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The Vaidya solution describes the gravitational collapse of a finite shell of incoherent radiation falling

into flat spacetime and giving rise to a Schwarzschild black hole. There has been a question whether

closed trapped surfaces can extend into the flat region (whereas closed outer trapped surfaces certainly

can). For the special case of self-similar collapse we show that the answer is yes, if and only if the mass

function rises fast enough.
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I. INTRODUCTION

What is a black hole? A possible answer is that a black
hole is a region of an asymptotically flat spacetime
bounded by an event horizon. Because the event horizon
has a teleological character—it can be located only when
the full solution is known—other answers have been
sought [1–3]. They rely on the occurrence of trapped
surfaces in the interior. A possible ‘‘boundary’’ of the black
hole region might be a dynamical horizon, a spacelike
hypersurface foliated by marginally trapped surfaces and
typically lying well inside the event horizon. But there are
difficulties with such a definition too. Here it seems perti-
nent to ask for the boundary of the region of spacetime
through which closed trapped surfaces pass. It was con-
jectured by Eardley that a closed outer trapped surface
passes through every point interior to the event horizon
[4], but if the surfaces are required to be genuinely trapped
the corresponding statement is not true in general [5]. The
boundary we ask for will lie somewhere in between a
dynamical horizon and the event horizon (unless these
coincide, as they do in the stationary case).

In this note we address a very concrete question.
Consider the spherically symmetric Vaidya solution [6,7]

ds2 ¼ �
�
1� 2mðvÞ

r

�
dv2 þ 2dvdrþ r2d�2

þ r2sin2�d�2: (1)

Einstein’s equations read

Gab ¼ 8�Tab ¼ 2 _m

r2
lalb; la ¼ �rav: (2)

Thus la is a null vector field, and the energy-momentum
tensor is that of a radiation fluid. The energy conditions are

obeyed provided that _m � 0, where the dot denotes differ-
entiation with respect to v. But otherwise the rate at which
radiation comes in is at our disposal. A simple choice,
leading to a self-similar spacetime, is [8]

m ¼
8><
>:
0; v � 0
�v; 0 � v � M=�
M; v � M=�

: (3)

This describes a finite shell of radiation entering flat space-
time from past null infinity, ending in a vacuum
Schwarzschild black hole when the inflow stops.
For the Vaidya solution Ben-Dov has shown that

Eardley’s conjecture is true [5]. However, this result con-
cerns outer trapped surfaces, that is closed spacelike 2-
surfaces whose outer null expansion is negative. For
trapped surfaces, having both null expansions negative,
Ben-Dov was able to show that there is a region of flat
spacetime, inside the event horizon, into which no closed
trapped surface can extend. The question whether closed
trapped surfaces are able to extend into any part of the flat
region was left open, and numerical investigations have so
far not settled it [9]. We will now proceed to answer this
question for the special case of self-similar collapse. In a
companion paper we discuss the issues in greater general-
ity [10].

II. BASIC FACTS

The solution will be shown as a Penrose diagram in
Sec. VI (where it will be decorated with some extra struc-
tures to be encountered as we go on). Note that the part of
flat space lying inside the black hole is a causal diamond: it
is the intersection of the interior of two light cones, the
event horizon and the inner part of the dust shell. The
proper length of the geodesic connecting their vertices
represents the maximum time an observer can live in this
region, and will be calculated in Eq. (23).
The curved region certainly contains closed trapped

surfaces. The round spheres r ¼ constant, v ¼ constant
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are trapped if and only if r < 2mðvÞ. Hence there is an
apparent horizon at

r ¼ 2m , x � v

r
¼ 1

2�
: (4)

Note the introduction of the variable x, which is a conve-
nient one to use in the self-similar Vaidya region. In the
Vaidya region the apparent horizon is a spacelike hyper-
surface, and in fact a dynamical horizon. In the self-similar
case it is intrinsically flat, and the trace of its extrinsic
curvature is

K ¼ 1–8�

8v�3=2
: (5)

We know that a naked singularity will occur if and only if
� � 1=16 [8,11]. Intuitively, the infinite mass density that
would occur in a flat background becomes clothed only if
the mass function rises fast enough, and we will assume
that it does. Thus we study genuine black hole spacetimes
without naked singularities, and it is our aim to construct
closed trapped surfaces entering the flat region.

We will need the null expansions for some special 2-
surfaces. We quote them in a form that applies to any
choice of the mass function. First we consider the 2-
surfaces

� ¼ ’ � ¼ �

2
r ¼ Rð�Þ v ¼ Vð�Þ: (6)

The first fundamental form is

d�2 ¼ �d�2 þ R2d’2;

� � V0
�
2R0 �

�
1� 2m

R

�
V0
�
;

(7)

where the prime stands for differentiation with respect to
�. For spacelike 2-surfaces we demand �> 0, hence we
must have V0 � 0. It follows that R0 ¼ 0 can occur only
inside the apparent horizon. Normal vectors to the 2-
surfaces include

n ¼ 1ffiffiffiffi
�

p ð�R0dvþ V 0drÞ; e ¼ Rd�;

� n2 ¼ e2 ¼ 1; n � e ¼ 0:

(8)

The corresponding null normals are

k� ¼ n� e: (9)

The null expansions are

�� ¼ 1

2
ffiffiffiffi
�

p
�
1

�

�
R0V00 � V 0R00 þ m

R2
R0V 02 � _m

R
V 03

�

� R0

R
þ V 0

R

�
1�m

R

��
(10)

and they are equal to each other.

We will also consider the 2-surfaces

� ¼ ’ � ¼ �ð�Þ r ¼ r0 v ¼ Vð�Þ: (11)

The first fundamental form is

d�2 ¼ �d�2 þ r20d’
2; � �

�
2m

r0
� 1

�
V 02 þ r20�

02;

(12)

and again we demand�> 0. We assume that we are inside
the apparent horizon, in which case normal vectors to the
2-surfaces include

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � 1

q dr

e ¼
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � 1

q
ffiffiffiffi
�

p
�
V0d���0dv� �0

2m
r � 1

dr

�
:

(13)

Again the null normals are given by k� ¼ n� e. The null
expansions are

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � 1

q
2�3=2

�
�rð�0V00 � V 0�00Þ

þ
ffiffiffiffi
�

p
r

�
V 02

�
1�m

r

�
� 2r2�02

�
��V0

r
cot�

�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � 1

q 1

�3=2
ð

ffiffiffiffi
�

p
� r�0Þ _m

r
V02: (14)

In the Schwarzschild region _m ¼ 0, and the last term
vanishes.

III. PLAN

The idea behind the construction to follow is simple. We
start with a trapped surface in the flat region, say a hyper-
boloid ‘‘bending down in time.’’ Topologically this is an
open disk. It passes through the origin in flat space, and
meets the shell of radiation in a circle. In the
Schwarzschild region as well we can find a trapped surface
meeting the shell in a circle, say the cylindrical 2-surface

r ¼ constant<M; � ¼ �

2
: (15)

By means of either Eq. (10) or Eq. (14) we can check that
this cylinder does have both null expansions negative (and
it will be marginally trapped if r ¼ M). Now we must do
two things: we must interpolate between these two surfaces
in the Vaidya region, and we must ‘‘cap’’ the cylinder to
ensure that the surface becomes closed. For the last part our
idea is to join the cylinder to a hemispherical cap; whether
this can be done while keeping both null expansions nega-
tive will be decided by Eq. (14). Figure 1 clarifies our plan.
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IV. A FAMILY OF TRAPPED SURFACES IN THE
FLAT AND VAIDYA REGION

In flat space we obtain a marginally trapped (but not
closed!) surface by setting � ¼ �=2 and t ¼ constant,
where t ¼ v� r. We obtain a family of trapped surfaces
of this type by choosing the hyperboloids

ðt� t0Þ2 � r2 ¼ k2; t ¼ t0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ k2

p
; t0 < k:

(16)

The expansions are

Hðk�Þ ¼ � 2

k
: (17)

In a v� r-diagram these surfaces obey

0<
dv

dr
< 1: (18)

In particular they meet the Vaidya region—at v ¼ 0—with
a slope that is less than one, but otherwise arbitrary.

The Vaidya region requires more care. The surface will
be defined by Eqs. (6), with

R ¼ �;
dV

dR
¼ a

b� X
; X � V

R
: (19)

Here a and b are positive real numbers at our disposal. The
differential equation can be solved straightforwardly
[10,11], if we rewrite it as

R
dX

dR
¼ ðX � b

2Þ2 þ�2

b� X
; �2 � a� b2

4
: (20)

To ensure that the solution has the properties we want it to,
we choose

�2 ¼ a� b2

4
> 0 , 4

a

b
> b: (21)

In particular this condition ensures that the first and second
derivatives have the same sign,

d2V

dR2
¼ 1

a2R

�
dV

dR

�
3
��
X � b

2

�
2 þ a� b2

4

�
: (22)

In the v� r-diagram the curve becomes vertical at X ¼ b.
A look at Fig. 2 may be helpful here.
We note in passing that radial null geodesics are given

by the same differential Eq. (19), with a ¼ 1=�, b ¼
1=2�. This allows us to locate the event horizon, and
also to calculate the maximum time �t an observer can
live in the flat region inside the black hole. This lifetime
grows with M, and equals

�t ¼ 4M exp

�
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16�� 1
p arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�� 1

p
�
< 4M:

(23)

FIG. 1. A closed trapped surface we want to construct. The
vertical coordinate is t ¼ v� r, while the horizontal one is r.
One dimension has been suppressed, and the 2-surface appears
as a curve. The Vaidya region has been shrunk to a very thin
shell, causing the trapped curve to have kinks as it passes
through it.

FIG. 2. A v� r-diagram, drawn for the case � ¼ 1=2. The
trapped surfaces discussed in the text are represented by curves
that become vertical at v ¼ M=� ¼ 2M, and lie to the left of the
curve representing the marginally trapped surface. From the
companion paper [10] we know for certain that no closed trapped
surfaces can extend below the dashed line. Readers who prefer
Penrose diagrams are referred to Fig. 4.
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Thus, the larger the rate � the sooner the event horizon
starts to develop.

The surface we have defined must be matched properly
to trapped surfaces in the flat and Schwarzschild regions.
To ensure that it matches to a trapped hyperboloid in the
flat region we require

dV

dR

��������X¼0
<1 ) a

b
< 1: (24)

This ensures that the first derivative can be made continu-
ous. There will be a finite jump in the second derivative.
We will accept this, although in the end the construction
can be made smoother, should one insist on it. The
Schwarzschild region begins at V ¼ M=�. At this bound-
ary we want to join our surface to a trapped cylinder with
R ¼ �M, where � < 1. The curve is now vertical (X ¼ b),
so the requirement becomes

b ¼ 1

��
: (25)

Again this ensures that first derivatives are continuous. But
now we have imposed a restriction on the mass function,
namely

� ¼ 1

�b
>

b

4a�
>

1

4�
: (26)

Recall that b=a > 1 and � < 1. In the next section we will
see that we must impose a somewhat stronger condition on
� when we ‘‘cap’’ the surface in the Schwarzschild region.
In the final section we observe that a restriction on � of
roughly this order can be deduced on general grounds, so
the fact that such a restriction arises is not an artifact of the
special way in which we construct the closed trapped
surface.

We must ensure that our surface is spacelike. This will
be so if �> 0 in Eq. (7), and given b > a this holds for all
X provided that

a � 1

�
: (27)

This is unproblematic. Finally we must check that the
surface is indeed trapped. A calculation starting from Eq.
(10) shows that the null expansions are given by

�� ¼ �N½ða�� 1Þðaþ 3ðb� aÞX þ ð2a�� 1ÞX2Þ
þ ðb� aÞð2b� aÞ� (28)

where

N ¼ 1

2r
ffiffiffi
a

p 1

ð2b� aþ 2ð�a� 1ÞXÞ3=2 : (29)

With the conditions already imposed the expansions are
indeed negative, and we are done.

One additional detail is worth giving: Suppose the sur-
face enters the Schwarzschild region at r ¼ rS. Then it

enters the Vaidya region from flat space at

r0 ¼ rS exp

�
� b

�
arctan

b

2�

�
: (30)

This follows [10] from the explicit solution of Eq. (20).
To summarize, we have found a trapped surface that

begins as a piece of a hyperboloid (say) in Minkowski
space, continues through the Vaidya region, and joins the
trapped cylinders at r <M in the Schwarzschild region. It
is depicted in Fig. 2. But it is still not a closed surface. Two
minor comments: The surface is only C2�, but making it
smoother presents no real difficulty. It is marginally
trapped if a ¼ b ¼ 1=�, and if the hyperboloid is replaced
by a plane in the flat region.

V. CLOSING THE TRAPPED SURFACES IN THE
SCHWARZSCHILD REGION

We are now safely in the Schwarzschild region, and our
surface is joined to a cylinder at r ¼ �M, � < 1. We must
add a hemispherical cap to it. This piece of the surface will
be of the form (11), with V ¼ �. The surface is in effect
described by a curve in the �� V-plane, see Fig. 3. The
null expansions are given by Eq. (14), and we can bring this
to slightly more manageable form by introducing the di-
mensionless variable �,

� ¼ V=�M� �0; (31)

where �0 is a constant we can adjust so that we start

‘‘bending’’ the curve at � ¼ 0. Let _� be the derivative
of � with respect to �, and assume that

cot� � 0; €� � 0: (32)

A calculation now shows that both null expansions will be
negative if and only if

2 _�2 þ 1

�
� 1>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
� 1þ _�2

s �
cot��

€�
2
� � 1þ _�2

�
:

(33)

Our ‘‘initial data’’ are� ¼ �=2, _� ¼ 0 at� ¼ 0. We have
not been able to handle the inequality in general. Let us just
remark that as soon as a negative second derivative devel-
ops, there will be restrictions on � stronger than the con-
dition � < 1 that we have already imposed.
A simple choice of the function�ð�Þ, leading to a curve

with continuous first derivatives, is to take a quadrant of the
circle�

�� �

2
þ �

�
2 þ �2 ¼ �2; 0< � � �

2
: (34)

This joins the initial cylinder to a portion of one of the
standard trapped round spheres at � ¼ constant> 0. At
� ¼ 0 the trapping condition (33) is obeyed provided that
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
� 1

s �
1

�
� 1

�
>

1

�
: (35)

Hence

� ¼ �

2
) � < 0:68514: (36)

We have checked numerically that with this restriction the
inequality (33) is obeyed for all 0 � � � �=2, so this does
it: we do have a closed trapped surface that begins in the
flat region and ends in Schwarzschild. Topologically it is a
2-sphere.

Clearly the construction can be improved by changing
the precise shape of the curve in the�� V-plane. The best
we were able to do (using a segment of an ellipse rather
than a segment of a circle) was � < 0:75. Another possi-
bility would perhaps be to start ‘‘capping’’ the surface
already in the Vaidya region, but we have not considered
this.

VI. DISCUSSION

In the self-similar Vaidya solution we have constructed
closed trapped surfaces that begin in the flat region, pass
through the shell, and end in the Schwarzschild region. See
Fig. 4. The mass function is given by Eq. (3), and the
construction works provided that

�>
1

0:68

1

4
: (37)

On the other hand we know from the companion paper
[10], using an argument based on the interplay between the
Kerr-Schild vector field [12] and the trapped surfaces, that
it is impossible to construct a closed trapped surface enter-
ing the flat region if

� � 1

8
: (38)

It will be observed that there is a gap between these two
results.

Indeed our construction is not optimal. We indicated a
way in which the number 0.68 in inequality (37) can be
increased somewhat. It must however be kept smaller than
1 for the kind of surface we consider. We do not know what

one can achieve if one gives up axial symmetry of the
surfaces, for example. On the other hand we do know that
the inequality (38), which rules out closed trapped surfaces
extending into the flat region, can be relaxed. The true limit
must lie somewhere in between.
Like Ben-Dov’s construction of closed outer trapped

surfaces [5], our result serves to underline the fact that
the teleological character of event horizons has a trans-
lation into a ‘‘nonlocal’’ property of closed trapped sur-
faces. They can live partly in a region of spacetime whose
entire past is flat, if energy falls across them elsewhere to
make their closure possible.

FIG. 4. A Penrose diagram of the Vaidya solution for a mass
function rising quickly enough for a closed trapped surface to
penetrate into the flat region. It is shown as a dotted line
emerging into the Schwarzschild part as a finite part of a line
of constant r. Closed trapped surfaces cannot extend below the
dashed line [10]. The part of flat space that lies inside the event
horizon is shown without conformal distortion.

FIG. 3. ‘‘Capping’’: In the �� V-plane the straight line coming in from the left represents a cylinder, and the dashed line a round
sphere. The curve interpolates between them with a quadrant of a circle, resulting in the intrinsic geometry shown on the right.

NOTE ON TRAPPED SURFACES IN THE VAIDYA SOLUTION PHYSICAL REVIEW D 79, 024027 (2009)

024027-5



ACKNOWLEDGMENTS
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