examines a particularly
simple example of time-dependent couplings between a
bulk (scalar) field and an external system in detail. As a
result, readers seeking physical insight into such time-
dependent couplings are advised to first read Appendix B.

The general setting for our discussion is an action func-
tional defined on a gravitating system (with boundaries) as
well as some additional degrees of freedom (ancilla) asso-
ciated with each boundary. For definiteness and simplicity,
let us consider the case of two boundaries (A, B) which is
of most interest in the main text. These may be either finite
boundaries (in which the boundary lies at finite proper
distance from the interior) or conformal boundaries with
AdS asymptotics.

The ancilla associated with boundary A (B) are denoted
�A (�B). On each boundary (A, B) we choose some time
coordinate ðtA; tBÞ (such that the surfaces tA ¼ constant,
tA ¼ constant are Cauchy surfaces within the respective
boundaries) which will define a notion of causality re-
spected by the ancilla. The action will be stationary under
an appropriate boundary condition which relates the ancilla
�A, �B to the fields and their derivatives on a finite bound-
ary, and to the Fefferman-Graham coefficients (see e.g.
[12,13]) of the bulk fields at an AdS conformal boundary.
Below, we use the term ‘‘boundary values’’ to refer to both
the fields and their normal derivatives at a finite boundary,
and to the two independent Fefferman-Graham coefficients
for each field at an AdS conformal boundary. What is
important for our purposes is that these boundary condi-
tions may be chosen to share any symmetries of the action,
and that the boundary conditions break diffeomorphism
invariance (so that boundary diffeomorphisms are not
gauge symmetries). In particular, we assume that all
boundary values of bulk fields are gauge-invariant
observables.

We assume the action to be invariant under diffeomor-
phisms generated by vector fields that vanish sufficiently
rapidly at the (perhaps conformal) boundaries of the space-
time (see e.g. [13] for AdS details). We take the entire
action to be the integral of a local density over the bulk
spacetime, an appropriate set of (local) boundary terms
which depend only on boundary values of bulk fields, and
two additional terms of the form

Sint ¼
Z

dtALA þ
Z

dtBLB; (A1)

where LA (LB) is a function of both the �A (�B) and the A-
boundary (B-boundary) observables at time tA (tB). Any
coupling functions appearing in LA (LB) are allowed to
depend only on the time coordinate tA (tB). Thus Sint
describes the full physics of the ancilla, including any
interaction terms.
Let us first suppose that the action does not explicitly

depend on tA, and that the boundary vector field @
@tA

can be

smoothly extended into the bulk in such a way that the
diffeomorphism it generates preserves both the action and
boundary conditions. Because diffeomorphisms that van-
ish sufficiently rapidly at the boundaries are pure gauge,
this means that the action is invariant under the simulta-
neous transformations tA ! tA þ � on the ancilla �A and a
diffeomorphism of the AdS space which restricts to tA !
tA þ � on boundary A but which vanishes on boundary B.
By Noether’s theorem, there is a conserved generatorHA of
this symmetry which we may call the Hamiltonian at
boundary A. Since the transformation vanishes at
boundary B and since bulk diffeomorphisms are pure
gauge, on-shell this Hamiltonian is just a boundary term
at boundary A. This last statement is manifest in any on-
shell covariant phase space formulation (see e.g. [28,29]
for discussions based on symplectic structures or [30] for a
discussion based on the Peierls bracket). In particular, one
sees from e.g. [30] that HA is the sum of an integral of the
usual boundary stress tensor [18,19] over the hypersurface
in boundary A defined by tA ¼ constant and some addi-
tional terms constructed from LA at the same time tA. Since
it generates a symmetry, HA is independent of the choice
of tA.
For later use it is convenient to construct the

Hamiltonian using an ADM-like canonical formulation.
We write the action in canonical form by performing the
usual spaceþ time decomposition in the bulk (see e.g.
[15]) and introducing canonical momenta pA, pB for the
ancilla. If the spatial manifold � has boundaries @A�, @B�
where it intersects the A- and B-boundaries, the result must
take the schematic form

Stotal ¼
Z
��R

ð� _�� NH � NiH iÞ

�
Z
@A��R

ðNEA þ NiP AiÞ þ
Z

dtAðpA _�A � �AÞ

�
Z
@B��R

ðNEB þ NiP BiÞ þ
Z

dtBðpB _�B ��BÞ:

(A2)

Here �, � denote the full set of bulk fields and momenta,
including metric degrees of freedom, and a sum over fields
is implied. The usual lapse and shift are denotedN, Ni, and
H , H i are the usual (densitized) bulk constraints, with i
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running over directions on �. The boundary terms EA, EB,
P Ai, P Bi are the boundary terms which would arise for LA,
LB ¼ 0. They depend only on the boundary values of�,�,
their derivatives along @A�, and perhaps certain coupling
functions on the A- and B-boundaries. The terms �A, �B

encode contributions from LA, LB. As a result, they depend
on the respective ancilla (�A, pA or �B, pB) as well as
boundary values of �, �, their derivatives along @A�, and
any coupling constants present in LA, LB. As for the bulk
fields, pA _�A and pB _�B are canonical ancilla kinetic terms
and a sum over all ancilla fields is implied.

We now consider any observable OðtAÞ built from the
boundary values of�,� and the ancilla�A; pA at boundary
time tA. It follows by direct calculation from (A2) that

dO
dtA

¼ fO; HAg þ @O
@tA

; (A3)

where @O
@tA

evaluates any explicit dependence ofO on tA and

the A-boundary Hamiltonian is

HA ¼
Z
�
ðNH þ NiH iÞ þ

Z
@A�

ðNEA þ NiP AiÞ þ�A:

(A4)

Here we have assumed that @A� coincides with a surface of
constant tA, tB on the A- and B-boundaries. In (A3) the
lapse and shift are arbitrary in the bulk and vanish on
boundary B. On boundary A, the lapse and shift are dic-
tated by the boundary conditions which may force them to
depend on the ancilla �A, pA. On-shell, we have H ¼
H i ¼ 0 and the Hamiltonian is a pure boundary term.
When the action is independent of tB, a similar result holds
for the Hamiltonian HB which generates time translations
along boundary B while leaving boundary A unaffected.

We now wish to consider the case where the action does
depend on tA. We note that any such action may still be
written in the form (A2), with the only difference being
that all coupling constants in EA,P Ai,�A, may now depend
on tA. Direct calculation now implies

dO
dtA

¼ fO; HAðtAÞg þ @O
@tA

; (A5)

with HAðtAÞ again given by (A4) evaluated at A-boundary
time tA. As desired, we see that this notion of time-
evolution is generated on-shell by a (time-dependent)
boundary term constructed only from A-boundary observ-
ables and Alice’s ancilla �A, pA.

Although Eqs. (A3) and (A5) follow by direct compu-
tation from the action (A2), the reader may yet have a
technical concern about our use of Poisson brackets. In
particular, the reader may note that coupling Alice’s ancilla
to the AdS system will require the boundary values of the
gravitational field to become dynamical (see Appendix B
for a simple example involving scalar fields). The reader
may then wonder whether the symplectic structure remains
finite in such cases. Indeed, many familiar choices of

gravitational symplectic structure (such as the explicit
form given in [29]) would diverge in this context. Recall,
however, that the symplectic form is not uniquely defined
by the methods of [29] and, in particular, is ambiguous up
to additions of an exact form dB to the presymplectic form
�. As shown in [31], one may make use of this ambiguity
to define a new symplectic structure which remains finite
under the desired conditions. The relevant exact form dB is
closely related to the so-called counterterms associated
with what is known as holographic renormalization of
the AdS gravitational action (see e.g. [13,18,19]).

APPENDIX B: TIME-DEPENDENT BOUNDARY
CONDITIONS: AN EXAMPLE

It is perhaps enlightening to study a simple example
which illustrates the physics of time-dependent couplings
between an external system and bulk fields in an asymp-
totically AdS spacetime. For simplicity and familiarity,
consider a conformally coupled scalar field �1 in a fixed
AdS background (AdS1). In fact, it will be convenient to
take the external system to also be a conformally coupled
scalar field �2 living in a different AdS background
(AdS2). This second system is to be regarded as merely
an example of the sort of ancilla that Alice might keep in
her laboratory.
Since the fields are conformally coupled, we can instead

describe the dynamics using rescaled scalars ~�1, ~�2 which
propagate on, say, the north and south hemispheres of the
Einstein static universe with line element

d~s2 ¼ ~gabdx
adxb ¼ �dt2 þ dþ sin2d�2

d�2; (B1)

where d�2
d�2 is the line element on the unit d� 2 sphere

and where ~�1;2 are defined on the regions  2 ½0; �=2� and
 2 ½0;��=2� respectively. It will be convenient to denote
the restriction of ~�1;2 to the equator ( ¼ 0) by�1;2 and the

corresponding normal derivatives at  ¼ 0 by 	1;2. We

take each normal derivative to be defined using the out-
ward-pointing normal from the respective half of the
spacetime, so that configurations symmetric under (1 $
2) and  ! � have 	1 ¼ �	2.
In order for the initial value problem to be well-defined,

appropriate boundary conditions must be imposed on �1,
�2, 	1, 	2. We will specify such boundary conditions by
first choosing an action for the system. Consider for ex-
ample

S0 ¼ �
Z
>0

ffiffiffi
~g

p �
1

2
ð@ ~�1Þ2 � �d

~�2
1
~R

�

�
Z
<0

ffiffiffi
~g

p �
1

2
ð@ ~�1Þ2 � �d

~�2
1
~R

�
; (B2)

where ~R is the Ricci scalar of ~gab and �d is the appropriate
conformal coupling constant for spacetime dimension d.
Varying the action (B2) yields
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�S0 ¼
Z
>0

ffiffiffi
~g

p
EOM1� ~�1 þ

Z
<0

ffiffiffi
~g

p
EOM2� ~�2

�
Z
¼0

ffiffiffiffiffi
�

p
ð	1��1 þ 	2��2Þ; (B3)

where EOM1;2 denote the usual conformally invariant

wave operators acting on ~�1;2 respectively. Thus, this

action has well-defined variational derivatives if we im-
pose boundary conditions fixing both �1 and �2. In this
case our two systems are decoupled and each satisfies an
appropriate Dirichlet-type boundary condition. In particu-
lar, each scalar has its own well-defined covariant phase
space in which the symplectic structure is given by the
associated (conserved) Klein-Gordon inner product.
Thinking of the two systems together as defining a single
covariant phase space, the total symplectic structure is the
sum of the two Klein-Gordon products. As usual, the time-
evolution associated with the t coordinate of (B1) is gen-
erated by the Hamiltonian

H0 ¼
Z
t¼constant;>0

ffiffiffi
~g

p �
1

2
ð@ ~�1Þ2 þ �d

~�1
~R

�

þ
Z
t¼constant;<0

ffiffiffi
~g

p �
1

2
ð@ ~�2Þ2 þ �d

~�2
~R

�
: (B4)

Note that we may fix �1;2 to be any (perhaps spacetime-

dependent) function on the (d� 1)-dimensional Einstein
static universe at  ¼ 0.

We now wish to couple our two systems at the  ¼ 0
boundary by adding an interaction term to S0. Consider, for
example, the action

S1 ¼ S0 þ
Z
¼0

ffiffiffiffiffi
�

p
fðxÞ	1	2; (B5)

where fðxÞ is a fixed (i.e., field-independent) coupling

function on the surface  ¼ 0 and
ffiffiffiffiffi
�

p
is the volume

element associated with the line element d�2
d�2. Varying

this action yields

�S1 ¼ �S0 þ
Z
¼0

ffiffiffiffiffi
�

p
fðxÞð	2�	1 þ 	1�	2Þ

¼
Z
>0

ffiffiffi
~g

p
EOM1� ~�1 þ

Z
<0

ffiffiffi
~g

p
EOM2� ~�2

�
Z
¼0

ffiffiffiffiffi
�

p
ð	1�ð�1 � fðxÞ	2Þ

þ 	2�ð�2 � fðxÞ	1ÞÞ: (B6)

Thus the action S1 yields a well-defined variational prin-
ciple under boundary conditions which fix �1 � fðxÞ	2

and�2 � fðxÞ	1. It is in this sense that the two systems are
now coupled.

This coupled system has a well-defined covariant phase
space with a well-defined Hamiltonian. The symplectic

structure is again the sum of the two Klein-Gordon inner
products. Now, however, neither Klein-Gordon product is
conserved on its own. Instead, there is a Klein-Gordon flux

out of the  < 0 region proportional to F<0 ¼R
¼0

ffiffiffiffiffi
�

p ð�1�1�2	1 � �2�1�1	1Þ, and there is a similar

flux out of the  > 0 region determined by �1;2�2, �1;2	2.

But our boundary condition allows us to write

F<0 ¼
Z
¼0

ffiffiffiffiffi
�

p
fðxÞð�1	2�2	1 � �2	2�1	1Þ

¼ �F>0: (B7)

As a result, the total symplectic structure is conserved. A
straightforward computation of the Hamiltonian from (B5)
yields

H1ðtÞ ¼ H0 þ
Z
¼0;t¼constant

ffiffiffiffiffi
�

p
fðxÞ	1	2: (B8)

It is easy to check that the above boundary condition
removes all boundary terms from variations of H1, so
that we have a well-defined generator of time translations
as desired. Other time-dependent couplings between bulk
fields and external systems can be analyzed in a similar
fashion.
As a particular application of the above framework,

consider the case where fðxÞ has compact support, so
that the systems do not interact before some time t1. If
we also take the initial state of the �2-system to be excited
in the distant past, this provides Alice with a certain
amount of information and energy, some fraction of which
will be injected into the (perhaps initially unexcited)
�1-system via the above coupling at around time t1. We
note that, at the quantum level, the failure of the Klein-

Gordon norms for ~�1;2 to be separately conserved trans-

lates into a failure of unitarity for each system alone. The
two systems exchange information via the coupling, and
only the coupled system evolves unitarily. In much the
same way, by considering similar couplings to other exter-
nal systems, Alice can arrange to inject spins, radiation, or
other quantum information into the AdS system. In par-
ticular, the arguments of [31] show that defining the cou-
pling of Alice’s ancilla to AdS boundary observables by
writing down an action and choosing the AdS boundary
conditions so that this action provides a well-defined varia-
tional principle will in general ensure that the total sym-
plectic flux will be conserved, even in the presence of time-
dependent couplings. The results of [31] also show that the
appropriate symplectic structure remains finite even when
the boundary values of the gravitational field become
dynamical.
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