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The energy momentum tensor of a magnetic field always contains a spin-2 component in its anisotropic

stress and therefore generates gravitational waves. It has been argued in the literature (Caprini and Durrer

[C. Caprini and R. Durrer, Phys. Rev. D 65, 023517 (2001)]) that this gravitational wave production can be

very strong and that backreaction cannot be neglected. On the other hand, a gravitational wave

background does affect the evolution of magnetic fields. It has also been argued (Tsagas et al. [C. G.

Tsagas, P. K. S. Dunsby, and M. Marklund, Phys. Lett. B 561, 17 (2003)] [C. Tsagas, Phys. Rev. D 72,

123509 (2005)]) that this can lead to a very strong amplification of a primordial magnetic field. In this

paper we revisit these claims and study backreaction to second order.
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I. INTRODUCTION

Wherever we can measure them in the Universe, mag-
netic fields of 0.5 to several microgauss are present. They
have been found in ordinary galaxies [1] like ours, but also
in galaxies at relatively high redshift [2] and in galaxy
clusters [3]. It is still unknown where these cosmological
magnetic fields come from. Are they primordial, i.e. gen-
erated in the early Universe [4], or did they form later on by
some nonlinear aspect of structure formation, like the
Harrison mechanism which works once vorticity or, more
generically, turbulence has developed [5]?

In addition, once initial fields are generated, it is still
unclear whether they are strongly amplified by a dynamo
mechanism or only moderately by contraction. Since the
cosmic plasma is an excellent conductor, the magnetohy-
drodynamic (MHD) approximation can be employed
which implies that the magnetic field lines are frozen in
during structure formation. Therefore, as long as nonlinear
magnetic field generation can be neglected, the magnetic
field scales inversely proportional to the area, so that

B=�2=3 is roughly constant during structure formation.
Here � is the energy (or matter) density of the cosmic
plasma. For galaxies, with a density of about �gal � 105 ��

this means that simple contraction will enhance magnetic
fields by approximately 103; �� is the mean density. Hence,
if no dynamo is active during galaxy formation, initial
fields of Bin � 10�9 gauss are needed. On the other hand,
nonlinear dynamo action can enhance the magnetic field
exponentially by a factor up to 1015, so that initial fields as
tiny as Bin � 10�21 gauss might suffice [6]. However, since
this enhancement is exponentially sensitive to the age of
the Universe, it remains unclear how it can generate the
magnetic fields in galaxies at redshifts of z� 1 or more,
where the age of the Universe was at most half its present
value, reducing the amplification factor to less than 108.

Another problem of cosmic magnetic fields is that pri-
mordial generation of fields usually leads to a very blue
magnetic field energy spectrum,

d�B

d logk
/ kMþ3; (1)

where M ¼ 2 for ‘‘causally’’ produced magnetic fields [7]
andM� 0 for typical inflationary production mechanisms
[8]. Such blue magnetic field spectra are strongly con-
strained by their gravity wave production [9] and cannot
lead to the large scale fields observed today. The only
solution to the problem might lie in an ‘‘inverse cascade’’
by which energy is transferred from small to larger scales.
Since within the linearized approximation each Fourier
mode evolves independently, such a cascade is inherently
nonlinear. Within standard MHD it has been shown that
only helical magnetic fields can lead to inverse cascade [6].
In this work, we want to address a weakly nonlinear

effect which has not been considered in [6], namely, the
interaction of gravitational waves and magnetic fields. We
shall study how this interaction can modify the magnetic
field spectrum. We also reinterpret a finding by Tsagas
[10], where the interaction between gravitational waves
and magnetic fields has been interpreted as ‘‘resonant
amplification.’’ Similar conclusions are drawn in
Refs. [11,12]. However, in this last article it is noted that
the amplification can take place only on superhorizon
scales. And even though Ref. [12] does mention that there
is no amplification in the long-wavelength limit, they do
not really quantify this statement.
We show that the buildup of magnetic fields due to their

interaction with gravitational waves is at most logarithmic
and thus comparable to the generation of gravitational
waves by magnetic fields.
Furthermore, in Ref. [12] it has also been pointed out

that the superhorizon ‘‘amplification’’ is independent of
whether the plasma is highly conducting or not. This seems
physically reasonable as currents generated by electromag-
netic fields can act only causally, i.e. on subhorizon scales.
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An animated discussion on this subject followed the above
publications and can be found in Refs. [13,14]. Here the
role of a finite conductivity in an expanding Universe is
addressed but controversial final conclusions have been
reached.

The main advantage of our treatment is that we express
the relevant results entirely in terms of physical, measur-
able quantities, which renders the interpretation straight-
forward. We actually find for the density parameters of
second order perturbations that, once the scales considered
are inside the horizon,

�ð2Þ
B ’ �ð1Þ

B �ð1Þ
GW ’ �ð1Þ

B

�
Hinf

MP

�
2
; (2)

�ð2Þ
GW ’ ½�ð1Þ

B �2 þ ½�ð1Þ
GW�2; (3)

as one probably would expect naively. Even though most
parts of this result can already be found in the above cited
papers, they are interpreted there in a different way, and
especially in Eq. (2) it is not always noted that the factor

�ð1Þ
GW always has to remain small.

This paper is organized as follows. In the next section we
set up the fully nonlinear equations for the evolution of
magnetic fields in the relativistic MHD approximation. We
use the 3þ 1 formalism and closely follow the derivation
given in Ref. [15]. Since we are mainly interested in
gravitational waves, we specialize to the vorticity-free
case. In Sec. III we consider linear perturbations. We solve
the linear perturbation equations for gravitational waves
and magnetic fields with given initial conditions. We also
derive the evolution of the corresponding energy densities.
This part is not new and mainly included for completeness
and to fix the notation for the subsequent Sec. IV, where we
solve the second order equations. On this level the gravi-
tational waves interact with the magnetic field. We calcu-
late the second order magnetic field generated by this
interaction and show that for reasonable values for the first
order perturbations, its energy density remains always
much smaller than the energy density of the first order
contributions. In this sense, one cannot speak of resonant
amplification. In Sec. V we summarize our results and
draw some conclusions.

Throughout this work we use the metric signature
ð�;þ;þ;þÞ. Conformal time is denoted by t and we
neglect the background curvature of the Universe, K ¼ 0.
Spacetime indices are denoted by lower case Greek letters,
�, �, while lower case Latin letters, i, j are used for spatial
indices. Most of our calculations are performed in the
radiation dominated era and we shall often use the expres-
sion

aðtÞ ¼ Hina
2
int

for the scale factor.

II. THE BASIC EQUATIONS

We work in the MHD approximation, where we assume
high conductivity. The electric field is then small compared
to the magnetic field in the baryon rest frame which we
take to be the frame of our ‘‘fundamental observer.’’ In
addition, we assume the velocity u� of this fundamental
observer to be vorticity-free and we neglect acceleration.
According to Frobenius’ theorem u is hypersurface or-
thogonal and we can choose spatial coordinates in the
three-space orthogonal to u. Furthermore, in the early
Universe which is of interest to us, the dominant radiation
and baryons are tightly coupled so that the energy flux is
also given by u and we can set the heat flux q ¼ 0. In our
vorticity-free frame, the magnetic part of the Weyl tensor
Hij is related to the shear simply by

Hij ¼ curl�ij;

where curl is the 3-dimensional curl on the hypersurface
normal to u. Here � is the shear of u given by

��� � 1

2
ðu�;� þ u�;�Þ � 1

3
�~p��;

� � u
�
;� and ~p�� � g�� þ u�u�:

Note that the normalization of u implies 0 ¼ u�u�;� /
u0;�. The gravitomagnetic interaction can then be de-

scribed by the following equations (see [15]):

ruEij ¼ ��Eij � 1

2
�

�
�þ pþ 1

6�
B2

�
�ij �D2�ij

� �
1

2
ru�ij � 1

6
���ij þ 3�hi

nEjin

� 1

2
��hi

n�jin; (4)

ru�ij ¼ �Eij þ 1

2
��ij � �hi

n�jin � 2

3
��ij; (5)

ruBi ¼ � 2

3
~pij�Bj þ �ijB

j; (6)

ru� ¼ � 1

3
�2 � 1

2
�

�
�þ 3pþ 1

4�
B2

�
� 2�2: (7)

Here Eij is the electric part of the Weyl tensor, � and p are

the energy density and pressure of the cosmic fluid which is
assumed to follow the motion of the baryons (like e.g.
radiation before decoupling), � ¼ 8�G is the gravitational
coupling constant, and Bi is the magnetic field. We have
neglected the electric field in the above equations, since we
assumed it to be much smaller than the magnetic field, i.e.
B2 � E2. The covariant derivative in direction u is de-
noted by ru and the brackets indicate symmetrization and
trace subtraction,

Xhiji ¼ 1

2
ðXij þ XjiÞ � 1

3
~pijXm

m:
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D2 is the Laplace operator on the hypersurface orthogonal
to u. The scalars B2 and �2 are simply �2 � �ij�

ij=2 and

B2 � BiB
i.

In addition to this we have the Einstein equation, the
spatial part of which yields

R ij ¼ Eij þ 2

3

�
��þ 1

8�
�B2 � 1

3
�2 þ �2

�
~pij

þ 1

2
��ij � 1

3
��ij þ �nhi�n

ji; (8)

and its trace, the generalized Friedmann equation

1

3
�2 þ 1

2
R ¼ ��þ 1

8�
�B2 þ �2: (9)

HereRij is the Ricci tensor on the spatial hypersurface and

R is its trace.
From this system we can derive second order equations

for �ij and Bi which are

ruru�ij �D2�ij þ 5

3
�ru�ij þ

�
4

9
�2 � 3

2
�p� 5

6
��� 1

6�
�B2 � 4

3
�2

�
�ij

¼ �ru�ij þ 2

3
���ij þ 2

3
�B2�ij þ��hi

n�jin þ 2�hi
nru�jin �ru�hi

n�jin � ��hi
n�jin

þ 1

3
�2�ij þ 3�hi

n

�
1

2
ð�ji

m�nm þ �n
m�jimÞ � 2

3
�jin�2

�
; (10)

and

ruruBi �D2Bi þ 5

3
�ruBi þ

�
1

3
��� �pþ 2

9
�2 þ 1

12�
�B2 þ 2

3
�2

�
Bi

¼ �ijruB
j þ 2��ijB

j þ 2ðru�ijÞBj � 3

2
��ijB

j þ �n
hi�jinBj þ curlJi: (11)

Equation (11) can be obtained from Eq. (40) of [16] when
setting Ai ¼ 0, !ij ¼ 0, and qi ¼ 0. Ji stands for the 3-
dimensional current. Equation (11) is obtained without
neglecting the electric field. The term curlEi, which is
present in the original Maxwell equation which reduces
to Eq. (6) if Ei ¼ 0 [15], results in the Laplacian termD2Bi

and terms proportional to the wave number k times the
electric field [see Eq. (40) of [16]]. We have neglected
these latter contributions in the above equation, since they
are only relevant inside the horizon (kt � 1), where we
can neglect the source term of the equations, as we shall
argue in the following.

In a regime of low conductivity we can neglect also the
current in Eq. (11) and the magnetic field obeys the above
wave equation, while in a very high conductivity case we
should directly set the electric field Ei ¼ 0 from the begin-
ning and solve Eq. (6), obtaining a power-law behavior
with respect to time for Bi. In both cases we find that the
behavior in time of the induced second order magnetic field

Bð2Þ
i is the same on superhorizon scales (up to uncertain

logarithmic corrections). We interpret this as the insensi-
tivity of superhorizon perturbations to plasma properties
like conductivity.

Inside the horizon, we neglect the source term. This is
motivated by the Green function of the damped wave
equation obtained when linearizing (11), which rapidly
oscillates on subhorizon scales. For Eq. (6) it is not the

Green function but the source term �ð1Þ
ij B

j
ð1Þ which oscil-

lates when kt � 1, since gravity waves start oscillating at

horizon crossing. Therefore again, the subhorizon amplifi-
cation is unimportant. The same conclusion is actually
drawn in Ref. [12], where the fluid velocities are not
neglected.
In the following we shall consider these equations in first

and second perturbative orders with respect to a spatially
flat Friedmann background

ds2 ¼ a2ð�dt2 þ �ijdx
idxjÞ:

We neglect a possible spatial curvature of the background
and work with conformal time t. The time dependence of
the scale factor a is determined by the Friedmann equation�

_a

a

�
2¼�

3
�a2 and _�¼�3ð1þwÞ�

�
_a

a

�
; w¼p=�:

III. FIRST ORDER PERTURBATIONS

A. Magnetic fields

A background Friedmann universe of course cannot
contain a magnetic field since the latter always generates
anisotropic stresses �ij � 0 which break isotropy. When

considering a magnetic field as a first order perturbation,
Eq. (6) leads in first order to

_B ð1Þ
i ¼ � _a

a
Bð1Þ
i : (12)

For this we use that to lowest order u ¼ a�1@t and
ðruBÞi ¼ a�1ð@t � _a=aÞBi. Furthermore ~pij ¼ gij ¼
a2�ij and � ¼ 3 _a=a2. This is solved by
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Bð1Þ
i ðx; tÞ ¼ Bð1Þ

i inðxÞ
ain
aðtÞ ; Bið1Þðx; tÞ ¼ Bið1Þ

in ðxÞ a3in
a3ðtÞ :
(13)

The average energy density of the first order magnetic field
is then given by

h�ð1Þ
B i ¼ 1

8�
hBð1Þ2

ðinÞ ðxÞi
a4in
a4ðtÞ : (14)

Here, we assume that the first order magnetic field has been

generated by some random process. Hence Bð1Þ
i in is a

random variable and h� � �i denotes the expectation value.
We assume also that this random process is statistically

homogeneous so that h�ð1Þ
B i is independent of position.

B. Gravitational waves

For the gravity wave equation we consider a Fourier
component

�ð1Þk
ij ðx; tÞ ¼ �ð1Þðk; tÞQijðk̂Þ expðik � xÞ;

D2�ð1Þk
ij ðx; tÞ ¼ � k2

a2ðtÞ�
ð1Þk
ij ðx; tÞ:

Here Qijðk̂Þ is a transverse traceless polarization tensor.

We assume that the gravity waves are statistically isotropic
and parity invariant so that both polarizations have the
same averaged square amplitudes. For the amplitude

�ð1Þðk; tÞ we obtain to first order the usual tensor perturba-
tion propagation equation (neglecting anisotropic stresses
of the cosmic fluid)

€� ð1Þ þ
�
k2 � 3

2
ð1þ wÞH 2

�
�ð1Þ ¼ 0; (15)

whereH ¼ _a=a denotes the comoving Hubble parameter,
H ¼ aH, where H is the physical Hubble parameter. We
now rewrite this equation in terms of the dimensionless
variable

�ð1Þðk; tÞ � �ð1Þðk; tÞ=ða2in�Þ ¼ �ð1Þðk; tÞ=ð3Ha2inÞ:
We have normalized by the factor 1=a2in in order for the

quantity � to be independent of the normalization of the
scale factor. This is not true for � which is � / a2in. In this
way, � can be directly related to observable quantities
which are of course independent of the normalization of
the scale factor. Equivalently, we will make use of the
variable B that is defined as B � ffiffiffiffi

�
p

B=ð3HainÞ in order
to be independent of the normalization of the scale factor,
as well as �. In terms of � the above equation becomes

€�ð1Þ � 3ð1þ wÞH _�ð1Þ

þ
�
k2 þ

�
3

2
þ 6wþ 9

2
w2

�
H 2

�
�ð1Þ ¼ 0: (16)

In the matter or radiation era, the solutions to this linear
homogeneous differential equation are well-known in

terms of Bessel functions. We are mainly interested in
the radiation epoch, where w ¼ 1=3. During radiation
domination the Universe expands like aðtÞ / t such that
H ¼ Ha ¼ 1=t. We can therefore express the scale factor
as

aðtÞ ¼ Hina
2
int: (17)

In the radiation dominated Universe Eq. (16) reduces to

€� ð1Þ � 4

t
_�ð1Þ þ

�
k2 þ 4

t2

�
�ð1Þ ¼ 0; (18)

with solution

�ð1Þ / ðktÞ3½j1ðktÞ þ y1ðktÞ�; (19)

where jn and yn denote the spherical Bessel functions of
index n [17].
We distinguish the superhorizon and subhorizon behav-

iors. In the long wavelengths limit z � kt � 1, we have

lim
z!0

z3j1ðzÞ ’ z4

3
; lim

z!0
z3y1ðzÞ ’ �z:

Taking into account only the faster growing mode, we
obtain

�ð1ÞðtÞ ’ �in
ð1Þ

�
kt

ktin

�
4
; kt � 1; (20)

or equivalently

�ð1ÞðtÞ ’ �in
ð1Þ

�
a

ain

�
4
; kt � 1: (21)

The quantity directly related to gravity waves however is
given by �ð1Þ ¼ 3Ha2in�ð1Þ, for which we obtain on super-

horizon scales

�ð1ÞðtÞ ’ �in
ð1Þ

�
a

ain

�
2
; kt � 1: (22)

A direct consequence of this is that the ‘‘gravity wave
energy density’’ is constant in time outside the horizon,
as we show in the next subsection. Of course the notion of
gravity wave energy density and gravity wave is not strictly
well-defined for wavelengths larger than the size of the
Hubble horizon. We shall just use the expression which is
valid inside the horizon and call this the gravity wave
energy density by analogy. It has a physical interpretation
as a true energy density only once it enters the horizon.
However, whenever this quantity becomes of the order of
the background energy density, we know that perturbations
become large and we can no longer trust linear perturbation
theory.
Let us also consider the short wavelengths limit where

kt � 1. In this limit we can approximate

�ð1ÞðtÞ ’ ðktÞ2 cosðktÞ
cosð1Þ �ð1Þðkt ¼ 1Þ; kt � 1; (23)
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where the initial constant �ð1Þðkt ¼ 1Þ stands for the value
of�ð1Þ when it enters the horizon and can be obtained from
Eq. (20),

�ð1Þðkt ¼ 1Þ ’ �in
ð1Þ

�
1

ktin

�
4
:

The behavior of gravity waves on subhorizon scales, kt �
1, is then given by

�ð1ÞðtÞ ’ 3a2inHðktÞ2 cosðktÞ
cosð1Þ �ð1Þðkt ¼ 1Þ: (24)

We shall see that in this case the gravity wave energy
density decreases like 1=a4, as it has to be for true gravity
waves which are massless modes.

C. Energy densities

As a first physically important quantity, let us discuss the
energy densities of these first order perturbations and the
corresponding density parameters.

The magnetic energy density is

�ð1Þ
B � B2

ð1Þ
8�

¼ Bð1Þ
i Bi

ð1Þ
8�

: (25)

With Eq. (14), this becomes

�ð1Þ
B ðtÞ ¼ 1

8�
B2
ð1Þin

�
a4in
a4

�
: (26)

In the radiation dominated universe under consideration,
the density parameter of the first order magnetic field is
therefore given by

�ð1Þ
B ðtÞ � �ð1Þ

B

�c

¼ 8�G�ð1Þ
B

3H2
¼ G

3

B2
ð1Þ in
H2

in

¼ �ð1Þ
B in: (27)

The density parameter �ð1Þ
B is constant in time. Both the

background radiation and the magnetic field which is
frozen in scale in the same way with the expansion of the
Universe. As long as the magnetic field density parameter

�ð1Þ
B is much smaller than 1, the magnetic field can be

considered a small perturbation.
This is the result for a constant magnetic field. We also

want to consider a stochastic magnetic field. In this case
BðxÞ is a random variable and its spectrum is given by [9]

a2ðtÞBðx; tÞ ¼ 1

ð2�Þ3
Z

d3kBðkÞeix�k; (28)

hBiðkÞB�
j ðqÞi ¼ ð2�Þ3�ðk� qÞP ijðk̂ÞP ð1Þ

B inðkÞ: (29)

Here the basic time evolution of the magnetic field / a�2

has been removed so that, to first order, BðkÞ is indepen-
dent of time. P ijðk̂Þ ¼ �ij � k�2kikj is the projection

tensor onto the plane normal to k. The tensorial form of
the spectrum is dictated by statistical isotropy which also

requires that P ð1Þ
B in depends only on the absolute value k ¼

jkj, and by the fact that B is divergence-free. The Dirac
delta is a consequence of statistical homogeneity.1 In this
case we obtain

h�ð1Þ
B i ¼ 1

ð2�Þ68�
Z

d3k
Z

d3qhBðkÞBðqÞieix�ðk�qÞ

¼ 1

ð2�Þ3
Z dk

k
k3P ð1Þ

B inðkÞ ¼
Z dk

k

d�ð1Þ
B ðkÞ

d logk
:

For the magnetic field density parameter at scale k this
yields

d�ð1Þ
B ðk; tÞ

d logk
¼ 8�G

3ð2�Þ3
k3P ð1Þ

B inðkÞ
H2

in

¼ d�ð1Þ
B inðkÞ

d logk
: (30)

Let us now consider gravity waves. The gravity wave
energy density in real space is given by

�ð1Þ
GW � h _hij _hiji

8�G

1

a2
; (31)

where the factor 1=a2 comes from the fact that the dot
denotes the derivative with respect to conformal time and
the difference of a factor 4 in the normalization, as com-
pared e.g. to [19], comes from our definition of the pertur-
bation variable [gij ¼ a2ð�ij þ 2hijÞ]. In Eq. (31) hij is

considered as a tensor field with respect to the spatial
metric �ij so that there are no scale factors involved in

raising or lowering indices hij ¼ hi
j ¼ hij. For simplicity

we shall keep this convention in this section for all spatial
tensors.

To lowest order the shear is given by �ð1Þ
ij ¼ a _hij.

Furthermore, the fact that �ð1Þ
ij is transverse and traceless

together with statistical isotropy determines entirely the
tensor structure of the power spectrum

h�ð1Þin
ij ðkÞ�ð1Þin

lm ðqÞi ¼ ð2�Þ3�ðk� qÞMijlmðk̂ÞP ð1Þ
�inðkÞ;

where [9]

Mijlmðk̂Þ � �il�jm þ �im�jl � �ij�lm þ k�2ð�ijklkm

þ �lmkikj � �ilkjkm � �imklkj � �jlkikm

� �jmklkiÞ þ k�4kikjklkm: (32)

We have Mij
ij ¼ 4, which takes into account the two

polarization degrees of freedom. Therefore, considering
that also for the shear we do not multiply by the scale
factor while raising or lowering indices �ij ¼ �ij, we can

write the gravity wave energy density in terms of �ij as

�ð1Þ
GW ¼ h�ij�

iji
8�G

1

a4
: (33)

1One could also add a term which is odd under parity but we
disregard this possibility in this work [18].
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For the contribution to the energy density per logarithmic
frequency interval we then obtain

d�ð1Þ
GWðk; tÞ
d logk

¼ 2

ð2�Þ3G ½k3P ð1Þ
� ðk; tÞ� 1

a4

¼ 18

ð2�Þ3G ½k3P ð1Þ
�
ðk; tÞ�H2

�
ain
a

�
4
; (34)

where we have used the relation �ij ¼ 3Ha2in�ij or equiv-

alently P ð1Þ
� ðk; tÞ ¼ 9H2a4inP

ð1Þ
�
ðk; tÞ. Finally, we can write

the gravity wave density parameter as

d�ð1Þ
GWðk; tÞ
d logk

� 1

�c

d�ð1Þ
GW

d logk
¼ 48�

ð2�Þ3 ½k
3P ð1Þ

�
ðk; tÞ�

�
ain
a

�
4
:

(35)

We have now to distinguish between superhorizon and
subhorizon modes. Using our superhorizon result for
�ð1Þ ¼ �ð1Þ=ð3Ha2inÞ where kt � 1

�ð1Þ
ij ðk; tÞ ’ �ð1Þ

ij inðkÞ
�
t

tin

�
4
;

we find

d�ð1Þ
GWðk; tÞ
d logk

¼ 18

ð2�Þ3G ½k3P ð1Þ
� inðkÞ�

�
a

ain

�
8
H2

�
ain
a

�
4

¼ 18

ð2�Þ3G ½k3P ð1Þ
� inðkÞ�H2

in ¼
d�ð1Þ

GW in

d logk
: (36)

For the last equal sign we made use of Eq. (17). Hence on
superhorizon scales the gravity wave energy density is time
independent. Then, of course the gravity wave density
parameter grows like a4,

d�ð1Þ
GWðk; tÞ
d logk

¼ d�ð1Þin
GW

d logk

�
a

ain

�
4
; kt � 1; (37)

where

d�ð1Þin
GW ðkÞ

d logk
¼ 48�

ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�: (38)

Inside the horizon, kt � 1, we have to insert the expres-
sion of �ð1Þ given by Eq. (23) in Eq. (34), which yields

d�ð1Þ
GWðk; tÞ
d logk

’ 9

ð2�Þ3G ½k3P ð1Þ
� inðkÞ�

H2
in

ðktinÞ4
�
ain
a

�
4 / 1

a4
:

(39)

For the density parameter we obtain in a radiation domi-
nated background

d�ð1Þ
GWðkÞ

d logk
’ 24�

ð2�Þ3
�
1

ktin

�
4½k3P ð1Þ

� inðkÞ�

’ 1

2

�
1

ktin

�
4 d�ð1Þin

GW

d logk
; kt � 1: (40)

Inside the horizon, the gravity wave density parameter is
constant in time as is natural in a radiation dominated
Universe. Note that this agrees, up to the factor 1=2 which
comes from averaging cos2ðktÞ, with Eq. (37) at horizon
entry, where ða=ainÞ4 ¼ ðktinÞ�4. Large scale gravity
waves from inflation, are ‘‘amplified’’ for a long time
before entering the horizon, i.e. they have ktin � 1. Only

if ½d�ð1Þ
GWðkÞ=d logk� is small for all values of k, perturba-

tion theory is justified. Therefore it is not sufficient if

½d�ð1Þin
GW =d logk� is small, but we actually need that

ðktinÞ�4½d�ð1Þin
GW =d logk� be small. This is better understood

if we write the energy density in terms of the metric
perturbation. In a radiation dominated Universe the ‘‘grow-
ing’’ (not decaying) mode solution for the metric perturba-
tion is

hijðk; tÞ ¼ eijðkÞhinj0ðktÞ;
where eijðkÞ is transverse traceless and j0 is the spherical

Bessel function of order 0. Using j00 ¼ �j1 and Eq. (31)

yields

�ð1Þ
GW ¼ k3

k2hjhinj2ij21ðktÞ
8�Ga2

:

With �c ¼ 3H2=ð8�GÞ ¼ 3=ð8�Ga2t2Þ and hjhinj2i �
P h, we find

d�GW

d logk
¼ 3½ðktÞ2j21ðktÞ�k3Ph ’ 3ðktÞ4k3P h; if kt � 1:

(41)

Hence if the metric perturbations are small for all values of
k, i.e. k3P h � 1 this implies

d�GW

d logk
� ðktÞ4:

Therefore the requirement ðktinÞ�4½d�ð1Þin
GW =d logk� � 1 is

equivalent to the requirement that the metric perturbations
be small on superhorizon scales [note that j0ðzÞ ’ 1 for
z � 1].
Before we go to the second order, let us stress this point

once more, because it is the origin of the confusion in the
literature. Inflation generates gravitational waves with an
amplitude

k3P h ’
�
Hinf

MP

�
2 	 10�10;

where MP is the Planck mass and Hinf denotes the Hubble
parameter during inflation. The maximum value of 10�10 is
the maximum tensor fluctuation from inflation allowed by
the cosmic microwave background (CMB) anisotropies.
However, the density parameter on superhorizon scale is

given by [see Eq. (41)]

d�ð1Þ
GW

d logk
’ ðktÞ4

�
Hinf

MP

�
2
; kt � 1:
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This equation is correct for any power law background a /
tq, also for matter and even for inflation. Only at horizon
crossing can the density parameter become of the order
10�10. Inside the horizon it stays constant if the back-
ground is radiation. Hence Eq. (40) can be written as

d�ð1Þ
GWðkÞ

d logk
’
�
Hinf

MP

�
2
; kt � 1: (42)

IV. SECOND ORDER PERTURBATIONS

In this section we include all terms of second order in the
perturbations, and we shall insert our first order results for

them; i.e. in terms of the form �ijB
j we insert �ð1Þ

ij B
j
ð1Þ or

for �ij we insert the first order magnetic fields �ð1Þ
ij ¼

Bð1Þ
i Bð1Þ

j � ð1=3Þ~pð0Þ
ij B

ð1Þ2 in Eqs. (10) and (11). We obtain

the following differential equations for the evolution of the

second order perturbations Bð2Þ
i ðx; tÞ and �ð2Þ

ij ðx; tÞ:

ruruB
ð2Þ
i �D2Bð2Þ

i þ 5

3
�ruB

ð2Þ
i þ 1

3
�2ð1� wÞBð2Þ

i

¼ �ð1Þ
ij ruB

j
ð1Þ þ 2��ð1Þ

ij B
j
ð1Þ þ 2ru�

ð1Þ
ij B

j
ð1Þ

þ ðD2Þð1ÞBð1Þ
i þ curlJi; (43)

ruru�
ð2Þ
ij �D2�ð2Þ

ij þ 5

3
�ru�

ð2Þ
ij þ 1

6
�2ð1� 3wÞ�ð2Þ

ij

¼ �ru�
ð1Þ
ij þ 2

3
���ð1Þ

ij þ��hið1Þn�
ð1Þ
jin þ ðD2Þð1Þ�ð1Þ

ij

þ 2�nð1Þ
hi ru�

ð1Þ
jin �ru�hið1Þn�

ð1Þ
jin: (44)

Taking into account that ruBið1Þ ¼ �ð2=3Þ�Bið1Þ to-

gether with ru�
ð1Þ
ij ¼ �ð4=3Þ��ð1Þ

ij , Eqs. (43) and (44)

can be simplified to

ruruB
ð2Þ
i �D2Bð2Þ

i þ 5

3
�ruB

ð2Þ
i þ 1

3
�2ð1� wÞBð2Þ

i

¼
�
4

3
��ijð1Þ þ 2ru�

ð1Þ
ij

�
Bj
ð1Þ þ ðD2Þð1ÞBð1Þ

i ; (45)

ruru�
ð2Þ
ij �D2�ð2Þ

ij þ 5

3
�ru�

ð2Þ
ij þ 1

6
�2ð1� 3wÞ�ð2Þ

ij

¼ � 2

3
���ð1Þ

ij þ��hið1Þn�
ð1Þ
jin þ ðD2Þð1Þ�ð1Þ

ij

þ 2�nð1Þ
hi ru�

ð1Þ
jin �ru�hið1Þn�

ð1Þ
jin: (46)

We have also neglected the term curlJi in Eq. (43). Since it
is proportional to k in Fourier space, its contribution is
important only on subhorizon scales, where we neglect the
source part. Outside the horizon, kt � 1, it is negligible.

A. The second order magnetic field from gravity waves
and a constant magnetic field

For simplicity, and to gain intuition, we first consider a
constant first order magnetic field

Bð1Þ
i ðx; tÞ ¼ Bð1Þ

i in

ain
a

; Bð1Þ
i ðk; tÞ ¼ Bð1Þ

i in

ain
a

�3ðkÞ:

In this case, the convolution of Bð1Þ and �ð1Þ, into which the
products in ordinary space transform under Fourier trans-
formation, become normal products and the second order

magnetic field Bð2Þ
i has the same wavelength as the first

order gravity wave which generates it.

Remembering that �ij / a�4

ffiffiffiffiffiffiffiffiffi
P ð1Þ

�

q
� a�4�ð1Þ one ob-

tains

€B ð2Þ
i þ 2H _Bð2Þ

i þ Bð2Þ
i

�
k2 þ 1

2
H 2ð1� 3wÞ

�
¼ 2 _�ð1Þ

ij B
ð1Þ
j in

ain
a2

: (47)

In principle, one has to consider the corrections to the
orthogonal spatially projected covariant derivative

ðD2Þð1ÞBð1Þ
i due to the tensor perturbations hij in the metric

tensor g��. Computing these corrections, they turn out to

be equal to zero, since the magnetic field is transverse. This

remains valid even if Bð1Þ is not constant.
Considering the expansion-normalized dimensionless

variable Bð2Þ
i � ffiffiffiffi

�
p

Bð2Þ
i =ð�ainÞ, we obtain

€B ð2Þ
i �H ð1þ 3wÞ _Bð2Þ

i þBð2Þ
i



�
k2 þH 2

�
1

2
þ 3wþ 9

2
w2

��
¼ fi;

fj � 2
ffiffiffiffi
�

p �
_�ð1Þ
ij � 3

2
H ð1þ wÞ�ð1Þ

ij

�
Bð1Þ
j in

�
ain
a

�
2
:

(48)

We investigate the behavior of the second order pertur-
bation in the radiation dominated phase.
Moreover, since the source fiðk; tÞ and therefore also

Bð2Þ
i ðk; tÞ are random variables, we want to determine their

spectra. The first order gravity wave spectrum is

h�ð1Þin
ij ðkÞ��ð1Þin

ln ðqÞi ¼ ð2�Þ3Mijlnðk̂Þ�3ðk� qÞP ð1Þ
� inðkÞ;

h�ð1Þin
ij ðkÞ��ij

ð1ÞinðqÞi ¼ 4ð2�Þ3�3ðk� qÞP ð1Þ
� inðkÞ;

where Mijlm is the gravity wave polarization tensor de-

fined in Eq. (32). It can also be expressed in terms of the

projection tensor P ijðk̂Þ, Mijlm � P ilP jm þ P imP jl �
P ijP lm. Actually ð1=2ÞMij

lm is the projection tensor

onto the two transverse traceless modes of a rank 2 sym-
metric tensor. The power spectrum of the second order
magnetic field Bð2Þ is of the form
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hBð2Þ
i ðk; tÞB�ð2Þ

j ðp; tÞi ¼ ð2�Þ3P ijðk̂Þ�3ðk� pÞP ð2Þ
B ðk; tÞ:

(49)

We obtain the solution forBð2Þ
i ðk; tÞ with the help of the

Green function method,

B ð2Þ
i ðk; tÞ ¼

Z t

tin

dt0Gðt; t0;kÞfiðk; t0Þ: (50)

Here G is the Green function of the second order linear

differential operator acting on Bð2Þ
i which depends on the

cosmological background. It can be determined in terms of
the homogeneous solutions which in the radiation domi-
nated era are simply spherical Bessel functions and
powers. More precisely, in terms of z ¼ kt, Eq. (48) in
the radiation dominated case, w ¼ 1=3, becomes

B ð2Þ00
i � 2

z
Bð2Þ0

i þ
�
1þ 2

z2

�
Bð2Þ

i ¼ k�2fiðz;kÞ; (51)

where the prime denotes a derivative with respect to z. Two
homogenous solutions to this equation are P1ðzÞ ¼ z2j0ðzÞ
and P2ðzÞ ¼ z2y0ðzÞ. Defining the Wronskian WðzÞ ¼
P0
1ðzÞP2ðzÞ � P1ðzÞP0

2ðzÞ ¼ z2, a possible Green function
is

G ðz; z0;kÞ ¼ P1ðz0ÞP2ðzÞ � P1ðzÞP2ðz0Þ
Wðz0Þ : (52)

The solution obtained by integrating with this Green func-

tion satisfies the initial condition Bð2Þ
i ðzin;kÞ ¼

Bð2Þ0
i ðzin;kÞ ¼ 0. Any other solution can be obtained by

adding a homogeneous solution to this one. We discuss the
physically correct choice of initial conditions in more de-
tail in Appendix A. For the magnetic field, the initial
conditions chosen with this Green function seem adequate
to us. We can now write the magnetic field spectrum as

hBð2Þ
i ðk; tÞB�ð2Þ

j ðp; tÞi ¼
Z z

zin

dz0
Z z

zin

dz00k�2p�2Gðz; z0;kÞ


 G�ðz; z00;pÞhfiðk; z0Þf�j ðp; z00Þi:
(53)

We solve Eq. (51), distinguishing the subhorizon and
superhorizon regimes. In the long wavelength limit kt ¼
z � 1, we have to insert the solution obtained for gravity

waves �ð1Þ
ij on superhorizon scales and given in Eq. (20).

Therefore, the source term fiðk; tÞ reads

fiðk; t0Þ ¼ 4
ffiffiffiffi
�

p
P s

i ðk̂Þ½�ð1Þin
sn ðkÞBð1Þin

n �ðHinainÞ2t0; (54)

and equivalently for f�j ðq; t00Þ. The power spectrum of fi
can then be written as

hfiðk; z0Þf�j ðp; z00Þi ¼ 16�P s
i ðk̂ÞP l

jðq̂Þh�ð1Þin
sn ðkÞ��ð1Þin

lr ðkÞi

 Bð1Þin

n B�ð1Þin
r ðHinainÞ4z0z00k�2

� ð2�Þ3�3ðk� pÞP ijðk̂Þhðz0; z00; kÞ:
(55)

For the function hðz0; z00; kÞ we obtain the following ex-
pression:

hðz0; z00; kÞ ’ FðkÞgðz0Þgðz00Þ;
FðkÞ ¼ �B2

ð1ÞinP
ð1Þ
� inðkÞk�2; gðz0Þ ¼ 4H2

inainz
0:

The solution for the power spectrum of the second order
perturbation of the magnetic field can then be written as

hBð2Þ
i ðk; tÞB�ð2Þ

j ðp; tÞi ¼ ð2�Þ3P ijðk̂Þ�3ðk� pÞ



�Z z

zin

dz0Gðz; z0;kÞ


 ffiffiffiffiffiffiffiffiffiffi
FðkÞp

gðz0Þ
�
2
: (56)

The square ½� � ��2 is simple the power spectrum P ð2Þ
B ðk; tÞ

which we want to determine. Of course, the integrals in the
square brackets are solutions to our magnetic field equation

(51) with source
ffiffiffiffiffiffiffiffiffiffi
FðkÞp

gðzÞ. Hence
ffiffiffiffiffiffiffiffiffi
P ð2Þ

B

q
satisfies the

equation

P00 � 2

z
P0 þ

�
1þ 2

z2

�
P ¼ �

k3
z; jPj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ

B ðk; tÞ
q

;

z � kt; � � 4H2
inain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B2

ð1ÞinP
ð1Þ
� inðkÞ

q
: (57)

Solving the above equation with the Wronskian method in
the regime z ¼ kt � 1, one finds

PðzÞ ’ �

2k3
z3; z ¼ kt � 1:

This yields

k3P ð2Þ
B ðk; tÞ ’ 4�

B2
ð1Þin
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
6
; kt � 1:

(58)

This is the second order magnetic field power spectrum
induced by the presence of a first order field and a gravi-
tational wave. It is the growth / t6 of this induced field
which has been interpreted in Refs. [10,11,20] as strong
amplification. But before drawing such conclusions, we

want to compare the energy density parameter of Bð2Þ with
the ones of Bð1Þ and �ð1Þ inside the horizon, where these
quantities have a simple physical interpretation.
Inside the horizon, kt � 1, we can no longer use the

above simple approximation for the source term. The
solution of Eq. (57) with a generic source term
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½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ

B ðk; zÞ
q

�00 � 2

z
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ

B ðk; zÞ
q

�0 þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ

B ðk; zÞ
q

� ¼ Sðk; zÞ
(59)

can be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ

B ðk; zÞ
q

¼
Z z

zin

dz0Sðk; z0ÞGðz; z0;kÞ: (60)

But, once the gravity waves enter the horizon, the source
and the Green function start oscillating and the contribu-
tion to the above integral becomes negligible. We therefore
neglect the source inside the horizon and simply match the
solution at horizon crossing with the homogeneous solu-
tions of Eq. (57) given above, that are P1ðzÞ ¼ z2j0ðzÞ and
P2ðzÞ ¼ z2y0ðzÞ (z ¼ kt). Considering the limit z � 1, this
yields

k3P ð2Þ
B ðk;tÞ’2�

B2
ð1Þin
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
2 1

ðktinÞ4
; kt�1:

(61)

The energy density

To analyze this amplification which happens mainly on
superhorizon scales, let us compare energy densities after
horizon entry. The energy density of our second order
magnetic field is

d�ð2Þ
B ðk; tÞ
d logk

� 1

ð2�Þ3 ½k
3P ð2Þ

B ðk; tÞ� 1
a2

¼ 1

ð2�Þ3 ½k
3P ð2Þ

B ðk; tÞ� 9H
2

�

�
ain
a

�
2
: (62)

The factor 1=a2 comes from the fact that we have to raise

one index of hBð2Þ
i Bð2Þ

i i in order to compute the energy

density, while a2in is due to the definition of Bð2Þ
i /

Bð2Þ
i =ain that we gave above. The density parameter for

Bð2Þ then reads

d�ð2Þ
B ðk; tÞ

d logk
¼ 3

ð2�Þ3
�
ain
a

�
2½k3P ð2Þ

B ðk; tÞ�: (63)

With H ¼ Hina
2
in=a

2 we find that even though P ð2Þ
B ðk; tÞ is

growing like t6 on superhorizon scales, the density parame-

ter grows like �ð1Þ
GW. After horizon entry, this growth stops

and�ð2Þ
B remains constant. Inserting the solutions (58) and

(61) for k3P ð2Þ
B ðk; tÞ gives
d�ð2Þ

B ðk; tÞ
d logk

¼ 6
d�ð1Þ

GWðk; tÞ
d logk

�ð1Þ
B (64)

on superhorizon and subhorizon scales.
Hence, even though the second order magnetic fieldBð2Þ

is growing considerably, this reflects only the growth of the

unphysical density parameter�ð1Þ
GW on superhorizon scales.

Once this is factored in, the magnetic field density parame-
ter behaves naturally. The values for both

½d�ð1Þin
GW ðkÞ=d logk�ðktinÞ�4 ¼ ½d�ð1Þ

GWðkÞ=d logk� and �ð1Þ
B

are at most of the order of 10�5 and smaller. For the gravity

waves, we have seen that ½d�ð1Þin
GW ðkÞ=d logk�ðktinÞ�4 is just

the square amplitude of the metric perturbations on super-
horizon scales, which has to be k3Ph & 10�10 in order not
to overproduce CMB anisotropies on large scales (inte-
grated Sachs-Wolfe effect). Similar arguments yield

�ð1Þ
B < 10�5 on large scales (see e.g. [21,22]). Therefore,

even though we agree with the calculation in Ref. [10], we
do not agree with the interpretation. If the gravitational
wave energy density is as small as required by the mea-

surements of CMB anisotropies, �ð2Þ
B always remains

smaller than �ð1Þ
B . Furthermore, up to logarithmic correc-

tions, Bð2Þ inherits the spectrum of the first order gravity
waves.
In the next section we show that this conclusion persists

also if we allow for a stochastic magnetic field. Just the
computation becomes more involved.

B. The second order magnetic field from gravity waves
and a stochastic magnetic field

In the case in which the first order magnetic field is not

spatially constant, all the products �ð1Þ
ij ðx; tÞBj

ð1Þðx; tÞ be-
come convolutions in Fourier spaceZ

d3xeik�x�ð1Þ
ij ðx; tÞBj

ð1Þðx; tÞ

¼ 1

ð2�Þ3 P i
nðk̂Þ

Z
d3q�ð1Þ

nj ðq; tÞBj
ð1Þðk� q; tÞ;

where the projector P n
i � �n

i � k̂ik̂
n projects onto the

transverse modes. The result of this convolution is a mag-
netic field and therefore transverse. Hence this projector is
not strictly necessary. But as we shall see, it simplifies the
calculations.
Our equations are written in terms of the dimensionless

expansion-normalized variables Bð2Þ
i ðx; tÞ and �ð2Þ

ij ðx; tÞ,
and we want to express their power spectra in terms of
the power spectra of the first order random variables

Bð1Þ
i ðx; tÞ and �ð1Þ

ij ðx; tÞ for which we assume simple power

laws

Bð1Þ
i ðk; tÞ ¼ Bin

ið1ÞðkÞ
ain
a

;

Bi
ð1Þðk; tÞ ¼ Bini

ð1ÞðkÞ
a3in
a3

;

a2inhBð1Þ in
i ðkÞB�ð1Þ in

j ðqÞi ¼ ð2�Þ3P ijðk̂Þ�3ðk� qÞP ð1Þ
B inðkÞ;

hBð1Þ in
i ðkÞB�i

ð1Þ inðqÞi ¼ 2ð2�Þ3�3ðk� qÞP ð1Þ
B inðkÞ;

P ð1Þ
B inðkÞ ¼

� ½B2
ð1Þ in	

3�ð	kÞM for k < kd;

0 for k > kd;

(65)
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where kd is the damping scale which we assume to be
always much smaller than the Hubble scale. The scale 	 is
arbitrary, e.g. the scale at which we want to calculate the
magnetic field. With this normalization Bin

ð1Þ is simply the

amplitude of the magnetic field at scale 	 at time tin. At any
other moment, the magnetic field at scale 	 is given by
Bin
ð1Þa

2
in=a

2ðtÞ.
Equivalently we have for the gravity wave power spec-

trum

�ð1Þ
ij ðk; tÞ ¼ �ð1Þin

ij ðkÞTðk; tÞ;
h�ð1Þin

ij ðkÞ��ð1Þin
ln ðqÞi ¼ ð2�Þ3Mijlnðk̂Þ�3ðk� qÞP ð1Þ

� inðkÞ;
h�ð1Þin

ij ðkÞ��ij
ð1ÞinðqÞi ¼ 4ð2�Þ3�3ðk� qÞP ð1Þ

� inðkÞ;
P ð1Þ

� inðkÞ ¼ ½�2
ð1Þin	

3�ð	kÞA: (66)

Here the transfer function Tðk; tÞ keeps track of the deter-
ministic time dependence of the gravity waves. In the
previous section we have derived the well-known behavior
of the gravity wave transfer function which oscillates on
subhorizon scales, kt � 1, and behaves like a power law
on superhorizon scales. For the radiation dominated case,

Tðk; tÞ ’
�
a

ain

�
4
; kt � 1: (67)

Starting from Eq. (45), we can write the following
evolution equation for the second order perturbation

€Bð2Þ
i ðx; tÞ þ 2H _Bð2Þ

i ðx; tÞ � a2D2Bð2Þ
i ðx; tÞ

þ 1

2
H 2ð1� 3wÞBð2Þ

i ðx; tÞ ¼ 2a _�ð1Þ
ij ðx; tÞBj

ð1Þðx; tÞ: (68)

Replacing Bð2Þ
i ¼ 3HainB

ð2Þ
i =

ffiffiffiffi
�

p
and �ð1Þ

ij ¼ 3Ha2in�
ð1Þ
ij ,

we obtain

€Bð2Þ
i ðx; tÞ � ð1þ 3wÞH _Bð2Þ

i ðx; tÞ � a2D2Bð2Þ
i ðx; tÞ

þ
�
1

2
þ 3wþ 9

2
w2

�
H 2Bð2Þ

i ðx; tÞ

¼ 2
ffiffiffiffi
�

p
ainaB

j
ð1Þðx; tÞ

�
_�ð1Þ
ij ðx; tÞ �

3

2
H ð1þ wÞ�ð1Þ

ij ðx; tÞ
�
:

(69)

This is the same differential equation as for the constant
magnetic field. In Fourier space this equation becomes

€Bð2Þ
i ðk; tÞ � ð1þ 3wÞH _Bð2Þ

i ðk; tÞ þBð2Þ
i ðk; tÞ



�
k2 þ

�
1

2
þ 3wþ 9

2
w2

�
H 2

�
¼ fiðk; tÞ; (70)

where the source fiðk; tÞ is now given by a convolution

fiðk; tÞ � 2

ð2�Þ3
ffiffiffiffi
�

p
ainaP i

rðk̂Þ
�Z

d3q _�ð1Þ
rj ðq; tÞ


 Bj
ð1Þðk� q; tÞ � 3

2
ð1þ wÞH

Z
d3q�ð1Þ

rj ðq; tÞ


 Bj
ð1Þðk� q; tÞ

�
: (71)

In terms of the variable z ¼ kt we obtain again Eq. (51).
As in the previous section we solve it with the Green

function method. Therefore, the power spectrum of Bð2Þ
i

is given by

hBð2Þ
i ðk; tÞB�ð2Þ

j ðp; tÞi ¼ ð2�Þ3�3ðk� pÞ

 ð�ij � k̂ik̂jÞP ð2Þ

B ðk; tÞ;
with

P ð2Þ
B ðk; tÞ ¼

Z z

zin

dz0
Z z

zin

dz00Gðz; z0;kÞG�ðz; z00;pÞ


 hfiðk; z0Þf�j ðp; z00Þi;
where z ¼ kt. In the radiation dominated epoch (w ¼ 1=3)
the source term reads

fiðk; t0Þ ¼ 2

ð2�Þ3
ffiffiffiffi
�

p
ainaðt0ÞP r

i ðk̂Þ
�Z

d3q _�ð1Þ
rmðq; t0Þ


 Bm
ð1Þðk� q; t0Þ � 2H ðt0Þ



Z

d3q�ð1Þ
rmðq; t0ÞBm

ð1Þðk� q; t0Þ
�

¼ 2

ð2�Þ3
ffiffiffiffi
�

p a2in
a2ðt0ÞP i

rðk̂Þ



�Z

d3q�ð1Þin
rm ðqÞ _Tðq; t0ÞBð1Þin

m ðk� qÞ

� 2H ðt0Þ
Z

d3q�ð1Þin
rm ðqÞTðq; t0ÞBð1Þin

m ðk� qÞ
�
;

(72)

and equivalently for f�j ðp; t00Þ. To determine the power

spectrum of fi we assume that the magnetic field Bð1Þ
and gravity waves �ð1Þ are uncorrelated, so that

hfiðk; t0Þf�j ðp; t00Þi ¼
16�

ð2�Þ6 H ðt0ÞH ðt00Þ



�
aðt0Þaðt00Þ

a2in

�
2
P i

rðk̂ÞP j
nðp̂Þ



Z

d3q
Z

d3sh�ð1Þin
rm ðqÞ��ð1Þin

nl ðsÞi


 hBð1Þin
m ðk� qÞB�ð1Þin

l ðp� sÞi
� ð2�Þ3�3ðk� pÞP ijðk̂Þhðt0; t00; kÞ:

(73)

The function hðt0; t00; kÞ is given by [9]
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hðt0; t00;kÞ¼ 8�

ð2�Þ3H ðt0ÞH ðt00Þ
�
aðt0Þaðt00Þ

a2in

�
2
IðkÞ;

IðkÞ�
Z
d3qð1þ
2Þð1þ�2ÞP ð1Þ

� inðqÞP ð1Þ
B inðjk�qjÞ;

(74)

where � � k̂ � ð dk� qÞ and 
 � k̂ � q̂. We neglect the an-
gular dependence of ð1þ 
2Þ and ð1þ �2Þ and simply set

ð1þ 
2Þð1þ �2Þ ’ 1:

We then have to solve the following integral:

IðkÞ ¼ 4��2
ð1ÞinB

2
ð1Þin	

AþMþ6
Z 1=maxðt0;t00Þ

0
dqqAþ2



Z 1

�1
d�ðk2 þ q2 � 2�kqÞM=2:

Here we evaluate the integral only up to the scale q which
enters the horizon at the latest of the two times. All scales
q < 1=maxðt0; t00Þ are superhorizon from tin to maxðt0; t00Þ.
A soon as q enters the horizon, the gravity wave transfer
function begins to oscillate and the contribution to the
integral becomes negligible. The integral over � can be
evaluated; for M � �2 it yields

IðkÞ ¼ 8�

2þM
�2

ð1ÞinB
2
ð1Þin	

AþMþ6
Z 1=maxðt0;t00Þ

0

dqqAþ2

kq


 ðjkþ qjMþ2 � jk� qjMþ2Þ:
We shall not treat the case M ¼ �2, where the angular
integral introduces a logarithmic dependence on q. This
corresponds to approximating logðk=qÞ � 1. We approxi-
mate these integrals by their dominant contribution.

(i) If the spectra are sufficiently red such that AþMþ
3< 0, the result is dominated by the region k <
1=maxðt0; t00Þ and we obtain

IðkÞ ’ 16��2
ð1ÞinB

2
ð1Þin	

3ð	kÞAþMþ3

�
1

Aþ 3

� 1

AþMþ 3

�
:

(ii) On the other hand, if the spectra are blue such that
AþMþ 3> 0, the integral is dominated by its
value at the upper boundary

I ’ 16��2
ð1ÞinB

2
ð1Þin	

3 1

AþMþ 3



�

	

maxðt0; t00Þ
�
AþMþ3

:

If, as in the previous subsection, we can write the
function hðt0; t00; kÞ in the form

hðt0; t00; kÞ ’ FðkÞgðt0Þgðt00Þ; (75)

we can proceed as we did before to obtain the results (58)
and (61). A source where the time dependence of the
unequal time correlator factorizes is called ‘‘totally coher-
ent.’’ In the totally coherent case, the power spectrum is
simply the square of the solution which has as its source the
square root of the power spectrum of the source [23]. In
most cases, the unequal time correlator is more compli-
cated than this, but the totally coherent approximation is
often quite reasonable [23]. If the source is totally coher-

ent, the square root of the power spectrum P ð2Þ
B simply

satisfies the same evolution equation as Bð2Þ with source

term
ffiffiffiffi
F

p
g.

(i) If AþMþ 3< 0, we can write

FðkÞ ¼ 128��

ð2�Þ3 ðk	ÞAþMþ3	3

�
1

Aþ 3

� 1

AþMþ 3

�
;

gðt0Þ ¼ Bð1Þin�ð1Þin
a2in

H ðt0Þa2ðt0Þ:

(ii) For AþMþ 3> 0, we set

FðkÞ ¼ 128��

ð2�Þ3
1

AþMþ 3
	AþMþ6;

gðt0Þ ¼ Bð1Þin�ð1Þin
a2in

H ðt0Þa2ðt0Þ
�
1

t0

�ðAþMþ3Þ=2
:

This corresponds to replacing�
1

maxðt0; t00Þ
�ðAþMþ3Þ

by

�
1

t0t00

�ðAþMþ3Þ=2

which is of course not entirely correct and we expect this to
overestimate the true result somewhat. However, within the
accuracy of our approximations this is sufficient. To obtain
a more accurate result we would have to expand the
function hðk; t0; t00Þ in eigenfunctions with respect to con-
volution in time, as it is done in Ref. [23].
Within this totally coherent approximation we can now

solve the problem like in the previous subsection. In the
case AþMþ 3< 0 we find on superhorizon scales,
where the source is active

k3P ð2Þ
B ðk; tÞ ’ 32��

ð2�Þ3
½k3P ð1Þ

B inðkÞ�
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
6
;

kt � 1: (76)

On subhorizon scales, performing the matching at horizon
crossing, we obtain

k3P ð2Þ
B ðk;tÞ ’ 16��

ð2�Þ3
½k3P ð1Þ

B inðkÞ�
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
2 1

ðktinÞ4
;

kt� 1: (77)
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If AþMþ 3> 0, we analyze in more detail only the
case A ’ �3 and M ¼ 2. The spectral index A ¼ �3
corresponds to a scale invariant gravity wave power spec-
trum as it is obtained in slow-roll inflation [24]. The index
M ¼ 2 characterizes a causal magnetic field Bð1Þ. In this

case, we have to solve the differential equation

P00 � 2

z
P0 þ

�
1þ 2

z2

�
P ¼ �

k2
;

� � ðainHinÞ2Bð1Þ
in �

ð1Þ
in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64�

ð2�Þ3 �	
5

s
;

(78)

where the source is constant in time. Detailed comments
about the initial conditions chosen for the solution of the
above equation can be found in Appendix A. Finally, we
can write the solution for PðzÞ in the case where z ¼ kt �
1 as

PðzÞ ’ �

k2
z2 log

�
z

zin

�
; z � 1:

The power spectrum of Bð2Þ on superhorizon scales is
therefore given by

k3P ð2Þ
B ðk; tÞ ’ 16��

ð2�Þ3
½k3P ð1Þ

B inðkÞ�
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
4


 1

ðktinÞ2
log2

�
a

ain

�
;

kt � 1: (79)

On subhorizon scales, z ¼ kt � 1, we match the super-
horizon solution at horizon crossing with the homogeneous
solution of Eq. (78), as we did above, obtaining

k3P ð2Þ
B ðk; tÞ ’ 32��

ð2�Þ3
½k3P ð1Þ

B inðkÞ�
H2

in

½k3P ð1Þ
� inðkÞ�

�
a

ain

�
2


 1

ðktinÞ4
log2ðktinÞ;

kt � 1: (80)

1. Density parameter

Using Eq. (62), we find the following expressions for the
energy density of the stochastic second order magnetic
field. If AþMþ 3< 0, we have on superhorizon scales

d�ð2Þ
B ðk; tÞ
d logk

� 1

ð2�Þ3 k
3P ð2Þ

B ðk; tÞ
�
ain
a

�
2

’ 288�

ð2�Þ6 ½k
3P ð1Þ

B inðkÞ�½k3P ð1Þ
� inðkÞ�: (81)

This results in a density parameter for Bð2Þ given by

d�ð2Þ
B ðk; tÞ

d logk
� 1

�c

d�ð2Þ
B ðk; tÞ
d logk

’ 6
d�ð1Þ

B inðkÞ
d logk

d�ð1Þ
GWðk; tÞ
d logk

;

kt � 1: (82)

Inside the horizon we obtain for the second order magnetic
field density parameter

d�ð2Þ
B ðk; tÞ

d logk
’ 6

d�ð1Þ
B inðkÞ

d logk

d�ð1Þ
GWðkÞ

d logk
; kt � 1: (83)

The gravity wave density parameter ½d�ð1Þ
GWðk; tÞ=d logk� is

given by Eqs. (37) and (40) respectively. This corresponds,
as in the previous section for a constant magnetic field, to

the naively expected result, �ð2Þ
B ��ð1Þ

GW�
ð1Þ
B .

For blue spectra, AþMþ 3> 0, the second order mag-
netic field density parameter reads in the interesting case
A ’ �3 and M ¼ 2 on superhorizon scales

d�ð2Þ
B ðk; tÞ

d logk
¼ 12

ðktÞ2
d�ð1Þ

B inðkÞ
d logk

d�ð1Þ
GWðk; tÞ
d logk

log2
�
a

ain

�

¼ 12
d�ð1Þ

GWðk; tÞ
d logk

d�ð1Þ
B inðkÞ

d logk

��������k¼1=t
ðktÞ3


 log2
�
a

ain

�
; kt � 1: (84)

Note that the value of ½d�ð2Þ
B ðk; tÞ=d logk� on super-Hubble

scales is affected by ½d�ð1Þ
B ðktÞ=d logkt� at horizon crossing

kt ¼ 1=t which may well be larger than ½d�ð1Þ
B ðkÞ=d logk�

but of course also has to be much smaller than 1.
This expression grows only logarithmically faster than

½d�ð1Þ
GWðk; tÞ=d logk�. The growth stops at horizon entry

where the second order magnetic field density parameter
has acquired a factor log2ðktinÞ. Inside the horizon we
obtain a density parameter of

d�ð2Þ
B ðk;tÞ

d logk
¼ 12

d�ð1Þ
B inðkÞ

d logk

d�ð1Þ
GWðkÞ

d logk
log2ðktinÞ; kt� 1:

(85)

Up to the logarithmic correction, this corresponds to the
result for red spectra above.

2. Reheating and matter dominated epochs

In order to make contact with Refs. [10,20], we now
repeat the calculation in a matter dominated background
(w ¼ 0). Wewant to point out that the results we obtain are
mathematically the same as the ones found in [10]. The
only difference lies in the interpretation. In the previous
paragraph we have seen that, even though

d�ð1Þ
GWðkÞ

d logk
�

�
1

ktin

�
4½k3P ð1Þ

� inðkÞ�;

and even though ðktinÞ�4 can become very large, this
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product is never larger than about 10�10. We believe that
this point has been missed in Ref. [10].

Ifw ¼ 0, the scale factor grows like a / t2 so thatH ¼
2=t. As mentioned before, for the superhorizon amplifica-
tion the question whether the conductivity is high or low is
not relevant.

From the first order perturbations, we obtain the same

behavior for the magnetic field Bð1Þ in terms of the scale
factor, therefore the density parameter is then given by

d�ð1Þ
B ðk; tÞ

d logk
¼ 8�G

3ð2�Þ3
½k3P ð1Þ

B inðkÞ�
H2

in

ain
a

: (86)

The first order gravity waves on superhorizon scales now
behave as

�ð1Þ
ij ðk; tÞ ¼ �ð1Þ

ij inðkÞ
�
a

ain

�
3
: (87)

Once the gravitational waves enter the horizon, they start
oscillating and the energy density decays as radiation.
Therefore in this case the relative density parameters for
the first order gravity waves is

d�ð1Þ
GWðk; tÞ
d logk

¼ 48�

ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�
�
a

ain

�
2
; kt � 1:

(88)

On subhorizon scales we obtain

d�ð1Þ
GWðk;tÞ
d logk

¼ 24�

ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�
�
ain
a

�
1

ðktinÞ6
; kt� 1:

(89)

Computing finally the induced second order magnetic
field density parameter, we obtain the naively expected
result on superhorizon scales

d�ð2Þ
B ðk; tÞ

d logk
’

8>><>>:
d�ð1Þ

B ðk;tÞ
d logk

d�ð1Þ
GW

ðk;tÞ
d logk for AþMþ 3< 0

ðktÞ3
�
d�ð1Þ

B ðk;tÞ
d logk

�
k¼1=t

d�ð1Þ
GW

ðk;tÞ
d logk log2 a

ain
for AþMþ 3> 0

kt � 1: (90)

On subhorizon scales the density parameter turns out to be
given by

d�ð2Þ
B ðk; tÞ

d logk
’ d�ð1Þ

B ðk; tÞ
d logk

d�ð1Þ
GWðk; tkÞ
d logk

’ d�ð1Þ
B ðk; tÞ

d logk

�
Hinf

MP

�
2
; kt � 1; (91)

for both cases AþMþ 3< 0 and A ’ �3, M ¼ 2, up to
logarithmic corrections. Here tk stands for the horizon
crossing time, tk ¼ 1=k, and in the last ’ sign we have
used that ½d�ð1Þ

GWðk; tkÞ=d logk� ’ ðHinf=MPÞ2 is the gravity
wave density parameter at horizon crossing, which is
smaller than 10�10. This means that the second order
magnetic field does not grow larger than the first order
one. Inside the horizon they both decrease like / a�1.�ð2Þ

B

stays always much smaller than �ð1Þ
B , as we have found in

the case of a radiation dominated background.

C. Second order gravity waves

Starting from Eq. (46), we can write the evolution

equation for �ð2Þ
ij in real space ðx; tÞ as follows:

€�ð2Þ
ij � a2D2�ð2Þ

ij � 3

2
H 2ð1þ wÞ�ð2Þ

ij

¼ �2�aH�ð1Þ
ij þ ½aH�hið1Þn�

ð1Þ
jin þ 2a�hið1Þ

n _�ð1Þ
jin

� a _�n
hið1Þ�

ð1Þ
jin�

1

a2
: (92)

The factor 1=a2 in the source part of the above equation
comes from the fact that in Eq. (46) we had to add factors

a2ðtÞ in order to lower or raise indices. On the other hand,
now we deal with purely spatial tensors such that�ij ¼ �ij

and also _�ij ¼ _�ij.

Introducing again the dimensionless expansion-

normalized variable �ð2Þ
ij , the previous equation can be

written as

€�ð2Þ
ij � 3ð1þ wÞH _�ð2Þ

ij þ 3H 2

�
3

2
w2 þ 2wþ 1

2

�
�ð2Þ

ij

� a2D2�ð2Þ
ij

¼ � 2

3
�
a2

a2in
�ð1Þ

ij þ
�
� 3

2
ð1þ 3wÞH 2�hið1Þ

n�ð1Þ
jin

þ 6H�hið1Þ
n _�ð1Þ

jin � 3H _�hið1Þ
n�ð1Þ

jin

��
ain
a

�
2
: (93)

As for Bð2Þ, the source is given by the first order perturba-

tion magnetic field [�ð1Þ
ij ] and the first order gravity waves

and does e.g. not couple to the second order magnetic field.
Since we assume the first order magnetic field and gravity
wave fluctuations to be independent, we can add the power
spectra for the solutions of the individual source terms,

k3P ð2Þ
�
ðk; tÞ ¼ k3P ð2Þ�

�
ðk; tÞ þ k3P ð2ÞGW

�
ðk; tÞ;

where P ð2Þ�
�

ðk; tÞ is the power spectrum of the solution of

Eq. (93) with source term�ð1Þ only andP ð2ÞGW
�

ðk; tÞ comes

from the source terms containing �ð1Þ.
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1. Magnetic field part of the source ½k3P ð2Þ�
�

ðk; tÞ�
Considering first the magnetic field part of the source,

we have to solve the following differential equation in the
momentum space ðk; tÞ
€�ð2Þ
ij � 3ð1þ wÞH _�ð2Þ

ij

þ
�
k2 þ 3H 2

�
3

2
w2 þ 2wþ 1

2

��
�ð2Þ

ij ¼ fij; (94)

where the source is given by

fijðk; tÞ � � 2

3
�
a2

a2in
�ð1Þ

ij ðk; tÞ: (95)

As before, we have to compute the unequal time correlator

h�ð1Þ
ij ðk; t0Þ��ð1Þ

rn ðp; t00Þi ¼ ð2�Þ3�3ðk� pÞ

Mijrnðk̂Þhðk; t0; t00Þ; (96)

where the anisotropic stresses are given by

�ð1Þ
ij ðk; t0Þ ¼ � 1

16�ð2�Þ3 Mij
lsðk̂Þ



Z

d3qBð1Þ
l ðq; t0ÞBð1Þ

s ðk� q; t0Þ:

ð1=2ÞMij
lsðk̂Þ is the projector on the tensor modes. We

have neglected a trace contribution to the magnetic field
stress tensor since, once we project with Mij

ls, the trace

vanishes.
After some computation [9], we find for the function

hðk; t0; t00Þ the following expression:

hðk; t0; t00Þ ¼ 1

ð8�Þ2
1

4ð2�Þ3 IðkÞ
�

a2in
aðt0Þaðt00Þ

�
2
; (97)

IðkÞ ¼
Z

d3qð1þ 
2Þð1þ �2ÞP ð1Þ
B inðqÞP ð1Þ

B inðjk� qjÞ;
(98)

where � � k̂ � ð dk� qÞ and 
 � k̂ � q̂. As before, we ap-
proximate ð1þ 
2Þð1þ �2Þ ’ 1. With this, we obtain the
following expression for the expectation value of the
source term:

hfijðk; t0Þf�rnðp; t00Þi ¼ 4

9
�2 a

2ðt0Þa2ðt00Þ
a4in


h�ð1Þ
ij ðk; t0Þ��ð1Þ

rn ðp; t00Þi: (99)

The expectation value of the stochastic variable�ð2Þ
ij can be

written as

h�ð2Þ
ij ðk; tÞ��ð2Þ

rn ðp; tÞi ¼ ð2�Þ3�3ðk� pÞ

Mijrnðk̂ÞP ð2Þ

�
ðk; tÞ: (100)

If h�ð1Þ
ij ðk; t0Þ��ð1Þ

rn ðp; t00Þi can be written as a product of a

function of ðk; t0Þ and ðk; t00Þ, this source is totally coherent
and we can write the function hðk; t0; t00Þ of Eq. (97) in the
form

4

9
�2 a

2ðt0Þa2ðt00Þ
a4in

hðk; t0; t00Þ ¼ FðkÞgðt0Þgðt00Þ;

where we introduced the prefactor of h since we finally
need an expression for the unequal time correlator of the
source, as in Eq. (99), while the function h alone is only
part of the correlator of the anisotropic stress, Eq. (96).
The square root of the power spectrum is then a solution

of the differential Eq. (94) with source term
ffiffiffiffiffiffiffiffiffiffi
FðkÞp

gðtÞ.
Written as differential equation for the variable z ¼ kt and
setting w ¼ 1=3, this becomes

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ�

�
ðk; zÞ

q
�00 � 4

z
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ�

�
ðk; zÞ

q
�0 þ

�
1þ 4

z2

�

 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ�

�
ðk; zÞ

q
� ¼

ffiffiffiffiffiffiffiffiffiffi
FðkÞ

p gðz=kÞ
k2

: (101)

As for the second order magnetic field, we distinguish
between two cases. First we consider 2Mþ 3> 0. The
integral I is then dominated by the upper cutoff. The
magnetic field is not oscillating and we therefore take
damping scale kd as the upper cutoff. We neglect the
slow time dependence of this scale. Using Eq. (65) for
the magnetic field power spectrum, I can be approximated
by

I ’ 8�

2Mþ 3
½Bð1Þ4

in 	3�ð	kdÞ2Mþ3:

Hence the functions FðkÞ, gðt0Þ are given by

FðkÞ ¼ �2

36ð2�Þ4
1

2Mþ 3
ð	kdÞ2Mþ3½Bð1Þ4

in 	3�;

gðt0Þ ¼ 1:

In the case 2Mþ 3< 0, we obtain

I ’ 8�½Bð1Þ4
in 	3�ð	kÞ2Mþ3

�
1

Mþ 3
� 1

2Mþ 3

�
:

This case is totally coherent and we can set

FðkÞ ¼ �2

36ð2�Þ4 ½B
ð1Þ4
in 	3�

�
1

Mþ 3
� 1

2Mþ 3

�
ð	kÞ2Mþ3;

gðt0Þ ¼ 1:

We now solve Eq. (101) for the two different source
terms.
(i) In the case 2Mþ 3> 0, we can write Eq. (101) in

the form

P00 � 4

z
P0 þ

�
1þ 4

z2

�
P ¼ �

k2
; z � kt;

jPj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2Þ�

�
ðk; tÞ

q
; � � ffiffiffiffiffiffiffiffiffiffi

FðkÞp
:
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Solving the above equation on superhorizon scales
and following the considerations for the choice of
initial conditions explained in Appendix A, we find

PðzÞ ’ � �

2k2
z2; z � 1:

This gives the second order power spectrum

k3P ð2Þ�
�

ðk; tÞ ’ �2

36ð2�Þ4ð2Mþ 3Þ
�
k3P ð1Þ

B inðkÞ
H2

in

�
2



�
a

ain

�
4
�
kd
k

�
2Mþ3

;

kt � 1: (102)

This is equivalent to a density parameter for �ð2Þ
given by

d�ð2Þ�
GW ðk; tÞ
d logk

’
�
d�ð1Þ

B inðkÞ
d logk

�
2
�
kd
k

�
2Mþ3

’
�
d�ð1Þ

B inðkdÞ
d logk

�
2
�
k

kd

�
3
;

kt � 1: (103)

Inside the horizon, the Green function oscillates and
we can neglect the contribution from the source. The
solution for the power spectrum is then given by

k3P ð2Þ�
�

ðk; tÞ ’ �2

36ð2�Þ4ð2Mþ 3Þ
�
k3P ð1Þ

B inðkÞ
H2

in

�
2



�
a

ain

�
4
�
kd
k

�
2Mþ3

;

kt � 1: (104)

Therefore, the second order density parameter is
given by the same expression,

d�ð2Þ�
GW ðk; tÞ
d logk

’
�
d�ð1Þ

B inðkdÞ
d logk

�
2
�
k

kd

�
3
; kt � 1:

(105)

Up to logarithmic factors this result agrees with the
findings of Ref. [9].

(ii) In the case 2Mþ 3< 0 we have again to solve the
equation

P00 � 4

z
P0 þ

�
1þ 4

z2

�
P ¼ �

k2
: (106)

Hence

PðzÞ ’ � �

2k2
z2; z � 1:

But now

� � �

6ð2�Þ2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1

Mþ 3
� 1

2Mþ 3

�
k2Mþ3

s
½Bð1Þ2

in 	3�	M;

so that

k3P ð2Þ�
�

ðk; tÞ ’ �2

144ð2�Þ4
�
k3P ð1Þ

B inðkÞ
H2

in

�
2
�
a

ain

�
4
;

kt � 1: (107)

As in the first case, the density parameter is the same
for kt < 1 and kt > 1,

d�ð2Þ�
GW ðk; tÞ
d logk

’
�
d�ð1Þ

B inðkÞ
d logk

�
2
: (108)

2. Gravity waves part of the source ½k3P ð2ÞGW
�

ðk; tÞ�
Let us finally consider the part of the source given by

first order gravity waves. In this case, we can write the
source fij as

fijðx; tÞ ¼
�
� 3

2
ð1þ 3wÞH 2�ð1Þn

hi �ð1Þ
jin þ 6H�ð1Þn

hi
_�ð1Þ
jin

� 3H _�ð1Þn
hi �ð1Þ

jin

��
ain
a

�
2
: (109)

As before, we ignore the traces that are present in the above
products, once we evaluate them in the momentum space,
since we project them out with ð1=2ÞMij

lm afterwards.

Remembering that �ij ¼ �ij, we have on superhorizon

scales, where the transfer function is given by Eq. (67),

½�hið1Þ
n�ð1Þ

jin�ðk; tÞ ¼
1

2ð2�Þ3
�
a

ain

�
8
Mij

lmðk̂Þ



Z

d3q�ð1Þin
ln ðqÞ�ð1Þin

nm ðk� qÞ;

½�hið1Þ
n _�ð1Þ

jin�ðk; tÞ ¼ ½ _�n
hið1Þ�

ð1Þ
jin�ðk; tÞ

¼ 2H
ð2�Þ3

�
a

ain

�
8
Mij

lmðk̂Þ



Z

d3q�ð1Þin
ln ðqÞ�ð1Þin

nm ðk� qÞ:

These equations are strictly true only on superhorizon
scales where � / 1=a4. However, since inside the horizon
� oscillates and the contribution from the source is negli-
gible, we can use this approximation. Setting w ¼ 1=3 we
can finally write the source in the form
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fijðk; tÞ ¼ 9

2ð2�Þ3 H
2

�
a

ain

�
6
Mij

lmðk̂Þ



Z

d3p�ð1Þin
ln ðpÞ�ð1Þin

nm ðk� pÞ; (110)

and the two-point correlation function of the source part
reads

hfijðk; t0Þf�rcðq; t00Þi ¼ ð2�Þ3�3ðk� qÞMijrcðk̂Þhðk; t0; t00Þ;
hðk; t0; t00Þ ¼ 1

8ð2�Þ3 Uðt0; t00ÞIðkÞ;

Uðt0; t00Þ ¼ 81

4
H 2ðt0ÞH 2ðt00Þ

�
aðt0Þ
ain

�
6
�
aðt00Þ
ain

�
6
;

IðkÞ ¼ Mbdlmðk̂Þ
Z

d3p½Mlnbfðp̂Þ


Mmndfð dk� pÞ
þMlndfðp̂ÞMmndfð dk� pÞ�

 P ð1Þ

� inðpÞP ð1Þ
� inðjk� pjÞ:

More details about the computation of hðk; t0t00Þ and of the
four-point correlation function of the gravity waves can be
found in Appendix B.

Using the tensor calculus package XACT for
MATHEMATICA [25], we can compute the above products

of the three projectors,

Mbdlmðk̂Þ½Mlnbfðp̂ÞMmndfð dk� pÞ
þMlndfðp̂ÞMmnbfð dk� pÞ�

¼ 2ð1þ �2 þ �2 þ �2�2 � 8��
þ 
2

þ �2
2 þ �2
2 þ �2�2
2Þ ’ 2; (111)

where � � k̂ � ð dk� pÞ, � � p̂ � ð dk� pÞ, and 
 � k̂ � p̂.
Again we have approximated this angular dependence by
a constant to simplify the calculations. This approximation
is well justified within our accuracy. In order to write the
function hðk; t0; t00Þ ’ FðkÞgðt0Þgðt00Þ, we have to evaluate
the integral I as before. We first consider the most interest-
ing case of a scale invariant spectrum, A ’ �3. Up to an
infrared log-divergence which we neglect as usual (this
divergence can be avoided if we choose A ¼ �2:99 instead
of A ¼ �3), we have

FðkÞ ’ 81�

2ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�2
1

k3
;

gðt0Þ ’ H 2ðt0Þ
�
aðt0Þ
ain

�
6
:

Therefore, the equation for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2ÞGW

�
ðk; tÞ

q
in the radiation

dominated era becomes

P00ðzÞ � 4

z
P0 þ

�
1þ 4

z2

�
P ¼ �

k6
z4; z � kt;

jPj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2ÞGW

�
ðk; tÞ

q
; � � 1

t6in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�

2ð2�Þ3
½k3P ð1Þ

� inðkÞ�2
k3

vuut
:

The superhorizon solution, evaluated always with the help
of the Wronskian method and keeping only the nonhomo-
geneous part as explained in the Appendix A, is then given
by

PðzÞ ’ 1

10

�

k6
z6; z � 1;

that yields a contribution to the gravity wave power spec-
trum given by

k3P ð2ÞGW
�

ðk; tÞ ’ 0:4
�

ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�2
�
a

ain

�
12
;

kt � 1:

(112)

For the density parameter on superhorizon scales this
yields

d�ð2Þ�
GW ðk; tÞ
d logk

’ 0:01

�
d�ð1Þ

GWðk; tÞ
d logk

�
2
; kt � 1: (113)

Considering now the subhorizon limit, we obtain for the
power spectrum the following expression:

k3P ð2ÞGW
�

ðk; tÞ ’ 0:1
�

ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�2
1

ðktinÞ8
�
a

ain

�
4
;

kt � 1; (114)

and the density parameter becomes

d�ð2Þ�
GW ðk; tÞ
d logk

’ 0:02

�
d�ð1Þ

GWðkÞ
d logk

�
2
; kt � 1: (115)

On the other hand, when 2Aþ 3> 0 we have

FðkÞ ’ 81�

2ð2�Þ3 �
4
ð1Þin	

6þ2A 1

2Aþ 3
;

gðt0Þ ’ H 2ðt0Þ
�
aðt0Þ
ain

�
6
�
1

t0

�ð2Aþ3Þ=2
:

In the radiation epoch the equation for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð2ÞGW

�
ðk; tÞ

q
reads

P00 � 4

z
P0 þ

�
1þ 4

z2

�
P ¼ �zð5=2�AÞ;

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�

2ð2�Þ3
1

2Aþ 3

s
k3=2P ð1Þ

� inðkÞ
1

ðktinÞ6
:

Solving the above equation in the long wavelengths limit,
we find

PðzÞ ’ �

2
z9=2�A; z � 1;

where the exact prefactor depends weakly on the value of
A. For the power spectrum this results in
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k3P ð2ÞGW
�

ðk; tÞ ’ 81�

8ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�2
�
a

ain

�
12ðktÞ�2A�3;

kt � 1; (116)

and inside the horizon this reads

k3P ð2ÞGW
�

ðk; tÞ ’ 81�

16ð2�Þ3 ½k
3P ð1Þ

� inðkÞ�2
�
a

ain

�
4 1

ðktinÞ8
;

kt � 1: (117)

Translating this to the density parameter as above, we
obtain

d�ð2Þ�
GW ðk; tÞ
d logk

’ 0:2

�
d�ð1Þ

GWðkÞ
d logk

�
2ðktÞ�2A�3;

’ 0:2

�
d�ð1Þ

GWðkÞ
d logk

��������k¼1=t

�
2ðktÞ3; kt � 1;

d�ð2Þ�
GW ðk; tÞ
d logk

’ 0:1

�
d�ð1Þ

GWðkÞ
d logk

�
2
; kt � 1: (118)

V. SUMMARYAND CONCLUSIONS

In this work we have studied the evolution of stochastic
cosmic magnetic fields and gravity waves up to second
order in the perturbations. We have especially calculated
the density parameters of the generated second order per-
turbations. We start with density parameters

½d�ð1Þ
B ðk; tÞ=d logk� and ½d�ð1Þ

GWðk; tÞ=d logk� which are

related to the first order magnetic field and gravitational
wave power spectra in Sec. III C. Since tensor perturba-
tions grow on superhorizon scales, the gravity wave den-
sity parameter grows on super-Hubble scales and only
becomes constant once the perturbations enter the horizon.
For perturbation theory to be valid, we of course have to
require that these density parameters are much smaller than
unity. As we have seen in Sec. III C, to require that

½d�ð1Þ
GWðk; tÞ=d logk� is smaller than 1 also on sub-Hubble

scales is equivalent to

d�ð1Þ
GWðk; tinÞ
d logk

1

ðktinÞ4
’
�
Hinf

MP

�
2 � 1: (119)

Here we summarize the new results on the density
parameters for second order perturbation on subhorizon
scales. For magnetic fields, we obtain

d�ð2Þ
B ðkÞ

d logk
’ d�ð1Þ

GWðkÞ
d logk

d�ð1Þ
B ðkÞ

d logk
; tk � 1; (120)

up to numerical constants and logarithms which are beyond
the accuracy of our approximation. Hence, it is not correct
that the presence of gravity waves resonantly enhances a
first order magnetic field. The second order density pa-
rameter is quite what we would naively expect and it is
much smaller than the first order perturbations as long as
the latter are small. Also on superhorizon scales, the sec-

ond order magnetic field density parameter is always much
smaller than the first order one; see Eqs. (82) and (84).
Since the growth comes from superhorizon scales, con-

ductivity is not relevant for this result. We have shown that
also in a matter dominated background we obtain

d�ð2Þ
B ðkÞ

d logk
’ d�ð1Þ

GWðkÞ
d logk

��������kt¼1

d�ð1Þ
B ðkÞ

d logk
’
�
Hinf

MP

�
2 d�ð1Þ

B ðkÞ
d logk

� d�ð1Þ
B ðkÞ

d logk
; (121)

hence no significant amplification.
Second order gravity waves are induced on the one hand

by the anisotropic stresses of the first order magnetic fields
and on the other hand by the quadratic terms in the evolu-
tion equation for �ij which are e.g. of the form �im _�m

j and

similar expressions. In Sec. IVC1 we have shown that the
second order contribution from anisotropic stresses on sub-
Hubble scales is of the order of

d�ð2Þ�
GW ðk; tÞ
d logk

’
8<: ½d�ð1Þ

B ðkdÞ
d logkd

�2ð kkdÞ3 if 2Mþ 3> 0

½d�ð1Þ
B ðkÞ

d logk �2 if 2Mþ 3< 0;
(122)

both on superhorizon and subhorizon scales. Note that the
above expression is continuous at 2Mþ 3 ¼ 0, where both
expressions scale like ðk	Þ3 and are independent of kd. One
should point out that we neglected the slow time depen-
dence of the damping scale. Correctly one has to choose
the value of the damping scale at horizon crossing, kdðtkÞ
with tk ¼ 1=k. Depending on the magnetic field spectrum,
the resulting gravity waves come mainly from the small
scale magnetic field, if its spectrum is blue 2Mþ 3> 0. In
this case the gravity wave power spectrum is always pro-
portional to k3. In our case of a simple power law magnetic
field spectrum, this behavior is maintained for all k < kd. If
the magnetic field spectrum is red, 2Mþ 3< 0, gravity
waves depend on the field at scale k and their spectrum is
the square of the B-field spectrum. In the first case, the
nonlinearity leads to a ‘‘sweeping’’ of magnetic field
power on small scales to gravitational wave power on
larger scales. This can be regarded as an inverse cascade
of small scale magnetic field power into large scale gravity
waves. But in no case can the gravity wave density pa-
rameter become larger than the one of the magnetic field,
which has to be much smaller than 1, for perturbation
theory to be valid.
A similar result was already obtained in Ref. [9].

Contrary to this reference we have no logarithmic buildup
of gravity waves. This comes from our different treatment;
we directly calculate the shear �ij and not the tensor

perturbation of the metric hij. In this way we lose the log

term which corresponds to the homogeneous hij ¼
constant solution on superhorizon scales to which we are
not sensitive. However, in our more qualitativework, we do
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not want to insist on log terms which we neglect in this
work also in other places.

The second order gravity wave density parameter in-
duced by first order gravity waves is given by

d�ð2Þ�
GW ðk; tÞ
d logk

’
�
d�ð1Þ

GWðk; tÞ
d logk

�
2
; kt � 1; (123)

on subhorizon scales.
Adding both contributions we find

d�ð2Þ
GWðk; tÞ
d logk

’
8><>: ½d�ð1Þ

B ðkdÞ
d logkd

�2ð kkdÞ3 þ ½d�ð1Þ
GW

ðk;tÞ
d logk �2 if 2Mþ 3> 0; kt � 1

½d�ð1Þ
B ðkÞ

d logk �2 þ ½d�ð1Þ
GW

ðk;tÞ
d logk �2 if 2Mþ 3< 0; kt � 1:

(124)
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APPENDIX A: GENERAL SOLUTION OF A
DIFFERENTIAL EQUATION WITH THE

WRONSKIAN METHOD

Here we discuss in detail the Wronskian method with
which we find the solution of the differential equations in
this paper. If we have a inhomogeneous linear second order
equation with inhomogeneity SðzÞ, its most general solu-
tion is of the form

PðzÞ ¼ c1ðzÞP1ðzÞ þ c2ðzÞP2ðzÞ þ a1P1ðzÞ þ a2P2ðzÞ;
where P1ðzÞ and P2ðzÞ are two (linearly independent)
homogeneous solutions which we suppose to be known,
WðzÞ ¼ P1P

0
2 � P0

1P2 is their Wronskian, and

c1ðzÞ ¼ �
Z z

zin

dx
SðxÞ
WðxÞP2ðxÞ;

c2ðzÞ ¼
Z z

zin

dx
SðxÞ
WðxÞP1ðxÞ:

The particular solution given by the first two terms is such
that PinhðzÞ ¼ c1ðzÞP1ðzÞ þ c2ðzÞP2ðzÞ vanishes at z ¼ zin
and also P0

inhðzinÞ ¼ 0. The general solution is obtained by

adding a homogeneous solution PhomðzÞ ¼ a1P1ðzÞ þ
a2P2ðzÞ with arbitrary constants a1 and a2.

Let us first consider the example given in Eq. (106),

P00 � 4

z
P0 þ

�
1þ 4

z2

�
P ¼ �

k2
;

where �=k2 is a constant source term. The homogeneous
solutions are given by P1ðzÞ ¼ z3j1ðzÞ and P2ðzÞ ¼ z3y1ðzÞ
and the Wronskian determinant reads

WðzÞ ¼ z3:

In the regime z � 1 we can approximate the spherical
Bessel functions by powers and we find the following

general expression for PðzÞ:

PðzÞ ¼ � �

3k2

�
z2

2
� z4

2z2in
þ z2 � zzin

�
þ a1z

4 þ a2z;

(A1)

where we have used the fact that, when z � 1, we can
approximate P1ðzÞ ’ z4 and P2ðzÞ ’ �z. Now it is impor-
tant to notice that the second and the fourth terms of the
inhomogeneous solution (A1) have the same functional
behavior as homogeneous solutions and we can always
choose a1 and a2 such that the homogeneous part cancels
them. This is actually always true for the contributions
from the lower boundary of the inhomogeneous solution.
This may sound pedantic, but it is very important in this
specific case as the second term in (A1) dominates if it is
present. In our analysis we have always subtracted such
‘‘homogeneous contributions’’ and only kept the ‘‘minimal
part,’’ which in this case is

PðzÞ ’ � �

2k2
z2; z � 1: (A2)

This procedure is important and it is responsible for the
results which we have obtained. We justify it also by the
fact that the first order solution has exactly the same time
evolution as the homogeneous term and therefore a term
/ z4, present at early times, should be included in the first
order perturbations. Once the wave number has entered the
horizon, z � 1, the Green function starts to oscillate and
the additional contribution to the integral can be neglected.
We then can match the inhomogeneous solution at horizon
crossing to the homogenous one at later times. Up to
matching details which we have not considered, this yields

PðzÞ ’ �

2k2
z2 cosz; z � 1: (A3)

In the same way, we deal with Eq. (78)

P00 � 4

z
P0 þ

�
1þ 4

z2

�
þ P ¼ �

k2
: (A4)

The homogeneous solutions are P1ðzÞ ¼ z2j0ðzÞ ’ z2 and
P2ðzÞ ¼ z2y0ðzÞ ’ �z. These approximations are valid for
z � 1. Using again the Wronskian method, we obtain the
following general solution on super-Hubble scales, z � 1:
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PðzÞ¼ �

k2

�
z2 log

�
z

zin

�
� z2þ zzin

�
þa1z

2þa2z; z� 1:

(A5)

Here, the homogeneous solution parts are �z2 and zzin,
therefore we can identify the solution due to the presence
of the source again as

PðzÞ ’ �

k2
z2 log

�
z

zin

�
; z � 1: (A6)

On subhorizon scales this becomes, up to matching details
which only modify the phase and have an irrelevant effect
on the prefactors,

PðzÞ ’ �

k2
logðktinÞz cosz; z � 1: (A7)

If the source term depends on z, the details of the calcu-
lation as well as the results change somewhat, but the basic
argumentation remains the same. We therefore do not
repeat the z-dependent examples which arise in this work
here.

APPENDIX B: THE FOUR-POINT CORRELATOR
OF GRAVITY WAVES

Starting from Eq. (110), we compute the two-point
correlation function of the source term
hfijðk; t0Þf�rnðp; t00Þi, which is given by

hfijðk; t0Þf�rcðq;t00Þi¼ 1

ð2�Þ6Uðt0;t00ÞMij
lmðk̂ÞMrc

bdðq̂Þ



Z
d3p

Z
d3sh�ð1Þin

ln ðpÞ�ð1Þin
nm ðk�pÞ


��ð1Þin
bf ðsÞ��ð1Þin

fd ðq�sÞi; (B1)

where the function Uðt0; t00Þ contains all time dependence
of the above expression

Uðt0; t00Þ ¼ 81

4
H 2ðt0ÞH 2ðt00Þ

�
aðt0Þ
ain

�
6
�
aðt00Þ
ain

�
6
: (B2)

To compute the four-point correlator, we assume that the
random variables that describe gravity waves are Gaussian,
therefore we can apply Wick’s theorem. Then we can write

the products of four gravity waves �ð1Þ as

h�ð1Þin
ln ðpÞ�ð1Þin

nm ðk� pÞ��ð1Þin
bf ðsÞ��ð1Þin

fd ðq� sÞi
¼ h�ð1Þin

ln ðpÞ��ð1Þin
bf ðsÞih�ð1Þin

nm ðk� pÞ��ð1Þin
fd ðq�sÞi

þ h�ð1Þin
ln ðpÞ��ð1Þin

fd ðq� sÞih�ð1Þin
nm ðk� pÞ��ð1Þin

bf ðsÞi
þ h�ð1Þin

ln ðpÞ�ð1Þin
nm ðk� pÞih��ð1Þin

bf ðsÞ��ð1Þin
fd ðq� sÞi:

(B3)

Once the double integration is performed, the last term
contributes a constant / �3ðkÞwhich can be disregarded (a
background term). Integrating the remaining two terms

over d3s, we can eliminate one of the two � functions
which come from the expression of the two-point gravity
wave correlator. Using the reality condition ��

ijðkÞ ¼
�ijð�kÞ and the expression for the two-point correlation

function of gravity waves given in Eq. (66), we then obtainZ
d3p

Z
d3sh�ð1Þin

ln ðpÞ�ð1Þin
nm ðk� pÞ��ð1Þin

bf ðsÞ��ð1Þin
fd ðq� sÞi

¼ ð2�Þ6�3ðk� qÞ
Z

d3pP ð1Þ
� inðpÞP ð1Þ

� inðjk� pjÞ


 ½Mlnbfðp̂ÞMmndfð dk� pÞ þMlndfðp̂Þ

Mmnbfð dk� pÞ�: (B4)

The above equation is symmetric in k and q, as well as
under the exchange of the first and second pairs of indices.
Moreover, it is symmetric under the exchange of the first
index with the second and the third with the fourth. This
suggests that we write the two-point correlation function of
the source term as

hfijðk; t0Þf�rcðq; t00Þi ¼ ð2�Þ3�3ðk� qÞMijrcðk̂Þhðk; t0; t00Þ;
(B5)

since the tensor Mijrc has the same symmetries.

To obtain an expression for the function hðk; t0; t00Þ, it is
sufficient to calculate the trace of the above two-point
correlator. We hence should multiply the right-hand side

of the above equation and of Eq. (B1) by Mijrcðk̂Þ. Then,
setting them to be equal and remembering that
MijrcMijrc ¼ 8 [18], we obtain

8ð2�Þ3�3ðk�qÞhðk;t0; t00Þ
¼Uðt0; t00Þ�3ðk�qÞMcrlmðk̂ÞMbd

rcðq̂Þ
Z
d3p½Mlnbfðp̂Þ


Mmndfð dk�pÞþMlndfðp̂ÞMmnbfð dk�pÞ�

P ð1Þ

� inðpÞP ð1Þ
� inðjk�pjÞ (B6)

with

hðk; t0; t00Þ ¼ 1

8ð2�Þ3 Uðt0; t00ÞMbdlmðk̂Þ



Z

d3pP ð1Þ
� inðpÞP ð1Þ

� inðjk� pjÞ


 ½Mlnbfðp̂ÞMmndfð dk� pÞ
þMlndfðp̂ÞMmnbfð dk� pÞ�: (B7)

Finally, we have to perform the above product of three
polarization tensors, defined as in Eq. (32). To achieve this
aim, we use the free source package XACT for
MATHEMATICA [25]: it is sufficient to define a 3-

dimensional flat metric and the projection tensor P ijðk̂Þ ¼
�ij � k�2kikj onto the plane normal to k. Then, we can

express Mijlmðk̂Þ in terms of this projector as
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M ijlm � P ilP jm þ P imP jl � P ijP lm:

Defining the angles between the three directions as � �
k̂ � ð dk� pÞ, � � p̂ � ð dk� pÞ, and 
 � k̂ � p̂, we obtain the
expression given in Eq. (111).
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J. 547, L111 (2001); F. Givoni and L. Feretti, Int. J. Mod.
Phys. D 13, 1549 (2004).

[4] S. Matarrese, S. Mollerach, A. Notari, and A. Riotto, Phys.
Rev. D 71, 043502 (2005); K. Ichiki et al., Science 311,
827 (2006); L. Hollenstein, C. Caprini, R. Crittenden, and
R. Maartens, Phys. Rev. D 77, 063517 (2008).

[5] D. Ryu, H. Kang, J. Cho, and S. Das, Science 320, 909
(2008).

[6] A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1
(2005).

[7] R. Durrer and C. Caprini, J. Cosmol. Astropart. Phys. 11
(2003) 010.

[8] M. Turner and L.M. Widrow, Phys. Rev. D 37, 2743
(1988).

[9] C. Caprini and R. Durrer, Phys. Rev. D 65, 023517 (2001).
[10] C. Tsagas, Phys. Rev. D 72, 123509 (2005).
[11] G. Betschard, C. Zunckel, P. Dunsby, and M. Marlkund,

Phys. Rev. D 72, 123514 (2005).
[12] C. Zunckel, G. Betschard, P. Dunsby, and M. Marlkund,

Phys. Rev. D 73, 103509 (2006).

[13] C. G. Tsagas, Phys. Rev. D 75, 087901 (2007).
[14] G. Betschart, C. Zunckel, P. K. S. Dunsby, and M.

Marklund, Phys. Rev. D 75, 087902 (2007).
[15] J. Barrow, R. Maartens, and C. Tsagas, Phys. Rep. 449,

131 (2007).
[16] C. G. Tsagas, Classical Quantum Gravity 22, 393 (2005).
[17] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1972).
[18] C. Caprini, R. Durrer, and T. Kahniashvili, Phys. Rev. D

69, 063006 (2004).
[19] S. Weinberg, General Relativity and Gravitation (Wiley,

New York, 1972).
[20] C. G. Tsagas, P. K. S. Dunsby, and M. Marklund, Phys.

Lett. B 561, 17 (2003).
[21] J. Barrow, P. Ferreira, and J. Silk, Phys. Rev. Lett. 78, 3610

(1997).
[22] R. Durrer, P. Ferreira, and T. Kahniashvili, Phys. Rev. D

61, 043001 (2000).
[23] R. Durrer, M. Kunz, and A. Melchiorri, Phys. Rev. D 59,

123005 (1999).
[24] R. Durrer, The Cosmic Microwave Background

(Cambridge University Press, Cambridge, England, 2008).
[25] J. Martin-Garcia, XPERM and XACT, http://metric.iem.csic.

es/Martin-Garcia/xAct/index.html.

ELISA FENU AND RUTH DURRER PHYSICAL REVIEW D 79, 024021 (2009)

024021-20


