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We discuss the criteria that must be satisfied by a well-posed variational principle. We clarify the role of

Gibbons-Hawking-York type boundary terms in the actions of higher derivative models of gravity, such as

FðRÞ gravity, and argue that the correct boundary terms are the naive ones obtained through the

correspondence with scalar-tensor theory, despite the fact that variations of normal derivatives of the

metric must be fixed on the boundary. We show in the case of FðRÞ gravity that these boundary terms

reproduce the correct Arnowitt-Deser-Misner energy in the Hamiltonian formalism, and the correct

entropy for black holes in the semiclassical approximation.
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I. INTRODUCTION AND OUTLINE

The Einstein-Hilbert action for general relativity (GR) is

SEH �
Z

d4x
ffiffiffiffiffiffiffi�g

p
R: (1)

When varying this action, one finds surface contributions
that must vanish if the action is to be stationary. The
surface contributions contain the metric variation �g��

and variations of the derivatives of the metric �ð@�g��Þ.
Setting �g�� ¼ 0 on the boundary is not sufficient to kill

all the surface contributions. Fixing both the metric and the
derivatives of the metric on the boundary is uncomfortable,
however it may not be initially obvious why this is so, or
that there exists a unique and correct prescription for deal-
ing with it.

Gibbons, Hawking, and York (GHY) proposed adding
the trace of the extrinsic curvature of the boundary, K, to
the action [1,2]. With this modification the action takes the
form

S ¼ SEH þ SGHY �
Z

d4x
ffiffiffiffiffiffiffi�g

p
Rþ 2

I
d3x

ffiffiffiffiffiffi
jhj

p
K: (2)

h is the determinant of the induced metric on the boundary.
This modification is appealing because the variation of the
Gibbons-Hawking-York boundary term cancels the terms
involving �ð@�g��Þ, and so setting �g�� ¼ 0 becomes

sufficient to make the action stationary. This has been
widely accepted as the correct modification to the action.

This modification raises some questions. Is the modifi-
cation unique? Is it necessarily incorrect to require
�ð@�g��Þ ¼ 0? If this is incorrect, why is it appropriate

to require the fixing of all components of g��, when the

graviton has only two degrees of freedom? More generally,
what criteria determine which quantities to fix on the

boundary? Should it be related to the number of degrees
of freedom in the theory?
Despite these questions the GHY term is desirable, as it

possesses a number of other key features. The term is
required to ensure the path integral has the correct compo-
sition properties [1]. When passing to the Hamiltonian
formalism, it is necessary to include the GHY term in order
to reproduce the correct Arnowitt-Deser-Misner (ADM)
energy [3]. When calculating black hole entropy using
the Euclidean semiclassical approach, the entire contribu-
tion comes from the GHY term [4]. These considerations
underscore the necessity of a complete understanding of
boundary terms.
Higher derivative theories of gravity have attracted at-

tention recently, mostly as modifications to GR that have
the potential to explain cosmic acceleration without vac-
uum energy. A simple example of such a modification is
FðRÞ gravity, where the action becomes some arbitrary
function, F, of the Ricci scalar (for reviews, see [5,6]),

S�
Z

d4x
ffiffiffiffiffiffiffi�g

p
FðRÞ: (3)

It is well known that this theory is dynamically equivalent
to a scalar-tensor theory [7–11]. By extending this equiva-
lence to the GHY term, we find that the FðRÞ action is left
with a boundary term,

Z
d4x

ffiffiffiffiffiffi
jgj

q
FðRÞ þ 2

I
d3x

ffiffiffiffiffiffi
jhj

p
F0ðRÞK: (4)

This boundary term must be present if the correspondence
to scalar-tensor theory is to hold at the boundary.
This term has been arrived at before, both directly and

indirectly, and in several different contexts [12–16]. There
has been some confusion, as this boundary term does not
allow �ð@�g��Þ to remain arbitrary on the boundary.

Various ways around this have been attempted, for ex-
ample, when restricting to maximally symmetric back-
grounds a boundary term for FðRÞ theory can be found
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that allows �ð@�g��Þ to remain arbitrary on the boundary

[15].
FðRÞ theory is a higher derivative theory, however, and

the derivatives of the metric encode true degrees of free-
dom. �ð@�g��Þ should not remain arbitrary on the bound-

ary. Instead, �ð@�g��Þ must be subject to the constraint

that the variation of the four-dimensional Ricci scalar be
held fixed on the boundary. This corresponds to holding the
scalar field fixed in the equivalent scalar-tensor theory. We
will show that the above boundary term reproduces the
expected ADM energy upon passing to the Hamiltonian
formalism, and the expected entropy for black holes.

In what follows, we will elaborate upon the above in
detail.

An outline of this paper is as follows. In Sec. II, we go
over the criteria that are necessary to have a well-posed
variational principle. In Sec. III, we examine several toy
examples of Lagrangians in classical mechanics that share
some of the features of the more complicated GR case. We
discuss what adding total derivatives can do to the varia-
tional principle, and what happens in higher derivative
theories. We also discuss the complications due to con-
straints and gauge invariance, and we work out the case of
electromagnetism. In Sec. IV, we review the GHY term, its
variation, and how it renders the GR action well posed. In
Sec. V, we discuss higher derivative modified gravity theo-
ries, scalar-tensor theories, and their equivalence, using
FðRÞ theory as the prime example. We find the boundary
terms for FðRÞ theory using this equivalence. In Sec. VI,
we derive the Hamiltonian formulation of scalar-tensor
theory and FðRÞ theory, keeping all boundary terms and
show how the boundary term is essential for obtaining the
ADM energy. In Sec. VII, we calculate the entropy of a
Schwarzschild black hole in FðRÞ theory, using the
Euclidean semiclassical approach, and compare the result
to theWald entropy formula. We conclude in Sec. VIII, and
some formulae, theorems, and technicalities are relegated
to the appendices.

Conventions: We use the conventions of Carroll [17].
These include using the mostly plus metric signature
(�;þ;þ;þ; . . . ), and the following definitions of the
Riemann and Ricci tensors, R�

��� ¼ @��
�
�� � @��

�
�� þ

��
���

�
�� � ��

���
�
��, R�� ¼ R

�
���. The weight for antisym-

metrization and symmetrization is, e.g. A½��� ¼ 1
2 ðA�� �

A��Þ. For spacelike hypersurfaces, the normal vector will

always be inward pointing. For timelike hypersurfaces, it
will be outward pointing. The dimension of spacetime is n.
Further conventions and notation for foliations of space-
time are laid out in Appendices A and B.

II. WHAT MAKES AVARIATIONAL PRINCIPLE
WELL POSED?

A traditional approach to field theory is to integrate by
parts at will, ignoring boundary contributions. The reason-

ing is that if there are no physical boundaries in the space
under consideration, or if they are so far away that their
effects can be expected not to interfere with the system
under study, then they can be ignored.
If one is interested only in the local equations of motion

of a theory, this is a valid approach. In this case, one uses
the action only as a formal device for arriving at the
equations of motion. Denoting the fields collectively by
�i, one writes down the Lagrangian, which is a local
density,

L ð½��; xÞ: (5)

Here ½�� stands for dependence on�i and any of its higher
derivatives, ½�� � �i; @��

i; @�@��
i; . . . , and x are the

coordinates on spacetime. One then defines the equations
of motion to be the Euler-Lagrange equations

�ELL
��i

¼ 0; (6)

where

�EL

��i
¼ @

@�i � @�
@

@ð@��iÞ þ @�@�
@S

@ð@�@��iÞ � � � �

is the Euler-Lagrange derivative and the symmetric deriva-
tive is defined by

@S

@ð@�1
. . . @�k

�iÞ @�1
. . . @�k

�j ¼ �j
i�

�1

ð�1
� � ���k

�kÞ: (7)

(The symmetric derivative is to avoid overcounting mul-
tiple derivatives which are not independent.)
All the relevant local theory, i.e. equations of motion,

symmetries, conserved currents, gauge symmetries,
Noether identities, etc. can be developed in terms of the
Lagrangian density alone, without ever writing an integral
and without consideration of boundary contributions. For
example, Noether’s theorem can be stated as: an infinitesi-
mal transformation ��ið½��; xÞ is a symmetry if the
Lagrangian changes by a total derivative,

�L ¼ @�k
�; (8)

from which one can show directly that the following
current is conserved on shell

j� ¼ �k� þ Xn
r¼1

@�1
. . . @�r�1

��i
Xn
l¼r

ð�1Þl�r@�r
. . .

� @�l�1

@SL
@ð@�@�1

. . . @�l�1
�iÞ : (9)

(This reduces to j� ¼ ��i @L
@ð@��iÞ � k� in the usual case
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where the Lagrangian depends at most on first derivatives
of the fields.)1

Without specifying boundary conditions, the Euler-
Lagrange equations (6) typically have many solutions (if
there are no solutions, the Lagrangian is said to be incon-
sistent). To select out the true solution, boundary condi-
tions must be set. There should be some class of boundary
conditions that render the system well posed. A class of
boundary conditions is well posed if, given any choice of
boundary conditions from this class, there exists a unique
solution to the system compatible with that choice. The
equations of motion are typically hyperbolic, so the class
will generally involve all possible choices of initial con-
ditions and velocities for the fields, and all possible choices
of spatial boundary conditions at all times. There may be
several different classes of well-posed data, but each class
will involve specifying the same number of boundary data.
This number is the number of degrees of freedom in the
theory.

The choice of spatial boundary conditions generally
corresponds to a choice of ‘‘vacuum state’’ for the theory.
For example, in GR, if spatial boundary conditions (fall-off
behavior for the fields, in this case) are chosen so that the
spacetime is asymptotically flat, we find ourselves in the
asymptotically flat vacuum of the theory. A choice of initial
condition generally corresponds to a choice of state within
the vacuum. For example, both Minkowski space and the
Schwarzschild black hole have the same spatial boundary
behavior, so they are both in the asymptotically flat vac-
uum of GR, but they have different initial data, and so they
represent different states. Thus, from the point of view that
the action is just a formal device to arrive at the local
equations of motion, information about the possible vacua
of the theory, and the space of states in each vacuum, is not
encoded directly in the action, only indirectly through the
boundary conditions required of the equations of motion.

Ideally, the action should do more. We want to say that
the true field configuration, among all field configurations
with given boundary data, extremizes the action. Consider
a spacetime region,V , such as that in Fig. 1. The boundary
of this region consists of a timelike part B (which may be
at infinity), which we will refer to as the spatial boundary,
and two spacelike edges,�1 and�2, which we will refer to
as the end points. We consider configurations of the fields
�i in V that have some given boundary values, �iðBÞ, as
well as initial and final values, �ið�1Þ, �ið�2Þ (possibly
involving derivatives of the fields or other combinations),

chosen from a class which is well posed, meaning that for
each choice in the class there exists a unique solution to the
equations of motion.2

The action is a functional of field configurations in V ,

S ¼ S½�ðV Þ�; (11)

in the form of an integral over V of the Lagrangian
Lð½��; xÞ,

S½�ðV Þ� ¼
Z
V
dnxLð½��; xÞ: (12)

The criteria for a well-posed action should be the follow-
ing. If we restrict the action to those field configurations
consistent with our choice of boundary and initial data,

S ¼
Z
V
dnxLð½��; xÞj�iconsistent with data �iðBÞ;�ið�1Þ;�ið�2Þ;

(13)

the unique solution to the Euler-Lagrange equations
should be the only extremum of the action. It is important
that the space of paths over which we vary be all paths that
have the given boundary data.
Of course, a necessary condition for the action to be

stationary is that the field satisfy the Euler-Lagrange equa-
tions

�ELL
��i

¼ 0: (14)

For the action to be truly stationary, any boundary contri-
butions arising from the variation must vanish. No con-
ditions other than those implicit in the class of well-posed

FIG. 1. Region over which a field theory is defined.

1If one wishes, still keeping with this line of thought, the
action integral can be introduced as a formal device,

S ¼
Z

dnxLð½��; xÞ: (10)

The integration region need not be specified, and the equations
of motion are obtained by setting �S ¼ 0 and integrating by
parts ignoring all boundary contributions.

2Well-posedness of hyperbolic equations usually requires ini-
tial data, such as the values of �i and its time derivatives at �1,
rather than end point data such as the value of �i at �1 and �2.
The action naturally wants end point data, however. As we will
elaborate on in the next section, end point data is usually just as
well posed as initial data, with the exception of ‘‘unfortunate
choices’’ which are measure zero in the space of all choices.
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data may be used in checking whether boundary contribu-
tions vanish.

There will be many possible choices of the boundary
data �iðBÞ (corresponding to different choices of vacuum)
and end point data �ið�1Þ, �ið�2Þ (corresponding to dif-
ferent choices of the state) within a well-posed class. Each
such choice leads to a different set of paths to consider in
the action, and a well-posed action will give a unique
stationary field configuration for each. The action, when
evaluated on the classical path �i

c, is thus a well-defined
functional on the class of possible boundary data,

S½�ðBÞ; �ð�1Þ; �ð�2Þ�j�¼�c
¼
Z
V
dnxLð½��; xÞj�¼�c

:

(15)

The number of physical degrees of freedom in the theory is
the number of free choices of �ið@V Þ (modulo gauge
invariance, see later), i.e. the size of the class of well-posed
boundary data.

These criteria are essential to setting up a Hamilton-
Jacobi theory, where the stationary value of the action, as a
function of end point data, gives the canonical transforma-
tion that solves the equations of motion [18]. These criteria
are also essential to setting up a quantum theory based on
the path integral. [1].

We will now turn to some examples. We will look at
some actions which are well posed in the sense we have
just described, and some which are not. We will see that
adding boundary terms or, equivalently, total derivatives to
the action affects whether the action can be well posed.
Second-class constraints and gauge freedom complicate
the issue, and we will have more to say about these as well.

III. SOME TOY EXAMPLES

We start with some simple examples from point particle
mechanics. These are one-dimensional field theories, with
fields qiðtÞ that depend on one parameter, the time t. The
issue of spatial boundary data does not arise in this case; it
is only the end point data, qiðt1Þ and qiðt2Þ, that we need to
worry about.3 The number of degrees of freedom in the
theory is half the number of free choices that may be made
in specifying end point data.

A. Standard classical mechanics

The best example of a well-defined variational principle
is an ordinary unconstrained Lagrangian system for n
variables qiðtÞ, i ¼ 1; . . . ; n without higher derivatives,

S½qi1; qi2; t1; t2� ¼
Z t2

t1

dtLðqi; _qi; tÞ; (16)

det

�
@2L

@ _qi@ _qj

�
� 0: (17)

The action is a function of the end point data qi1, q
i
2, and the

endpoint times t1, t2. The set of paths over which we vary is
all qiðtÞ satisfying qiðt1Þ ¼ qi1 and q

iðt2Þ ¼ qi2. Varying the
action we have

�S ¼
Z t2

t1

dt

�
@L

@qi
� d

dt

@L

@ _qi

�
�qi þ @L

@ _qi
�qi

��������t2

t1

: (18)

The boundary variation vanishes since the qi are fixed
there, so the necessary and sufficient condition for the
action to be stationary is that the Euler-Lagrange equations
of motion hold,

@L

@qi
� d

dt

@L

@ _qi
¼ 0; (19)

or, upon expanding out the time derivative,

@2L

@ _qi@ _qj
€qj ¼ @L

@qi
� @2L

@ _qi@qj
_qj: (20)

Because of (17), we can solve algebraically for the highest
derivative €qi in terms of the lower derivatives, and we have
a well-formed initial value problem: given a choice from
the class of data qiðt1Þ and _qiðt1Þ, we will have a unique
solution to the equations of motion.
However, the action principle is not well suited to the

initial value class. It is suited to the class where we choose
end point data, i.e. where we fix qi on the two end points
but do not specify the _qi anywhere. For a second order
differential equation such as (20), the end point problem
will be well posed for all but a few ‘‘unfortunate’’ choices
of the end point data (borrowing the language of [19]). An
example of such an unfortunate choice is the following.
Take the action of a simple harmonic oscillator in one

dimension, with unit mass and angular frequency !, S ¼Rt2
t1 dt

1
2 ð _q2 �!2q2Þ. The equation of motion is €qþ!2q ¼

0. If the time interval is chosen to be a half integer multiple
of the period of the oscillator, t2 � t1 ¼ n	

! , n ¼ 1; 2; . . . ,

and we choose q1 ¼ q2 ¼ 0, then there will be an infinite
number of distinct solutions to the equations of motion
compatible with the end point data. This reflects the fact
that the period of oscillations is independent of the ampli-
tude. It is not hard to think of other such examples of
unfortunate choices. The problem is that the equations of
motion want initial conditions, but the action principle
wants end point conditions, and the result is a failure of
the action principle to be well defined for all choices.
These unfortunate choices will make up a set of measure

zero among all possible choices for the end point data. This
is because finding degeneracies in the initial value formu-
lation is equivalent to an eigenvalue problem over the
interval t2 � t1 and the eigenvalues are discrete. We will
still consider such a variational principle well posed. With
this caveat, the action principle above, using the class of

3In this sense, one-dimensional theories do not possess differ-
ent vacua, only a space of states, given by the various values the
end point data are allowed to take.
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end point data, is well posed, because for almost any
choice of end point data, qi1, q

i
2, t1, t2, there is a unique

solution to the equation of motion, corresponding to the
unique path which extremizes the action. The action, eval-
uated on this path, becomes a well defined functional of qi1,
qi2, t1, t2 almost everywhere, and so the number of degrees
of freedom (i.e. the size of the class of data), or the
possibility of differentiating the action with respect to
end point data, is not affected. There are 2n free choices
among the field end point values, so the model has n
degrees of freedom.

Going to the Hamiltonian poses no problem. We intro-
duce fields piðtÞ,

pi ¼ @L

@ _qi
; (21)

which by virtue of (17) can be inverted to solve for _qi ¼
_qiðp; qÞ. We then write the action

S ¼
Z t2

t1

dt pi _q
i �H; (22)

where

Hðp; qÞ ¼ ðpi _q
i � LÞj _qi¼ _qiðp;qÞ: (23)

The variation with respect to the pi’s is done without fixing
the end points, so their end point values are not specified,
and the action is not a function of them. The equations of
motion for p are (21), which upon plugging back into the
action reproduces the original Lagrangian action (the tran-
sition to the Hamiltonian is a special case of the funda-
mental theorem of auxiliary variables, see Appendix D).
Note that adding a total derivative, d

dt FðqÞ, of any function
of the qi to the original Lagrangian does not change the
variational principle or the equations of motion, but does
change the canonical momenta in a way that amounts to a
canonical transformation.

B. Constraints

Consider now a Lagrangian that does not satisfy

detð @2L
@ _qi@ _qj

Þ � 0. This is the case for essentially all theories

of interest to most high energy physicists, with the excep-
tion of scalar field theories on fixed backgrounds. The
theory then has constraints, and the Dirac constraint algo-
rithm or some equivalent method must be applied [19,20].

As an example, consider a theory with a free point
particle of mass m, labeled by q1, along with a harmonic
oscillator of mass M and angular frequency !, labeled by
q2, coupled through a derivative interaction � _q1 _q2,

S ¼
Z t2

t1

dt
1

2
m _q21 þ

1

2
M _q22 �

1

2
M!2q22 þ � _q1 _q2: (24)

This Lagrangian is free of constraints except when � ¼
� ffiffiffiffiffiffiffiffiffi

Mm
p

, in which case there is a single primary constraint
and a single secondary constraint, which taken together are

second class. It is easy to see why these values of � are
special, because for these values we can factor the action

S ¼
Z t2

t1

dt
1

2
ð ffiffiffiffi

m
p

_q1 �
ffiffiffiffiffi
M

p
_q2Þ2 � 1

2
M!2q22; (25)

after which a change of variables q0 � ffiffiffiffi
m

p
q1 �

ffiffiffiffiffi
M

p
q2

shows that q0 behaves as a free point particle while q2,
which has no kinetic term, is constrained to be zero.
Varying the action, we find the end point term

ð ffiffiffiffi
m

p
_q1 �

ffiffiffiffiffi
M

p
_q2Þ�ð

ffiffiffiffi
m

p
q1 �

ffiffiffiffiffi
M

p
q2Þjt2t1 : (26)

The action is stationary if we choose the quantity
ffiffiffiffi
m

p
q1 �ffiffiffiffiffi

M
p

q2 to be fixed on the end points. q2 must be chosen to
be zero, so choosing this quantity is equivalent to choosing
q1.
This illustrates what should be the case in general with

constrained systems. The variations of the unconstrained
variables are fixed on the boundary, and the constrained
variables are not fixed. Each choice of end point data for
the unconstrained variables determines a choice of data for
the constrained variables, which then determines a unique
solution to the equations of motion. The action is thus a
function of the end point data for the unconstrained vari-
ables. The action should be such that even though all
variables may appear in the end point variation, the number
that must be fixed to make the action stationary is fewer,
equal in number to the number of unconstrained degrees of
freedom.

C. Gauge invariance

Gauge invariance also complicates the well-posedness
of variational principles. Consider the following action for
two variables q1 and q2:

S ¼
Z t2

t1

dt
1

2
ðq1 � _q2Þ2: (27)

Varying with respect to q1 gives the equation of motion
q1 ¼ _q2 with no end point contribution. q1 can thus be
eliminated as an auxiliary field, and plugging this back into
the action gives identically zero. The general solution to
the equation of motion is to let q2 be a completely arbitrary
function of t, and then set q1 ¼ _q2. The presence of arbi-
trary functions in the general solution to the equations of
motion is the hallmark of a gauge theory, and indeed this
theory is invariant under the gauge transformation �q1 ¼
_
, �q2 ¼ 
, where 
ðtÞ is an arbitrary function of t.
Arbitrary functions in the solution also indicate that the

action principle is not well defined as it stands. Given end
point data, we can make a gauge transformation that
changes the solution somewhere in the bulk, away from
the end points, and so the solution for the given endpoint
data will not be unique. We salvage uniqueness by identi-
fying as equivalent all solutions which differ by a gauge
transformation. For example, given any q2ðtÞ, we can,
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without changing the end point values q2ðt1Þ, q2ðt2Þ, bring
it to the gauge €q2 ¼ 0, by making a gauge transformation
with the gauge parameter 
ðtÞ, obtained by solving €
þ
€q2 ¼ 0 subject to the end point conditions 
ðt1Þ ¼ 
ðt2Þ ¼
0. Then, given any choice of q2ðt1Þ; q2ðt2Þ, there is a unique
solution compatible with €q2 ¼ 0.

The gauge condition €q2 ¼ 0 still allows residual gauge
transformations, those where 
ðtÞ is linear in t. These gauge
transformations do not vanish at the end points. If a gauge
transformation does not vanish at the end points, we must
identify end point data that differ by a gauge transforma-
tion. In the case above, q2ðt1Þ and q2ðt2Þ can be set to any
desired value by a residual gauge transformation, so all the
q2 end point data is to be identified into a single equiva-
lence class. The q1 data is constrained, so in total this
model has only a single state and carries no degrees of
freedom.

The variational principle is still well posed. The action is
stationary without fixing the constrained variable q1. The
unconstrained variable q2 must be fixed, so the action is a
function of its chosen boundary values. However, gauge
invariance of the action ensures that the action takes the
same value over all the gauge identified end point data, so it
is well defined on the equivalence classes.4

D. Field theory/spatial boundaries

As an example of a field theory with gauge invariance,
we will show how the action for electromagnetism is well-
posed. Consider Maxwell’s equations for a vector field A�,

to be solved in a region such as that shown in Fig. 1,

hA� � @�ð@�A�Þ ¼ 0: (28)

They are gauge invariant under A� ! A� þ @�� for any

function �ðxÞ.
We wish to know what boundary data are required to

make this system well posed. Start by fixing Lorentz gauge
@�A

� ¼ 0 in the bulk, by choosing � to satisfy h� ¼
�@�A

�. The equations of motion are then equivalent to

hA� ¼ 0; @�A
� ¼ 0: (29)

These still allow for a residual gauge transformation A� !
A� þ @�� where � satisfies h� ¼ 0 in the bulk. Solving

the equation h� ¼ 0 requires specifying � on the bound-
ary, so the residual gauge transformations will be trans-

formations of the data on the boundary, which will be used
to generate equivalence classes.
The wave equation hA� ¼ 0 requires specifying A� on

�1, �2, and B (except for unfortunate choices).
Differentiating, we have hð@�A�Þ ¼ 0, which is the

wave equation for the quantity @�A
�. Thus, if we fix

boundary conditions for A�, then extend into the bulk

using hA� ¼ 0, we need only check that @�A
� ¼ 0 on

the boundary, as the extension will then automatically
satisfy @�A

� ¼ 0 in the bulk.

For a given choice of A� on the boundary, @�A
� is

entirely specified by Laplace’s equation hA� ¼ 0, thus
there will be a single constraint on the allowed choices of
A� on the boundary to ensure @�A

� ¼ 0 there. To see the

form of the constraint, note that the perpendicular deriva-
tives of the A� are not set as part of the boundary data, but

are determined by extending the solution into the bulk. For
instance, we can write

@?A? ¼ fðA?j@V ; Akj@V Þ; (30)

where f is some function of the components of A� on the
boundary specified by solving Laplace’s equation.
Therefore we need only impose the restriction

½@kAk þ fðA?; AkÞ�@V ¼ 0 (31)

on the boundary data. For every choice of boundary data
satisfying this restriction, there is a unique solution to
Maxwell’s equations in Lorentz gauge.
We can think of this condition as determining A?, given

Ak, so we obtain a unique solution given any choice of Ak,
with A? determined through the constraint. To have a well-
defined variational problem given this choice of the free
data, the action should be stationary with only Ak fixed on

the boundary.
We now return to the residual gauge freedom. A gauge

transformation such that h� ¼ 0 is still permissible.
These residual gauge transformations leave the constraint
(30) invariant, and serve to identify the unconstrained
boundary data into equivalence classes. We can select a
member of each class by fixing the residual gauge. For
example, we can use it to set A? ¼ 0. We then have two
independent functions that must be specified, namely Ak,
subject to the single constraint (30). These two functions
correspond to the two polarization states of the photon.
Consider now the Maxwell action in this volume,

S ¼
Z
V
d4x� 1

4
F��F

��; F�� � @�A� � @�A�:

(32)

Variation givesZ
V
d4x@�F

���A� �
I
@V

d3xn�F
���A�: (33)

n� is the outward pointing normal on the timelike surface

4In general, gauge transformations may force the identification
of other data besides the end point data. An example is the
Lagrangian for a relativistic point particle which contains rep-
arametrization invariance of the worldline. In this case, it is the
time interval t2 � t1 that is identified [21]. In the case of general
relativity, there are gauge transformations of both kinds. Spatial
diffeomorphisms (generated by the momentum constraints) gen-
erate equivalences among the end point data, whereas the diffeo-
morphisms generated by the Hamiltonian constraint generates
equivalences among the boundary data.
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B, and the inward pointing normal on the spacelike sur-
faces �1 and �2. Notice that the action is stationary when
only Ak is held fixed at the boundaries, due to the anti-

symmetry of F��, exactly the data required of the equa-

tions of motion. Furthermore, we are able to identify as
equivalent any data that differ by a gauge transformation
because the gauge invariance of the action ensures that it is
well defined on the equivalence classes. Thus we have a
well-posed action principle.

E. Adding total derivatives

Adding a boundary term such as the Gibbons-Hawking-
York term amounts to adding a total derivative to the
Lagrangian. We would like to understand how adding a
total derivative can change the variational problem. The
bulk equations of motion are always unaffected by adding
a total derivative, even one that contains higher derivatives
of the fields. However, the addition of a total derivative
may render the variational problem inconsistent or require
different boundary data to remain well posed.

Consider adding a total derivative to the Lagrangian
L1 ¼ 1

2
_q2 of the free nonrelativistic point particle, so that

the action reads

S2 ¼
Z t2

t1

dtL2; L2 ¼ � 1

2
q €q: (34)

The Lagrangian contains higher derivatives, but they ap-
pear only as total derivatives, so the equations of motion
are still second order. This is analogous to the Einstein-
Hilbert action without the GHY term.

Varying the action produces the end point contribution

1
2 ð _q�q� q� _qÞjt2t1 : (35)

Setting qðt1Þ and qðt2Þ, and the associated requirement
�q ¼ 0 at the end points, is no longer sufficient to kill
the surface contribution in the variation. Fixing _qðt1Þ and
_qðt2Þ, as well as qðt1Þ and qðt2Þ, and hence �q ¼ 0 and
� _q ¼ 0, would be sufficient to kill the end point term. But
this is now setting 4 pieces of boundary data for a second
order equation of motion, so for most choices of data the
equations of motion will have no solution.

One might try to say the following. In the four-
dimensional space of variables that are fixed, parametrized
by qðt1Þ, qðt2Þ, _qðt1Þ, _qðt2Þ, there is some two-dimensional
subspace that is unconstrained. The others are fixed by the
equations of motion, so the parameters of this subspace are
the true degrees of freedom of the theory. In fact, there are
many such subspaces, i.e. that parametrized by qðt1Þ, qðt2Þ,
or that parametrized by qðt1Þ, _qðt2Þ, etc. The essential point
is that the action should be stationary when only variations
of the quantities parametrizing the subspace are held fixed,
because we must vary over all paths. This is not true of the
two subspaces just given. If we could find a subspace for
which this were true, we could salvage the action S2, by

saying that the degrees of freedom have been mixed up in
the q’s and _q’s.
For example, we might try writing the boundary contri-

bution as

� 1

2
q2�

�
_q

q

���������t2

t1

; (36)

and fixing the quantity _q
q on the boundary. If fixing end

point data for _q=q leads to a unique solution for most
choices, then the end point variation vanishes upon fixing
only this quantity, and we can say that the degree of free-
dom is encoded in the combination _q=q. However, this

does not work, since the quantities _q
q ðt1Þ and _q

q ðt2Þ do not

parametrize a subspace over which the equation of motion
is well posed. We can see this by noting that the general
solution to the equation of motion is qðtÞ ¼ Atþ B, so

fixing _q
q ðt2Þ at the end points yields

A

At1 þ B
¼ C1;

A

At2 þ B
¼ C2; (37)

which cannot be solved for A, B given generic values ofC1,
C2, t1, t2.
In fact, there is no way to find such a subspace for the

action based on L2.
5 For this reason, if we are given the

Lagrangian L2, we must add the GHY type term ð12q _qÞjt2t1 ,
to bring the Lagrangian back to L1, which is well posed. As
a general rule of thumb, if an action contains higher
derivatives which appear only as total derivatives, a bound-
ary term will need to be added.
As a final example, which cleanly illustrates why the

space of competing curves in the variational principle must
be kept as large as possible, consider the Lagrangian L3 ¼
1
2
_q2 þ q

:::
. The boundary variation is then _q�qþ � €qjt2t1 . We

are fixing �q, and we might think we can simply fix €q ¼ 0
as well. As long as we can fix €q to be those values given by
solving the equations of motion (i.e. €q ¼ 0), it is still true
that there is a two parameter [qðt1Þ and qðt2Þ] family of end
point data, all of which yield a unique solution to the
equation of motion. We are tempted to think of €q as a
second-class constrained variable. However, fixing €q and
hence � €q ¼ 0 at the end points restricts the class of paths
over which we are extremizing. Taken to the extreme, we
could also fix �q

:::¼ 0 at the end points, and so forth until

5In general, to set up such a two-dimensional subspace we
must set functions of q or _q on the boundary separately, or a
function Fðq; _qÞ on both boundaries. It is clear that the first
approach fails to set the above boundary variation to zero. We
may imagine functions Fðq; _qÞ and f such that f�F ¼ 1

2 ð _q�q�
q� _qÞ. These would have the desired property that setting F ¼
C1jt1 and F ¼ C2jt2 parametrizes a two-dimensional subspace
and would imply the vanishing of the boundary variation. It is
not difficult to show, however, that any such F must be of the
form Fð _qqÞ and thus is not a valid choice for the same reason that _q

q
is not.
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the entire Taylor series is fixed and the only curve com-
peting for the extremum is the solution itself. To avoid
arbitrariness, we need to keep the space of competing paths
as large as possible by varying over all paths consistent
with the specified boundary data. The action based on L3 is
not well posed.

F. Higher derivative Lagrangians

We now turn to an example with higher derivatives that
is analogous to the FðRÞ gravity case. Consider the action
for a single variable qðtÞ that involves an arbitrary function
F of the second derivative €q, which satisfies F00 � 0,

S1 ¼
Z t2

t1

dtFð €qÞ; F00 � 0: (38)

Variation gives the following:

�S1 ¼
Z t2

t1

dt½F000ð €qÞq:::2 þ F00ð €qÞq::::��qþ ½F0ð €qÞ� _q

� F00ð €qÞq:::�q�jt2t1 : (39)

The bulk equation of motion can be solved for the highest
derivative q

::::
in terms of the lower derivatives. This is a

fourth order equation in standard form and requires four
pieces of boundary data to be well posed. Fixing q and _q at
both end points is a valid choice. With this, the variation at
the end points vanishes and we have a well-defined action
principle for two degrees of freedom,

S1 ¼ S1½q1; _q1; q2; _q2; t�: (40)

Consider now introducing an auxiliary field, �ðtÞ, to try
and get rid of the higher derivatives (this can always be
done, a general method is the Ostrogradski method [22–
24]),

S2 ¼
Z t2

t1

dt Fð�Þ þ F0ð�Þð €q� �Þ: (41)

Varying gives

�S2 ¼
Z t2

t1

dt½F000ð�Þ _�2 þ F00ð�Þ €���qþ F00ð�Þ½ €q� ����

þ ½F0ð�Þ� _q� F00ð�Þ _��q�jt2t1 : (42)

This action is well posed if q and _q are held fixed at the
boundary and � is kept arbitrary. The equation of motion
for � can be solved for � ¼ €q, which when plugged back
into the action yields S1, and hence S1 and S2 are equiva-
lent by the fundamental theorem of auxiliary variables (see
Appendix D).

The action S2 still involves the higher derivatives €q, but
now they appear only through a total derivative, so we
integrate by parts,

S2 ¼
Z t2

t1

dt Fð�Þ � �F0ð�Þ � F00ð�Þ _q _�þF0ð�Þ _qjt2t1 :
(43)

The integration by parts has generated a boundary contri-
bution. We can render the action first order by subtracting
this boundary term, that is, by adding to S2 the GHY type

term �F0ð�Þ _qjt2t1 .
The action and its variation now read

S3 ¼
Z t2

t1

dt Fð�Þ � �F0ð�Þ � F00ð�Þ _q _�; (44)

�S3 ¼
Z t2

t1

dt½F000ð�Þ _�2 þ F00ð�Þ €���qþ F00ð�Þ½ €q� ����

� ½F00ð�Þð _��qþ _q��Þ�jt2t1 : (45)

The bulk variation is unchanged because we have only
added a total derivative, but the boundary variation has
changed. We must modify the variational principle to keep
� and q fixed on the boundary. The action now becomes a
functional S3 ¼ S3½q1; �1; q2; �2; t�. The degree of free-
dom _q has been shifted into �.
Here adding the GHY type term was not strictly neces-

sary to keep the variational principle well defined, as was
the case in the previous section. Here the effect is simply to
shift the degrees of freedom into different variables.6

We are still free to eliminate the auxiliary variable �
from the equations of motion. Doing so yields the action

S4 ¼
Z t2

t1

dt Fð €qÞ � d

dt
ðF0ð €qÞ _qÞ; (46)

with variation

�S4 ¼
Z t2

t1

dt½F000ð €qÞq:::2 þ F0ð €qÞq::::��q� ½F00ð €qÞq:::�q

þ F00ð €qÞ _q� €q�jt2t1 : (47)

The action is now a functional S4 ¼ S4½q1; €q1; q2; €q2; t�.
The degrees of freedom have been relabeled as q and €q.
The moral of all this is that while adding total derivatives

(equivalently, boundary terms) to the action does not
change the bulk equations of motion, it can change the
variational principle, and the corresponding labeling of
degrees of freedom, or it can make it impossible for the
variational principle to be well posed.

IV. REVIEW OF THE GIBBONS-HAWKING-YORK
TERM

The GHY boundary term is a modification to the
Einstein-Hilbert action which makes the action well posed.
The modified action may be written as (conventions and
definitions for boundary quantities laid out in

6This may be true of FðRÞ theory as well, that is, the boundary
term obtained from the correspondence to scalar-tensor theory is
not necessarily the only one that renders the variational principle
well posed. It is, however, the one that must be used if the
correspondence to scalar-tensor theory is to be maintained at the
boundary.
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Appendices A and B),

16	GS ¼ 16	GðSEH þ SGHYÞ
¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

Rþ 2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
K; (48)

whereG is Newton’s constant. Upon varying the action, we
arrive at

16	G�S ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p ðR�� � 1

2
Rg��Þ�g��

�
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
h��n�@��g��

þ 2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
�K: (49)

Here we have used the assumption �g�� ¼ 0 on @V ,
which also implies that the tangential derivative vanishes
on @V , h��@��g�� ¼ 0. Noting that

�K ¼ �ðh��ð@�n� � ��
��n�ÞÞ ¼ �h�����

��n�

¼ 1
2h

��n�@��g��; (50)

we see that

16	G�S ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p �

R�� � 1

2
Rg��

�
�g��: (51)

We now have the boundary variation vanishing without any
restriction on the normal derivatives. However, if this is the
only property we desire, the choice of 2K for the boundary
term is not unique. We are free to add an arbitrary function
of the metric, normal vector, and tangential derivatives,
Fðg��; n�; h

��@�Þ, because the variation of such an addi-

tion vanishes with the assumption �g�� ¼ 0 on @V .
In fact, because of this freedom, Einstein unwittingly

used the GHY boundary term well before either Gibbons,
Hawking, or York proposed it [25]. He used an objectH for
the Lagrangian, instead of R,

H ¼ g��ð��
���

�
�� � �

�
����

��Þ: (52)

This is sometimes called the gamma-gamma Lagrangian
for GR, and it has the advantage that it is first order in the
metric, so there is no need to fix derivatives of the metric at
the boundary.

H differs from R by a total derivative,

H ¼ R�r�A
�;

where A� ¼ g����
�� � g����

��. As such, it produces the

same equations of motion, i.e. the Einstein equations, upon
variation. It also possesses all the same bulk symmetries as
the Einstein-Hilbert action, namely, diffeomorphism in-
variance. Under a diffeomorphism, it does not change
like a scalar, but it does change by a total derivative.

We can see that the gamma-gamma action differs from
the Einstein-Hilbert plus GHY action by a boundary term
of the form Fðg��; n�; h

��@�Þ,

Z
V
dnx

ffiffiffiffiffiffiffi�g
p

H ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p ½R�r�A

��

¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

R�
I
@V

dn�1xA�n�:

(53)

But7

A�n� ¼ �2K þ 2h��@�n� � n�h��@�g��; (54)

so this is an example of a choice of boundary term that
differs from K by a function F, namely F ¼ 2h��@�n� �
n�h��@�g��.

The Einstein-Hilbert plus GHY action requires even
fewer variables than those of the metric to be fixed on
the boundary. Only the induced metric hab needs to be
fixed. To see this, we foliate in ADM variables with time-
like hypersurfaces relative to B,

16	GSEH ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

R

¼
Z
V
dnxN

ffiffiffiffiffiffiffiffi�

p ½ðn�1ÞR�KabKab

þK2 þ 2r�ðr�r�r
� � r�r�r

�Þ�: (55)

The total derivative term, when reduced to a surface term,
cancels against the GHY term. So the action is

16	GðSEH þ SGHYÞ ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

R

þ 2
I
B
dn�1z

ffiffiffiffiffiffi
jhj

p
K

¼
Z
V
dnxN

ffiffiffiffiffiffiffiffi�

p ½ðn�1ÞR

�KabKab þK2�: (56)

(Here we are ignoring total time derivatives and the GHY
terms on the end points, but a similar cancellation will
apply there.) There are no radial derivatives of the lapse or
shift, so their variation need not be set to zero on the
boundary. Fixing the induced metric on the boundary is
sufficient to render the action stationary.
For most choices of an induced metric on @V , the

Einstein equations should produce a unique solution in
V , up to diffeomorphisms that vanish at the boundary. In

7In detail,

n�A
� ¼ n�ðg����

�� � g����
��Þ

¼ ðn�g�� � n�g��Þ12½@�g�� þ @�g�� � @�g���
¼ ðn�h�� � n�h��Þ12½@�g�� þ @�g�� � @�g���
¼ n�h

����
�� � 1

2n�g
��h��@�g��

¼ 2n�h
����

�� � n�h��@�g��

¼ �2K þ 2h��@�n� � n�h��@�g��:
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this case, the Einstein-Hilbert plus GHY action is well
posed. The counting in four dimensions goes as follows.
Of the ten pieces of boundary data for the ten components
of the metric, there are four constraints. The six compo-
nents of the induced metric can be taken as the uncon-
strained components. These are subject to equivalence
under four gauge transformations, leaving two independent
pieces of data, corresponding to the two degrees of free-
dom of the graviton.

V. HIGHER DERIVATIVE GRAVITYAND
SCALAR-TENSOR THEORY

Higher derivative theories of gravity have been studied
extensively in many different contexts (for a review, see
[26]). They are invoked to explain cosmic acceleration
without the need for dark energy [22,27–30] and as quan-
tum corrections to Einstein gravity [31,32].

One can imagine trying to modify gravity by writing a
quite general function of arbitrary curvature invariants, of
any order in metric derivatives,

Z
dnx

ffiffiffiffiffiffiffi�g
p

FðR;R��R
��; R����R

����; . . . ;

r�Rr�R; R��R
�
�R

��; . . .Þ: (57)

Typically these are true higher derivative Lagrangians, i.e.
second and higher derivatives of the metric appear in a way
that cannot be removed by adding total derivatives to the
action, so the equations of motion are at least fourth order.
The amount of gauge symmetry is typically unchanged
from general relativity, i.e. diffeomorphism invariance re-
mains the only gauge symmetry. This means that the
theories either have more degrees of freedom than general
relativity, the presence of second-class constraints/auxil-
iary fields, or both.

Such models are not as diverse as it might seem, since
they are essentially all equivalent to various multiple
scalar-tensor theories [7–11,33,34]. The transition to
scalar-tensor theory amounts to an elimination of auxiliary
fields represented by some of the higher derivatives of the
metric. They are replaced by scalar fields that more effi-
ciently encapsulate the physical degrees of freedom.

We can get GHY terms for such theories by exploiting
this equivalence. The equivalent scalar-tensor theory is
typically a Brans-Dicke like theory in Jordan frame with
a potential for the scalar fields, minimally coupled to
matter. The theory can be brought to Einstein frame by a
conformal transformation. The boundary term in Einstein
frame is just the GHY term, so we can find the boundary
term for the original higher derivative theory by taking the
Einstein frame GHY term backwards through the confor-
mal transformation and through the scalar-tensor equiva-
lence. The term found in this way must be the correct one if
the equivalence between the higher derivative theory and
scalar-tensor theory is to hold for the boundary terms.

The GHY terms obtained in this way are not generally
sufficient to kill the boundary variation of the action when
only �g�� ¼ 0. This is simply a reflection of the fact that

we are dealing with a higher-order theory. Some of the
boundary values that the action depends upon involve
derivatives of the metric, in a fashion exactly analogous
to the fourth order toy example in Sec. III F. The only
metric theories where �g�� ¼ 0 should be sufficient are

those with the special property that the equations of motion
are still second order, despite the appearance of higher-
order terms in the action, namely, the Lovelock
Lagrangians [35]. Indeed, such GHY terms can be found
for the Lovelock theory [36–38].
In what follows, we analyze in detail the simplest case,

namely, the case where the Lagrangian is allowed to be an
arbitrary function of the Ricci scalar, FðRÞ, but does not
contain any other curvature invariants. The extension to
more complicated cases follows easily when the scalar-
tensor equivalence is known.

A. FðRÞ gravity
FðRÞ theory is one of the most widely studied modifica-

tions of gravity [5,6]. It has the ability to explain cosmic
acceleration without dark energy [22,27–29] and to evade
local solar system constraints [29,39].
The action for FðRÞ gravity is

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p
FðRÞ: (58)

Wewould typically add matter which is minimally coupled
to the metric, but it plays no essential role in the boundary
terms, so we will omit the matter in what follows. The
Euler-Lagrange variation gives equations of motion which
are fourth order in the metric.
The equivalence to scalar-tensor theory is seen by in-

troducing a scalar field, �,

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p ½Fð�Þ þ F0ð�ÞðR��Þ�: (59)

The equation of motion for the scalar is

F00ð�ÞðR��Þ ¼ 0; (60)

which, provided F00 � 0, implies R ¼ �. Note that the
scalar has mass dimension 2. Plugging this back into the
action, using the fundamental theorem of auxiliary fields,
recovers the original FðRÞ action, so the two are classically
equivalent. This is the ! ¼ 0 Brans-Dicke theory with a
scalar field F0ð�Þ and a potential.
In the GR limit FðRÞ ! R, we have F00 ! 0 so the

transformation breaks down. As the limit is taken, the
scalar field decouples from the theory [40].

B. Boundary terms for general scalar-tensor theory

In this section we consider a general scalar-tensor action
of the form
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S ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p �

fð�ÞR

� 1

2
�ð�Þg��@��@���Uð�Þ

�
: (61)

We show that this should be supplemented by the boundary
term

SGHY ¼ 2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
fð�ÞK: (62)

We do this by showing that this reduces to the usual GHY
term upon conformal transformation to the Einstein frame.

Once this is done, the equations of motion for the metric
are obtained by setting �g�� ¼ 0 on the boundary,

2fð�ÞðR��� 1
2Rg��Þþ2hfð�Þg���2r�r�fð�Þ¼T�

��;

(63)

where

T�
�� ¼ �ð�Þ½@��@��� 1

2g��ð@�Þ2� � g��Uð�Þ: (64)

The equation of motion for the scalar field is obtained by
setting �� ¼ 0 on the boundary,

�ð�Þh�þ 1
2�

0ð�Þð@�Þ2 �U0ð�Þ þ f0ð�ÞR ¼ 0: (65)

We now proceed with the conformal transformation,
keeping careful track of all boundary contributions [14].
Assuming

fð�Þ � 0;

we can rewrite the action in terms of a conformally re-
scaled metric,

~g �� ¼ ½16	Gfð�Þ�2=ðn�2Þg��;�
G> 0 if fð�Þ> 0;
G < 0 if fð�Þ< 0:

(66)

G can be chosen to be anything consistent with the sign of
f and will become the Einstein frame Newton’s constant.
Rewriting the action is just a matter of using the conformal
transformation formulae we have collected for conve-
nience in Appendix C. In particular, we see from the
second term of (C8), used to rewrite R, that there is an
integration by parts that will be necessary to bring the
scalar kinetic term to its usual form. This will generate a
surface term which must be combined with the conformal
transformation of the GHY term (62).

The result is

S¼
Z
V
dnx

ffiffiffiffiffiffiffi�~g
p �

1

16	G
~R� 1

2
Að�Þ~g��@��@���Vð�Þ

�

þ 1

8	G

I
@V

dn�1x
ffiffiffiffiffiffi
j~hj

q
~K; (67)

where

Að�Þ ¼ 1

16	G

�
1

2

�ð�Þ
fð�Þ þ

n� 1

n� 2

f0ð�Þ2
fð�Þ2

�
; (68)

Vð�Þ ¼ Uð�Þ
½16	Gfð�Þ�n=ðn�2Þ : (69)

The GHY term has the usual form in Einstein frame, so
working backwards, the Jordan frame expression must be
correct as well. Variation is done with �g�� ¼ 0, �� ¼ 0

on the boundary.

C. Boundary term for FðRÞ theory
Adding the boundary term to the scalar-tensor form of

the FðRÞ action, we have

S ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p ½Fð�Þ þ F0ð�ÞðR��Þ�

þ 2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
F0ð�ÞK: (70)

The variation of the action with respect to the scalar field
now contains the boundary contribution

2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
F00ð�ÞK��; (71)

which vanishes since we require �� ¼ 0 on the boundary.
Plugging back in we have

S ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

FðRÞ þ 2
I
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
F0ðRÞK: (72)

This boundary term has been arrived at before in several
different contexts, sometimes indirectly [12–16]. However,
there has been some confusion, because this boundary term
is not enough to make the action stationary given only
�g�� ¼ 0 on the boundary. Indeed, there is in general no

such boundary term with this property [15]. We see that
this is because R now carries the scalar degree of freedom,
so we must set �R ¼ 0 on the boundary as well.
We will now go on to accumulate some evidence that

this is indeed the correct boundary term. We first calculate
the energy in the Hamiltonian formalism and show that to
obtain the correct energy that reduces to the ADM energy
when FðRÞ � R, this boundary term must be included. We
then calculate the entropy of Schwarzschild black holes
and show that in order to reproduce the results of the Wald
entropy formula, the boundary term is necessary.

VI. HAMILTONIAN FORMULATION AND ADM
ENERGY

In this section, we will develop the Hamiltonian formu-
lation of a general scalar-tensor theory, which will encom-
pass the FðRÞ case. We will stay in Jordan frame and keep
track of all boundary terms. Just as in GR, the bulk
Hamiltonian vanishes on shell, and the only contribution
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comes from the boundary, so it will be essential to include
the GHY terms found in the previous section.

We start with the action (61), which we write as S ¼
SG þ S� þ SB, where

SG ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

fð�ÞR; (73)

S� ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p �

� 1

2
�ð�Þg��@��@���Uð�Þ

�
;

(74)

SGHY ¼ 2
Z
@V

dn�1x
ffiffiffiffiffiffi
jhj

p
Kfð�Þ: (75)

We change to ADM variables [41] (see Appendices A
and B for conventions and definitions of the various quan-
tities). The boundary term splits into three integrals over
the three boundaries. The integral over �2 gets an addi-
tional minus sign, since by convention the normal should
be directed inward for spacelike surfaces, whereas for�2 it
is directed outward. We will suppress the argument of f, g,
and � over the course of the calculation.

First look at the combination S ¼ SG þ SGHY,

SG þ SGHY ¼
Z
V
dnx

ffiffiffiffiffiffiffi�g
p

f½ðn�1ÞR� K2 þ KabKab

� 2r�ðn�r�n
� � n�KÞ�

þ 2
I
B
dn�1z

ffiffiffiffiffiffiffiffi�

p

Kf

þ 2
I
�1

dn�1y
ffiffiffi
h

p
Kf� 2

I
�2

dn�1y
ffiffiffi
h

p
Kf:

(76)

Integrating by parts the last term in the bulk integral, we
find surface contributions that exactly cancel the boundary
integrals over �1 and �2. The surface contribution over B
does not cancel its corresponding boundary integral, and
we are left with

SG þ SGHY ¼
Z
V
dnx

ffiffiffi
h

p
N½fððn�1ÞR� K2 þ KabKabÞ

þ 2f0ðn�r�n
� � n�KÞ@���

þ 2
I
B
dn�1z

ffiffiffiffi



p
f½K� r�n

�r�n
��: (77)

We can simplify the integrand of the boundary piece,

K � r�n
�r�n

� ¼ Kþ n�n�r�r�

¼ g��r�r� þ n�n�r�r�

¼ ð�ABe�Ae
�
B � n�n�Þr�r�

þ n�n�r�r�

¼ �ABe�Ae
�
Br�r� ¼ k: (78)

The bulk terms multiplying f0 can be further simplified,8

n�r�n
� ¼ h��n�ð@�n� � @�n�Þ: (79)

Putting all this together, we have

SG þ SGHY ¼
Z
V
dnx

ffiffiffi
h

p
N½fððn�1ÞR� K2 þ KabKabÞ

þ 2f0ðh��n�ð@�n� � @�n�Þ � n�KÞ@���
þ 2

I
B
dn�1z

ffiffiffiffi
�

p
Nfk: (80)

We now specialize to the ðt; yaÞ coordinate system, in
which n� ¼ �N�0

�, e
a
� ¼ �a

�. The term h��n�@�n� van-

ishes. We are left with

SG þ SGHY ¼
Z
V
dnx

ffiffiffi
h

p ½Nfððn�1ÞR� K2 þ KabKabÞ
þ 2f0ðhab@aN@b�� K _�þ KNa@a�Þ�
þ 2

I
B
dn�1z

ffiffiffiffi
�

p
Nfk: (81)

The scalar action, in ADM variables, is

S� ¼
Z
V
dnx

ffiffiffi
h

p
�

2N
½ _�ð _�� 2Na@a�Þ � N2hab@a�@b�

þ ðNa@a�Þ2� � N
ffiffiffi
h

p
U: (82)

Define now

S0G �
Z
V
dnx

ffiffiffi
h

p ðNf½ðn�1ÞR� K2 þ KabKab�
þ 2f0hab@aN@b�Þ; (83)

S0� � S� � 2
Z
V
dnx

ffiffiffi
h

p
f0Kð _�� Na@a�Þ; (84)

S0B � 2
I
B
dn�1z

ffiffiffiffi
�

p
Nfk; (85)

S ¼ S0G þ S0� þ S0B: (86)

The action is now in a form amenable to transition to the
Hamiltonian, namely, it is in the form of a time integral
over a Lagrangian, L (which is itself a space integral plus

8In detail,

n�r�n
� ¼ g��n�r�n� ¼ ðh�� � n�n�Þn�r�n�

¼ h��n�r�n� ¼ h��n�@�n� � h��n�n��
�
��

¼ h��n�@�n� � 1
2h

��n�n�ð@�g�� þ @�g��

� @�g��Þ
¼ h��n�@�n� � 1

2h
��n�n�@�g��

¼ h��n�@�n� þ 1
2h

��n�n�@�ðn�n�Þ
¼ h��n�@�n� � h��n�@�n�:
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boundary parts), containing no time derivatives higher than
first and no boundary contributions at the time end points,

S ¼
Z t2

t1

dtL½hab; _hab; N;Na;�; _��: (87)

Note that this would not be the case were it not for the
GHY term on the surfaces �1 and �2. It now remains to
transition to the Hamiltonian formulation. This has been
done without keeping surface terms by [42,43], and at the
level of the equations of motion by [44]. We start by
finding the canonical momentum conjugate to �,

p� ¼ �L

� _�
¼

ffiffiffi
h

p
�

N
ð _�� Na@a�Þ � 2

ffiffiffi
h

p
f0K: (88)

To find the canonical momenta conjugate to hab, we vary

with respect to Kab, then use the relation Kab ¼ 1
2N ð _hab �

raNb �rbNaÞ to replace �Kab ¼ 1
2N �

_hab,

pab ¼ �L

� _hab

¼ ffiffiffi
h

p �
fðKab � KhabÞ � f0

N
habð _�� Nc@c�Þ

�
:

(89)

Equations (88) and (89) are invertible for _� and Kab

(which is essentially _hab) in terms of p�, p
ab (and �,

hab, N, Na),

_� ¼ Nffiffiffi
h

p
� ðn� 2Þfp� � 2f0p
2ðn� 1Þf02 þ ðn� 2Þf�

�
þ Na@a�; (90)

Kab ¼ 1

f

pabffiffiffi
h

p � hab

� p�f
0 þ 2p f02

f þ p�

2ðn� 1Þf02 þ ðn� 2Þf�
�
;

where p ¼ habpab. The canonical momenta conjugate to
N and Na both vanish, just as in GR.

Notice that the map from velocities ( _�, _hab) to momenta
(p�, pab) is nonsingular even when the scalar kinetic term

vanishes, � ! 0, as in the case of theories equivalent to
FðRÞ. This corresponds to the fact that the scalar is still
dynamical in this limit, by virtue of its nonminimal cou-
pling. The case f ! const � 0 is also well behaved, pro-
vided � � 0, as the scalar has dynamics stemming from the
kinetic term. The case f ! const and � ! 0 is indeed
singular, because the scalar field then loses its dynamics.

We now start the calculation of the Hamiltonian.
Starting with the scalar field part, we must express every-
thing in terms of the fields and momenta by eliminating all
time derivatives,

H0
� ¼

�Z
�t

dn�1yp�
_�

�
� L0

�

¼
Z
�t

dn�1y
ffiffiffi
h

p �
N

�
1

2�

p2
�

h
þ 2f0

K

�

p�ffiffiffi
h

p þ 2f02
K2

�

þ 1

2
�hab@a�@b�þU

�
þ Na

�
p�ffiffiffi
h

p @a�

��
: (91)

Here we must treat Kab as the function of pab, hab, �, and
p� given by (90). Naively, the above appears singular in

the limit � ! 0 [the FðRÞ case], however once we reex-
press Kab in terms of the momenta, the 1=� terms cancel
and the limit is smooth.
Now the metric part,

H0
G ¼

�Z
�t

dn�1ypab _hab

�
� L0

G

¼
Z
�t

dn�1ypabð2NKab þ 2raNbÞ �
ffiffiffi
h

p ðNf½ðn�1ÞR

� K2 þ KabKab� þ 2f0hab@aN@b�Þ:
(92)

Integrate by parts to pull all the derivatives off ofN andNa,
being sure to keep the boundary contributions,

H0
G ¼

Z
�t

dn�1y
ffiffiffi
h

p �
2N

pabffiffiffi
h

p Kab � Nfððn�1ÞR� K2

þ KabKabÞ þ 2Nraðf0ra�Þ � 2Narb

�
pabffiffiffi
h

p
��

þ 2
I
St

dn�2�
ffiffiffiffi
�

p
ra

�
Nb

pabffiffiffi
h

p � Nf0@a�
�
: (93)

The boundary term in the Lagrangian contributes

H0
B ¼ �L0

B ¼ �2
I
St

dn�2�
ffiffiffiffi
�

p
Nfk:

Combining these terms yields the full Hamiltonian

H ¼ H0
G þH0

� þH0
B

¼
Z
�t

dn�1y
ffiffiffi
h

p ½Nfð�ðn�1ÞR� K2 þ KabKabÞ

þ N

�
pabffiffiffi
h

p Kab þ 2raðf0ra�Þ þ 1

2�

p2
�

h
þ f0

K

�

p�ffiffiffi
h

p

þ 1

2
�hab@a�@b�þU

�
þ Na

�
p�ffiffiffi
h

p @a�� 2rb

pabffiffiffi
h

p
��

þ 2
I
St

dn�2�
ffiffiffiffi
�

p �
raNb

pabffiffiffi
h

p � Nðfkþ raf0@a�Þ
�
:

(94)

This Hamiltonian is like that for GR in the sense that the
equations of motion for N and Na are Lagrange multipliers
which cause the bulk terms to vanish. We have not both-
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ered to write out Kab using (90) because it does not contain
N or Na.

The Hamiltonian evaluated on solutions reduces to the
boundary part

Hsolution ¼ 2
I
St

dn�2�
ffiffiffiffi
�

p
raNb

pabffiffiffi
h

p � Nðfkþ raf0@a�Þ:
(95)

The ADM energy, E, is given by choosing the lapse to
vanish and the shift to be unity,

E ¼ �2
I
St

dn�2�
ffiffiffiffi
�

p ½fkþ f0ra@a��: (96)

Alternatively, we could also have obtained this expression
by finding the Hamiltonian in Einstein frame and then
performing a conformal transformation.

As an example, consider the Schwarzschild solution in
four dimensions,

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d!2; � ¼ �0;

(97)

where fðrÞ ¼ 1� 2GM
r , GM is a constant and �0 is a

constant. This will be a solution to the scalar-tensor theory
equations of motion (63)–(65), provided that Minkowski
space is a solution and�0 is set to the vacuum value of� in
the Minkowski solution. The ADM energy for this solution
is9

E ¼ 16	GMfð�0Þ; (98)

which is what one expects, given that fð�0Þ is playing the
role of the effective gravitational constant, fð�0Þ ¼

1
16	Geff

.

FðRÞ theory is the special case where fð�Þ ¼ F0ð�Þ,
Uð�Þ ¼ F0ð�Þ�� Fð�Þ, �ð�Þ ¼ 0. In order to
Hamiltonize FðRÞ theory, it must first be brought to first
order form (this is essentially the content of the
Ostrogradski method for Hamiltonizing higher-order sys-
tems [22–24]). Passing to the scalar-tensor description is
the simplest way to do this, so we have also found the
ADM energy for FðRÞ theory. The boundary term must be
passed in the same way and so plays the same essential
role.

VII. BLACK HOLE ENTROPY

When calculating the entropy of a black hole in the
Euclidean semiclassical approximation, it is essential to
have the correct GHY term [4]. In fact, this term is respon-
sible for the entire contribution to the Euclidean action. In

this section we will calculate the entropy for a
Schwarzschild black hole in FðRÞ theory using our bound-
ary term, and compare this to the entropy given by the
Wald entropy formula.
The Wald entropy formula allows one to calculate the

entropy of a black hole in any diffeomorphism invariant
metric theory of gravity. It involves an integral over the
bifurcation two sphere of the horizon of the black hole
[45,46]. The formula does not rely on having a well-posed
action principle, i.e. it depends only on the Lagrangian
density, and hence the GHY terms are not needed in order
to apply it. For a Schwarzschild black hole in FðRÞ theory
in four dimensions, the Wald formula gives the result [47]

SBH ¼ A

4
16	F0ðR0Þ; (99)

where A is the area of the horizon and R0 is the (constant)
background curvature of the spacetime the black hole sits
in. Wald has shown that his entropy formula gives the same
value as the Euclidean semiclassical approach for theories
which satisfy several conditions in addition to those needed
by the formula itself [48]. One of these additional condi-
tions is that there be a variational principle for the action
where only the metric is held fixed on the boundary, so this
does not cover the general FðRÞ case. Nevertheless, we will
see that our surface term still gives the entropy in agree-
ment with Wald’s formula.
The partition function in the semiclassical limit is

Z½�� ¼ e�SE ; (100)

where � ¼ 1
T is the inverse temperature and SE is the

Euclidean action of the dominant classical field configura-
tion where the time variable is identified with period �.
In Einstein gravity in four dimensions, we have the

Schwarzschild solution

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d!2; (101)

where fðrÞ ¼ 1� 2GM
r , and M is the ADM mass.

The temperature can be determined by finding the cor-
responding solution to the Euclidean action, which
amounts to taking t ! i�, and then finding the period of
� required to eliminate the conical singularity at the hori-
zon. The resulting metric is then

ds2E ¼ fðrÞd�2 þ 1

fðrÞdr
2 þ r2d!2;

� ¼ �þ �; � ¼ 8	GM:

(102)

The temperature of a black hole is model independent,
since no use of the Einstein equations was made other
than the fact that Schwarzschild is a solution. Thus in
any theory of modified gravity where Schwarzschild is a
solution, the black hole will have the same temperature.
We first review the Euclidean action calculation in GR,

since the extension to FðRÞ is then trivial. The Euclidean

9Recall that we must measure the energy relative to the energy
of Minkowski space, which is the vacuum solution. The energy
of each is individually divergent as r ! 1, but the difference is
finite and yields the above expression.
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action for GR is

16	GSE ¼ �
Z
V
d4x

ffiffiffiffiffiffi
jgj

q
R� 2

I
@V

d3x
ffiffiffiffiffiffi
jhj

p
ðK � K0Þ:

(103)

The action for a general theory must be zeroed on the
action for the background one is expanding about, i.e. the
vacuum state. The true, finite action is thus S� S0, where
S0 is the action of the background. In our case, the back-
ground is flat space. The bulk contribution to S0 vanishes,
and all that remains is K0, the extrinsic curvature of the
boundary as measured in flat space. The term K0 is often
called the boundary counterterm (misappropriated from
the quantum field theory jargon) and may in general have
to take a more complicated form [49]).

Since the Ricci curvature of Schwarzschild vanishes, the
bulk term does not contribute to the classical action. The
entire contribution comes from the boundary term. Taking
the boundary to be a sphere of radius r about the origin, we
have I

@V
d3x

ffiffiffiffiffiffi
jhj

p
K ¼ 4	�ð2r� 3GMÞ: (104)

For the background, we periodically identify the time to

the period �, redshifted by the factor ð1� 2GM
r Þ1=2,

I
@V

d3x
ffiffiffiffiffiffi
jhj

p
K0 ¼ 8	�r

�
1� 2GM

r

�
1=2

: (105)

Taking the difference and the limit r ! 1 yields

SE ¼ �2

16	G
: (106)

The free energy, entropy, and energy are then

F ¼ � 1

�
lnZ ¼ 1

�
SE ¼ �

16	G
; (107)

E ¼ Fþ �
@F

@�
¼ �

8	G
¼ M; (108)

S ¼ �2 @F

@�
¼ �2

16	G
¼ A

4G
; (109)

where A ¼ 4	ð2GMÞ2 is the area of the horizon.
We now extend the calculation to FðRÞ theory. The bulk

vacuum equations of motion are

F0ðRÞR�� � 1
2FðRÞg�� þ g��r2F0ðRÞ �r�r�F

0ðRÞ ¼ 0;

(110)

which are fourth order in the metric, as expected. The anti-
de Sitter/de Sitter Schwarzschild has the property R�� ¼
R
4 g��, with R ¼ R0 a constant. Using this ansatz the equa-

tion of motion reduces to

F0ðR0ÞR0 � 2FðR0Þ ¼ 0; (111)

which is an algebraic equation for R0. This is the same
equation one would obtain seeking constant curvature
solutions, so for every constant curvature background, we
also have a Schwarzschild black hole that asymptotically
approaches this background.
The Euclidean action, including the GHY term, is

SE þ S0 ¼ �
Z
V
d4x

ffiffiffiffiffiffi
jgj

q
FðRÞ � 2

I
@V

d3x
ffiffiffiffiffiffi
jhj

p
F0ðRÞK:

(112)

Here S0 is the action for the background. Since the
Schwarzschild solution has the same constant curvature
as the background, the bulk contribution vanishes, and the
entire contribution again comes from the boundary term,

SE ¼ �2F0ðR0Þ
I
@V

d3x
ffiffiffiffiffiffi
jhj

p
ðK � K0Þ; (113)

where R0 is the scalar curvature of the background/black
hole.
If we assume for simplicity that FðRÞ is such that there is

a flat space solution, then the calculation proceeds just as in
the GR case, with the result

SE ¼ �2F0ðR0Þ: (114)

The thermodynamic quantities are then

F¼�F0ðR0Þ; E¼16	GF0ðR0ÞM; S¼A

4
16	F0ðR0Þ:

(115)

These formulae make good sense from the point of view
of the scalar-tensor theory. The scalar field is just R, the
Ricci curvature, so the Schwarzschild solutions we are
considering have constant scalar field everywhere. This is
in accord with no hair theorems, which forbid nontrivial
scalar profiles around black holes in space with zero or
positive curvature [50–52]. The value of the effective
Newton’s constant is set by the constant value of the scalar
field

1

16	Geff

¼ F0ðR0Þ; (116)

so the entropy is simply one-quarter of the area of the
horizon in units of the effective Planck length. The energy
is the ADM energy we found in the previous section.
An interesting consequence of this formula is that higher

curvature terms make no correction to the entropy. From
(111) we see that if R ¼ 0 is to be a solution, then Fð0Þ ¼
0, so F can be Taylor expanded around the origin, starting
with the Einstein-Hilbert term: FðRÞ ¼ F0ð0ÞRþ
1
2F

00ð0ÞR2 þ � � � . All the higher power corrections to the

action do not affect the entropy. In particular, the entropy
of a black hole in pure Rn gravity, for n � 2, vanishes.
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VIII. CONCLUSIONS

Having correct boundary terms is essential to the con-
sistency of any theory. One can generally get away without
them, but there are instances where they are vitally impor-
tant. We have argued that consistent GHY terms for higher
derivative modified gravity theories can be obtained by
using any scalar-tensor equivalence the theory may pos-
sess. The boundary terms obtained in this way, while not
necessarily unique, do give a well-posed variational prob-
lem and give the expected ADM energy and black hole
entropy, even though derivatives of the metric may have to
be fixed on the boundary.

What we have given is by no means a complete analysis
of boundary terms, however. For a general Lagrangian of
any kind of field, not necessarily a modified gravity theory,
it is far from clear whether there always exists a boundary
term that renders the variational principle well posed.
Furthermore, even if such a term can be found, it is not
evident what freedom is allowed in choosing the boundary
term, or what physical significance this freedom entails.
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APPENDIX A: THE ADM DECOMPOSITION

Here we review the ADM hypersurface decomposition
of spacetime and lay out our conventions in the process.
The conventions and notation are those of [53]. In this
appendix we will describe a generic foliation of a volume
V , by spacelike or timelike hypersurfaces, and in the next
appendix we will describe the specific foliations we use
throughout the paper.

Put coordinates x� onV . We foliate the volumeV with
hypersurfaces �t by giving a global time function tðx�Þ
and declaring the hypersurfaces to be its level sets. We then
set up functions yaðx�Þ, a ¼ 1 . . .n� 1, independent of
tðx�Þ and each other, to serve as coordinates on the sub-
manifolds. Taken together, t and ya form a new coordinate
system on V , and we have an invertible transformation
from the these coordinates to the old ones

x�ðya; tÞ; tðx�Þ; yaðx�Þ: (A1)

The coordinate basis vectors of this new coordinate
system are

t� ¼ @x�

@t
; e�a ¼ @x�

@ya
: (A2)

The dual one-forms are

~t � ¼ @t

@x�
; ~e�

a ¼ @ya

@x�
: (A3)

They satisfy the duality and completeness relations

t�~t� ¼ 1; e�a~e�
b ¼ �b

a; t�~e�
a ¼ e�a~t� ¼ 0;

(A4)

t�~t� þ e�a~e�
a ¼ ��

�: (A5)

We introduce a bulk metric g��. There is now a well-

defined one-dimensional normal subspace at each point of
�t, which may be different from the subspace spanned by
t�. We set up a basis consisting of the forward pointing unit
normal vector n� along with the e�a. The e�a are not
required to be orthonormal among themselves, but are
orthogonal to n�. We have

g��n
�n� ¼ 
; g��e

�
an

� ¼ 0: (A6)

Here 
 is defined by


 ¼
�
1 �t timelike

�1 �t spacelike
: (A7)

We define the associated dual forms e�
a, ~n�, at each

point,

n�~n� ¼ 1; e�ae�
b ¼ �b

a; n�e�
a ¼ e�a~n� ¼ 0;

(A8)

n�~n� þ e�ae�
a ¼ ��

�: (A9)

(We use ~n� for the dual one-form and reserve n� for the

form g��n
�. They differ by a sign for spacelike hyper-

surfaces, i.e. ~n� ¼ 
n�.)

A vector field A� is called parallel if it admits the
decomposition A� ¼ Aae�a. A form A� is parallel if it

admits the decomposition A� ¼ Aae�
a. Similarly, a gen-

eral tensor is parallel if it admits a similar decomposition,
for example, a (2, 1) tensor is parallel if

A��

 ¼ Aab

ce
�
ae

�
be


c: (A10)

There is a bijective relation between tensors on the sub-
manifold �t (really a one parameter family of tensors, one
on each surface, parametrized by t) and parallel tensors in
the bulk. Given a parallel bulk tensor A��


, it corresponds

to the submanifold tensor Aab
c, and vice versa.

Define the projection tensor

P�
� ¼ ��

� � n�~n�: (A11)

It projects the tangent space ofV onto the tangent space of
�t, along the subspace spanned by n�. It satisfies

P�
�P

�
� ¼ P�

�; (A12)

P�
�e

�
a ¼ e�a; P�

�n
� ¼ 0; (A13)
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P�
�e�

a ¼ e�
a; P�

�~n� ¼ 0: (A14)

Given any bulk tensor, e.g. A��

, we can make a parallel

tensor by projecting it,

Ak��

 ¼ P�

�P
�
�P

�

A

��
�: (A15)

A tensor is parallel if and only if it is equal to its projection.
We have the relation

e�ae�
a ¼ P�

�: (A16)

Projecting the metric gives the induced metric h on the
hypersurfaces,

h�� ¼ P�
�P

�
�g�� ¼ habe�

ae�
b;

hab ¼ e�ae
�
bh�� ¼ e�ae

�
bg��:

(A17)

We raise and lower bulk indices �; � . . . with g�� and its

inverse g��, and we raise and lower submanifold indices
a; b; . . . with hab and its inverse h

ab. In particular, we have

habg��e
�
b ¼ e�

a; g��n
� � n� ¼ 
~n�; (A18)

habg
��e�

b ¼ e�a; g��~n� � ~n� ¼ 
n�; (A19)

as well as

g��P
�
� ¼ h��; g��P�

� ¼ h��: (A20)

To perform the ADM decomposition, we want to write
the bulk metric in the ðya; tÞ coordinate system. We start by
expanding the coordinate vector t� over the new basis,

t� ¼ Nn� þ Nae�a: (A21)

The coefficientsN andNa are called the lapse and the shift,
respectively. We have

~t � ¼ @�t ¼ 

1

N
n�; n� ¼ 
N~t� ¼ 
N@�t: (A22)

The coordinate one-forms are

dx� ¼ t�dtþ e�ady
a ¼ Nn�dtþ ðNadtþ dyaÞe�a:

(A23)

The metric is

g��dx
�dx� ¼ 
N2dt2 þ habðNadtþ dyaÞðNbdtþ dybÞ:

(A24)

In matrix form this is

g ¼ 
N2 þ NaNa Na

Na hab

� �
: (A25)

The inverse metric is

g�1 ¼ 
 1
N2 �
 Na

N2

�
 Na

N2 hab þ 
 NaNb

N2

 !
: (A26)

The square root of the norm of the determinant is

ffiffiffiffiffiffi
jgj

q
¼ N

ffiffiffiffiffiffi
jhj

p
: (A27)

The normal vector is

n0 ¼ 1

N
; na ¼ �Na

N
; n0 ¼ 
N; na ¼ 0:

(A28)

The extrinsic curvature is a parallel tensor defined by

Kab � e�ae
�
br�n�: (A29)

It is symmetric,

Kab ¼ Kba; (A30)

as can be easily shown by noting that the basis vectors have
zero Lie bracket, e�br�e

�
a ¼ e�ar�e

�
b: We also have

Kab ¼ rð�n�Þe�ae
�
b ¼ 1

2e
�
ae

�
bLng��; (A31)

where L is the Lie derivative. The trace of the extrinsic
curvature is given by

K ¼ habKab ¼ r�n
�: (A32)

In terms of ADM variables, we have

Kab ¼ 1

2N
ð _hab �raNb �rbNaÞ: (A33)

We often use the decomposition

R ¼ ðn�1ÞRþ 
ðK2 � KabK
abÞ

þ 2
r�ðn�r�n
� � n�KÞ: (A34)

Here R is the Ricci scalar constructed from g�� and
ðn�1ÞR

is the Ricci scalar constructed from the induced metric hab.

APPENDIX B: FOLIATION OF SPACETIME

Throughout this paper it is necessary to refer to space-
time, boundaries of spacetime, foliations of spacetime, and
all of the geometrical quantities that these induce. As such
it is necessary to lay out some standard terminology to
describe the situation. See Fig. 2.
Spacetime will be referred to as V bounded by @V .

@V has three parts, a timelike boundary B, a spacelike
initial surface �1, and a spacelike final surface �2. We
foliate the volume V with hypersurfaces �t by giving a
global time function tðxÞ and declaring the hypersurfaces to
be its level sets. The top and bottom surfaces�1 and�2 are
to coincide with �t1 and �t2 , for some times t1 and t2. The

normal vector to the �t is denoted n� and is future point-
ing. The coordinates on �t are ya. The lapse and shift
relative to this foliation are N, Na. The induced metric is
hab and the extrinsic curvature is Kab.
The boundary B can be thought of as part of a foliation

by timelike surfaces. The coordinates on B are zi. The
radially outward pointing normal vector is r�. We demand
that the surfaces �t intersect B orthogonally, so that
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g��r
�n� ¼ 0 onB. This implies that r� is parallel to�t on

B, so that r� ¼ rae�a there, for some ra. The lapse and
shift relative to this foliation are N , N i. The induced
metric is 
ij, and the extrinsic curvature is Kij.

The intersections of�t withB are denoted St ¼ �t \B.
These form a spacelike foliation of B. The coordinates on
St are �A, the induced metric is �AB, and the extrinsic
curvature of St as embedded in �t is kAB.

APPENDIX C: CONFORMALTRANSFORMATION
FORMULAE

Here we collect some formulae on conformal transfor-
mations of the metric:

~g�� ¼ !2ðxÞg��; !ðxÞ> 0; (C1)

~g �� ¼ !�2ðxÞg��: (C2)

The connection transforms as

~� �
�� ¼ ��

�� þ C�
��; (C3)

C�
�� ¼ !�1ð��

�@�!þ ��
�@�!� g��g

��@�!Þ: (C4)

The curvature scalar transforms as

~R ¼ !�2R� 2ðn� 1Þg��!�3r�r�!

� ðn� 1Þðn� 4Þg��!�4@�!@�!: (C5)

Some convenient covariant derivative transformations are

~r �
~r�� ¼ r�r��� ð��

��
�
� þ ��

���
�

� g��g
��Þ!�1@�!@��; (C6)

~h� ¼ !�2h�þ ðn� 2Þg��!�3@�!@��: (C7’)

The inverse transformations are

R ¼ !2 ~Rþ 2ðn� 1Þ~g��!~r�
~r�!

� nðn� 1Þ~g��@�!@�!; (C8)

r�r�� ¼ ~r�
~r��þ ð��

��
�
� þ ��

���
�

� ~g��~g
��Þ!�1@�!@��; (C9)

h� ¼ !2 ~h�� ðn� 2Þ~g��!@�!@��: (C10)

The various 3þ 1 dimensional quantities transform as
follows:

~h ab ¼ !2hab; ~Na ¼ Na; ~N ¼ !N; (C11)

~h ab ¼ !�2hab; ~Na ¼ !2Na; (C12)

~n � ¼ !�1n�; ~n� ¼ !n�; (C13)

~K ab ¼ !Kab þ habn
�@�!; (C14)

~K ¼ !�1K þ!�2ðn� 1Þn�@�!: (C15)

APPENDIX D: THE FUNDAMENTAL THEOREM
OFAUXILIARY VARIABLES

Here we recall some facts about auxiliary fields in
classical field theory. For more, see for example [19,54].
Suppose the Lagrangian depends on two sets of fields�i

and �A,L ¼ Lð½��; ½��; xÞ (here [ ] stands for dependence
on the fields and any of its spacetime derivatives of arbi-
trary but finite order) and that the equations of motion for
�A can be solved in terms of the �i,

�ELL
��A

) �A ¼ �Að½��; xÞ: (D1)

Plugging these relations back into L, we get a Lagrangian

depending only on the �i, which we call �L,

�Lð½��; xÞ � Lð½��; ½�ð½��; xÞ�; xÞ: (D2)

We will christen the following the fundamental theorem
of auxiliary variables:

(i) The equations of motion derived from L and �L are
equivalent in the �i sector, i.e. if �iðxÞ is a solution
to �ELL

��i ¼ 0, then it is also a solution to �EL �L
��i ¼ 0, and

vice versa, if�iðxÞ is a solution to �EL �L
��i ¼ 0, then it is

also a solution to �ELL
��i ¼ 0, with the extension to the

�A given by the �Að½��; xÞ obtained from solving the
�A equations of motion.

Proving this is a matter of convincing yourself that you can
extremize a function of several variables either by extrem-

FIG. 2. Foliation of spacetime.
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izing with respect to all the variables, or by first extremiz-
ing with respect to a few, and then with respect to the rest.

The other important property that holds when eliminat-
ing auxiliary variables is that both the global and gauge

symmetry groups of L and �L are the same. One does not
lose or gain symmetries by eliminating or adding auxiliary
variables.

Notice that in the fundamental theorem, there is no
requirement that the auxiliary fields be solved for algebrai-
cally. However, when this is not the case, one must be
careful about boundary contributions. To illustrate this, we
reprint here a nice example taken from the exercises of
chapter one of [19].

Consider the action for two variables qðtÞ and AðtÞ with
values fixed on the end points,

S ¼
Z t2

t1

dt
1

2

�
_q2 þ

_A2

q2

�
: (D3)

The equations of motion for q and A are, respectively,

€qþ
_A2

q3
¼ 0;

d

dt

� _A

q2

�
¼ 0: (D4)

Notice that the A equation implies _A ¼ cq2, where c is a
constant of integration. Plugging this back into the action,
we obtain

S ¼
Z t2

t1

dt
1

2
ð _q2 þ c2q2Þ; (D5)

which gives naively for the q equation of motion €q�
c2q ¼ 0. Looking back at the original q equation of motion
and plugging in _A ¼ cq2, we obtain €qþ c2q ¼ 0, a contra-
diction for c2 � 0.
It is often said that auxiliary variables can only be

eliminated if their equations of motion can be solved
algebraically, and ‘‘counterexamples’’ like this are quoted
to illustrate this. However, if we are careful to take into
account the end points, we can resolve the problem.

Consider again the equation of motion for A, d
dt ð _A

q2
Þ ¼ 0.

We must solve this subject to the end point conditions
Aðt1Þ ¼ A1, Aðt2Þ ¼ A2. Integrating both sides of the solu-
tion _A ¼ cq2, we find that the constant c actually depends
nonlocally on q, as well as on the end point data for A,

c ¼ A2 � A1Rt2
t1 qðtÞ2dt

: (D6)

Plugging this more careful result into the action, we
obtain a nonlocal action for q,

S ¼
Z t2

t1

dt
1

2

�
_q2 þ

�
A2 � A1Rt2
t1 qðt0Þ2dt0

�
2
q2
�
: (D7)

Varying this carefully with respect to q, we recover the
correct (nonlinear, nonlocal) equation of motion €qþ
c2q ¼ 0.

[1] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752
(1977).

[2] J.W. York, Phys. Rev. Lett. 28, 1082 (1972).
[3] S.W. Hawking and G. T. Horowitz, Classical Quantum

Gravity 13, 1487 (1996).
[4] J. D. Brown and J.W. York, Phys. Rev. D 47, 1420 (1993).
[5] T. P. Sotiriou and V. Faraoni, arXiv:0805.1726.
[6] S. Nojiri and S. D. Odintsov, in Proceedings of the 42nd

Karpacz Winter School of Theoretical Physics, eConf
C0602061, 06 (2006); Int. J. Geom. Methods Mod.
Phys. 4, 115 (2007).

[7] P. Teyssandier and Ph. Tourrenc, J. Math. Phys. (N.Y.) 24,
2793 (1983).

[8] B. Whitt, Phys. Lett. B 145, 176 (1984).
[9] J. D. Barrow and S. Cotsakis, Phys. Lett. B 214, 515

(1988).
[10] J. D. Barrow, Nucl. Phys. B296, 697 (1988).
[11] T. Chiba, Phys. Lett. B 575, 1 (2003).
[12] A. Balcerzak and M. P. Dabrowski, arXiv:0804.0855.
[13] N. H. Barth, Classical Quantum Gravity 2, 497 (1985).
[14] R. Casadio and A. Gruppuso, Int. J. Mod. Phys. D 11, 703

(2002).
[15] M. S. Madsen and J. D. Barrow, Nucl. Phys. B323, 242

(1989).

[16] S. Nojiri and S. D. Odintsov, Phys. Rev. D 62, 064018
(2000).

[17] S.M. Carroll, Spacetime and Geometry: An Introduction
to General Relativity (Addison-Wesley, Reading, MA,
2004).

[18] H. Goldstein, Classical Mechanics (Addison-Wesley,
Reading, MA, 2001), 3rd ed.

[19] M. Henneaux and C. Teitelboim, Quantization of Gauge
Systems (Princeton University, Princeton, NJ, 1992).

[20] P. A.M. Dirac, Lectures on Quantum Mechanics (Dover,
New York, 2001)

[21] C. Teitelboim, Phys. Rev. D 25, 3159 (1982).
[22] R. P. Woodard, Lect. Notes Phys. 720, 403 (2007).
[23] M. Ostrogradski, Mem. Ac. St. Petersburg VI 4, 385

(1850).
[24] T. Nakamura and S. Hamamoto, Prog. Theor. Phys. 95,

469 (1996).
[25] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin

(Math. Phys.) 1916, 1111 (1916).
[26] M. Farhoudi, Gen. Relativ. Gravit. 38, 1261 (2006).
[27] B. Boisseau, G. Esposito-Farese, D. Polarski, and A.A.

Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).
[28] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).

BOUNDARY TERMS, VARIATIONAL PRINCIPLES, AND . . . PHYSICAL REVIEW D 79, 024028 (2009)

024028-19



[29] S. Nojiri and S.D. Odintsov, Phys. Rev. D 68, 123512
(2003).

[30] S.M. Carroll et al., Phys. Rev. D 71, 063513 (2005).
[31] M. Asorey, J. L. Lopez, and I. L. Shapiro, Int. J. Mod.

Phys. A 12, 5711 (1997).
[32] M. Bojowald and A. Skirzewski, in Proceedings of the

42nd Karpacz Winter School of Theoretical Physics,
eConf C0602061, 03 (2006); Int. J. Geom. Methods
Mod. Phys. 4, 25 (2007).

[33] D. Wands, Classical Quantum Gravity 11, 269 (1994).
[34] T. Chiba, J. Cosmol. Astropart. Phys. 03 (2005) 008.
[35] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[36] R. C. Myers, Phys. Rev. D 36, 392 (1987).
[37] C. Charmousis and R. Zegers, J. High Energy Phys. 0508

(2005) 075.
[38] J. T. Liu and W.A. Sabra, arXiv:0807.1256.
[39] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[40] G. J. Olmo, Phys. Rev. D 75, 023511 (2007).
[41] R. L. Arnowitt, S. Deser, and C.W. Misner, arXiv:gr-qc/

0405109.
[42] L. J. Garay and J. Garcia-Bellido, Nucl. Phys. B400, 416

(1993).

[43] S. Capozziello and R. Garattini, Classical Quantum
Gravity 24, 1627 (2007).

[44] M. Salgado, Classical Quantum Gravity 23, 4719 (2006).
[45] R.M. Wald, Phys. Rev. D 48, R3427 (1993).
[46] V. Iyer and R.M. Wald, Phys. Rev. D 50, 846 (1994).
[47] F. Briscese and E. Elizalde, Phys. Rev. D 77, 044009

(2008).
[48] V. Iyer and R.M. Wald, Phys. Rev. D 52, 4430 (1995).
[49] R. B. Mann and D. Marolf, Classical Quantum Gravity 23,

2927 (2006).
[50] J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972).
[51] M. Heusler, Classical Quantum Gravity 12, 779 (1995).
[52] E. Winstanley, Classical Quantum Gravity 22, 2233

(2005).
[53] E. Poisson, A Relativist’s Toolkit: The Mathematics of

Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004).

[54] M. Henneaux, Contemporary Mathematics, Proceedings
of the 1991 Joint Summer Research Conference on
Mathematical Aspects of Classical Field Theory (unpub-
lished).

ETHAN DYER AND KURT HINTERBICHLER PHYSICAL REVIEW D 79, 024028 (2009)

024028-20


