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The generalized second law (GSL) of black hole thermodynamics states that the sum of changes in

black hole entropy and the ordinary entropy of matter and fields outside the hole must be non-negative. In

the classical limit, the GSL reduces to Hawking’s area theorem. Neither law identifies the specific effects

that make it work in particular situations. Motivated by Davies’ recent gedanken experiment he used to

infer a bound on the size of the fine structure constant from the GSL, we study a series of variants in which

an electric test charge is lowered to a finite radius and then dropped into a Schwarzschild, a near-extremal

magnetic Reissner-Nordström or a near-extremal Kerr black hole. For a classical charge, we demonstrate

that a specific ‘‘backreaction’’ effect is responsible for protecting the area theorem in the near-extremal

examples. For the magnetically charged Reissner-Nordström hole an area theorem violation is defused by

taking into account a subtle source of repulsion of the charge: the spinning up of the black hole in the

process of bringing the charge down to its dropping point. In Kerr hole case, the electric self-force on the

charge is sufficient to right matters. However, in all experiments involving an elementary charge, the full

GSL would apparently be violated were the fine structure constant greater than about order unity. We

argue that in this case a quantum effect, the Unruh-Wald quantum buoyancy, may protect the GSL.

DOI: 10.1103/PhysRevD.79.024019 PACS numbers: 04.70.Bw, 04.70.Dy

I. INTRODUCTION

One of the most useful general results in black hole
physics is Hawking’s area theorem [1]: in the presence of
matter and fields that obey the weak positive energy con-
dition, the area of the event horizon of any black hole
cannot decrease. This theorem is proved under the assump-
tion that the congruence of the horizon’s generators has no
caustics in the future, in other words, that the generators do
not run into a future singularity. The theorem does not
identify specific effects that make it work in particular
situations. A venerable application of this theorem is to
demonstrate the necessity of superradiance by charged or
rotating black holes [2]. The theorem is also closely related
to black hole thermodynamics: the generalized second law
(GSL) for black holes [3] is an extension of the area
theorem that reduces back to it when Hawking’s radiation
has negligible effect.

Recently, Davies [4] has employed the GSL (and thus
thermodynamics) to establish an upper bound on the fine
structure constant, and to infer that a magnetic monopo-
les’s spatial extent considerably exceeds its Compton
length. He envisages a gedanken experiment in which a
charged point particle is dropped from rest at infinity into a
Schwarzschild black hole. By assuming that the GSL
reduces to the area theorem, and consequently demanding
that the area of the horizon grow upon ingestion of the
charge, Davies concludes that the fine structure constant
cannot be larger than unity. This derivation is interesting
because of its thermodynamic origin. It immediately raises
the question whether variations on the Davies gedanken
experiment can yield additional insights into the possible
bound and further conclusions of physical interest. To

answer this question we examined a comprehensive set
of variants designed to ‘‘push the area theorem against
the wall’’: the dropping of either an extended or point
charge from rest at a finite distance from a
Schwarzschild, Reissner-Nordström (RN), and Kerr hole.
We start in Sec. II by reviewing Davies’ argument, and

showing that the key assumption is that the dropped parti-
cle is pointlike. Davies also assumes the Hawking emission
is insignificant, but we point out that in the regime where
the bound is obtained, the Hawking radiation entropy
cannot actually be neglected in the GSL. To characterize
this contribution we modify the experiment, imagining
instead a series of point of charges are dropped into the
hole. The result is a slightly weakened upper bound still
close to Davies’ value, provided we are allowed to make
the timescale of the dropping appropriately small.
With this gedanken experiment in mind, we consider our

new lowering-dropping process for a trio of black hole
cases. First, in Sec. III, we allow the dropped object to be
an extended classical charge. We start (Sec. III A) by
enumerating the conditions that the object’s charge, mass
and radius must obey in relation to the hole’s mass in order
that various complications may be avoided. We then con-
sider (Sec. III B) the dropping of the object from rest at a
finite distance into a Schwarzschild black hole. We point
out that one should take into account not only the gravita-
tional force, but also the repulsive electromagnetic self-
force the object is subject to. Analytic arguments show that
no violation of the area theorem ensues in this case.
To further challenge the theorem we replace the

Schwarzschild black hole by an almost extreme magneti-
cally charged RN one (Sec. III C). Here, a violation of the
area theorem would occur for classical charged objects
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satisfying the weak energy condition, even with the self-
force accounted for. But, as made clear numerically, the
theorem is saved by the intervention of an extra repulsion.
The electric dipole moment induced in the hole by the
angular momentum gradually transferred to it repels the
charge as it is lowered. As a final example we look
(Sec. III D) at the case of a charged object lowered along
the symmetry axis of a nearly extreme (neutral) Kerr black
hole down to a certain point, and then dropped into it. Here
the only known force acting on the charge, apart from
gravity, is the self-force. We compute this force anew,
and show that if it is not properly accounted for, another
inconsistency arises between the area theorem and the
weak energy condition.

In Sec. IV, we consider lowering and dropping an ele-
mentary charge into our black holes. We allow for the
classical ‘‘backreaction’’ effects discussed in the previous
section, and employ a large black hole to minimize the
effect of the Hawking emission. We find that the GSL,
which reduces to the area theorem in this case, seems to
imply an upper bound on the fine structure constant � & 2,
similar to Davies’ bound. Based on these results, must one
conclude that black hole thermodynamics truly requires a
bound on the magnitude of the electromagnetic coupling in
nature? We argue that in this case an entirely quantum
effect, the average repulsive force on the elementary
charge due to Compton scattering of photons from the
black hole’s ‘‘thermal atmosphere,’’ an example of
Unruh-Wald buoyancy, should not be neglected, and may
be the protector of the GSL.

Section V summarizes our results and discusses possible
future work. We also note that in the gedanken experiments
where charges are dropped from infinity, strong self-field
effects, which were neglected previously, are not negligible
and could cause the process to break down. Throughout
this paper we use units with c ¼ G ¼ 1, but display @;
hence

p
@ ¼ mP, the Planck mass. Numerical values and

electromagnetic relations are stated with electrostatic units
in mind.

II. CONSTRAINTS ON FINE STRUCTURE
CONSTANT FROM THE GSL?

A. Davies’ argument

We first review the argument of Davies [4] for setting
constraints on the value of the fine structure constant and
on the physical size of magnetic monopoles from the GSL.
Davies considered a simple gedanken experiment where a
point particle of electric (or magnetic) charge g with mass
m is dropped from rest at infinity into a Schwarzschild
black hole of mass of M. It is assumed that g, m � M so
that the in-falling test particle moves along the geodesics of
the background Schwarzschild geometry. When the parti-
cle is absorbed, the black hole becomes an electric or
magnetic RN solution. Therefore the change in the horizon
cross-sectional area in the process is

�A ¼ 4�ðMþmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþmÞ2 � g2

q
Þ2 � 16�M2: (1)

Obviously �A < 0 whenever Mþmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMþmÞ2�g2
p

<
2M, from which follows the exact criterion for the area to
decrease, and for the GSL (more correctly the area theo-
rem) to be violated:

g2=m > 4M: (2)

At this point Davies invokes quantum mechanics: the
effective ‘‘radius’’ of the particle cannot be smaller than
approximately its own Compton wavelength �C ¼ @=m;
hence, the black hole diameter 4M must be greater than the
last in order for the particle to be absorbed by, rather than
scatter off the black hole. Therefore, the perceived viola-
tion of the area theorem entails

g2=@ * 1: (3)

Accordingly, in Davies’ view, the GSL requires that in
nature

g2=@ & 1: (4)

Should we be incredulous that such fundamental bound
on a coupling constant results from thermodynamics? With
the electron’s charge e in mind, Davies reminds us that a
value of the fine structure constant as large as � ¼ e2=@ *
1 would induce spontaneous electron-positron pair crea-
tion in the vacuum [5], and is thus unviable.
Whenever g represents a magnetic monopole charge �,

the Dirac quantization condition leads to the basic con-
straint

�e � @=2: (5)

Now in terms of the observed fine structure constant � �
1=137, this inequality becomes �2=@ * ð137=4Þ, which
clearly contradicts the aforementioned criterion �2=@ &
1 for protecting the GSL. To circumvent this problem,
Davies proposes that magnetic monopoles are never point
particles, but rather extended objects with some effective
proper radius R � @=m. Since R & 2M for the particle to
be absorbed by the hole, he arrives at the new criterion

�2 & mR (6)

for the area theorem to hold. Combining this with (5) yields
the additional constraint

e2

@
*

@=m

R
(7)

on the size of the fine structure constants in a world with
monopoles.

B. Critique

Davies assumes that the particle being dropped is a point
particle, i.e., one whose localization scale is its own
Compton length �C ¼ @=m. He further tacitly assumes
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that the black hole is so massive that production of entropy
via the Hawking radiation [6] is completely negligible
compared to the black hole entropy change in the process
contemplated here. To see that these two assumptions are
indispensable for his conclusions, let us imagine a purely
classical variant of the argument.

Classically there is no GSL, but only the Hawking area
theorem. One should not need to invoke quantum mechan-
ics to prevent the theorem’s violation when inequality (2)
holds. Let us recall that g2=m constitutes the ‘‘classical
radius’’ rc of our charged object or particle, the radius the
object (regarded as spherical) would have were its rest
mass m to be comprised exclusively of electromagnetic
energy. Therefore, if we think of our charge as an extended
classical object, its effective proper radius R must exceed
rc in order for the object’s energy density to be positive
everywhere (for an electron in the real world rc �
�C=137). If Eq. (2) holds so that �A < 0, and also R &
M so the object can indeed be absorbed, we find that rc *
R. But this just means that the object contains regions with
negative energy density. Thus, the violation of the area
theorem is understandable: the theorem is always proved
under the assumption that the weak positive energy condi-
tion is respected. By working entirely within classical
physics we fail to come up with significant conclusions.

Let us now return to the quantum elementary particle. To
be definite we take g to be the electric charge, e. We note
that �C ¼ rc=�. Thus, in a world where �> 1, �C < rc,
and we can well ask, what is the actual size of our charge,
�C as would be suggested by quantum considerations, or rc
as would be required by positivity of the internal energy
density? In the former case the condition for the charge to
be absorbed by the black hole is �C < 4M and in the latter
rc < 4M. In the first case, we can rework the condition�>
1 into the form e � ðe=�2

CÞ�C >m, which says that the

electric field of our charge can impart to a like (virtual)
particle in the vacuum an energy exceeding its own rest
mass while that particle is a Compton length or so away. In
the second case, �> 1 is equivalent to e � ðe=r2cÞrc > m so
that, again, our charge can impart to a like virtual charge in
the vacuum an energy greater than its rest mass while the
virtual charge is a distance rc away.

Thus, under both assumptions about the size of our
charge, we would expect it to strongly polarize (if not
outrightly break down) the vacuum adjacent to it. But
then the expectation value of the stress-energy operator

T̂��, which appears as the source in the semiclassical

Einstein equation,

G�� ¼ 8�hT̂��i; (8)

need no longer satisfy the weak energy condition in the
particle’s neighborhood. This weakens the basis for the
validity the area theorem in the situation we have in mind.
Recall that in the Hawking radiation process, vacuum
polarization opens a quantum loophole in the area theorem,

and this is just what allows the black hole to evaporate and
decrease its horizon area. Furthermore, in the first case the
charge is smaller than its classical radius, which means,
classically speaking, that its interior has negative energy
density somewhere. For all these reasons one cannot,
a priori, rely on the validity of the area theorem when �>
1.
However, one can appeal to the presumably more reli-

able GSL,

�Sext þ 1
4@

�1�A � 0; (9)

namely, that if the black hole area decreases, the decrease
must be more than compensated by generation of a suitable
amount of radiation entropy. Davies tacitly assumes that
the term �Sext can be neglected here, so that the GSL
reduces to the area theorem. One might think this would
be so for a sufficiently massive black hole, in which case
Hawking radiance would be suppressed. Let us check. By
expanding Eq. (1) for e, m � M we obtain the black hole
entropy change contributed by the particle’s in-fall alone:

1
4 @

�1�A � ð2�=@Þð4Mm� e2Þ: (10)

During the particle’s disappearance, the hole radiates.
Approximating this as emission of thermal radiation from a
sphere of radius 2M at temperature @ð8�MÞ�1, we find that
the rate of thermal entropy emission is _Srad � ð1920MÞ�1.
This is a contribution to �Sext. The emission induces a
decrease in black hole entropy, which scales withM just as
does the radiation entropy, and whose rate is known to be
somewhat smaller in magnitude than _Srad; it makes a con-
tribution to �A. Both together amount to

_S BH þ _Srad ¼ �ð1920MÞ�1; (11)

where the factor � is dimensionless, positive, and of order
unity. Putting together all above contributions we may
write Eq. (9) as

��t

1920M
þ 2�ð4Mm� e2Þ

@
� 0; (12)

where �t is the global time that elapses as the charge goes
down the hole.
What to take for �t? For one charge it is a somewhat

ambiguous quantity. So it helps to consider a series of like
charges being dropped sequentially from rest at global time
intervals �t, with their starting points distributed around a
sphere at large distance from the black hole. By the sta-
tionary character of Schwarzschild’s spacetime, the
charges will arrive at a specified radius r near the horizon
also separated by time intervals �t. Davies’ bound comes
from assuming that the charge is spatially almost as big as
the black hole. Therefore, when one charge is just begin-
ning to be absorbed by the black hole (i.e., its ‘‘center of
mass’’ is about proper distance R from the horizon), its
spatial separation from the subsequent charge must be at
least R. This is the minimum criterion for the charges to
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avoid bumping into one another. In the Schwarzschild
metric the rate of change of the proper distance from the
horizon ‘ for a freely falling particle is

d‘=dt ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2M=rÞð1� 2M=rÞp
: (13)

This formula can be used to calculate the time separation
�t. However, since r should be taken somewhat larger than
2M, we can simply parameterize �t as

�t ¼ �R; (14)

with � at least a few times unity. We think of � as fixed.
In our first case (R ¼ @=m), we have�t ¼ �@=m, so that

Eq. (12) gives

� � 4Mm

@
þ ��@

3840�Mm
: (15)

It is immediately clear that large M is not most propitious
for deriving the tightest bound on �. Let us instead mini-
mize the r.h.s. of Eq. (15) with respect toM,while respect-
ing Davies’ requirement that @=m < 4M. We get

� � max

�
1þ ��

960�
;

ffiffiffiffiffiffiffiffiffiffiffiffi
��

240�

r �
: (16)

If indeed � can be made just a few times unity, the upper
bound on � is quite close to unity, as Davies contends. In
the second case (R ¼ e2=m ¼ �@=m), the appropriate pa-
rametrization is�t ¼ ��@=m. This will transform Eq. (12)
into �

1� ��@

3840�Mm

�
� � 4Mm

@
: (17)

The additional demand that e2=m < 4M, or 4Mm=@>�,
automatically causes Eq. (17) to be satisfied for all values
of �. So in this case the GSL sets no bound whatsoever on
�.

We conclude that if, in a world with �> 1, an elemen-
tary charge’s spatial extent is its Compton length, then
Davies’ bound on �, or one very close to it, can indeed
be derived from the GSL. This is contingent on existence of
an appropriate charge dropping procedure with a � not very
large on scale unity, one without instabilities of the train of
charges due to their Coulomb repulsion. It is also contin-
gent on resolution of a quandary to be raised in Sec. V. If
when �> 1 an elementary charge is as large as its classical
radius, no bounds on � can be derived from the GSL.

III. LOWERING A CLASSICAL CHARGE AND
THEN DROPPING IT

Given the above caveats on Davies’ argument, can vari-
ants of the Davies’ gedanken experiment yield stronger
constraints on�, or even new conclusions?We first explore
a variant that focuses on a classical charged object that is
dropped from the vicinity of the black hole instead of from

infinite distance. The new scenario is advantageous since
the conserved Killing energy of the object, when ultimately
dropped, is smaller than that pertaining to the object
dropped from rest at spatial infinity. The consequent re-
duction of �A is more likely to challenge the area theorem.
Furthermore, the use of a classical object allows us to
escape the complications of the analysis of Sec. II B.
Given that Davies’ bound emerges when the black hole
radius is almost as small as the elementary particle’s, it
would make little sense there to ignore Hawking’s radi-
ance, which is the more intense the smaller the black hole.
Thus, since vacuum polarization issues force us to trade
area theorem for GSL, we cannot avoid dealing with
complications due to the radiation. By switching to a
classical charged object, we no longer need to consider
black holes with microscopic radius, and so we may hope
the radiation plays a negligible role. We also explore
whether use of RN or Kerr black holes, instead of
Schwarzschild ones, can expose new things. An allied
question we ask is whether there are any other forces, apart
from gravitation and Coulomb ones, which are crucial for
the outcome of the gedanken experiment.

A. Setup

We imagine that a classical object with charge q is first
brought to rest at some finite radius from the horizon of a
black hole, which we take of Schwarzschild, magnetic RN,
or Kerr type, and then dropped freely. How is the charged
object deposited at a finite radius? It could be lowered
adiabatically from infinity with an appropriately designed
apparatus. One possibility for this, discussed for the
Schwarzschild case in Ref. [7], is a conical cable consisting
of radial fibers filling the portion of space defined by some
solid angle with vertex at the black hole. This cable can be
modeled by the stress tensor T�

�¼diag½�	ðrÞ;SðrÞ;0;0�,
where 	ðrÞ is the proper density and SðrÞ the tension. It
turns out that this stress tensor respects the weak energy
condition jSj=	 � 1; therefore, the cable need not snap
under tension at a finite radius from the hole [7] (see also
our Appendix B for a demonstration that a properly con-
structed cable also will not snap in the Kerr spacetime). We
consider the adiabatic lowering process to be on a time
scale 
much longer than the inverse surface gravity ��1 of
the black hole. Thus, the change in horizon area in the
course of the lowering process will be negligible [8].
In what follows, we treat the object as a uniformly

charged sphere of proper radius R. We compute in the
test particle approximation. In addition to the obvious
requirement that m, q � M, this approximation implies
three important additional conditions.
(1) The object’s radius R should be greater than its

classical radius, but much smaller than the black
hole’s radius (P shall denote magnetic monopole

and a the specific angular momentum): q2=m <

R � Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � P2 � a2

p
.
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(2) The magnitude of the electromagnetic energy-
momentum tensor in the object’s immediate vicin-
ity, jTparticlej 	 q2=R4, should be much less than the

maximum background spacetime curvature 	1=M2

due to the black hole. Thus, R � ffiffiffiffiffiffiffiffi
qM

p
.

(3) The magnitude of the object’s interior energy-
momentum tensor should be much less than the
black hole’s maximum curvature in its exterior.

Thus, R � m1=3M2=3.
With condition 1 we insure that the object to be absorbed
has positive energy density. The additional requirement
R � M makes the object ‘‘able to fit into the black
hole’’ and smaller than the scale set by the curvature, so
that finite size effects can be neglected. Conditions 2 and 3
keep the ‘‘backreaction’’ due to the distortion of the space-
time by the stress energy of the object itself negligible, so
that the latter’s equation of motion is, to good approxima-
tion, the same as in the fixed background geometry of the
black hole.

B. Electric charge or magnetic monopole into
Schwarzschild black hole

Our first example deals with an electrically charged
object dropped from some distance into a Schwarzschild
black hole. The first issue to resolve is the criterion that
prevents the charge from breaking down the vacuum in its
neighborhood (Schwinger effect) and thus neutralizing
itself. For the breakdown to be suppressed, the object’s
electric field just outside it, E, must be well below the
critical field m2

e=ðe@Þ, where me is the electron’s mass
and e is the elementary charge. Now by condition 2 of
Sec. III A, E ¼ q=R2 < 1=M. We must thus, in addition to
the three conditions, require a minimum black hole mass:

M> e@=m2
e ¼ �1=2m3

P=m
2
e � 1:05 � 1039 g (the numerical

value assumes the real values of the fundamental con-
stants). The Hawking radiation of such massive black
hole is indeed negligible. And the requirement m � M
still permits the dropped object to contain many elemen-
tary particles and to be thoroughly classical.

The change in area during the entire process is given by
Eq. (1) with m replaced by the conserved Killing energy E
of the object,

�A ¼ 4�ðMþ Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ EÞ2 � g2

q
Þ2 � 16�M2: (18)

During the assumed adiabatic lowering process, A shall be
unchanged. In addition, we assume the relation Ai ¼
16�M2 to remain valid as the particle is being lowered.
This just means that M, the parameter governing the back-
ground metric, is taken as constant. Of course the active
gravitational mass of the system changes during the low-
ering; this corresponds to a metric perturbation of relative
order Oðm=MÞ, which is then reflected in a commensurate
correction to the object’s conserved energy. But this last
only leads to higher order corrections to �A. Therefore, we

assume

E ¼ �p��
�; (19)

with canonical momentum p� derived from the effective

Lagrangian of the object moving on the fixed curved
background, and �� ¼ ð@=@tÞ� is the timelike Killing
vector. In our case

E ¼ �mut � 1
2qA

self
t : (20)

The first term is the fourth component of the four momen-
tum of the particle; the second is the contribution of the
object’s electromagnetic vector potential to its own global
energy [9,10].
The self-interaction of a charged object reflects the fact

that Huygens’ principle is not satisfied in curved space-
time. This means radiative fields propagate not only on
characteristic surfaces, but also inside the light cone as
backscattered ‘‘tails.’’ This effect produces a nonlocal
force term that depends on the metric and past history of
the object. Even when the last is static, the background
curvature distorts its electromagnetic field, which in turn
‘‘backreacts’’ on it. An alternative intuitive picture of the
self-interaction is that it is due to a surface charge density
induced on the black hole horizon, which acts like a
conductor. However, this last intuition does not capture
the situation entirely: the interaction turns out to be repul-
sive and not, as the analogy would suggest, attractive.
Since the object is initially nearly stationary at, say, r ¼

r0, its four velocity (which is normalized to unity) is ua ¼
�a=j�j, where j�j 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
����

�jr¼r0

q
. Aself

t was calculated in

Refs. [9,10] and others (see Appendix A for details) and
found to be

Aself
t ¼ �Mq

r20
; (21)

so that

E ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r0

q
þ 1

2
Mq2=r20: (22)

Now, according to criterion (2) with m ! E, the exact
condition for a violation of the area theorem here would be

q2 > 4mM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r0

q
þ 2M2q2=r20: (23)

To make this more transparent, let us express the dropping
coordinate radius r0 in terms of the proper distance ‘0 from
the horizon,

‘0 ¼
Z 2Mþ�

2M
ð1� 2M=rÞ�1=2dr: (24)

If we assume � ¼ r0 � 2M � 2M, so that we are close to

the horizon in coordinate sense, we find
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r0

p �
‘0=4M so that criterion (23) for the area theorem violation
becomes
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q2=m * 2‘0: (25)

Now the object can be lowered down to the hole only
until its center of mass lies a proper distance ‘0 � R from
the horizon, where it begins to be absorbed by the hole
hole. Therefore, since we require ‘0 * R for the lowering
and dropping process, criterion (25) is inconsistent with
condition 1 of Sec. III A. Were we to neglect the self-
interaction contribution to the energy, the resulting crite-
rion, q2=m * ‘0, would still be inconsistent with condition
1. Hence, no violation of the area theorem can occur when
a classical electrically charged sphere is lowered toward
and then dropped into a Schwarzschild black hole. By
duality, this conclusion is unchanged if we lower and
then drop a magnetically charged sphere.

C. Electric charge into magnetic Reissner-Nordstrom
black hole

Now we calculate the horizon area change when an
electrically charged spherical object is lowered toward
and then dropped into a near-extremal RN black hole
with mass M and magnetic charge P [11]. Our motivation
for considering this case is that the spatial geometry be-
comes throatlike for near-extremal black holes, allowing
the object to have smaller Killing energies at given proper
distance from the horizon. And in contrast to the case of an
electric charge assimilated by an electric RN, here there is
no direct repulsive interaction between the electric charge
and magnetic monopole to contribute to the conserved
energy of the object.

We must still require M>�1=2m3
P=m

2
e � 1:05 � 1039 g

so that the charge q shall cause no vacuum breakdown.
Since the black hole is magnetically charged, it cannot
cause vacuum breakdown, but it may polarize the neigh-
boring vacuum with its near magnetic field P=M2. The
polarized vacuum would affect the electrodynamics and
further complicate the already complex situation we ana-
lyze. Such polarization will be suppressed when P=M2 <
m2

e=ðe@Þ. Since we are assuming P � M, we see that the
lower bound we already required for M automatically
suppresses vacuum polarization near the hole.

The exterior geometry is described by the line element
and vector potential

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2ðsin2dþ d�2Þ;
(26)

At ¼ P=r; (27)

where fðrÞ ¼ 1� 2M
r þ P2

r2
. Now, as before, we imagine

that by some mechanism the object with electric charge q
and mass m is slowly lowered from spatial infinity to a
fixed radius r0 outside the black hole, but near the horizon

radius, rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � P2

p
.

Without loss of generality we assume the object is
lowered down the polar axis (z axis) to r0. Since the

configuration contains a magnetic monopole (in the mag-
netically charged black hole) and an electric charge, the
electromagnetic and gravitational (in a curved spacetime)
fields together possess a conserved angular momentum
Lz ¼ qP along the z axis, which is independent of the
distance between the object and black hole [12,13].
When the object is at spatial infinity, all this angular
momentum is contained in the electromagnetic field, but
during the lowering process, as the electromagnetic field
lines penetrate the horizon, the angular momentum is trans-
ferred to the gravitational field, and the hole begins to
rotate [12,13]. We again assume the lowering process is
adiabatic, so that during this process the change in the
horizon area will be negligible [14]. Once the particle
reaches r0, it is allowed to fall freely (radially) into the
black hole.
The change in the area is approximately

�A � 4�

��
qP

Mþ E

�
2 þ ðMþ EÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ EÞ2 � P2 � q2 �

�
qP

Mþ E

�
2

s �

� 4�ðMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � P2

p
Þ2; (28)

where we have assumed the final state is a rotating, charged
(Kerr-Newman) solution with angular momentum qP and
mass Mþ E. The energy E contributed by the object is

E � m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r0 þ P2=r20

q
þMq2

2r20
þ qÂt; (29)

where we ignore the Oðz2Þ contributions of the hole’s
rotation to the redshift factor and self-energy.
The self-energy correction in a RN spacetime has the

same form as in Schwarzschild spacetime [15,16]. The new

term Ât originates from the repulsion of the charge q by the
electric dipole induced by the rotation of the magnetically
charged black hole. Since the charge is brought near the
horizon, we may assume that the angular momentum pa-
rameter of the black hole is a � qP=M. For a magnetic
Kerr-Newman black hole, the background At evaluated on
the symmetry axis  ¼ 0 is [17]

qÂt ¼ qPa

r20 þ a2
¼ q2P2

Mðr20 þ a2Þ �
q2P2

Mr20
: (30)

The proper distance to the horizon is given by integral

‘0 ¼
Z r0

rþ
ð1� 2M=rþ P2=r2Þ�1=2dr; (31)

which has the analytic form

‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � 2Mr0 þ P2

q
þMcosh�1

�
r0 �Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � P2

p
�
: (32)

If r0 � rþ � rþ, we can expand in a Taylor series as in
Sec. III B. However, as the hole becomes more and more
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extremal (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � P2

p
! 0), the case of most interest here,

this approximation for the proper distance begins to break
down.

Consequently, we calculated �A in Eq. (28) numerically
for a wide range of values of P=M, m=M, q=M, and r0=M.
In units with M ¼ 1 the range studied was 0:9 � P �
0:99 999, 10�12 � m � 10�3, 10�4

p
m � q � p

m, and
1:00 001 � r0=rþ � 1:05. The upper end of the range of
q is dictated by the condition that the classical radius of the
object, q2=m, be smaller than the black hole radius (ap-
proximately unity). For the smaller P this condition is
enough to insure that the energy Emonotonically increases
with r0 for r0 > rþ, which means that the object is always
attracted by the black hole, and can indeed be lowered all
the way to the horizon. As P grows, the Eðr0Þ curve
develops a minimum near the horizon (with consequent
repulsion inside this radius), but even as P ! 1, this does
not happen for q2=m < 1=3. Since the object cannot be
entirely made up of electromagnetic energy (as it would
then be unstable), its radius should well exceed q2=m.
Thus, for an object small enough to be dropped into the
black hole, the possibility of its lowering being arrested by
the said effect can be discounted.

The m range was sampled at ten values, each a power of
10 greater than the previous one; the ranges of the other
variables were sampled 100 times each, with jumps of
progressively growing (or decreasing) size in order to
maximize coverage of interesting regions. For example,
the region near P ¼ 1 was more finely sampled than that
near P ¼ 0:9, and that near r0 ¼ rþ was covered more
finely than that near r0 ¼ 1:1rþ. For each point of the
above grid we used Eq. (32) to calculate the proper dis-
tance from r ¼ r0 to the horizon. The overall range was
0:01165 & l0 & 3:2499. From the above grid of values we
discarded points in conflict with conditions 1–3 of
Sec. III A. Specifically, since we never specified R, the
particle’s radius, we just demanded that ‘0 exceed each

of the quantities q2=m,
p
q and m1=3. For all parameter

combinations meeting these physical requirements for
dropping a finite-sized charge into the black hole without
disturbing it strongly, we found that �A > 0 and so the area
theorem is respected.

We stress that for this to be true, the electric dipole-
charge interaction in Eq. (29) must be included. For ex-
ample, with it left out for P ¼ 0:99 999, m ¼ 10�7 and
q ¼ 10�4, we find that �A < 0 for r0=rþ < 1:058. At this

critical r0, ‘0 � 7:919 whereas fq2=m;
p
q;m1=3g ¼

f0:1; 0:01; 0:0046g. Thus, with the object radius obeying
0:1 � R � 7:9, conditions 1–3 are satisfied and we have a
violation of the area theorem. (When only the self-force
energy is included, the Eðr0Þ curve has no minimum what-
soever for q2=m < 1.)

We do not find evidence that the self-interaction term is
necessary for satisfaction of the area theorem (this was also
the case for the Schwarzschild black hole). Actually, when

that term is neglected, and for P fairly close toM, there are
formal violations of the area theorem for r0 in the region
where Eðr0Þ rises with r0, but these always occur for lðr0Þ
just marginally larger than q2=m (7% larger in the extreme
case). In view of our above remarks about the relation
between R and q2=m, these cases cannot be counted as
physical violations. We conclude that for RN black holes
the area theorem is protected by the electric dipole-charge
interaction.
At the risk of repetitiousness we mention that analogous

conclusions apply to the case where a magnetically
charged sphere is lowered and then dropped into an electri-
cally charged RN black hole. In that case, the area theorem
is protected by the magnetic dipole-monopole interaction.
Breakdown of the near vacuum by the black hole’s
Coulomb field and polarization of the vacuum by the
sphere may both be avoided with the same lower bound
on M stipulated earlier in this section.

D. Electric charge into Kerr black hole

Our third example concerns an object bearing charge q,
which is lowered along the symmetry axis of a neutral,
nearly extremal Kerr black hole down to a point where its
Killing energy is E, and then dropped in. The extremal
throatlike geometry permits one to challenge the area
theorem to the utmost. Let M be the mass and a ¼ J=M
the angular momentum per unit mass of the initial black
hole. Again, problems stemming from vacuum breakdown
by the object’s Coulomb field may be obviated by requiring

M>�1=2m3
P=m

2
e � 1:05 � 1039 g.

When necessary, we refer to the Boyer-Lindquist radial
coordinate r. In the envisaged process the angular momen-
tum of the hole is unchanged. Thus, the initial parameter a
is transformed into að1þ E=MÞ�1 so that

�A ¼ 4�ðr2f � r2þ þ a2ð1þ E=MÞ�2 � a2Þ: (33)

Here, rf ¼ Mþ EþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMþ EÞ2 � q2 � a2ð1þ E=MÞ�2
p

, and rþ 

Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
is the initial Kerr horizon radius. The

conserved Killing energy for a particle on the symmetry
axis is

E ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � 2Mr0 þ a2

r20 þ a2

s
� 1

2
qAself

t : (34)

In Appendix Awe calculate anew the self-interaction term
for an object on the polar axis following the method of [9]
and find

� 1

2
qAself

t ¼ Mq2

2ðr2 þ a2Þ : (35)

Then we compare this with earlier results of Léauté and
Linet [18], of Lohiya [16], and of Piazzese and Rizzi (PR)
[19].
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Just as in Sec. III C we here evaluate formula (33)
numerically using specific values of m, q, a (in units of
M ¼ 1), and numerically integrating

‘0 ¼
Z r0

rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

r2 � 2Mrþ a2

s
dr (36)

(no analytic form is known) to find the proper distance
from the horizon.

The range studied was 0:9 � a � 0:99 999, 10�12 �
m � 10�3, 10�4

p
m � q � p

m, and 1:000 005 �
r0=rþ � 1:05. The upper end of the range of q was chosen
by the consideration set forth in Sec. III C. We find nu-
merically that for q2=m � 1 the energy Eðr0Þ monotoni-
cally increases with r for r > rþ, so that the charge is
always attracted to the black hole, and can be lowered all
the way to the horizon.

The m range was sampled at ten values, each a power of
10 greater than the previous one; the ranges of the other
variables were sampled 100 times each, with jumps of
progressively growing (or decreasing) size so that the
region near a ¼ 1 was more finely sampled than that
near a ¼ 0:9, and that near r0 ¼ rþ was covered more
finely than that near r0 ¼ 1:05rþ. From the above grid we
again discarded points for which ‘0 did not exceed each of

the quantities q2=m,
p
q and m1=3, thus securing compli-

ance with conditions 1–3. We uncovered no violations of
the theorem for the residual points.

When the self-force energy, Eq. (35), is not included,
violations of the area theorem are found. For example, with
m ¼ 3� 10�8, q ¼ 2� 10�5 and a ¼ 0:9999, �A < 0
when r0 < 1:0145, that is, when the object is dropped a
proper length ‘0 < 0:3199 from the horizon. Since

fq2=m;
p
q;m1=3g ¼ f0:0133; 0:00 447; 0:00 311g, if the

size of the object obeys 0:0134<R � 0:31, conditions
1–3 are met, albeit marginally. The self-force is obviously
an essential part of the workings of the area theorem.

We also examined the situation when the object’s energy
was calculated using the alternative form for the self-force
(Eq. (A12) below) worked out by PR [19], to which cor-
responds the energy correction

EPR ¼ q2ðMþ r0Þ
2ðr20 þ a2Þ þ 1

2

q2

a
arctanðr=aÞ � �q2

4a
; (37)

instead of that in Eq. (35). We easily found violations of the
area theorem. For the same parameters a, e, and m as
above, we find that �A < 0 when r0 < 1:0144, that is,
when the object is dropped a proper length ‘0 < 0:2718
from the horizon. Obviously conditions 1–3 can be satis-
fied in this case for 0:0134<R � 0:271. These and simi-
lar violations of the area theorem constitute independent
evidence that the PR formula for the self-force is incorrect.

IV. LOWERING AN ELEMENTARY CHARGE

In this section we suppose that the above gedanken
experiments of Sec. III are carried out with an elementary
particle of massm and charge e. To be concrete we work in
the Schwarzschild case, where we can make use of the
analytic results in Sec. III B.
The criterion (25) for �A < 0 translates into

e2=m ¼ � � @=m * 2‘0: (38)

As discussed earlier, in a world where �> 1 the spatial
extent of the particle might be given by its classical radius
e2=m. In such eventuality the last criterion could not be
satisfied since it requires the still suspended particle’s
center to be closer to the horizon than its own radius.
The conclusion might be that no violation of the area
theorem occurs, but clearly one cannot draw any bound
on �.
If instead the particle’s effective size is about a Compton

wavelength, its center cannot be deposited closer to the
horizon than that distance, so ‘0 * @=m. Thus, violation of
the area law would entail � * 2. Assuming Hawking
radiation effects can be neglected, we may conclude that
the area theorem implies the bound

� & 2: (39)

(In the RN and Kerr cases this bound should also be of
order unity when we include the dipole repulsion and self-
forces.) Apart from the factor 2, this is bound (4) inferred
by Davies from the freely falling charge experiment. The
weaker constraint here results from our inclusion of the
self-force energy. Note that Davies would also have ob-
tained � & 2 had he demanded that the black hole radius
exceeds the Compton length.
Now as we stressed in Sec. II B, in a world where � * 1,

the area theorem is unreliable because the charge will
polarize the vacuum, so that the expectation value of the
stress-energy tensor operator need not then satisfy the
weak energy condition. In an attempt to settle the issue
here, we again appeal to the more reliable GSL and use Eq.
(11) for the net contribution of the Hawking radiation to the
change in total entropy (black hole plus exterior). We
repeat the derivation of Eq. (12), but this time with m

replaced by the E of Eq. (22) with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r0

p �
‘0=4M and r0 � 2M. We find that the GSL requires

��t

1960M
þ �

@
ð2‘0m� e2Þ � 0: (40)

What to take for the disappearance time �t? We are
allowed to lower down the charge to within roughly a
Compton wavelength from the horizon, so that @=m is a
lower bound on �t. And because M sets the scale of the
gravitational field, a geneous upper bound should be a few
timesM. We conclude that the first term in Eq. (40) is small
compared to unity, and thus negligible compared to
2�‘0m=@. Hence, the GSL gives e2=@ & 2‘0=�C; since
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we can arrange for ‘0 to approach �C, we recover inequal-
ity (39).

Are there any relevant effects that might change this
conclusion? One possibly important effect is Unruh-Wald
or quantum buoyancy [20]. This buoyancy comes about
because a suspended, hence accelerated, object perceives
the quantum vacuum outside a black hole as an ‘‘atmo-
sphere’’ of thermal radiation. Since the local temperature at
the bottom of the object is higher than that at its top (due to
the varying redshift factor), the associated pressure gra-
dient exerts an outwardly directed force on the object.
Consequently, the conserved energy Eðr0Þ receives an extra
positive contribution from the work done by the buoyancy
on the object. In the classical object examples in Sec. III
this contribution is negligible, but in any case makes it
more difficult to violate the area theorem.

For an elementary point charge in the thermal atmo-
sphere the fluid description of radiation that underlies
Unruh and Wald’s original calculation of buoyancy [20]
must be replaced by one based on the momentum transfer
to the charge due to Compton scattering of atmosphere
photons. Thus, it is not obvious whether the neglect of this
effect is also similarly justified for the point particle case.
In Ref. [21] one of us calculated, in Schwarzschild space-
time, the average repulsive force measured at infinity on a
suspended elementary charge due to Compton scattering
finding

f ¼ @ẑ

270�M

‘20r
3
c

ð‘20 � r2cÞ3
; (41)

where ẑ is a unit vector pointing away from the horizon in
an orthonormal frame centered at the particle. For � � 1,
‘0 > �C � rc and one can rewrite (41) as

f � ð2=135�Þ�3ð�C=‘0Þ4fgrav; (42)

where fgrav ¼ ẑmð4MÞ�1 is the gravitational force as mea-

sured at infinity. Thus, for the observed � � 1=137, the
repulsive force is clearly negligible compared to the gravi-
tational attraction since ‘0 > �C during the lowering.

However, for our case of interest, � * 1, Eq. (41) is
unreliable because it is based on a leading order (tree level
in �) computation of the differential scattering cross sec-
tion, a procedure not justified when QED is strongly
coupled. It would be useful to determine the momentum
transfer due to Compton scattering to higher order, but this
calculation is beyond the scope of this paper. Instead, let us
try gain some insight by naively extrapolating Eqs. (41)
and (42) into the strongly coupled regime �	 1. Equation
(42) suggests the repulsion is not strongly suppressed
compared to the gravitational attraction when ‘0 	 �C,
while Eq. (41) suggests that the repulsive force actually
diverges as the dropping distance ‘0 approaches a
Compton length from the horizon.

Though not definitive, this argument suggests that the
interaction of the elementary particle with the thermal

atmosphere makes a significant contribution to the ener-
getics of the lowering process when � * 1. Because of this
contribution the charge will probably reach a floating point
near the horizon [20,21]. At any rate, the change in ener-
getics will weaken the implied constraint on the fine struc-
ture constant to an extent we cannot determine with the
facts available. It is even possible that by preventing GSL
violation, the buoyancy may, in fact, remove the constraint
completely.

V. SUMMARYAND DISCUSSION

We reassessed the gedanken experiment used by Davies
[4] to set constraints on the value of the fine structure
constant � ¼ e2=@ and on the spatial extent of magnetic
monopoles. We showed that in order for constraints to
follow from the area theorem, one must assume the object
dropped from infinity is a quantum ‘‘point’’ particle whose
localization scale is its Compton wavelength �C ¼ @=m. If
instead an extended classical charged object is dropped,
violation of the area theorem transpires only when the
object violates the weak energy condition. Hence, the
only thing we learn in this case is the obvious requirement
that realistic classical objects must obey the classical en-
ergy conditions. However, for an intrinsically quantum
elementary charge, the violation of Davies’ constraint e2 <
@ implies that the charge strongly polarizes the surrounding
vacuum, raising doubts as to whether the weak energy
condition is maintained.
Therefore, we are forced to fall back on the full GSL. To

analyze the effect of the Hawking contribution to the
entropy change, �Sext, we imagined the gedanken experi-
ment to be performed by dropping a series of particles into
the hole at a certain rate. If the (strong) assumption is made
that no instabilities arise when the dropping rate is tuned to
the maximum value required by the gedanken experiment,
Davies’ bound on � is only moderately weakened.
With the Davies experiment in mind we then examined a

new class of gedanken experiments in which classical
charged test objects are lowered toward and then dropped
into black holes of Schwarzschild, RN, or Kerr type. It
turns out that this apparently simpler type of experiment
does tell us something interesting about black hole physics.
When an electrically (magnetically) charged object is
dropped into a near-extremal magnetic (electric) RN black
hole, the subtle correction to the object’s Killing energy
due to the electric (magnetic) dipole repulsion turns out to
be crucial for consistency between the area theorem and
the weak energy condition. We show numerically that
when this effect is included, the black hole area decreases
only in cases where the object is more compact than its
classical radius, under which circumstance the area theo-
rem is expected to fail anyway. Similarly, when a charged
object is lowered along the symmetry axis of a Kerr black
hole and then dropped in, it is the electric self-force on the
particle that prevents violation of the area theorem.
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Thus the classical area theorem is only valid for near-
extremal black holes when backreaction effects like self-
forces and the dipole repulsion in the RN case are properly
taken into account. A naive analysis that only considers the
gravitational and Coulomb forces can disclose apparent
violations. In this respect it is interesting to note that
similar backreaction effects also seem to play an important
role in maintaining the cosmic censorship hypothesis when
one attempts to destroy the horizon by overcharging or
over-spinning a near-extremal black hole. In the test parti-
cle limit cosmic censorship can apparently be violated in
some cases by overcharging [22], but it appears that higher
order backreaction effects prevent the horizon’s destruc-
tion, and the concomitant violation of the GSL [23].

In Sec. IV we considered gedanken experiments where
an elementary particle is lowered to nearly a Compton
wavelength away from the horizon and then dropped in.
We obtain what seems to be a very robust bound on �. On
the other hand, we showed that a neglected quantum effect,
the Unruh-Wald quantum buoyancy felt by the charge, as it
is held at rest in the ‘‘thermal atmosphere’’ near the hori-
zon, is likely to make a significant contribution to its
conserved energy. This effect could protect the GSL at
large �, and make the bound unnecessary. Again, it is
interesting to note that the Unruh-Wald buoyancy has
also been shown to be key in upholding cosmic censorship
and preventing the destruction of the black hole horizon in
a similar experiment where an electric charge is lowered to
an electric RN hole [24].

In light of the above, let us reconsider the bound on �
that follows from Davies’ original experiment. There the
particle is dropped from rest at infinity and would seem to
freely fall into the hole, so that the thermal atmosphere
should have no effect on it. Note however that the radiation
reaction on the charge due to self-field effects was ne-
glected by Davies (who correctly notes that any radiated
energy that escapes entering the hole will only make the
bound on � the stronger). This neglect is actually justified
only when the classical radius of the particle is much
smaller than the radius of curvature of the background
spacetime: e2=m � M [22]. But the Davies argument
requires e2=m ¼ � � @=m	 4�M. Thus, if we want to
allow a priori the possibility that �> 1, radiation reaction
may be important. One effect of it would be to make the
charge move in a radial nongeodesic trajectory. Because
the charge would then be accelerating, some variant of
quantum buoyancy might act on it (although not exactly
Unruh-Wald buoyancy from thermal radiation). Near the
horizon the new buoyancy may be strong, so it may ac-
tually stop the charge and make it rebound outward. It is
beyond the scope of this paper to clarify this issue by
calculations.

Thus, in both methods for dropping the elementary
charge, subtle effects—quantum buoyancy in one case
and radiation reaction together with quantum buoyancy

in the second—‘‘muddy the waters,’’ and it is not at all
clear whether any bound on the fine structure constant is
required by the GSL. In view of the lessons of Sec. III in
the classical regime, it is not unreasonable to speculate that
when all effects are properly considered, the full GSL will
be found to be respected without the need for a fundamen-
tal bound on �. As in its early history, the black hole area
theorem may help us to understand new physical effects.
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APPENDIX A: CALCULATION OF THE SELF-
ENERGY IN KERR GEOMETRY

Here, we extend the method of [9] to calculate the self-
interaction correction

Ecorr ¼ �1
2qA

self
t (A1)

to the conserved energy of a stationary test object on the
symmetry axis of the Kerr geometry. The procedure starts
with Maxwell’s equations for the vector potential A� with

a point charge source at r ¼ r0 on the axis. Fortunately, an
analytic solution was found by Léauté [25], who was able
to extend the earlier solution of Copson and Linet [26,27]
in the Schwarzschild background to the Kerr case. In
Boyer-Lindquist coordinates ðt; r; ;�Þ,

Atðr; Þ ¼ � q

�0�

�
ðr0rþ a2 cosÞ

�
�
Mþ ðr�MÞðr0 �MÞ � ðM2 � a2Þ cos

R

�

þ a2ðr� r0 cosÞ ðr�MÞ � ðr0 �MÞ cos
R

�
;

(A2)

where �0 ¼ r20 þ a2, � ¼ r2 þ a2, and R ¼ ðr�MÞ2 þ
ðr0 �MÞ2 � 2ðr�MÞðr0 �MÞ cos� ðM2 � a2Þsin2.
We first re-express this solution in isotropic coordinates.

In Schwarzschild geometry one can define a new radial
coordinate %, which makes the spatial 3-metric confor-
mally flat and isotropic. While no such possibility exists

for the Kerr spacetime, the coordinate change r ¼
�%þMþ ðM2�a2Þ

4 �% does put the metric into the form

ds2 ¼ �Að �%; Þdt2 þ Bð �%; Þ½d �%2 þ �%2d2�
� Cð �%; Þdtd�þDð �%; Þd�2; (A3)

which is isotropic in the ð �%; Þ plane. Since the solution in
question has only At, A� components, we may transform At

CHRISTOPHER ELING AND JACOB D. BEKENSTEIN PHYSICAL REVIEW D 79, 024019 (2009)

024019-10



to the new coordinates by just re-expressing the function
Atðr; Þ as a function of �% and , which we shall denote
Atð �%; Þ, and then use the substitutions

�% cos ! �%0 þ % cos#; (A4)

�% !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�%2
0 þ %2 þ 2 �%0% cos#

q
(A5)

to transform to a new set of isotropic coordinates ð%; #;�Þ
centered on the location of the object’s center of mass �%0.
Expanding Atð%; #Þ in powers of %, we find

At ¼ �qj�j��1 �AþB cos# þOð%Þ þ � � � ; (A6)

where j�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
0
�2Mr0þa2

r20þa2

r
, � ¼ j�j�1% is proper distance

from the center of mass, and A and B are constants
depending on M, a, q, and %0. The first term in (A6) is
the Coulomb potential of a point charge (t component)
redshifted to the location r0 in the gravitational field of the
hole. Assuming the object is spherical, in the limit % ! 0
this last term renormalizes the rest mass of the object

mrem ¼ mþ lim
�!0

q2j�j=2�; (A7)

while first and higher order contributions in % vanish. The
third term B cos# vanishes when averaged over the angu-
lar direction # in our isotropic space. Converting the
complicated expression for A in terms of �%0 back to
Boyer-Lindquist r0, one is left with just

Ecorr ¼ Mq2

2ðr20 þ a2Þ : (A8)

This result is consistent with the literature on the subject.
Léauté and Linet [18] and Lohiya [16] found a repulsive
force along the polar axis

�F ¼ Mq2r0
ðr20 þ a2Þ2 : (A9)

Their method was to re-express the vector potential (A2) in
coordinates where the gravitational field in the vicinity of
the particle is locally homogeneous (a local Rindler frame)
to first order. In these coordinates the potential has the form
of that for an accelerated point charge in flat spacetime plus
an additional term due to the background curvature. Using
the formula for the electric field Ei ¼ @iAt and averaging
over all directions yields the result above. In contrast,
Lohiya calculated the electric field due to the point charge
along the symmetry axis of Kerr in Boyer-Lindquist coor-
dinates. In the limit r ! r0, the result is again a Coulomb
piece whose corresponding energy renormalizes the mass
of the particle, the self-force term mentioned earlier, and
terms depending on the sign of r� r0, which average out
to zero if we imagine the charge is assembled in a spheri-
cally symmetric manner.

The contribution that Léauté, Linet, and Lohiya’s self-
force makes to E can be found as follows. The work done
in a local orthonormal frame at r ¼ r0 when the charge is
displaced a proper distance d‘ is

d �W ¼ Fðr00Þd‘: (A10)

At infinity this work is measured as dE ¼ j�jd �W because
the with redshift factor is j�j. Thus,

E ¼
Z 1

r0

j�j �Fd‘; (A11)

where d‘ ¼ j�j�1dr00 along the axis. Since the redshift

factors cancel, this is just an integral of the self-force
from r0 to 1, which agrees with our result Eq. (A8).
Piazzese and Rizzi [19] re-examined the Kerr self-force

problem and came up with a different self-force

�F ¼ q2ðMr0 � a2Þ
ðr20 þ a2Þ2 ; (A12)

again by differentiating At to find an electric field in
coordinates where the gravitational field is locally homo-
geneous. Using (A11) one now finds the energy correction
to be given by Eq. (37) instead of Eq. (A8). As we re-
marked in Sec. III D, this alternative energy correction is
inconsistent with the area theorem.
Independently of the above, we believe PR’s analysis is

in error. They define the proper displacement d‘ in the
formula

�F ¼ 1

j�j
dE

d‘
(A13)

in terms of the Boyer-Lindquist coordinate difference r�
r0. In this formulation an extra term proportional to jr�
r0j in the expansion for At appears to contribute to the
force. However, the correct physical picture of the force
involves a displacement of the charge location r0 itself. In
other words, one should take the limit as r ! r0 in At first,
and only then differentiate with respect to r0 to find the
self-force.

APPENDIX B: MUSTACABLE ALONG THE KERR
POLAR AXIS ALWAYS SNAP?

One possible inconsistency in our gedanken experiments
is an instability in the lowering and dropping process.
Maybe the cable always snaps before we can place the
object at rest at the desired radius r0 near the horizon? In
Sec. III A, we briefly described the cable model of Ref. [7],
which indicates it is possible, at least in principle, to
complete a lowering and dropping process in the
Schwarzschild geometry. There the cable was considered
to be conical, made up of thin radial fibers filling the
portion of space defined by some solid angle with vertex
near the black hole. With this cable design the enormous
tension needed to hold a load stationary near the horizon
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can be distributed over a steadily increasing cross-sectional
area.

However, the situation is more complicated in the Kerr
spacetime. We must also consider the effect of the hole’s
rotation on the cable system, the so-called ‘‘dragging of
inertial frames.’’ When the cable is placed along the sym-
metry axis ( ¼ 0), the rigid fiber elements will begin to
rotate with the black hole in the � direction at an angular
velocity that depends on the distance from the horizon

!ðrÞ ¼ �gt�
g��

¼ 2Mra

ðr2 þ a2Þ2 (B1)

(Boyer-Lindquist coordinates). As the fibers twist around
each other, the stress tensor of the cable will come to
include not only the radial tension and mass density, but
also shearing, torsional stresses (�� component), and a
flow of mass-energy in the � direction.

To circumvent this problem we propose a new, less rigid,
suspension in which the fibers are allowed to rotate freely,
as dictated by the geometry, without twisting. The object of
mass m is attached to the lowest of a system of separate
light rigid disks, which are orthogonal to the symmetry
axis and concentric with it; the uppermost disk is attached
to some distant fixed structure. Each disk has a number of
fibers affixed to its top surface, and each such fiber is
suspended by a bearing from a circular groove in the
next disk up in such way that the suspended end can slide
without friction. This arrangement prevents the shearing
between fibers; at each tier the fibers will rotate with
respect to infinity with the local !ðrÞ. We suppose the
number of fibers grows from tier to tier, as does the number
of grooves per disk, replicating the conical structure al-
ready mentioned. We shall require that the full width of the
suspension lie within a solid angle of small opening  with
the apex at the suspended object. In this way we can
proceed to the limit  ! 0 at the end of our calculations.

In the Kerr spacetime it is convenient to work with the
field of orthonormal tetrad frames corresponding to locally
nonrotating observers; these will rotate with the fibers at
the angular velocity !ðrÞ. The basis vectors for this ortho-
normal frame are, in terms of Boyer-Lindquist coordinates,
[28]

e t̂ ¼
�
A
��

�
1=2 @

@t
þ 2Mar

ðA��Þ1=2
@

@�
;

er̂ ¼
�
�

�

�
1=2 @

@r
; ê ¼

�
1

�

�
1=2 @

@
;

e�̂ ¼
�
�

A

�
1=2 1

sin

@

@�
;

(B2)

where� ¼ r2 þ a2 � 2Mr,A ¼ ðr2 þ a2Þ2 � a2�sin2,
and � ¼ r2 þ a2cos2. In this frame there is no energy
flux in the � direction, and the only nonzero components
of the stress tensor, averaged over many fibers, are the mass
density 	 and the tension per unit cross section S, both of

which we naturally take to depend only on r, since the
fibers run parallel to the symmetry axis:

Tt̂ t̂ ¼ 	ðrÞ; Tr̂ r̂ ¼ SðrÞ: (B3)

From these we may calculate T�� in the Boyer-Lindquist
coordinate frame.
A stationary configuration of matter outside the hole

obeys the conservation law

T�
�;� ¼ ð ffiffiffiffiffiffiffi�g

p
T�
�Þ;�ffiffiffiffiffiffiffi�g

p � 1

2
g��;� T�� ¼ 0: (B4)

Along the symmetry axis only the r̂ component of this
gives a nontrivial condition

dS

dr
¼M	ðrÞða2� r2ÞþSðrÞða2Mþ 3r2M� 2r2a� 2r3Þ

ðr2� 2Mrþa2Þðr2þa2Þ :

(B5)

By assuming that the suspension flares upward so as to fill a
small solid angle around the axis, we may continue to use
this equation slightly off axis. In this case, S signifies stress
along the fibers. Our goal is to show that there is a (non-
singular) solution to this equation that satisfies the appro-
priate boundary conditions and the weak energy condition,
jSj=	 � 1.
Reference [7] assumed a constant (average) proper den-

sity 	 ¼ 	0; this implies infinite sound speed in the sus-
pension apparatus. We avoid this unphysical assumption.
Assuming that the stretching is adiabatic, the constitutive
relation should be S ¼ �Sð	Þ, where Sð	0Þ ¼ 0 for the
density 	0 of the unstressed apparatus and Sð	Þ> 0 for
	 > 	0. (Recall that S < 0 for a suspension under tension;
in this state the density should exceed 	0, since elastic
energy adds to 	.) The squared speed of sound along the
apparatus axis is S0ð	Þ; we thus assume S0ð	Þ< 1 for all
	 � 	0. It is immediately clear that Sð	Þ<	. Thus, jSj<
	 so that the weak energy condition is satisfied as a result
of the causality assumption.
To make calculations tractable we shall specialize to a

linear S, that is,

S ¼ K � ð	0 � 	Þ; (B6)

where K is the squared speed of sound. Consequently, we
assume K < 1 to preserve causality; again this immedi-
ately implies that jSj=	 < 1. Therefore, the weak energy
condition will be automatically satisfied, provided there
exists a nonsingular solution for the stress.
Using Eq. (B6) we eliminate 	ðrÞ in favor of SðrÞ in Eq.

(B5). The general solution to the resulting differential
equation for SðrÞ, with C an integration constant, is

SðrÞ ¼ ðr2� 2Mrþa2Þ��ðr2þa2Þ��1

�Z r

r0

M	0ða2� r02Þ

� ðr02þa2Þ��ðr02� 2Mr0 þa2Þ��1dr0 þC

�
; (B7)
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where r ¼ r0 marks the lower end of the suspension and
� ¼ K�1

2K < 0 given our causality restriction. The term in-

volving the integral describes the average stress (tension
per unit area) due to the weight of fibers and disks, Ssusp.

The second term is due to the load on the end of the
suspension. Using Eq. (B7), we can solve for the integra-
tion constant C in terms of Sðr0Þ

C ¼ Sðr0Þðr20 � 2Mr0 þ a2Þ�ðr20 þ a2Þ��1: (B8)

For a suspended point massm, Sðr0Þ ¼ �mar̂=a, where ar̂

is the radial acceleration in the orthonormal frame at r0 and
a is the cross section of the suspension at the bottom. We
thus find that

Sload ¼ mMða2 � r20Þðr20 � 2Mr0 þ a2Þ��ð1=2Þ

aðr20 þ a2Þ�þð1=2Þðr2 � 2Mrþ a2Þ1��ðr2 þ a2Þ� :
(B9)

Note that this stress is negative (as befits a tension) and, for
sufficiently large r, its magnitude decreases monotonically
as r�2 because the suspension’s cross section increases.

Generically Sload becomes very large as r0 approaches
the horizon radius rþ. In (B6) this corresponds to a cable
density 	 � 	0. In this regime the validity of the linear
constitutive relation is doubtful. However, by taking the
suspended mass m sufficiently small on scale M, and by
employing a suspension with an already large cross section
a at its bottom, the large stresses can be controlled.
Hence, our remaining task to check that there are non-

singular solutions for the stress. Inspection of the integral
piece of (B7) indicates no obvious problems; for example,
for large r, SðrÞ 	 r�1. We have numerically integrated in
the cases where K < 1 and for various values of 	0 to
deduce SsuspðrÞ near the horizon. We scanned through a

series of dropping points r0 > rþ near the horizon and
found well-behaved solutions throughout. Thus, it seems
the weak energy condition can be satisfied during the
lowering process, so there is no reason of principle that
will force our suspension to break. We conclude there is no
inconsistency in the lowering and dropping process envis-
aged in Sec. III D.
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