
Ostrogradski approach for the Regge-Teitelboim type cosmology

Rubén Cordero*

Departamento de Fı́sica, Escuela Superior de Fı́sica y Matemáticas del IPN,
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We present an alternative geometric inspired derivation of the quantum cosmology arising from a brane

universe in the context of geodetic gravity. We set up the Regge-Teitelboim model to describe our

universe, and we recover its original dynamics by thinking of such field theory as a second-order

derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its

quantization. Our analysis highlights the second-order derivative nature of the RT model and the inherited

geometrical aspect of the theory. A canonical transformation brings us to the internal physical geometry of

the theory and induces its quantization straightforwardly. By using the Dirac canonical quantization

method our approach comprises the management of both first- and second-class constraints where the

counting of degrees of freedom follows accordingly. At the quantum level our Wheeler-De Witt equation

agrees with previous results recently found. On these lines, we also comment upon the compatibility of

our approach with the Hamiltonian approach proposed by Davidson and coworkers.
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I. INTRODUCTION

The concept of a relativistic extended object as a surface
immersed in a bulk has increased the interest in physics
due to its wide range of applications. One can model, for
example, the smallest physical entities, like quarks, as
vibrations of strings up to the entire universe as a relativ-
istic extended object. Along a related line, with the advent
of brane world universes, cosmology in the presence of
extra dimensions has been the subject of intense research.
In fact, the idea that our universe could be a 3þ 1 dimen-
sional surface embedded in a higher dimensional space-
time was set up by Regge and Teiltelboim (RT) a long time
ago [1] and pursued by many authors [2–5]. The scope of
such a model is that gravitation can be described in a point-
or stringlike fashion, as the world volume swept out by the
motion of a three-dimensional spacelike brane evolving in
a higher-dimensional bulk spacetime [1]. Recently, the RT
brane model has been considered as one of the two main
pillars of a unified branelike theory [6], where the Randall-
Sundrum brane theory [7] is included. When one addresses
this issue in a Minkowski spacetime, the model is named
geodetic gravity, and it has been extensively studied by
Davidson and coworkers [8–11]. Although the RT model is
not the most popular theory for brane world universes (at

the end of the last century, there was a revival of the idea
that our universe could be a hypersurface; see, for example,
[7,12]), it is very stimulating while thinking in the spirit of
brane gravity à la string. The cosmology that arises from
this model is interesting in its own right since it provides an
alternative route to better understand classical cosmology
in extra dimensions, and also it supplies a compelling
model to apply the canonical quantization methods.
Indeed, in the context of quantum brane cosmology [13]
our universe can be explained through a tunneling process
where the well-known problem of boundary conditions of
four-dimensional cosmology is solved [14,15].
In most field theories the action depends usually on the

fields and their first derivatives. By contrast, the RT model
is a genuine second-order derivative model in the field
variables, which are the embedding functions rather than
the induced metric. Generally, one identifies and neglects a
surface term associated with the linear dependence of the
accelerations. Similarly, as in general relativity, it is a well-
known fact that a ‘‘harmless’’ surface term can be ne-
glected or removed at the beginning as occurs with the
well-known Gibbons-Hawking-York term into the action.
Whichever field context, the extremization of the corre-
sponding action yields equations of motion of second order
in derivatives in the field variables. Thus the RTmodel, like
the Einstein-Hilbert action for general relativity, becomes
transformed in an effective first-order field theory.
However, by what formally appears to be a customary
procedure, to follow such a strategy raises important limi-
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tations especially in the Hamiltonian framework for the RT
model where it leads to certain troubles, as was noticed first
by Regge and Teitelboim, due mainly to the fact that the
scalar constraint is not written down in a closed form
straightforwardly. In pursuing this endeavor, Davidson
and coworkers tackled the problem successfully. They
considered an extra nondynamical canonical field � in
the first-order Hamiltonian framework in order to get
quadratic constraints of the phase space that recuperate
the dynamics accordingly [9–11]. The explicit handling of
the quantum RT model is made possible by extending the
ordinary phase space, which in turn provides a wealth of
information of the cosmology that this model possesses.

In the present paper we consider an alternative formu-
lation for geodetic gravity which is strongly based in the
Ostrogradski program for higher-order derivative theories
[16,17]. For second-order theories this approach treats the
velocities as independent fields. This is an unconventional
viewpoint for the RT theory, and one might therefore
wonder if such a description is viable at all since this
does not necessarily represent a shortcoming: for this
special case, the addition of more degrees of freedom is
physically more accurate, but it means then that the first-
order theory is incomplete in some sense. For this reason, it
seems promising to start directly from the full RT model
instead of omitting the surface term a priori. Hence, we
pay close attention to a Hamiltonian approach for geodetic
gravity constructed by applying the Ostrogradski scheme
which in turn leads to the correct dynamics. In particular, it
is of a great interest to use the full model straightforwardly
for obtaining the quantum approach for brane cosmology.
Our intention is to cope directly with the inherent second-
order derivative nature of the RT model. As discussed
below, we gain certain improvements of clarity by the
use of this formalism in comparison with previous works.
Contrary to the standard quadratic form of the constraints
for ordinary first-order reparametrization invariant theo-
ries, in the Ostrogradski approach for RT field theory the
constraints are projections of the momenta along the ve-
locities as well as along the unit spacelike normal vector to
the brane. To illustrate our development we specialize our
considerations to a minisuperspace model where the inher-
ent gauge invariance under the reparametrization of time is
evident. We show that the canonical Dirac constraint quan-
tization of this model casts into a satisfactory Wheeler-De
Witt (WDW) equation on the wave function for a branelike
universe. The handling of the quantum approach is made
possible by a canonical transformation which results to be
a Lorentz rotation in phase space. Such a transformation
brings our constraints into a physically meaningful set
which enable us to follow the standard Dirac constraint
quantization programme. Our quantum treatment hence
leads to a well-defined Wheeler-DeWitt equation which,
even though it is technically complicated to solve, presents
the right behavior for the quantum potential, estimating the
accuracy of our approach.

The outline of the paper is as follows. In Sec. II we
briefly review some geometrical aspects of the RT model
for a general d-dimensional brane, which are of interest for
the rest of the paper. This section will serve to explain our
notation and to gain insight into our Hamiltonian approach.
In Sec. III we adapt our approach to a minisuperspace
model in which we specialize to the geometry generated
by the Friedman-Robertson-Walker (FRW) model. We ex-
plicitly give the Lagrangian density associated with the RT
model which includes the surface term. Section IV deals
with the Ostrogradski approach for the model we are
considering, and we develop the corresponding constraint
analysis. In Sec. V we propose the gauge-fixing for the
model in order to completely identify the structure of the
reduced phase space. In Sec. VI, we study the quantization
of our model within the scheme of Dirac quantization.
Finally, in Sec. VII we draw some conclusions. As a
general feature, our presentation avoids cumbersome no-
tation and it is intended to be index-free where it is
possible.

II. REGGE-TEITELBOIM MODEL

Consider a brane � of dimension d, evolving in a fixed
Minkowski N dimensional background spacetime with
metric ���. Its trajectory, or world volumem of dimension

dþ 1, is described by the embedding x� ¼ X�ð�aÞ, where
x� are local coordinates for the background spacetime, �a

are local coordinates for m, and X� the embedding func-
tions (�, � ¼ 0; 1; . . . ; N � 1; a, b ¼ 0; 1; . . . ; d). We de-
note by e�a ¼ @aX

� the tangent vectors to m. In this
framework we introduce N � d� 1 unit normal vectors
to the world volume, denoted by n�i (i ¼ 1; 2; . . . ; N �
d� 1). These are defined implicitly by ni � ea ¼ 0, and we
choose to normalize them as ni � nj ¼ �ij.

The RT model for a d-dimensional brane� is defined by
the action functional

SRT½X� ¼ �

2

Z
m
ddþ1�

ffiffiffiffiffiffiffi�g
p

R�
Z
m
ddþ1�

ffiffiffiffiffiffiffi�g
p

�; (1)

where the constant � has dimensions ½L�ð1�dÞ, and g de-
notes the determinant of the induced metric gab ¼
���e

�
ae

�
b ¼ ea � eb. We have also included in this action

a cosmological constant term,�. The extrinsic curvature of
m is Kab

i ¼ �ni �Daeb, where Da ¼ e�aD� and D� is

the covariant derivative in the bulk spacetime. The mean
extrinsic curvature is given by the trace Ki ¼ gabKab

i

where gab denotes the inverse of gab. The scalar curvature
R of m can be obtained either directly from the induced
metric gab, or, in terms of the extrinsic curvature, via the
contracted Gauss-Codazzi equation,R ¼ KiKi � Ki

abK
ab
i

[18,19].
The response of the action (1) to a deformation of the

surface X ! X þ �X is characterized by a conserved
stress tensor [20]
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fa� ¼ �ð�Gab þ�gabÞe�b; (2)

where Gab ¼ Rab � 1
2Rgab is the world volume Einstein

tensor, with Rab being the Ricci tensor. This quantity will
provide relevant physical information especially with con-
sistent conservation laws. Following the line of reasoning
of [20], the classical brane trajectories can be obtained
from the covariant conservation law, raf

a� ¼ 0, where
ra is the covariant derivative compatible with the induced
metric gab [21]. This yields [22]

TabKab
i ¼ 0; (3)

where Tab ¼ �Gab þ�gab. In fact, Tab corresponds to
the intrinsic stress tensor defined in the usual way by
�2=

ffiffiffiffiffiffiffi�g
p ð�SRT=�gabÞ. Its conservation is supported by

the Bianchy identity. The equations of motion (3) are of
second order in derivatives of the embedding functions
because of the presence of the extrinsic curvature. This is
so even though in the scalar curvature R we have the
presence of the extrinsic curvature. Owing to the repara-
metrization invariance of the RTmodel, there are onlyD�
d� 1 independent equations, along the normals; the re-
maining dþ 1 tangential components are satisfied identi-
cally, as a consequence of the reparametrization invariance
of the action (1).

An important quantity constructed with the conserved
stress tensor is given by

�� ¼ �af
a� ¼ �ð�Gab þ�gabÞ�ae

�
b (4)

where �a stands for the timelike unit normal vector to the
brane � when it is viewed into m [23]. In fact, Eq. (4) is
nothing but the conserved linear momentum associated
with the Noether charge of the action (1) specialized to
background translations [20]. The � basis, f	�A; �

�; n�ig,
satisfies the completeness relation

��� ¼ n�in�i � ���� þ hAB	�A	
�
B; (5)

where hAB ¼ gab	
a
A	

b
B is the spatial metric on � and 	aA

are the tangent vectors to �, (A, B ¼ 1; 2; . . . ; d). The
vector �� stands for a timelike unit vector to � (see
Refs. [21,24] for more details).

In the presence of other possible matter sources with
stress tensor Tab

m ¼ ð�2=
ffiffiffiffiffiffiffi�g

p Þ�Sm=�gab, where Sm is a

matter action, we do not expect considerable modifications
in our approach. The equations of motion (3) remain un-
changed in form. It is sufficient to add the matter stress
tensor to the original one described in (3). Similarly, the
conserved linear momentum (4) is unaffected in form when
another type of matter is included. It gets an additional
contribution of the form �

�
m ¼ �Tab

m �ae
�
b. These nice

features allow us to develop straightforwardly a
Hamiltonian analysis without substantial changes under
the inclusion of matter fields. This fact was also noticed
in [11].

III. MINISUPERSPACE MODEL

We turn now to restrict the RTmodel itself (1) to the case
of a minisuperspace model. Consider a 3-brane�, evolving
in a 5-dimensional Minkowski spacetime, ds2 ¼ �dt2 þ
da2 þ a2d�2

3, where d�
2
3 stands for the metric of a unit 3-

sphere, i.e., d�2
3 ¼ d
2 þ sin2
d�2 þ sin2
sin2�d�2.

For the sake of simplicity, we choose the function sin2

in d�2

3 to consider a closed universe. If

x� ¼ X�ð�aÞ ¼ ðtðÞ; aðÞ; 
; �;�Þ (6)

is a parametric representation of the trajectory of �, we
assure that the geometry of the world volume generated is
that of the FRW case. According to the cosmology jargon,
aðÞ is known as the scale factor.
The basis adapted to the world volume is given by the

four tangent vectors e�a (a ¼ 0, 1, 2, 3) together with the
unit spacelike normal vector

n� ¼ 1

N
ð� _a; _t; 0; 0; 0Þ; (7)

where the dot stands for derivation with respect to . For

short in the notation we have introduced the quantity, N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 � _a2

p
, which coincides with the lapse function when

we perform an ADM decomposition of the action (1)
[21,24].
The metric induced on the world volume is given by

ds2 ¼ gabd�
ad�b ¼ �N2d2 þ a2d�2

3: (8)

The spatial components of this metric correspond to the
metric associated with � when this is described by its
embedding in the world volume itself. Furthermore, for
this latter parametrization, we have �a ¼ 1=Nð1; 0; 0; 0Þ
such that gab	

a
A�

b ¼ 0.
The Ricci scalar associated with the metric (8) reads

R ¼ 6 _t

a2N4
ða €a _t�a _a €tþN2 _tÞ: (9)

The linear dependence that the Ricci scalar possesses in the
accelerations of the variables tðÞ and aðÞ is particularly
remarkable.
The Lagrangian density L ¼ ffiffiffiffiffiffiffi�g

p ð�2 R��Þ thus be-
comes

L ¼ �a _t�

N3
ða €a _t�a _a €tþ _t3 � _a2 _tÞ ��Na3

3
�; (10)

where � ¼ 3 sin�sin2
. Thus, the RT action specialized to
spherical configurations, in terms of an arbitrary parameter
, is reduced to

SRT ¼ 6�2
Z

dLða; _a; €a; _t; €tÞ; (11)

where the Lagrangian function is given by [25]

Lða; _a; €a; _t; €tÞ ¼ a _t

N3
ða €a _t�a _a €tþN2 _tÞ � Na3H2; (12)
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where we have introduced the constant quantity H2 :¼
�=3�. Thus, we have only aðÞ and tðÞ as independent
dynamical variables. Despite the acceleration dependence
in the Lagrangian, as characterizes second-order derivative
theories, the equations of motion remain second order in
the field variables (see Eq. (3)).

We proceed now to evaluate both the Einstein and the
extrinsic curvature tensors of the world volume as de-
scribed by the metric (8). We have the nonvanishing ex-
plicit components

G 
 ¼ � 3 _t2

a2N2
;

G


 ¼ G�

� ¼ G�
� ¼ � _t2

a2N4

�
2a _t

d

d

�
_a

_t

�
þ N2

�
;

and

K
 ¼

_t2

N3

d

d

�
_a

_t

�
; K



 ¼ K�
� ¼ K�

� ¼ _t

aN
:

Clearly, we can read off immediately the spatial compo-
nents of the extrinsic curvature tensor as well as its mean
extrinsic curvature given by K ¼ hABKAB ¼ 3 _t=aN.

As dictated by Eq. (3), there is only one equation of
motion given by

d

d

�
_a

_t

�
¼ �N2

a _t

�

�
; (13)

where we have introduced the functions

� :¼ _t2 � 3N2a2H2; (14a)

� :¼ 3 _t2 � N2a2H2; (14b)

for simplicity. Equation (13) obviously only involves sec-
ond derivatives of the field variables a and t. For any
solution for aðÞ we have a gauge freedom to choose a
function for tðÞ as we will see below.

IV. OSTROGRADSKI-HAMILTONIAN APPROACH

A deeper insight of the phase space structure of the
theory defined by the Lagrangian (12) is achieved by an
Ostrogradski procedure for higher-order derivative sys-
tems. (A complete description of the Hamiltonian formu-
lation for branes whose action depends on the extrinsic
curvature of their world volume is provided in [21,24].)
The highest conjugate momenta to the velocities f _t; _ag are,
respectively,

Pt ¼ @L

@€t
¼ �a2 _a _t

N3
; (15)

Pa ¼ @L

@ €a
¼ a2 _t2

N3
; (16)

such that the highest momentum spacetime vector is

P� ¼ a2 _t

N3
ð� _a; _t; 0; 0; 0Þ ¼ a2 _t

N2
n�: (17)

Though this momentum has not a direct mechanical mean-
ing it will become important to achieve a Legendre trans-
formation in order to obtain the Hamiltonian function for
our system (see Eq. (24) below). Note that the momentum
P� is directed normal to the world volume.

The conjugate momenta to the position variables ft; ag
are, respectively

pt ¼ @L

@ _t
� d

d

�
@L

@€t

�
¼ a _t

N3
½ _a2 þ N2ð1� a2H2Þ� ¼: ��;

(18)

pa ¼ @L

@ _a
� d

d

�
@L

@ €a

�
¼ � a _a

N3
½ _a2 þ N2ð1� a2H2Þ�

¼
�
_a

_t

�
�: (19)

Important to note is the fact that both momenta, pt and pa,
are from a totally different nature. Indeed, while the mo-
mentum pt is not influenced at all by the surface terms (as
expected), the momentum pa is obtained by two contribu-
tions: one coming from the ordinary theory and the other
by a surface term. In this way, we can denote the momen-
tum pa as

pa :¼ pa þ pa; (20)

where

p a ¼ � a _a

N3
½ _a2 þ N2ð3� a2H2Þ�; (21)

p a ¼ 2a _a

N
: (22)

It is crucial to recognize them as the canonical momentum
worked out in [9] and as the momentum conjugated to the
aðÞ-variable when considering as the Lagrangian only the
surface term Ls ¼ d=dða2a=NÞ, respectively.
To see the geometrical structure of this momentum, it is

convenient to write p� as

p� ¼ �

_t
ð� _t; _a; 0; 0; 0Þ ¼ �

_t
_X�: (23)

We realize that this momentum is identical with the vector
�� defined on Eq. (4), which is the projection of the

conserved stress tensor along the unit timelike normal
vector �a to �.
The appropiate phase space of the system, � :¼

ft; a; _t; _a;pt; pa; Pt; Pag, has been identified explicitly.
Thus in �, the Ostrogradski formalism yields the canonical
Hamiltonian

H0 ¼ p � _X þ P � €X � L ¼ pa _aþ pt _tþ JR; (24)

where we have defined
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JR ¼ � a

N
½ _a2 þ N2ð1� a2H2Þ� ¼ N2

_t
�: (25)

This potential-like term results in an implicit function of
the phase space variables in the combination N3P2. At first
glance, this may look as an unnecessary complication to
write the phase space quantities in terms of �, but this
quantity results in a physical observable: It is nothing but
the conserved bulk energy. Indeed, squaring the energy
Eq. (20), results in the so-called evolution master equation
[1,3–5]

N2 þ _a2 ¼ �N2a2H2; (26)

where � ¼ �ðaÞ satisfies the cubic equation �ð�� 1Þ2 ¼
�2=a8H6.

A. Constraint analysis

Since we are dealing just with a second-order derivative
theory linear in the accelerations, we have two primary
constraints given by the definition of the momenta itself,

and hence �� :¼ P� � a2 _t
N2 n� ¼ 0. Instead of these con-

straints, here we will follow a different but convenient
route. We choose to project the momentum (17) along
the velocity vector as well as the normal vector to�, where
in general n� ¼ n�ð _X�Þ. This is supported by using the
geometrical completeness relation (5) in �� ¼ ����

�.

Thus, we get the primary constraints

C 1 ¼ P � _X ¼ 0; (27)

C 2 ¼ NP � n� a2 _t

N
¼ 0: (28)

Therefore, the total Hamiltonian which generates time
evolution of the fields is

HT ¼ H0 þ �1C1 þ �2C2; (29)

where �1 and �2 are Lagrange multipliers enforcing the
primary constraints.

As customary, time-evolution for any canonical variable
z 2 � reads

_z ¼ fz; HTg; (30)

on the constraint surface, where the generalized Poisson
bracket for any two functions FðzÞ and GðzÞ in � is appro-
priately defined as

fF;Gg ¼ @F

@t

@G

pt

þ@F

@a

@G

pa

þ@F

@ _t

@G

Pt

þ@F

@ _a

@G

Pa

�ðF$GÞ:
(31)

Important to mention is the fact that the total Hamiltonian
(29) leads us directly to the right equations of motion (13)
through the conventional Ostrogradski approach for
higher-order derivative systems [17].

We also note that under the symplectic structure (31),
the constraints (27) and (28) result to be in involution,
fC1; C2g ¼ 0. According to the Dirac program for con-
strained systems, both C1 and C2 must be preserved by
the evolution which demands the existence of the second-
ary constraints

C 3 ¼ H0 ¼ p � _X þ N

�
a3H2 � 1

a3
N2P2

�
; (32)

C 4 ¼ p � n: (33)

The vanishing of the canonical Hamiltonian is expected
courtesy of the reparametrization invariance of the RT
model. Hence the canonical Hamiltonian H0 generates
diffeomorphisms normal to the world volume. The second-
ary constraint (33) is characteristic for every brane model
linear in accelerations. The process of generation of further
constraints is stopped at this stage since C3 is preserved
under evolution and the requirement of stationarity of C4
only determines a restriction on one of the Lagrange multi-
pliers, namely, �2 ¼ N3�=a2�. Thus, we are dealing with
a wholly constrained theory with first- and second-class
constraints, which is a consequence of the rich gauge
symmetry of the RT model. The distinctive feature of the
constraints (27) and (28) instead of�� is that C1 and C2 are
constraints that naturally generate the relationships (32)
and (33) as befit a higher-order derivative brane theory
[24].
Following Dirac’s program, the set of constraints should

be separated into subsets of first- and second-class con-
straints [26]. It is quite well known that for each pair of
second-class constraints there is one degree of freedom
which is not physically important and has to be removed
from the theory, and for each first-class constraint one
degree of freedom is removed. For our system we have
two first-class phase space constraints,

F 1 ¼ C1; (34)

F 2 ¼ N3�

a2�
C2 þ C3; (35)

and two second-class constraints. The selection of the
second-class constraints is straightforward (see the
Appendix). We choose them as

S 1 ¼ C2; (36)

S 2 ¼ C4: (37)

Note that as we have two linear independent first-class
constraints, we have the presence of two gauge transfor-
mations in the RT model. In the Appendix we discuss more
thoroughly the Poisson brackets among the phase space
constraints. The counting of degrees of freedom is as
follows: dof ¼ ½ðTotal number of canonical variablesÞ �
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2� ðfirst� class constraintsÞ � ðnumber of second�
class constraintsÞ�=2 ¼ ½8� ð2� 2Þ � 2�=2 ¼ 1, which
agrees with the number of normals to the world volume
[24]. Such a single degree of freedom can be identified as
the scale factor aðÞ.

V. GAUGE-FIXING

According to the conventional Dirac scheme, in order to
extract the physical meaningful phase space for a con-
strained system we need a gauge-fixing prescription which
entails the introduction of extra constraints, avoiding in
this way the gauge freedom generated by constraints (34)
and (35). To achieve this we will consider the conventional
cosmic gauge condition

’1 ¼ N � 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 � _a2

p
� 1 � 0; (38)

and the generalized evolution Eq. (26)

’2 ¼ N2 þ _a2 � �N2H2a2 � 0; (39)

where the � symbol stands for weak equality in the Dirac
approach for constrained systems [26]. From the geometric
point of view, this set of gauge conditions is good enough
since the matrix ðfF ; ’1;2gÞ is nondegenerate in the con-

straint surface. Indeed, under the Poisson bracket structure
(31), it is straightforward to show that gauges ’1 and ’2

form a second-class algebra with the constraints F 1 and
F 2

f’1;F 1g ¼ ’1 þ 1; f’1;F 2g ¼ 0;

f’2;F 1g ¼ 2’2 þ 2�H2a2; f’2;F 2g ¼ Fða; _a; _tÞ;
(40)

where Fða; _a; _tÞ is a complicated function [27].
Consequently, velocities _t and _a must be discarded as
dynamical degrees of freedom.

The use of the completeness relation (5) turns out to be
very useful at this level. It allows us to express the quantity
P2 by the equivalent expression�ðP � �Þ2 þ ðP � nÞ2. This
suggests the implementation of the following canonical
transformation to a new set of phase space variables:

N :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 � _a2

p
; �N :¼ 1

N
ðP � _XÞ;

v :¼ arctanh

�
�pa

pt

�
; �v :¼ NðP � nÞ;

(41)

together with the coordinate transformation Z� :¼ X� �
fX�; vg�v, while the momenta p� remains unaltered.

Such transformation can be physically interpreted as a
Lorentz rotation in phase space which, straightforwardly,
preserves the structure of the canonical Poisson brackets

fN;�Ng ¼ 1 ¼ fv;�vg; fZ�; p�g ¼ ��
�; (42)

as expected. A transformation of the same kind was con-
sidered in [28] for a quantum treatment of a kink model. To

understand in a more transparent way the geometric con-
tent of this transformation let us go through the intrinsic
angular momentum density of the RT model calculation
carefully. In terms of the new phase space variables the

intrinsic angular momentum is given by M��
i ¼

�aM
a��
i ¼ NP½� _X�� [20]. Such momentum is conserved

in the sense thatraM
a��
i ¼ 0. This contribution shows up

as an effect of the finite width of the brane in comparison
with flimsy branes described by Dirac-Nambu-Goto ac-
tion. The only nonvanishing contribution to the intrinsic
angular momentum reads

M i�n ¼ 1

2
N�v; (43)

which in turn tell us that our new variable �v can be
thought of as an angular momentum component.
In attempting to take into account the new phase space

variables, the first- and second-class constraints (34)–(37)
become

F 1 ¼ N�N; (44)

F 2 ¼ p � _X þ N

�
a3H2 þ 1

a3
N2�2

N � 1

a3
�2

v

�
; (45)

and

S 1 ¼ �v � a2 _t

N
¼ 0; (46)

S 2 ¼ pa _tþ pt _a ¼ pa _t� 2a _a

N
_t ¼ 0; (47)

respectively. Note that in the second-class constraint (47)
we split the momentum conjugated to a according to
relation (20), and hence, the second-class constraint (47)
results in identity (22). Furthermore, second-class identi-
ties (46) and (47) will become auspicious at the quantum
level since they enclose important operator identities.
One can develop further the constraint F 2 (45) by ex-

pressing the velocities in terms of the momenta, _a¼
�ðN=aÞ½pa=ðð��1Þa2H2þ2Þ� and _t¼��N=ð��1Þ�
a3H2, by using the second gauge (39). Thus, a direct
calculation on the first term in (45) yields

p � _X ¼ �
�

N

a½ð�� 1Þa2H2 þ 2�
�
p2
a �

�
N�

ð�� 1Þa3H2

�
pt

þ pa _a: (48)

Finally, after a lengthy but straightforward computation the
constraint F 2 can be cast as

F 2 ¼ N

�
p2
a � a

�
�
�

�

ð�� 1Þa3H2

�
pt þ pa _a

N
þ a3H2

þ 1

a3
N2�2

N � 1

a3
�2

v

�
½ð�� 1Þa2H2 þ 2�

�
:

(49)
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We could also use Eq. (18) and the second-class condition
(47), which impose the identities pt ¼ �� and pa ¼
2a _a=N, respectively, to conclude that the constraint F 2 �
0 gives rise to a quadratic expression for the involved
momenta. That is, the second gauge condition (39) shifts
the problem from the linear dependence in the momenta to
a convenient quadratic expression for the physical mo-
menta. To close this section we must mention that the
constraints F 1 and F 2 form an algebra isomorphic to the
Lie algebra associated with the lower triangular subgroup
of SLð2;RÞ as argued in the Appendix. This is the starting
point to achieve an algebraic quantization as we will sketch
below.

VI. QUANTIZATION

In this section we study the canonical quantization of our
system. Also, we will sketch an alternative different quan-
tum theory for our model which emerges from the corre-
sponding first-class symmetries. To this end, we emphasize
the totally dissimilar nature which first- and second-class
constraints play in the quantum theory, and also, we ex-
plore the different senses in which the physical states of our
theory can be defined.

We start in the conventional way by promoting the
classical constraints into operators, densely defined on a
common domain in a proper Hilbert space. As it is well
known, we can only achieve a consistent classical theory
by implementation of the Dirac bracket. Once this is done,
the second-class constraints are eliminated off the theory
by converting them into strong identities. At the quantum
level this is mirrored by defining the quantum commutator
of two quantum operators as

½Â; B̂� :¼ i dfA; Bg�; (50)

where the Dirac bracket f�; �g� is defined in Eq. (A7). Thus,
with this prescription the operators corresponding to
second-class constraints are also enforced as operator iden-
tities [26]. For our system, this yields the quantum operator
expressions

Ŝ 1 ¼ �̂v � a2b_t
N

¼ 0; (51)

Ŝ 2 ¼ p̂a � 2ab_a
N

¼ 0; (52)

which, in particular, tell us the character of the quantum

operators �̂v and p̂a. For the rest of the variables, we
choose to work on the ‘‘position’’ representation, where
we consider the position operators by multiplication and
their associated momenta operators by �i times the corre-
sponding derivative operator when applied on states de-
fined on a suitable Hilbert space.

By defining the quantum first-class constraints as

F̂ 1 :¼ �iN
@

@N
; (53)

F̂ 2 :¼ N

�
� @2

@a2
�

�
i�

ð�� 1Þa3H2

@

@t
þ 2að�H2a2 � 1Þ

þ að1� �ÞH2a2 � 1

a3

�
N

@

@N

�
2
�
a½ð�� 1ÞH2a2

þ 2�
�
; (54)

we will work on the assumption that the commutators of
these quantum constraints form a closed Lie algebra which
will be also isomorphic to the algebra g. In fact, the
classical first-class constraints are isomorphic to the alge-
bra g associated with the lower triangular subgroup G of
SLð2;RÞ (See the Appendix). Quantization of the lower
triangular subgroup of SLð2;RÞ by algebraic methods was
extensively studied in [29] (see also [30] for comparison).
Now we explore the rather different senses in which the
quantum constraints can be used to define appropriate
physical states.

A. Naı̈ve Dirac constraints

First, we explore the Wheeler-DeWitt equation emerg-
ing by considering the physical states 	 of the theory as
those defined by naı̈ve Dirac conditions

F̂ 1	 ¼ 0; (55)

F̂ 2	 ¼ 0: (56)

Equation (55) simply tells us that our physical states	 are
not explicitly depending on the phase space variable N.
However, due mainly to the complexity of our WDW Eq.
(56), we have not succeed in finding explicit solutions for
the physically admissible quantum states. We note that the
last term in the operator (54) will bring a vanishing con-
tribution to the WDW equation, and also we see that the
t-dependence can be avoided by assuming 	ða; tÞ :¼
e�i�tc , where c :¼ c ðaÞ satisfies the WDW equation�

� @2

@a2
þUðaÞ

�
c ðaÞ ¼ 0; (57)

where the potential UðaÞ is given by

UðaÞ ¼ a2½ð�� 1ÞH2a2 þ 2�2ð1� �H2a2Þ; (58)

which is recognized as the potential function found in [9]
by repeated use of the master evolution constraint (26) in
Eq. (56). The behavior of this potential is drawn in Fig. 1,
where we can see the characteristic potential barrier. As
discussed by Davidson and coworkers, it can be shown that
after considering appropriate boundary conditions the big-
bang singularity in our quantum theory can be neutralized
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by properly choosing the origin as inaccessible to wave
packets. For further details on the behavior of the potential
UðaÞ, the reader is referred to [9].

B. Modified Dirac constraints

As discussed in Refs. [31,32], there exists a procedure
which allows us to reduce nonunimodular groups to uni-
modular ones and this in turn brings a remarkable alter-
ation for systems amenable to geometric or algebraic
quantization which comprises a modification for the

Dirac conditions on physical states. Let fĈag be a set of
quantum constraints operators that generate a nonunimod-

ular gauge group with the commutators ½Ĉa; Ĉb� ¼ ifcabĈc,

where fabc are the structure constants of the corresponding
Lie algebra. Thus, the ‘‘unimodularization’’ procedure for
nonunimodular groups dictates the consideration of the

physical states j	i as those satisfying Ĉaj	i ¼
�ði=2Þfbabj	i. Such modified Dirac conditions agree

with the naı̈ve Dirac constraints if, and only if, the group
is unimodular.

Accordingly, for our theory the modified Dirac condi-
tions for the gauge group invariant quantization of the
system can be shown to be equivalent to�

F̂ 1 � i

2

�
j	i ¼ 0; (59)

F̂ 2j	i ¼ 0; (60)

which consequently define physical states j	i. Equation
(59) is equivalent to the homogeneity condition j	ðrNÞi ¼

r�1=2j	ðNÞi for r > 0 [29]. Further, (59) can be explicitly
solved by taking j	i ¼ A

N1=2 jc i, where A is a constant, and

jc i is a function of the variables a and t. Once more we
also do not have control on the explicit solutions for the
physically admissible quantum states. The t-dependence
can be avoided by assuming jc ða; tÞi :¼ e�i�tj’i, where
j’i is thought of as a function of the scale factor a only,
which satisfies the WDW equation

�
� @2

@a2
þUðaÞ þ ð�� 1Þa2H2 þ 2

4a2

�
j’ðaÞi ¼ 0; (61)

where the potential UðaÞ was described in the previous
subsection. Hence, we see that our modified quantum
theory brings out an extra potential term into our WDW
equation, which succinctly differs from the one found with
the naı̈ve Dirac procedure.
We note that the extra term is purely emerging from the

modified quantum Dirac Eqs. (59) and (60), and it is
completely absent while considering the naı̈ve Dirac pro-
cedure. This term will be nonvanishing even in the Einstein
limit (� ! 1), where it goes as a�2. Further studies about
the possible physical implications of this term could be
carried out. The behavior of the modified potential is drawn
in Fig. 2, where we can notably see that the central barrier
potential present in Fig. 1 is almost vanishing while an
infinite barrier emerges at the origin. To the best of our
knowledge, the resulting unbounded potential is not real-
istic despite the fact that first-class constraints suggest this
modified description. Nevertheless, one cannot resist the
speculation of such possible quantum behavior. Thus,
rather than a nice potential, this time it is a more compli-

a

U

FIG. 1 (color online). WDW potential for geodetic gravity
with naı̈ve Dirac constraints.

a

U

FIG. 2 (color online). WDW potential for geodetic gravity
with modified Dirac constraints.
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cated function with distinct features notwithstanding the
internal constraint symmetries that demand an unimodula-
rization procedure.

VII. CONCLUDING REMARKS

By making use of the Ostrogradski formalism we have
developed an alternative Hamiltonian description of the RT
brane model. Unlike the Hamiltonian treatment by
Davidson and coworkers for this model [10,11], our analy-
sis above keeps the original variables without the necessity
of introducing nondynamical variables. At first sight, this
may look like an unnecessary complication since the con-
figuration space is initially increased only to be reduced
again at a later stage by imposing the constraints and fixing
the gauge. Nevertheless, it is hoped that despite computa-
tional complications we have provided an improvement of
physical clarity, in particular, concerning the geometrical
meaning of the constraints of the theory and the physical
content of the achieved canonical transformation.
Although the Ostrogradski approach has a price to pay,
since neither the momentum P has the meaning of me-
chanical momentum nor H0 has to do with the energy of
the system, as it is customary, these quantities are adequate
for providing a set of canonical equations which correctly
describe the evolution of the system. Also, an important
point to mention is that the formalism is rich enough to
demonstrate the real role of the extra terms coming from
the surface: the phase space constraints of the system
impose identities for these quantities which are valid at
both classical and quantum levels, hence eliminating the
unphysical degrees of freedom.

In spite of the fact that this model is a second-order
derivative theory and since it is well known that at quantum
level the energy for higher-order derivative Lagrangians is
almost always unbounded below, the RT model results in
an exception due to its linear dependence on the acceler-
ations which in turn contain important physical informa-
tion commonly absent in higher-order derivative theories
[33]. Like it or not, until now a Hamiltonian approach for
the RT field theory demands the use of extra unphysical
degrees of freedom at the beginning which by means of the
phase space constraints are frozen out. Our adopted treat-
ment renders the passage to a full quantization for the
system which can be achieved by means of an inspired
canonical transformation. We conclude further that the
Ostrogradski quantum approach has exactly the same
unique degree of freedom as the Davidson and coworkers
approach. Although our Wheeler-DeWitt equation for the
scale factor is not analytically manageable, it is good
enough to substract from it some interesting features. In
particular, the potential we found is exactly the same as the
one extensively discussed by Davidson et al. [9].
Furthermore, our Hamiltonian approach makes feasible
the quantum treatment of Lagrangians with linear higher-
order derivative dependence in the fields.

It is suggesting that relativistic theories linear in the
accelerations, for which characteristic surface terms are
commonly neglected, are, as a generic feature, reluctant to
quantization. To present day, quantization for these kinds
of systems have been mainly studied by considering some
extra degrees of freedom by several other methods. From
this point of view, our intention has also been to introduce
the Hamiltonian-Ostrogradski approach as a geometrical
powerful method to beset this sort of system. An specific
example of this would be to apply our treatment to the
almost forgotten idea concerning the rigid bubble electron,
for which a linear correction in the extrinsic curvature of
the electron surface is added to the Dirac-Nambu-Goto
action in contrast to the conventional first-order method
where a surface term is omitted [34]. It will be worked
elsewhere.
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APPENDIX A: ALGEBRAIC PROPERTIES OF THE
CONSTRAINTS

We can construct the matrix CAB whose elements are the
Poisson brackets of all the constraints CA where A, B ¼ 1,
2, 3, 4. Hence,

ðCABÞ ¼ 1

aN

0 0 0 0
0 0 0 �a2�
0 0 0 N3�
0 a2� �N3� 0

0
BBB@

1
CCCA; (A1)

in the constraint surface. This matrix has rank 2, which is a
signal that we have two first-class constraints [26]. It is also
important to mention that constraints C1 and C3 form an
algebra, namely,

fC1; C1g ¼ 0; fC1; C3g ¼ �C3; fC3; C3g ¼ 0;

(A2)

which reflects the invariance under reparametrizations of
the RT field theory as a fundamental gauge symmetry.
Indeed, this algebra results in an isomorphism of the Lie
algebra g associated with the lower triangular subgroup of
SLð2;RÞ with positive diagonal elements, G. Such Lie
algebra g is spanned by the matrices [35]

h :¼ 1 0
0 �1

� �
; e� :¼ 0 0

1 0

� �
; (A3)

whose commutator is
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½h; e�� ¼ �2e�; (A4)

and hence we realize the isomorphism through the identi-
fication C1 � h=2 and C3 � e�. Among the relevant prop-
erties of the subgroup G we refer to the fact that G is two-
dimensional, non-Abelian, connected, and nonunimodular.
This last property plays an important role in our quantum
theory, as developed in Sec. VI.

Also, among the second-class constraints, (36) and (37),
we can construct the matrix SIJ ¼ fSI;SJg, given by

ðSIJÞ ¼ a�

N

0 �1
1 0

� �
; (A5)

and its inverse

ðSIJÞ ¼ N

a�

0 1
�1 0

� �
; (A6)

where I, J ¼ 1, 2. The matrix SIJ will help us to construct
a Dirac bracket in the standard way: Let f and g be two
arbitrary functions then

ff; gg� :¼ ff; gg �Xff;SIgSIJfSJ; gg; (A7)

where f�; �g stands for the Poisson bracket defined in (31).
As it is well known, classically, the Dirac bracket is essen-
tial to eliminate the second-class constraint of the theory
by converting them into simple functional identities. The
need for the Dirac bracket is also very relevant at the
quantum theory since we can only reach a consistent
quantization procedure through the implementation of
this bracket [26].
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