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We consider a multidimensional cosmological model with nonlinear quadratic R2 and quartic R4

actions. As a matter source, we include a monopole form field, a D-dimensional bare cosmological

constant and the tensions of branes located at fixed points. In the spirit of the universal extra dimension

model, the standard model fields are not localized on branes, but rather they can move in the bulk. We

define conditions that ensure stable compactification of the internal space in zero minima of the effective

potentials. Such effective potentials may have a rather complicated form with a number of local minima,

maxima, and saddle points. We investigate inflation in such models. It is shown that the R2- and R4 models

can produce up to 10 and 22 e-foldings, respectively. These values are not sufficient to solve the

homogeneity and isotropy problem, but they are large enough to explain recent cosmic microwave

background data. Additionally, the R4 model can provide conditions for eternal topological inflation. The

main drawback of the obtained inflationary models consists in a spectral index ns that is less than the

presently observed ns � 1. For the R4 model we find, e.g., ns � 0:61.

DOI: 10.1103/PhysRevD.79.024025 PACS numbers: 04.50.�h, 11.25.Mj, 98.80.�k

I. INTRODUCTION

Recently, the concept of inflation has achieved spectacu-
lar success in explaining the acoustic peak structure seen in
cosmic microwave background (CMB) data (cf. e.g., [1]).
It is very difficult to correctly explain the large-scale
structure formation of the observable part of the Universe
without taking into account a stage of early inflation.
Although the number of different inflation models is quite
large, a basic ingredient of these models is the presence of
a scalar field that moves in a background potential.
Usually, the origin of the scalar field and the form of its
potential remain out of the scope of corresponding inves-
tigations. An explanation of the presence of scalar fields is
naturally provided by higher-dimensional theories where
they arise as geometrical moduli (radions, gravexcitons),
which characterize the shape of the internal spaces (acting
as scale factors of the internal spaces). After dimensional
reduction to four dimensions, the scalar field potential is
completely defined by the topology and matter content of
the original higher-dimensional model [2,3]. Therefore, it
is of highest interest to clarify whether inflation can be
realized in these models.1

On the other hand, scalar fields with corresponding
potentials naturally originate from nonlinear gravitational
models where Lagrangians L are functions of scalar cur-
vature: L / fðRÞ. It is well known that such models are
equivalent to linear-curvature models with additional sca-
lar fields. These scalar fields correspond to additional

degrees of freedom of nonlinear models. The motivation
for considering such higher-order curvature theories is
comprehensively discussed in Ref. [8]. Compared, e.g.,
to others higher-order gravity theories, fðRÞ theories are
not only free of ghosts and of Ostrogradski instabilities [9].
Rather these theories are very attractive because they usu-
ally contain scalar field potentials that are capable for
inducing the required late-time acceleration of our
Universe as an interesting alternative to a cosmological
constant (see, e.g., [8,10,11] and references therein).
Moreover, these theories can provide a stage of early
inflation for four-dimensional setups (see, e.g., the pioneer-
ing paper by Starobinsky [12] and numerous references in
[8,10]) as well as for multidimensional [11,13,14] ones.
In our paper we combine both of these approaches, i.e.,

we consider multidimensional models with nonlinear ac-
tion functionals. We start from the simplest linear multi-
dimensional model and show that such a model can
provide power-law inflation. Unfortunately the given solu-
tion branch corresponds to a decompactified internal
space.2 In order to obtain inflation of the external space
with subsequent stabilization of the internal spaces, we

*tamerlan-saidov@yandex.ru
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1For corresponding discussions and further references on

string-induced inflation see, e.g., [4–6]. Similar topics for multi-
dimensional cosmological models are considered in Ref [7].

2Considering multidimensional cosmological models we must
always ensure that the internal spaces remain stabilized (quasis-
tatically compactified) at sufficiently small scales so that they
neither blow up to large scales (in conflict with observations) nor
collapse to ultrasmall quantum gravity scales (where our phe-
nomenological techniques break down). Moreover, if such a
quasistatical stabilization was absent we would be confronted
with a variation of the four-dimensional fundamental constants.
A general phenomenological approach for stabilizing the inter-
nal space was developed in [3] and subsequently applied to
numerous models. In the present paper, we follow this approach
as well.
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further turn to multidimensional nonlinear models with
quadratic and quartic scalar curvature nonlinearities.
Starting from stability conditions for the internal spaces
(quasistable compactification) we analyze the arising ef-
fective potentials as possible candidates for inflaton poten-
tials providing inflation of the external space. We show that
in the quadratic and quartic models we can achieve 10 and
22 e-folds, respectively. These numbers are sufficient to
explain the present day CMB data, but they are not suffi-
ciently large to solve the horizon and flatness problems.
However, 22 e-foldings is a rather big number to encourage
the present investigation of the nonlinear multidimensional
models and to find theories where this number will ap-
proach 50–60 e-folds. Even more, this number (50–60) can
be reduced in models with a long intermediate matter
dominated stage where this latter stage immediately fol-
lows inflation (with subsequent decay into radiation).
Precisely this scenario takes place for our models, where
we find that the e-folds can be reduced by 6 if the mass of
the decaying scalar field is of order of m� 1 TeV.
Therefore, we believe that the number of e-folds is not a
big problem for the proposed models. The main problem
consists in the spectral index ns � 0:61 (for the quartic
model), which is less than the observed ns � 1. A possible
solution of this problem may consist in a more general
form of the nonlinearity fðRÞ. For example, it was ob-
served in [15] that a simultaneous consideration of qua-
dratic and quartic nonlinearities can flatten the effective
potential. We postpone the investigation of this question to
one of our next papers.

To conclude, we would like to indicate two interesting
features of the models under consideration. Firstly, the
quartic model can provide topological inflation. Here,
due to quantum fluctuations of the scalar fields, the inflat-
ing domain wall has a fractal structure (the inflating do-
main wall will contain a number of new inflating domain
walls and each such domain wall will contain again new
inflating walls, etc. [16]). So, we arrive at the so-called
eternal inflation. Secondly, the obtained solution has the
property of a self-similarity transformation (see
Appendix B). This means that in the case of a zero mini-
mum of the effective potential and fixed positions of the
extrema in the ð’;�Þ plane, the change of the height of the
extrema results in a rescaling of the dynamical character-
istics of the model (the graphics of the number of e-folds,
the scalar fields, the Hubble parameter, and the accelera-
tion parameter versus synchronous time) along the time
axis. A decrease (increase) of height by a factor c (c is a
constant) leads to a stretching (shrinking) of these figures
along the time axis by a factor

ffiffiffi
c

p
.

The paper is structured as follows. In Sec. II, we con-
sider an R-linear model. Nonlinear quadratic R2 and
quartic R4 models are investigated in Secs. III and IV,
respectively. There, we obtain the parameter ranges of
stabilized internal spaces, and we investigate the possibil-

ity for inflation of the external space. A brief discussion of
the obtained results is presented in the concluding Sec. V.
In Appendix A, the Friedmann equations for multi-
component-scalar-field models are reduced to a system of
dimensionless first-order ordinary differential equations
(ODEs). In Appendix B, we show that the dynamical
characteristics (e.g., the Hubble parameter and the accel-
eration parameter) of the considered nonlinear models
satisfy a self-similarity condition.

II. LINEAR MODEL

To start with, let us define the topology of our models.
We consider a factorizable D-dimensional metric

gðDÞ ¼ gð0ÞðxÞ þ L2
Ple

2�1ðxÞgð1Þ; (2.1)

which is defined on a warped product manifoldM ¼ M0 �
M1. M0 describes external D0-dimensional space-time
(usually, we have in mind that D0 ¼ 4) and M1 corre-
sponds to a d1-dimensional internal space that is a flat
orbifold3 with branes in fixed points. The scale factor of
the internal space depends on coordinates x of the external

space-time: a1ðxÞ ¼ LPle
�1ðxÞ, where LPl is the Planck

length.
First, we consider the linear model fðRÞ ¼ R with

D-dimensional action of the form

S ¼ 1

2�2
D

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
jgðDÞj

q
fR½gðDÞ� � 2�Dg þ Sm þ Sb:

(2.2)

�D is a bare cosmological constant.4 In the spirit of uni-
versal extra dimension models [17], the standard model
fields are not localized on the branes but can move in the
bulk. The compactification of the extra dimensions on
orbifolds has a number of very interesting and useful
properties, e.g., breaking (super)symmetry and obtaining
chiral fermions in four dimensions (see, e.g., the paper by
H.-C. Cheng et al. in [17]). The latter property offers the
possibility of avoiding the famous no-go theorem of
Kaluza-Klein models (see, e.g., [18]). Additional argu-
ments in favor of UED models are listed in [19].
Following a generalized Freund-Rubin ansatz [20] to

achieve a spontaneous compactification M ! M ¼ M0 �
M1, we endow the extra dimensions with a real-valued

solitonic form field Fð1Þ with the action

Sm ¼ � 1

2

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
jgðDÞj

q
1

d1!
ðFð1ÞÞ2: (2.3)

3For example, S1=Z2 and T2=Z2, which represent circle and
square folded onto themselves due to Z2 symmetry.

4Such cosmological constant can originate from a
D-dimensional form field that is proportional to the

D-dimensional world volume FMN...Q ¼ ðC=
ffiffiffiffiffiffiffiffiffiffiffiffi
jgðDÞj

q
Þ�MN...Q. In

this case, the equation of motion gives C ¼ const, and the F2

term in action is reduced to ð1=D!ÞFMN...QF
MN...Q ¼ �C2.
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This form field is nested in d1-dimensional factor space

M1, i.e., F
ð1Þ is proportional to the world volume of the

internal space. In this case, ð1=d1!ÞðFð1ÞÞ2 ¼ �f21=a
2d1
1 ,

where �f1 is a constant of integration [21].
Branes in fixed points contribute in action functional

(2.2) in the form [22]

Sb ¼
X

fixed points

Z
M0

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð0ÞðxÞ

q
jLbjfixed point; (2.4)

where gð0ÞðxÞ is induced metric (which for our geometry
(2.1) coincides with the metric of the external space-time in
the Brans-Dicke frame), and Lb is the matter Lagrangian
on the brane. In what follows, we consider the case where
branes are uniquely characterized by their tensions LbðkÞ ¼
��ðkÞ, k ¼ 1; 2; . . . ; m, and m is the number of branes.

Let �1
0 be the internal space scale factor at the present

time, and ��1 ¼ �1 � �1
0 describes fluctuations around this

value. Then, after dimensional reduction of the action (2.1)

and conformal transformation to the Einstein frame gð0Þ�� ¼
ðed1 ��1Þ�2=ðD0�2Þ~gð0Þ��, we arrive at effective D0-dimensional
action of the form

Seff ¼ 1

2�2
0

Z
M0

dD0x
ffiffiffiffiffiffiffiffiffiffiffi
j~gð0Þj

q
fR½~gð0Þ� � ~gð0Þ��@�’@�’

� 2Ueffð’Þg; (2.5)

where scalar field ’ is defined by the fluctuations of the
internal space scale factor

’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1ðD� 2Þ
D0 � 2

s
��1; (2.6)

and G :¼ �2
0=8� :¼ �2

D=ð8�Vd1Þ (Vd1 is the internal space

volume at the present time) denotes the D0-dimensional
gravitational constant. The effective potential Ueffð’Þ
reads (hereafter we use D0 ¼ 4)

Ueffð’Þ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’½�D þ f21e

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’

� 	e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’�; (2.7)

where f21 � �2
D
�f21=a

2d1
ð0Þ1 and 	 � ��2

0

P
m
k¼1 �ðkÞ.

Now, we should investigate this potential from the point
of the external space inflation and the internal space stabi-
lization. First, we consider the latter problem. It is clear
that internal space is stabilized if Ueffð’Þ has a minimum
with respect to ’. The position of minimum should corre-
spond to the present day value’ ¼ 0. Additionally, we can
demand that the value of the effective potential in the
minimum position is equal to the present day dark energy
value Ueffð’ ¼ 0Þ ��DE � 10�57 cm�2. However, it re-
sults in a very flat minimum of the effective potential,
which in fact destabilizes the internal space [22]. To avoid
this problem, we shall consider the case of zero minimum
Ueffð’ ¼ 0Þ ¼ 0.

The extremum condition dUeff=d’j’¼0 ¼ 0 and zero-

minimum condition Ueffð’ ¼ 0Þ ¼ 0 result in a system of
equations for parameters �D, f

2
1, and 	, which has the

following solution:

�D ¼ f21 ¼ 	=2: (2.8)

For the mass of scalar field excitations (gravexcitons/ra-
dions) we obtain m2 ¼ d2Ueff=d’

2j’¼0 ¼ ð4d1=ðd1 þ
2ÞÞ�D. In Fig. 1, we present the effective potential (2.7)
in the case d1 ¼ 3 and �D ¼ 10. It is worth of noting that
usually scalar fields in the present paper are dimensionless5

and Ueff , �D, f
2
1, 	 are measured in M2

Pl units.

Let us turn now to the problem of the external space
inflation. As far as the external space corresponds to our

Universe, we take metric ~gð0Þ in the spatially flat
Friedmann-Robertson-Walker form with scale factor aðtÞ.
Scalar field ’ depends also only on the synchronous/cos-
mic time t (in the Einstein frame).
It can be easily seen that for ’ � 0 (more precisely, for

’>’max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=2d1

p
ln3) the potential (2.7) be-

haves as

Ueffð’Þ � �De
� ffiffi

q
p

’; (2.9)

with

q :¼ 2d1
d1 þ 2

: (2.10)

It is well known (see, e.g., [23–26]) that for such exponen-
tial potential scale factor has the following asymptotic
form:

aðtÞ � t2=q: (2.11)

Thus, the Universe undergoes the power-law inflation if
q < 2. Precisely this condition holds for Eq. (2.10) if
d1 � 1.
It can be easily verified that ’> ’max is the only region

of the effective potential where inflation takes place.
Indeed, in the region ’< 0 the leading exponents are too

-4 -2 2 4

1

2

3

4

5

Ueff

FIG. 1. The form of the effective potential (2.7) in the case
d1 ¼ 3 and �D ¼ f21 ¼ 	=2 ¼ 10.

5To restore dimension of scalar fields we should multiply their
dimensionless values by MPl=

ffiffiffiffiffiffiffi
8�

p
.
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large, i.e., the potential is too steep. The local maximum of

the effective potential Ueffjmax ¼ ð4=27Þ�D at ’max ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=2d1
p

ln3 is also too steep for inflation because

of the slow-roll parameter 
max ¼ 1
Ueff

d2Ueff

d’2 jmax ¼
� 3d1

d1þ2 ) 1 	 j
maxj< 3 and does not satisfy the inflation

condition j
j< 1. Topological inflation is also absent here
because the distance between global minimum and local

maximum ’max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=2d1

p
ln3 	 1:35 is less than

critical value ’cr � 1:65 (see [15,27,28]). It is worth of
noting that 
max and ’max depend only on the number of
dimensions d1 of the internal space and do not depend on
the height of the local maximum (which is proportional to
�D).

Therefore, we have two distinctive regions in this model.
In the first region, at the left of the maximum in the vicinity
of the minimum, scalar field undergoes the damped oscil-
lations. These oscillations have the form of massive scalar
fields in our Universe (in [3] these excitations were called
gravitational excitons and later (see, e.g., [29]) these geo-
metrical moduli oscillations were also named radions).
Their lifetime with respect to the decay ’ ! 2� into
radiation is [30–32] �� ðMPl=mÞ3TPl. For example, we
obtain �� 10 s, 10�2 s form� 10 TeV, 102 TeV, respec-
tively. We remind that in our case m2 ¼ ð4d1=ðd1 þ
2ÞÞ�D. Therefore, this is the graceful exit region. Here,
the internal space scale factor, after the decay of its oscil-
lations into radiation, is stabilized at the present day value,
and the effective potential vanishes due to zero minimum.
In the second region, at the right of the maximum of the
potential, our Universe undergoes the power-low inflation.
However, it is impossible to transit from the region of
inflation to the graceful exit region because given infla-
tionary solution satisfies the following condition: _’> 0.
There is also a serious additional problem connected with
the obtained inflationary solution. The point is that for the
exponential potential of the form (2.9), the spectral index
reads as [23,25]6:

ns ¼ 2� 3q

2� q
: (2.12)

In our case (2.10), it results in ns ¼ 1� d1. Obviously, for
d1 � 1 this value is very far from observable data ns � 1.
Therefore, it is necessary to generalize our linear model.

III. NONLINEAR QUADRATIC MODEL

As follows from the previous section, we want to gen-
eralize the effective potential making it more complicated
and with more reach structure. Introduction of an addi-

tional minimal scalar field � is one of possible ways. We
can do it ‘‘by hand,’’ inserting the minimal scalar field �
with a potential Uð�Þ in the linear action (2.2).7 Then,
effective potential takes the form

Ueffð’;�Þ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’½Uð�Þ

þ f21e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’

� 	e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’�; (3.1)

where we put �D ¼ 0 in (2.2).
However, it is well known that the scalar field � can

naturally originate from the nonlinearity of higher-
dimensional models where the Hilbert-Einstein linear
Lagrangian R is replaced by nonlinear one fðRÞ. These
nonlinear theories are equivalent to the linear ones with a
minimal scalar field (which represents additional degree of
freedom of the original nonlinear theory). It is not difficult
to verify (see, e.g., [13,21]) that nonlinear model

S ¼ 1

2�2
D

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
j �gðDÞj

q
fð �RÞ � 1

2

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
jgðDÞj

q
1

d1!

� ðFð1ÞÞ2 � Xm
k¼1

Z
M0

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð0ÞðxÞ

q
j�ðkÞ (3.2)

is equivalent to a linear one with conformally related
metric

gðDÞ
ab ¼ e2A�=ðD�2Þ �gðDÞ

ab (3.3)

plus minimal scalar field � ¼ ln½df=d �R�=A with a poten-
tial of

Uð�Þ ¼ 1
2e

�B�½ �Rð�ÞeA� � fð �Rð�ÞÞ�; (3.4)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 2Þ=ðD� 1Þp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=d1 þ 3
p

and

B ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 2ÞðD� 1Þp ¼ Aðd1 þ 4Þ=ðd1 þ 2Þ. After

dimensional reduction of this linear model, we obtain an
effective D0-dimensional action of the form

Seff ¼ 1

2�2
0

Z
M0

dD0x
ffiffiffiffiffiffiffiffiffiffiffi
j~gð0Þj

q
½R½~gð0Þ� � ~gð0Þ��@�’@�’

� ~gð0Þ��@��@��� 2Ueffð’;�Þ�; (3.5)

with an effective potential exactly of the form of (3.1). It is
worth noting that we suppose that matter fields are coupled

to the metric gðDÞ of the linear theory (see also an analo-
gous approach in [34]).
Let us consider first the quadratic theory

fð �RÞ ¼ �Rþ � �R2 � 2�D: (3.6)

6With respect to conformal time, solution (2.11) reads as
að
Þ � 
1þ�, where � ¼ �ð4� qÞ=ð2� qÞ. It was shown in
[33] that for such inflationary solution (with q < 2) the spectral
index of density perturbation is given by ns ¼ 2�þ 5 resulting
again in (2.12).

7If such a scalar field is the only matter field in these models, it
is known (see, e.g., [7,13]) that the effective potential can has
only negative minimum, i.e., the models are asymptotical anti
de Sitter. To uplift this minimum to nonnegative values, it is
necessary to add form fields [21].
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For this model the scalar field potential (3.4) reads as

Uð�Þ ¼ 1

2
e�B�

�
1

4�
ðeA� � 1Þ2 þ 2�D

�
: (3.7)

It was proven [7] that the internal space is stabilized if
the effective potential (3.1) has a minimum with respect to
both fields ’ and �. It can be easily seen from the form of
Ueffð’;�Þ that the minimum �0 of the potential Uð�Þ
coincides with the minimum of Ueffð’;�Þ: dU=d�j�0

¼
0 ! @�Ueffj�0

¼ 0. For minimum Uð�0Þ we obtain [13]

Uð�0Þ ¼ 1

8�
xð�DÞ=ðD�2Þ
0 ½ðx0 � 1Þ2 þ 8��D�; (3.8)

where we denote the constant x0 :¼ expðA�0Þ ¼
ðA� Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ ð2A� BÞB8��D

p Þ=ð2A� BÞ. It is the
global minimum and the only extremum of Uð�Þ. The
non-negative minimum of the effective potential Ueff takes
place for positive �, �D > 0. If �, �D > 0, the potential
Uð�Þ has asymptotic behaviorUð�Þ ! þ1 for� ! 
1.

The relations (2.8), where we should make the substitu-
tion �D ! Uð�0Þ, are the necessary and sufficient con-
ditions of the zero minimum of the effective potential
Ueffð’;�Þ at the point ð’ ¼ 0; � ¼ �0Þ. Thus, if the
parameters of the quadratic models satisfy the conditions
Uð�0Þ ¼ f21 ¼ 	=2, we arrive at zero global minimum
Ueffð0; �0Þ ¼ 0.

It is clear that the profile � ¼ �0 of the effective po-
tential Ueff has a local maximum in the region of ’> 0
because Ueffð’;� ¼ �0Þ ! 0 if ’ ! þ1. Such a profile
has the form shown in Fig. 1. Thus, the effective potential
Ueff has a saddle point ð’ ¼ ’max; � ¼ �0Þ, where

’max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=2d1

p
ln3. At this point, Ueff jmax ¼

ð4=27ÞUð�0Þ. Figure 2 demonstrates the typical contour
plot of the effective potential (3.1) with the potential Uð�Þ

of the form (3.7) in the vicinity of the global minimum and
the saddle point.
Let us discuss now a possibility for the external space

inflation in this model. It can be easily realized that for all
models of the form (3.1) in the case of local zero minimum
at ð’ ¼ 0; �0Þ, the effective potential will also have a
saddle point at ð’ ¼ ’max; �0Þ with ’max ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd1 þ 2Þ=2d1
p

ln3<’cr ¼ 1:65, and the slow-roll parame-
ter j
’j in this point cannot be less than 1: j
’j ¼
3d1=ðd1 þ 2Þ � 1. Therefore, such saddles are too steep
(in the section � ¼ �0) for the slow-roll and topological
inflations. However, as we shall see below, a short period of
de Sitter-like inflation is possible if we start not precisely at
the saddle point but first move in the vicinity of the saddle
along the line ’ � ’max with subsequent turn into zero
minimum along the line � � �0. A similar situation hap-
pens for trajectories from different regions of the effective
potential, which can reach this saddle and spend here a
some time (moving along the line ’ � ’max).
Let us consider now regions where the following con-

ditions take place:

Uð�Þ � f21e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’; 	e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’:

(3.9)

For the potential (3.7) these regions exist both for negative

and positive �. In the case of positive � with expðA�Þ �
maxf1; ð8��DÞ1=2g we obtain

Ueff � 1

8�
e�

ffiffi
q

p
’e

ffiffiffiffi
q1

p
�; (3.10)

where q is defined by Eq. (2.10), q1 :¼ ð2A� BÞ2 ¼
d21=½ðd1 þ 2Þðd1 þ 3Þ� and q > q1. For potential (3.10)
the slow-roll parameters are8

� � 
1 � 
2 � q

2
þ q1

2
(3.11)

and satisfy the slow-roll conditions �, 
1, 
2 < 1. As far as
we know, there are no analytic solutions for such a two-
scalar-field potential. Anyway, from the form of the poten-
tial (3.10) and condition q > q1 we can get an estimate of
a � ts with s * 2=q (e.g., 2=q ¼ 3, 2, 5=3 for d1 ¼ 1, 2,
3, respectively). Thus, in these regions we can get a period
of power-law inflation. In spite of a rude character of these
estimates, we shall see below that external space scale

3 2 1 1 2 3 4
Φ

1

0.5

0.5

1

1.5

2

2.5

FIG. 2 (color online). Contour plot of the effective potential
Ueffð’;�Þ (3.1) with potential Uð�Þ of the form (3.7) for
parameters d1 ¼ 1, ��D ¼ 1, and relations Uð�0Þ ¼ f21 ¼
	=2. This plot clearly shows the global minimum and the saddle.
The colored lines describe trajectories for scalar fields starting at
different initial conditions.

8In the case of n scalar fields ’iði ¼ 1; . . . ; nÞ with a flat (

model) target space, the slow-roll parameters for the spatially flat
Friedmann Universe read (see, e.g., [7,13]) as � � 2

H2 �P
n
i¼1ð@iHÞ2 � 1

2 j@Uj2=U2; 
i � � €’i=ðH _’iÞ ¼ 2@2iiH=H �
��þPn

j¼1 @
2
ijU@jU=ðU@iUÞ, where @i :¼ @=@’i and j@Uj2 ¼P

n
i¼1ð@iUÞ2. In some papers (see, e.g., [35]) a ‘‘cumulative’’

parameter 
 � �P
n
i¼1 €’i _’i=ðHj _’j2Þ � ��þP

n
i;j¼1ð@2ijUÞ�

ð@iUÞð@jUÞ=ðUj@Uj2Þ was introduced, where j _’j2 ¼ P
n
i¼1 _’2

i .

We can easily find that for the potential (3.10) parameter 


coincides exactly with parameters 
1 and 
2.
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factors undergo power-law inflation for trajectories passing
through these regions.

Now, we investigate the dynamical behavior of scalar
fields and the external space scale factor in more detail.
There are no analytic solutions for the considered model.
So, we use numerical calculations. To do it, we apply the
MATHEMATICA package proposed in [36] adjusting it to our

models and notations (see Appendix A).
The colored lines on the contour plot of the effective

potential in Fig. 2 describe trajectories for scalar fields ’
and � with different initial values (the colored dots). The
time evolution of these scalar fields9 is drawn in Fig. 3.
Here, the time t is measured in the Planck times and
classical evolution starts at t ¼ 1. For given initial con-
ditions, scalar fields approach the global minimum of the
effective potential along spiral trajectories.

We plot in Fig. 4 the evolution of the logarithms of the
scale factor aðtÞ (left panel) and the evolution of the
Hubble parameter HðtÞ (right panel) and in Fig. 5 the
evolution of the parameter of acceleration qðtÞ.

Because for the initial condition we use the value aðt¼
1Þ¼1 (in the Planck units), then logaðtÞ gives the number
of e-folds logaðtÞ ¼ NðtÞ. Figure 4 shows that for consid-
ered trajectories we can reach the maximum of e-folds of
the order of 10. Clearly, 10 e-folds is not sufficient to solve
the horizon and flatness problems but it can be useful to
explain a part of the modern CMB data. For example, the
Universe inflates by 4N � 4 during the period that wave-
lengths corresponding to the CMBmultipoles 2 	 l 	 100
cross the Hubble radius [37]. However, to have the inflation
that is long enough for all modes that contribute to the

CMB to leave the horizon, it is usually supposed that
4N � 15 [38].
Figure 4 for the evolution of the Hubble parameter (right

panel) demonstrates that the red, yellow, dark blue, and
pink lines (first four lines from the top) have a plateauH �
const. It means that the scale factor aðtÞ has a stage of the
de Sitter expansion on these plateaus. Clearly, it happens
because these lines reach the vicinity of the effective
potential saddle point and spend some time there.
Figure 5 for the acceleration parameter defined in (A6)

confirms also the above conclusions. According to
Eq. (A8), q ¼ 1 for the d Sitter-like behavior. Indeed, all
of these four lines have stages q � 1 for the same time
intervals when H has a plateau. Additionally, the magnifi-
cation of this picture at early times (the right panel of the
Fig. 5) shows that pink, green, and blue lines have also a
period of time when q is approximately constant less than
one: q � 0:75. In accordance with Eq. (A8), it means that
during this time the scale factor aðtÞ undergoes the power-
law inflation aðtÞ / ts with s � 4. This result confirms our
rough estimates made above for the trajectories that go
through the regions where the effective potential has the
form (3.10). After the stages of the inflation, the accelera-
tion parameter starts to oscillate. Averaging q over a few
periods of oscillations, we obtain �q ¼ �0:5. Therefore, the
scale factor behaves as for the matter dominated Universe

aðtÞ / t2=3. Clearly, it corresponds to the times when the
trajectories reach the vicinity of the effective potential
global minimum and start to oscillate there. It is worth
noting, that there is no need to plot dynamical behavior for
the equation of state parameter !ðtÞ because it is linearly
connected with q [see Eq. (A7)], and its behavior can be
easily understood from the pictures for qðtÞ.
As we have seen above for the considered quadratic

model, the maximal number of e-folds is near 10. Can

20 40 60 80 100 120 t

-1

-0.5

0.5

1

20 40 60 80 100 120
t
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-1

1

2

3

4

φ

FIG. 3 (color online). Dynamical behavior of scalar fields ’ (left panel) and � (right panel) with corresponding initial values
denoted by the colored dots in Fig. 2.

9We remind that ’ describes fluctuations of the internal space
scale factor and � reflects the additional degree of freedom of
the original nonlinear theory.
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we increase this number? To answer this question, we shall
consider a new model with a higher degree of nonlinearity,
i.e., the nonlinear quartic model.

IV. NONLINEAR QUARTIC MODEL

In this section we consider the nonlinear quartic model

fð �RÞ ¼ �Rþ � �R4 � 2�D: (4.1)

For this model the scalar field potential (3.4) reads [11] as

Uð�Þ ¼ 1
2e

�B�

�
3
4ð4�Þ�1=3ðeA� � 1Þ4=3 þ 2�D

�
: (4.2)

Here, the scalar curvature �R and scalar field � are con-

nected as follows: eA� � f0 ¼ 1þ 4� �R3 , �R ¼ ½ðeA� �
1Þ=4��1=3:
We are looking for a solution that has a non-negative

minimum of the effective potential Ueffð’;�Þ (3.1) where
potential Uð�Þ is given by Eq. (4.2). If �0 corresponds to
this minimum, then, as we mentioned above (see also [22]),
Uð�0Þ; 	 and f21 should be positive. To get the zero mini-
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Log a
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0.4

H

FIG. 4 (color online). The number of e-folds (left panel) and the Hubble parameter (right panel) for the corresponding trajectories.
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0.25

0.5
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FIG. 5 (color online). The parameter of acceleration (left panel) and its magnification for early times (right panel). There are two
different forms of acceleration with q � 1 (de Sitter-like inflation) and q � 0:75 (power-law inflation with s � 4), accordingly. The
averaging of q over a few periods of oscillations results in �q ¼ �0:5, which corresponds to the matter dominated decelerating
Universe.
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mum of the effective potential, these positive values should
satisfy the relation of the form of (2.8): Uð�0Þ ¼ f21 ¼
	=2. Additionally, it is important to note that positiveness
of Uð�0Þ results in positive expression for �Rð�0Þ> 0 [11].

Equation (4.2) shows that the potential Uð�Þ has the

following asymptotes for positive � and �D
10: � !

�1 ) Uð�Þ � 1
2 e

�B�½34 ð4�Þ�1=3 þ 2�D� ! þ1 and

� ! þ1 ) Uð�Þ � 3
8 ð4�Þ�1=3eð�Bþ4A=3Þ� ! þ0. For

the latter asymptote we took into account that �Bþ
4A=3 ¼ ðD� 8Þ=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 2ÞðD� 1Þp

< 0 for D< 8.
Obviously, the total number of dimensions D ¼ 8 plays
the critical role in quartic nonlinear theories (see
[11,14,39]) and investigations for D< 8, D ¼ 8, and D>
8 should be performed separately. To make sure that our
paper is not too cumbersome, we consider the case D< 8
(i.e., d1 ¼ 1, 2, 3), postponing other cases for our follow-
ing investigations.

It is worth noting that for the considered signs of the
parameters, the effective potentialUeffð’;�Þ (3.1) acquires
negative values when � ! þ1 (and Uð�Þ ! 0). For ex-
ample, ifUð�0Þ ¼ f21 ¼ 	=2 (the case of zero minimum of
the effective potential), the effective potential Ueffð’;� !
1Þ< 0 for 0< e�b’ < 2 and the lowest negative asymp-
totic value Ueff jmin ! �ð16=27Þ	 takes place along the
line e�b’ ¼ 4=3. Therefore, the zero minimum of Ueff is
local.11

As we mentioned above, extremum positions �i of the
potential Uð�Þ coincide with extremum positions of
Ueffð’;�Þ: dU=d�j�i

¼ 0 ! @�Ueffj�i
¼ 0. The condi-

tion of extremum for the potential Uð�Þ reads as
dU

d�
¼ 0 ) �R4 � ð2þ d1Þ

�ð4� d1Þ
�Rþ 2�D

ð4þ d1Þ
�ð4� d1Þ ¼ 0:

(4.3)

For positive � and �D this equation has two real roots:

�R 0ð1Þ ¼ �D

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ d1Þ

ð4� d1Þk
ffiffiffiffiffi
M

p �M

s
þ ffiffiffiffiffi

M
p �

; (4.4)

�R 0ð2Þ ¼ �D

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ d1Þ

ð4� d1Þk
ffiffiffiffiffi
M

p �M

s
þ ffiffiffiffiffi

M
p �

; (4.5)

where we introduced a dimensionless parameter

k :¼ ��3
D; (4.6)

which is positive for positive � and �D, and quantities M,

! read as

M � �210=3
ð4þ d1Þ
!1=3

� 1

3 � 21=3k
!1=3

ð4� d1Þ ; (4.7)

! � k½�27ð4� d1Þð2þ d1Þ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
272ð4� d1Þ2ð2þ d1Þ4 � 4 � 243kð16� d21Þ3

q
�:

(4.8)

It can be easily seen that for k > 0 we get !< 0 and M �
0. To have real !, parameter k should satisfy the following
condition:

k 	 272ð4� d1Þ2ð2þ d1Þ4
4 � 243ð16� d21Þ3

� k0: (4.9)

It is not difficult to verify that roots �R0ð1;2Þ are real and

positive if 0< k 	 k0, and they degenerate for k ! k0:
�R0ð1;2Þ ! ð�D=2Þ

ffiffiffiffiffi
M

p
. In this limit the minimum and maxi-

mum of Uð�Þ merge into an inflection point. Now, we
should define which of these roots corresponds to a mini-
mum of Uð�Þ and which to a local maximum. The mini-
mum condition

d2Uð�Þ
d�2

���������0

>0 ) �½ðd1 þ 2Þ � 4� �R3
0ð4� d1Þ�> 0

(4.10)

results in the following inequality12:

� > 0: ðd1 þ 2Þ � 4� �R3
0ð4� d1Þ> 0: (4.11)

Thus, the root �R0, which corresponds to the minimum of
Uð�Þ, should satisfy the following condition:

0< �R0 <

�
d1 þ 2

4�ð4� d1Þ
�
1=3

: (4.12)

Numerical analysis shows that �R0ð1Þ satisfies these condi-

tions and corresponds to the minimum. For �R0ð2Þ we obtain
that �R0ð2Þ > ð d1þ2

4�ð4�d1ÞÞ1=3 and corresponds to the local maxi-

mum of Uð�Þ. In what follows, we shall use the notations

�min ¼ 1

A
ln½1þ 4� �R3

0ð1Þ�; (4.13)

�max ¼ 1

A
ln½1þ 4� �R3

0ð2Þ�; (4.14)

and Uð�minÞ � Umin, Uð�maxÞ � Umax. We should note
that �min, �max, and the ratio Umax=Umin depend on the
combination k (4.6) rather than on � and �D taken
separately.

10Negative values of �D and � may lead either to negative
minima, resulting in an asymptotically anti de Sitter universe, or
to infinitely large negative values of Ueff [11]. In the present
paper we want to avoid both of these possibilities. Therefore, we
shall consider the case of �D, � > 0. See also Footnote 12.
11It is not difficult to show that the thin shell approximation is
valid for the considered model and a tunneling probability from
the zero local minimum to this negative Ueff region is negligible.

12As we have already mentioned above, the condition Uð�0Þ>
0 leads to the inequality �Rð�0Þ> 0 [11]. Taking into account the
condition d1 < 4, we clearly see that inequality ðd1 þ 2Þ þ
4j�j �R3

0ð4� d1Þ< 0 for � < 0 cannot be realized. This is an
additional argument in favor of positive sign of �.
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Obviously, because potential Uð�Þ has two extrema at
�min and�max, the effective potential Ueffð’;�Þmay have
points of extrema only on the lines � ¼ �min and � ¼
�max, where @Ueff=@�j�min;�max

¼ 0. To find the extrema of

Ueff , it is necessary to consider the second extremum
condition @Ueff=@’ ¼ 0 on each line separately:

@Ueff

@’
¼ 0 )

��Umin � 3f21�
2
1 þ 2	�1 ¼ 0;

�Umax � 3f21�
2
2 þ 2	�2 ¼ 0;

(4.15)

where �1 � expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d1=ðd1 þ 2Þp

’1Þ> 0 and �2 �
expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d1=ðd1 þ 2Þp
’2Þ> 0; ’1 and ’2 denote positions

of extrema on the lines � ¼ �min and � ¼ �max, respec-
tively. These equations have the solutions

�1ð
Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

q
; � � ffiffiffiffi

�
p � �1; (4.16)

�2ð
Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

Umax

Umin

s
;

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Umax

Umin

s
� �2 >�1;

(4.17)

where we have introduced the notations � � 	=ð3f21Þ and
� � Umin=ð3f21Þ. These equations show that there are five
different possibilities, which are listed in the Table I.

To clarify which of the solutions (4.16) and (4.17) cor-
respond to minima of the effective potential (with respect
to ’) we should consider the minimum condition

@2Ueff

@2’

��������min
>0 ) Uextr þ �29f21 � 4	� > 0; (4.18)

where Uextr is either Umin or Umax, and � denotes either �1

or �2. Taking into account relations (4.15), we obtain

�23f21 � �	 > 0 ) �>
	

3f21
¼ �: (4.19)

Thus, roots �1;2ðþÞ define the positions of local minima of

the effective potential with respect to the variable ’, and
�1;2ð�Þ correspond to local maxima (in the direction of ’).

Now, we fix the minimum �1ðþÞ at the point ’ ¼ 0. It
means that in this local minimum the internal space scale
factor is stabilized at the present day value. In this case,

�1ðþÞj’¼0 ¼ 1 ¼ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

q
) � ¼ 1þ �

2
: (4.20)

Obviously, we can do it only if13 �< 1 ) � 2 ½0; 1Þ. For
�1ð�Þ we get �1ð�Þ ¼ �.
Additionally, the local minimum of the effective poten-

tial at the point ð’ ¼ 0; � ¼ �minÞ should play the role of
the non-negative four-dimensional effective cosmological
constant. Thus, we arrive at the following condition:

�eff � Ueffð’ ¼ 0; � ¼ �minÞ ¼ �	þUmin þ f21 � 0

) ��þ �þ 1
3 � 0: (4.21)

From the latter inequality and Eq. (4.20) we get � 2
½1=3; 1Þ. It can be easily seen that � ¼ 1=3 (and, corre-
spondingly,� ¼ 2=3) results in�eff ¼ 0 and we obtain the
above mentioned relationsUmin ¼ f21 ¼ 	=2. In general, it
is possible to demand that �eff coincides with the present
day dark energy value 10�57 cm�2. However, it leads to a
very flat local minimum, which means the decompactifi-
cation of the internal space [22]. In what follows, we shall
mainly consider the case of zero�eff , although all obtained
results are trivially generalized to �eff ¼ 10�57 cm�2.
Summarizing our results, in the most interesting case of

�> �2 the effective potential has four extrema: local
minimum at ð’j�1ðþÞ ¼ 0; �minÞ, local maximum at

ð’j�2ð�Þ ; �maxÞ and two saddle-points at ð’j�1ð�Þ ; �minÞ,
and ð’j�2ðþÞ ; �maxÞ (see Fig. 7).
We pay particular attention to the case of zero local

minimum Ueffð’j�1ðþÞ ¼ 0; �minÞ ¼ 0, where � ¼ 1=3 )
� ¼ ð1þ �Þ=2 ¼ 2=3. To satisfy the four-extremum con-
dition �> �2, we should demand

Umax

Umin

<
4

3
: (4.22)

The fraction Umax=Umin is the function of k and depends
parametrically only on the internal space dimension d1.
Inequality (4.22) provides the lower bound on k and nu-

merical analysis (see Fig. 6) gives ~kðd1 ¼ 1Þ � 0:000 625;
~kðd1 ¼ 2Þ � 0:00 207; ~kðd1 ¼ 3Þ � 0:0035. Therefore, ef-
fective potentials with zero local minimum will have four

extrema if k 2 ð~k; k0Þ [where k0 is defined by Eq. (4.9)].

The limit k ! ~k results in merging �2ð�Þ $ �2ðþÞ, and the

TABLE I. The number of extrema of the effective potential Ueff depending on the relation between parameters.

0<�<�1 � ¼ �1 �1 <�<�2 � ¼ �2 �> �2

No extrema One extremum

(point of

inflection on the

line � ¼ �min)

Two extrema

(one minimum

and one saddle

on the line � ¼ �min)

Three extrema

(minimum and

saddle on the line

� ¼ �min inflection

on the line � ¼ �max)

Four extrema

(minimum and

saddle on the line

� ¼ �min maximum and saddle

on the line � ¼ �max)

13Particular value � ¼ 1 corresponds to the case � ¼ �1 ¼ 1,
where the only extremum is the inflection point with �1ð�Þ ¼
�1ðþÞ ¼ � ¼ 1. Here, 	 ¼ Umin ¼ 3f21 and Ueffð’ ¼ 0; � ¼
�minÞ ¼ �	þUmin þ f21 > 0.
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limit k ! k0 results in merging �1ð�Þ $ �2ð�Þ and �1ðþÞ $
�2ðþÞ. Such merging results in the transformation of cor-

responding extrema into inflection points. For example,
from Fig. 6, it follows that Umax=Umin ! 1 for k ! k0.

The typical contour plot of the effective potential with
four extrema in the case of zero local minimum is drawn in

Fig. 7. Here, for d1 ¼ 3 we take k ¼ 0:004 2 ð~k; k0Þ,
which gives �2 � 0:655. Thus, � ¼ 2=3 � 0:666>�2.

Let us investigate now a possibility of inflation for the
considered potential. First of all, taking into account the
comments in the previous section [see the paragraph before
Eq. (3.9)], it is clear that topological inflation in the saddle
point �1ð�Þ as well as the slow rolling from there in the

direction of the local minimum �1ðþÞ are absent. It is not

difficult to verify that the generalized power-low inflation

discussed in the case of the nonlinear quadratic model is
also absent here. Indeed, from Eqs. (3.1) and (4.2) it
follows that the nonlinear potential Uð�Þ can play the
leading role in the region � ! �1 (because Uð�Þ ! 0
for � ! þ1). In this region, Ueff / expð� ffiffiffi

q
p

’Þ�
expð� ffiffiffiffiffi

q2
p

�Þ, where q ¼ 2d1=ðd1 þ 2Þ and q2 ¼ B2 ¼
ðd1 þ 4Þ2=½ðd1 þ 2Þðd1 þ 3Þ�. For these values of q and
q2 the slow-roll conditions are not satisfied: � � 
1 �

2 � q=2þ q2=2> 1. However, there are two promising
regions where the stage of inflation with subsequent stable
compactification of the internal space may take place. We
mean the local maximum �2ð�Þ and the saddle �2ðþÞ (see
Fig. 7). Let us estimate the slow-roll parameters for these
regions.
We consider first the local maximum �2ð�Þ. It is obvious

that the parameter � is equal to zero here. Additionally,
from the form of the effective potential (3.1) it is clear that
the mixed second derivatives are also absent in extremum
points. Thus, the slow-roll parameters 
1 and 
2, defined
in Footnote 8, coincide exactly with 
’ and 
�. In Fig. 8

we present typical form of these parameters as functions of

k 2 ð~k; k0Þ in the case � ¼ 1=3 and d1 ¼ 1, 2, 3. These
plots show that, for considered parameters, the slow-roll
inflation in this region is possible for d1 ¼ 1, 3.
The vicinity of the saddle point �2ðþÞ is another prom-

ising region. Obviously, if we start from this point, a test
particle will roll mainly along direction of�. That is why it
makes sense to draw only j
�j. In Fig. 9, we plot a typical
form of j
�j in the case of � ¼ 1=3 and d1 ¼ 1, 2, 3. The

left panel represents general behavior for the whole range

of k 2 ð~k; k0Þ, and the right panel shows detailed behavior
in the most interesting region of small k. It shows that d1 ¼
3 is the most promising case in this region.
Now, we investigate numerically the dynamical behav-

ior of scalar fields and the external space scale factor for
trajectories that start from the regions �1ð�Þ, �2ð�Þ and

�2ðþÞ. All numerical calculations are performed for � ¼
1=3, d1 ¼ 3, and k ¼ 0:004. The colored lines on the
contour plot of the effective potential in Fig. 7 describe
trajectories for scalar fields ’ and � with different initial
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FIG. 6. The form of Umax=Umin as a function of k 2 ð0; k0� for
d1 ¼ 1, 2, 3 from left to right, respectively. The dashed line
corresponds to Umax=Umin ¼ 4=3.
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FIG. 8. Graphs of j
’j (left panel) and j
�j (right panel) as
functions of k 2 ð~k; k0Þ for local maximum �2ð�Þ and parameters

� ¼ 1=3 and d1 ¼ 1, 2, 3.
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FIG. 7 (color online). Contour plot of the effective potential
Ueffð’;�Þ (3.1) with potential Uð�Þ of the form (4.2) for
parameters � ¼ 1=3, d1 ¼ 3, and k ¼ 0:004. This plot shows
the local zero minimum, local maximum, and two saddles. The
colored lines describe trajectories for scalar fields starting at
different initial conditions.
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values (the colored dots) in the vicinity of these extrema
points. The time evolution of these scalar fields is drawn in
Fig. 10. For given initial conditions, scalar fields approach
the local minimum �1ðþÞ of the effective potential along

the spiral trajectories.
We plot in Fig. 11 the evolution of the logarithm of the

scale factor aðtÞ (left panel), which gives directly the
number of e-folds and the evolution of the Hubble parame-
ter HðtÞ (right panel) and in Fig. 12 the evolution of the
parameter of acceleration qðtÞ.

Figure 11 shows that for considered trajectories we can
reach the maximum of e-folds of the order of 22, which is
long enough for all modes that contribute to the CMB to
leave the horizon.

The Fig. 11 for the evolution of the Hubble parameter
(right panel) demonstrates that all lines have plateaus H �
const. However, the red, yellow, and blue lines, which pass
in the vicinity of the saddle �2ðþÞ, have bigger value of the
Hubble parameter with respect to the dark blue line, which

starts from the �1ð�Þ region. Therefore, the scale factor aðtÞ
has stages of the de Sitter-like expansion corresponding to
these plateaus, which last approximately from 100 (dark
blue line) up to 800 (red line) Planck times.
Figure 12 for the acceleration parameter also confirms

the above conclusions. All four lines have stages q � 1 for
the same time intervals when H has plateaus. After the
stages of inflation, the acceleration parameter starts to
oscillate. Averaging q over a few periods of oscillations,
we obtain �q ¼ �0:5. Therefore, the scale factor behaves as

for the matter dominated Universe aðtÞ / t2=3. Clearly, it
corresponds to the times when the trajectories reach the
vicinity of the effective potential local minimum �1ðþÞ and
start to oscillate there.
Let us investigate now a possibility for topological in-

flation [16,40] if the scalar fields’,� stay in the vicinity of
the saddle point �2ðþÞ. As we mentioned in Sec. II, topo-

logical inflation in the case of the double-well potential
takes place if the distance between a minimum and local
maximum is bigger than ��cr ¼ 1:65. In this case, the
domain wall is thick enough in comparison with the
Hubble radius. The critical ratio of the characteristic thick-
ness of the wall to the horizon scale in local maximum is

rwH � jU=3@U��j1=2 � 0:48 [27], and for topological

inflation it is necessary to exceed this critical value.
Therefore, we should examine the saddle �2ðþÞ from the

point of these criteria.
In Fig. 13 (left panel), we draw the difference �� ¼

�max ��min for the profile ’ ¼ ’j�2ðþÞ as a functions of

k 2 ð~k; k0Þ in the case of � ¼ 1=3 for dimensions d1 ¼ 1,
2, 3. This picture shows that this difference can exceed the
critical value if the number of the internal dimensions is
d1 ¼ 2 and d1 ¼ 3. The right panel of Fig. 13 confirms this
conclusion. Here, we consider the case of � ¼ 1=3, k ¼
0:004, and d1 ¼ 3. For chosen values of the parameters,
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FIG. 10 (color online). Dynamical behavior of scalar fields ’ (left panel) and � (right panel) with corresponding initial values
denoted by the colored dots in Fig. 7.
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FIG. 9. Graphs of j
�j as functions of k for saddle point �2ðþÞ
and parameters � ¼ 1=3 and d1 ¼ 1, 2, 3. The left panel
demonstrates the whole region of variable k 2 ð~k; k0Þ, and the
right panel shows detailed behavior for small k.
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�� ¼ 2:63, which is considerably bigger than the critical
value 1.65 and the ratio of the thickness of the wall to the
horizon scale is 1.30, which again is bigger than the critical
value 0.48. Therefore, topological inflation can happen for
the considered model. Moreover, due to quantum fluctua-
tions of scalar fields, the inflating domain wall will have
fractal structure: it will contain many other inflating do-
main walls, and each of these domain walls again will
contain new inflating domain walls and so on [16]. Thus,
from this point, such a topological inflation is the eternal
one.

To conclude this section, we want to draw the attention
to one interesting feature of the given model. From the
above consideration, it follows that in the case of the zero

minimum of the effective potential the positions of extrema
are fully determined by the parameters k and d1 and for
fixed k, and d1 do not depend on the choice of �D. The
same takes place for the slow-roll parameters. On the other
hand, if we keep k and d1, the height of the effective
potential is defined by �D (see Appendix B). Therefore,
we can change the height of extrema with the help of �D

but preserve the conditions of inflation for given k and d1.
However, the dynamical characteristics of the model

(drawn in Figs. 10–12) depend on variations of �D by
the self-similar manner. It means that the change of height
of the effective potential via transformation �D ! c�D (c
is a constant) with fixed k and d1 results in the rescaling of
Figs. 10–12 in 1=

ffiffiffi
c

p
times along the time axis.
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FIG. 11 (color online). The number of e-folds (left panel) and the Hubble parameter (right panel) for the corresponding trajectories.
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V. SUMMARYAND DISCUSSION

In our paper we investigated the possibility of inflation
in multidimensional cosmological models. we paid par-
ticular attention to nonlinear (in scalar curvature) models
with quadratic R2 and quartic R4 Lagrangians. These mod-
els contain two scalar fields. One of them corresponds to
the scale factor of the internal space, and the other one is
related to the R nonlinearity of the original models. The
effective four-dimensional potentials in these models are
completely determined by the geometry and the matter
content of the models. The geometry is defined by the
direct product of the Ricci-flat external and internal spaces.
As a matter source, we include a monopole form field, a D-
dimensional bare cosmological constant and the tensions
of the branes located at the fixed points. The exact form of
the effective potentials depends on the relation between
various model parameters and can take a rather compli-
cated form with a number of extrema points.

First of all, we found the parameter range that insures the
existence of zero minima of the effective potentials. These
minima provide a sufficient condition for a stabilization of
the internal space and, consequently, to avoid the problem
of varying fundamental constants. Zero minima corre-
spond to a zero effective four-dimensional cosmological
constant. In general, we can also consider a positive effec-
tive cosmological constant, which could be identified with
the presently observed dark energy. However, usually this
requires an extreme fine-tuning of the parameters of the
models.

Then, for corresponding effective potentials, we inves-
tigated the possibility for inflation of the external space.
We have shown that for some initial conditions in the
quadratic and quartic models we can achieve up to 10
and 22 e-folds, respectively. An additional bonus of the
considered model is that the R4 model can provide con-
ditions for eternal topological inflation.

Obviously, 10 and 22 e-folds are not sufficient to solve
the homogeneity and isotropy problem, but they are cer-

tainly big enough to explain the recent CMB data. To have
an inflation that is long enough for modes that contribute to
the CMB, it is usually supposed that 4N � 15 [38].
Moreover, 22 e-folds is a rather big number to encourage
investigations of nonlinear multidimensional models and
to search for theories where this number will approach 50–
60. We have seen that increasing the nonlinearity (from
quadratic to quartic one) results in increasing 4N by a
factor of 2. So, there is justified hope that more compli-
cated nonlinear models can provide the necessary 50–60 e-
folds. Besides, this number is reduced in models where a
long matter dominated (MD) stage that follows inflation
can subsequently decay into radiation [41,42]. Precisely
this scenario takes place for our models. We have shown
for quadratic and quartic nonlinear models, that the MD

stage with an external scale factor of a� t2=3 takes place
after the stage of inflation. This happens when the scalar
fields start to oscillate near the position of a zero minimum
of the effective potential. However, the scalar fields are not
stable. For example, the scalar field ’ decays into two
photons ’ ! 2� with a decay rate ��m3

’=M
2
Pl [30].

Thus, the lifetime is �decay � ðMPl=m’Þ3tPl. The reheating
temperature is given by the expression TRH �
ðm3

’=MPlÞ1=2. Therefore, to get TRH * 1 MeV as necessary

for nucleosynthesis, we should take m’ * 10 TeV. In

Ref. [42], it was shown that for such a scenario with an
intermediate MD stage, the necessary number of e-folds is
reduced according to the formula

4 N ¼ � 1

6
ln

�
45

2
g�3=2
�

m2
’

�MPl

�
¼ � 1

6
ln

�
45

2
g�3=2
�

MPl

m’

�
;

(5.1)

where g� counts the effective number of relativistic degrees
of freedom and where we took into account that decaying
particles are scalars. This expression weakly depends on
g�. For example, if m’ � 10 TeV, we obtain �6:27 	
4N 	 �5:11 for 1 	 g� 	 102. Thus, 4N � �6.
Therefore, we believe that the number of e-folds is not a
big problem for multidimensional nonlinear models. The
main problem consists in the spectral index. For example,
in the case of the R4 model we get ns � 1þ 2
j�2ðþÞ �
0:61, which is less than the presently observed ns � 1. A
possible solution of this problem may consist in a more
general form of the nonlinearity fðRÞ. It was observed in
[15] that considering quadratic and quartic nonlinearities
simultaneously we can flatten the effective potential and
increase ns. We postpone this problem to separate
investigations.
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APPENDIX A: FRIEDMANNEQUATIONS FORTHE
MULTICOMPONENT SCALAR FIELD MODEL

We consider n scalar fields minimally coupled to gravity
in four dimensions. The effective action of this model reads
as

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi
j~gð0Þj

q
ðR½~gð0Þ� �Gij~g

ð0Þ��@�’
i@�’

j

� 2Uð’1; ’2; . . .ÞÞ; (A1)

where the kinetic term is usually taken in the canonical
form Gij ¼ diagð1; 1; . . .Þ (flat 
 model). Such multicom-

ponent scalar fields originate naturally in multidimensional
cosmological models (with linear or nonlinear gravita-
tional actions) [3,7,13]. We use the usual conventions c ¼
@ ¼ 1, i.e., LPl ¼ tPl ¼ 1=MPl and 8�G ¼ 8�=M2

Pl. Here,

scalar fields are dimensionless, and potential U has dimen-
sion ½U� ¼ length�2.

Because we want to investigate the dynamical behavior
of our Universe in the presence of scalar fields, we suppose
that scalar fields are homogeneous: ’i ¼ ’iðtÞ and the
four-dimensional metric is spatially flat Friedmann-

Robertson-Walker one ~gð0Þ ¼ �dt 
 dtþ a2ðtÞd~x 
 d~x.
For energy density and pressure we easily get

� ¼ 1

8�G

�
1

2
Gij _’

i _’j þU

�
;

P ¼ 1

8�G

�
1

2
Gij _’

i _’j �U

�
;

(A2)

)
�
1
2Gij _’

i _’j ¼ 4�Gð�þ PÞ;
U ¼ 4�Gð�� PÞ: (A3)

The Friedmann equations for considered model are

3

�
_a

a

�
2 � 3H2 ¼ 8�G� ¼ 1

2
Gij _’

i _’j þU; (A4)

and

_H ¼ �4�Gð�þ PÞ ¼ � 1

2
Gij _’

i _’j: (A5)

From these two equations, we obtain the following expres-
sion for the acceleration parameter:

q � €a

H2a
¼ 1� 4�G

H2
ð�þ PÞ ¼ � 8�G

6H2
ð�þ 3PÞ

¼ 1

6H2

�
�4� 1

2
Gij _’

i _’j þ 2U

�
: (A6)

It can be easily seen that the equation of state parameter
! ¼ P=� and parameter q are linearly connected:

q ¼ �1
2ð1þ 3!Þ: (A7)

From the definition of the acceleration parameter, it fol-
lows that q is constant in the case of the power law and
de Sitter-like behavior

q ¼
� ðs� 1Þ=s; a / ts;
1; a / eHt:

(A8)

For example, q ¼ �0:5 during the matter dominated (MD)
stage, where s ¼ 2=3.
Because the minisuperspace metric Gij is flat, the scalar

field equations are

€’ i þ 3H _’i þGij @U

@’j ¼ 0: (A9)

For the action (A1), the corresponding Hamiltonian is

H ¼ 8�G

2a3
GijPiPj þ a3

8�G
U; (A10)

where

Pi ¼ a3

8�G
Gij _’

j (A11)

are the canonical momenta, and equations of motion have
also the canonical form

_’ i ¼ @H
@Pi

; _Pi ¼ � @H
@’i : (A12)

It can be easily seen that the latter equation (for _Pi) is
equivalent to the Eq. (A9).
Thus, the Friedmann equations together with the scalar

field equations can be replaced by the system of the first-
order ODEs

_’ i ¼ 8�G

a3
GijPj; (A13)

_P i ¼ � a3

8�G

@U

@’i ; (A14)

_a ¼ aH; (A15)

_H ¼ €a

a
�H2 ¼ 1

6

�
�4� 1

2
Gij _’

i _’j þ 2U

�
�H2

(A16)

with Eq. (A4) considered in the form of the initial con-
ditions

Hðt ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
1

2
Gij _’

i _’j þU

�s ��������t¼0
: (A17)

We can make these equations dimensionless:

d’i

MPldt
¼ 8�

M3
Pla

3
GijPj; ) d’i

dt
¼ 8�

a3
GijPj; (A18)
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dPi

MPldt
¼ � a3M3

Pl

8�

@ðU=M2
PlÞ

@’i ; ) dPi

dt
¼ � a3

8�

@U

@’i :

(A19)

That is to say the time t is measured in the Planck times tPl,
the scale factor a is measured in the Planck lengths LPl, and
the potential U is measured in the M2

Pl units.

We use this system of dimensionless first-order ODEs
together with the initial condition (A17) for numerical
calculation of the dynamics of considered models with
the help of a MATHEMATICA package [36].

APPENDIX B: SELF-SIMILARITY CONDITION

Because of the zero-minimum conditions Uð�minÞ ¼
f21 ¼ 	=2, the effective potential (3.1) can be written in
the form

Ueffð’;�Þ ¼ Uð�minÞe�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’

�
Uð�Þ

Uð�minÞ
þ e�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’ � 2e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2d1Þ=ðd1þ2Þ

p
’

�
:

(B1)

Exact expressions for Uð�Þ (3.7) and (4.2) indicate that the
ratio

Uð�Þ
Uð�minÞ

¼ Fð�; k; d1Þ (B2)

depends only on �, k, and d1. The dimensionless parame-
ter k ¼ ��D for the quadratic model and k ¼ ��3

D for the
quartic model. In Eq. (B2) we take into account that�min is
a function of k and d1: �min ¼ �minðk; d1Þ. Then, Uð�minÞ
defined in Eqs. (3.7) and (4.2) reads as

Uð�minÞ ¼ �D
~Fð�minðk; d1Þ; k; d1Þ: (B3)

Therefore, parameters k and d1 determine fully the shape
of the effective potential, and parameter �D serves for
conformal transformation of this shape. This conclusion
is confirmed also in Secs. III and IV, where we show that
positions of all extrema in the ð’;�Þ plane depend only on

k and d1. Thus, Figs. 2 and 7 for contour plots are defined
by k and d1 and will not change with �D. From the
definition of the slow-roll parameters it is clear that they
also do not depend on the height of potentials, and in our
model depend only on k and d1 (see Figs. 8 and 9). Similar
dependence takes place for the difference �� ¼ �max �
�min drawn in Fig. 13. Thus, the conclusions concerning
the slow-roll and topological inflations are fully deter-
mined by the choice of k and d1 and do not depend on
the height of the effective potential, in other words, on�D.
So, for the fixed k and d1 parameter �D can be arbitrary.
For example, we can take �D in such a way that the height
of the saddle point �2ðþÞ will correspond to the restriction

on the slow-roll inflation potential (see, e.g., [43]) Ueff &
2:2� 10�11M4

Pl, or in our notations Ueff & 5:5�
10�10M2

Pl.

Above, we indicate figures that (for given k and d1) do
not depend on the height of the effective potential (on�D).
What will happen with dynamical characteristics drawn in
Figs. 10–12 (and analogous ones for the quadratic model)
if we, keeping fixed k and d1, will change �D? In other
words, we keep the positions of the extrema points (in
ð’;�Þ-plane) but change the height of the extrema. We
can easily answer this question using the self-similarity
condition of the Friedmann equations. Let the potential U
in Eqs. (A2) and (A3) be transformed conformally: U !
cU, where c is a constant. Next, we can introduce a new
time variable � :¼ ffiffiffi

c
p

t. Then, from Eqs. (A2)–(A5) it
follows that the Friedmann equations have the same form
as for the model with potential U, where time t is replaced
by time �. We call this condition the self-similarity. Thus,
if in our model we change the parameter �D: �D ! c�D,
it results (for fixed k and d1) in a rescaling of all dynamical
graphics (e.g., Figs. 10–12) along the time axis in 1=

ffiffiffi
c

p
times (a decrease of �D leads to a stretching of these
figures along the time axis and vice versa an increase of
�D results in a shrinking of these graphics). The numerical
calculations confirm this conclusion. The property of the
conformal transformation of the shape of Ueff with change
of �D for fixed k and d1 can be also called as the self-
similarity condition.
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