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Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes
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In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along
timelike (spacelike) geodesics in a spacetime admitting a nondegenerate principal conformal Killing-Yano
2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-
form F obtained as a projection of k along the geodesic trajectory. In this paper we demonstrate that,
although slightly modified, a similar construction is possible also in the case of null geodesics. In
particular, we explicitly construct the parallel-transported frames along null geodesics in D = 4, 5, 6 Kerr-
NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these
spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor.
Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the
4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.
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L. INTRODUCTION

Solving the parallel transport equations along null geo-
desics in a four-dimensional spacetime is a well-known
problem with many physical applications. For example, in
a geometric optics approximation linearly polarized pho-
tons and gravitons propagate along null geodesics while
the corresponding polarization vectors are parallel-
transported along the worldline [I] (see also
Appendix A). This property was used to study the polar-
ized radiation from black holes (see, e.g., [2—4] and refer-
ences therein). The parallel-propagated frames are
convenient for studying the form and shape of a thin
“pencil of light” propagating in an external gravitational
field. In the derivation of the equations for optical scalars
the parallel-propagated frames play an important technical
role (see, e.g., [5,6]). Another problem where such frames
are useful is a so-called peeling-off property of the gravi-
tational radiation in an asymptotically flat spacetime (see,
e.g., [7-11] and references therein).

Recently, models of gravity with extra dimensions at-
tracted a lot of attention. In order to rederive many of the
important results of the four-dimensional optics in a curved
spacetime in the higher-dimensional case it is necessary to
consider first a problem of parallel transport along null
geodesics. This is the main purpose of this paper.

We focus our attention on a special class of higher-
dimensional spacetimes which admit a so-called principal
conformal Killing-Yano (PCKY) tensor [12,13] (see also
[14-16] for reviews). The most general metric element
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admitting such a tensor, the canonical (off shell) metric,
was studied in [17-19]. Similar to 4D, when the vacuum
Einstein equations with the cosmological constant are
imposed the canonical metric becomes the Kerr-NUT-
(A)dS spacetime [20].

Recently, a parallel-propagated frame along timelike
(spacelike) geodesics in the canonical spacetime was con-
structed [21]. As it often happens, a limit when the velocity
of the particle motion tends to the speed of light is singular,
so that, the problem of parallel transport along null geo-
desics requires a special treatment. We deal with this
problem in the present paper. The obtained results general-
ize the 4D results [22-24].

Consider a spacetime with a PCKY tensor A, that is, a
closed rank-2 nondegenerate conformal Killing-Yano
(KY) tensor [25,26]. In such a spacetime the geodesic
motion is completely integrable [27-29]. Let us concen-
trate on a generic null ray and denote its velocity vector /.
In our construction, starting with I we first generate two
additional parallel-propagated vectors, one of which, say
n,is “external” to the null plane of / and can be made null.
This means that the tangent space 7 at each point of / splits
into a two-dimensional parallel-propagated subspace U
spread by {l,n} and a (D — 2)-dimensional parallel-
propagated subspace V orthogonal to U; T=U® V.

The construction of the parallel-propagated frame is
now similar to the timelike case. We consider the
Darboux problem for the 2-form F obtained as a projection
of the PCKY tensor & to a subspace V. Such a 2-form is
automatically parallel-transported. In particular, each of
the Darboux subspaces of F is independently parallel-
transported. The zeroth value Darboux subspace is 3(4)-
dimensional in an odd(even)-dimensional spacetime. The
parallel-propagated vectors spanning it can be explicitly
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constructed and we denote them {I, n, m} (I, n, m, z}).
The Darboux subspaces, for nonzero eigenvalues of F
are two-dimensional. One can obtain the parallel-
propagated vectors spanning them by employing 2D (af-
fine parameter)-dependent rotations.

For certain special geodesics the construction of a
parallel-propagated frame has to be accordingly modified.
Similar to the timelike (spacelike) case, the degeneracies
occur for special geodesics for which the Darboux sub-
spaces of F become more dimensional. In these cases the
frame can be obtained by ‘“‘more involved” (affine
parameter)-dependent orthogonal transformations (see
[21] for more details). An important example of different
degeneracy is the case of parallel transport along principal
null directions—discussed in Sec. VII.

The paper is organized as follows: In Sec. Il we intro-
duce the basic notations used in the paper and review the
definition of the PCKY tensor. In Sec. III a generic con-
struction of the parallel-propagated frames along null geo-
desics is outlined. Canonical metric element of a spacetime
admitting the PCKY tensor and its basic properties are
discussed in Sec. IV. In Sec. V the explicit form of the
canonical metric is employed to concretize the generic
construction. Examples of solutions in four, five, and six
dimensional spacetimes are presented in Sec. VI. The
parallel transport along principal null directions is de-
scribed in Sec. VII. Section VIII is devoted to a discussion
of obtained results and conclusions. More technical details,
connected with the geometric optics in higher-dimensional
spacetimes, principal null directions, and the parallel trans-
port in the Plebanski-Demianski metric are presented in
Appendices A, B, and C, respectively.

II. BASIC NOTIONS AND NOTATIONS

In what follows we use the notations of [15,21]. We
consider a D-dimensional spacetime MP, equipped with
the metric

g = gupdx®dx’. (1)

To treat both cases of even and odd dimensions simulta-
neously we denote

D =2n+e¢, )

where € =0 and € = 1 for even and odd number of
dimensions, respectively. Operations b, # correspond to
“lowering”and “‘rising” of indices of vectors and forms,
respectively. & denotes the coderivative. For a p-form e,
one has da, = € *d * e, where d denotes the exterior
derivative, * denotes the Hodge star operator, and € =
(—1)PP=P*r=1 The “hook” operator  denotes ““contrac-
tion”. The scalar product of two vectors a and b is denoted
byadot;a-b=a.b".

Definition. A PCKY tensor & is a closed nondegenerate
conformal Killing-Yano 2-form, h = %hahdx” A dx”. This
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implies that for all vector fields X there exists such a vector
field £ so that

The condition of nondegeneracy means that in a generic
point of the manifold the skew symmetric matrix %, has
the (matrix) rank 2n and that the eigenvalues of h are
functionally independent in some spacetime domain. In
this domain, such eigenvalues may be used as “‘natural”
coordinates (see [18,19] for more details). We exclude the
possibility that & possesses constant eigenvalues, and, in
particular, that it is covariantly constant; & # 0. (For the
discussion of cases when such degeneracies are admitted
see [30,31].)
The Eq. (3) implies
1

£ =— oh. 4)

dh=0, ﬁ

It can be shown [18], that for any spacetime admitting the
PCKY tensor k, & is a (primary) Killing vector. In tensor
notations the definition (3) reads
1
Veha, = 280a€p), £y =——V,h". (5
D—1
Let vy be a null geodesic and [“ = dx“/dt be a tangent

vector to it; 7 denotes the affine parameter. We denote the
covariant derivative of a tensor T along y by

T=V,T=1V,T. (6)

In particular, I=0.

III. GENERIC CONSTRUCTION OF A PARALLEL-
PROPAGATED FRAME

In this section we outline the general construction of
parallel-transported frames along generic geodesics.

A. Construction of parallel-transported vectors
m and n

Starting with I one can easily construct two additional
parallel-propagated vectors. The construction is based on
the following result: Let h be a PCKY tensor and u be a
parallel-transported vector along a null geodesic I, obeying
u - I = 0. Then the vector

w = . h)?*+ Bl (7
is parallel-transported along I, provided that
Bu=u-é ®)
Here £ is the primary Killing vector (4).

To prove this statement we use Eq. (3) and the property
of the hook operator. We find

024018-2



PARALLEL-PROPAGATED FRAME ALONG NULL ...
W= h)?* + Byl =[u.(1°AEN + Byl

Obviously, u = I obeys the requirements and we may
construct [ = B(;]

nz=—%aﬂhhw+ﬁﬂ ©)

Here, k; = Q,,Il" is a constant of geodesic motion cor-
responding to the conformal Killing tensor Q,,;, = h,.h¢,,.
Since & is a primary Killing vector, 8 =1- & is also a
constant and S can be immediately integrated to get

=& (10
We also find

m-1l=0, m-m= 1. (1)
So, m given by (9) and (10) is the normalized spacelike
vector which is orthogonal to I and parallel-propagated
along .

Taking u = m in (7) we may construct another parallel-
transported vector

n=n-+ %(ﬁ -A)l, (12)
where
1 .
i = [(m . h)* + Bl o =m- & (13)
N Bin) Bin) 3
We find
n-l=-—1, n-m=0, n-n=0. (14)

So, n is a null parallel-transported vector, external to I and
orthogonal to m. Moreover, we can easily show that it is
independent of B,,. Indeed, using (13) we find that

1
=

n= (m . h)* + CI,

5)

1
C=550a1 " —xip), O = 0ulj
1

One might wonder whether it is not possible to generate
more parallel-propagated vectors in this  way.
Unfortunately, the fact that n is external, n -l = —1,
shows that n does not obey the requirements of the lemma
anymore and we have to proceed differently."

In fact, when n is used as a “seed” in (7) one obtains a new
linear independent vector. This vector may be used as a seed
again and so on—to produce the whole tower of linear indepen-
dent vectors. These vectors are, however, not parallel-
transported.
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B. Projection formalism: operator F

Let us consider the following 2-form F:
Fup = PiPyhcq, (16)
where
Pay, = gap T 241y (17)

is the projector to a (D — 2)-dimensional space V, orthogo-
nal to a 2-dimensional space U spanned by {/, n}. We have
Pablb = 0, Pabnb = 0.

Since vectors I and n are parallel-transported, so is P,y;
P,, = 0. Therefore we find

F gy = PSPehg = 2PSPLL £ = 0, (18)

where we have used Eq. (5). So, the 2-form F is parallel-
transported. This implies that the eigenvalues of F as well
as its Darboux subspaces are independently parallel-
transported (see [21] for more details).

The problem of finding remaining parallel-transported
vectors along null geodesic vy is now quite analogous to the
problem of parallel transport along timelike (spacelike)
geodesics. By solving the eigenvalue problem for the
operator F? one finds the eigenvectors spanning each of
the Darboux subspaces of F. In each Darboux subspace,
the parallel-transported vectors are obtained by a
7-dependent  orthogonal transformation of these
eigenvectors.

The structure of the Darboux subspaces of F depends
crucially on the chosen geodesic y. As the number of
dimensions is increased, the number of degenerate cases
(corresponding to special geodesics) which require their
own special treatment also increases. In what follows we
concentrate on generic geodesics for which the discussion
significantly simplifies.

C. Darboux subspace V,

We denote the Darboux subspace corresponding to the
zeroth eigenvalue of F by V. For a generic geodesic vy, V,
is three-dimensional (four-dimensional) in the odd (even)
number of spacetime dimensions. It is spanned by the
parallel-transported vectors {l, n, m} and, in the even-
dimensional case, z given by (20) below.

The fact that I and n are zero-value eigenvectors of F is
trivial. To prove that m also belongs to V|, we first notice
that, m being orthogonal to {l, n}, is unaffected by projec-
tor P, that is Pbm® = m”. Moreover, using (15) we realize
that s* = h“,m" is a linear combination of / and n, s =
al + Bn, which when projected again by P gives zero. So
we have

Fadmd == PZthPZmd = Pghbcmc = PZSb = 0. (19)

In an even number of spacetime dimensions we consider
an additional vector z given by
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z=.0% (20)

where we have denoted

f ="V =% (hA...AD). (21)
%,_J

total of (n—1) factors

Tensor f is a Killing-Yano 2-form (see, e.g., [32]) and
therefore vector z is automatically parallel-transported.
Forms f and h are related as

he fe, o 8. (22)

It then follows that 4%, z> o [%. Using this relation one can
easily show that z is spacelike parallel-transported vector,
orthogonal to {l, n, m},

-m =0, z-n=0. (23)
It can be normalized, so that, z - z = 1. Moreover, it is the

last zero-value eigenvector of F spanning V. Indeed, we
get

Fe,zb = Pahd P§zb = P4h? z¢ o P4I4 = 0.

To conclude, in the even-dimensional case, V|, is spanned
by explicitly constructed parallel-transported vectors
{l, n, m, z}.

D. Parallel-transported vectors in remaining Darboux
subspaces

We restrict ourselves by considering generic geodesics
for which all the remaining Darboux subspaces of F are
two-dimensional. Denote by V; the Darboux subspace of F
corresponding to the nonzero eigenvalue —A? of the op-
erator F2,

F?v= —/\izv, vey; 24)
and by {n;, i1;} the orthonormal basis in V;. This basis is
related to the parallel-propagated orthonormal basis
{p; P;} spanning V; by a 2D rotation

p; = cosy;n; — siny;#i; p; = siny;n; + cosy;fi;,

Vi=n; A;= —n; A, (25)

If, at the initial point 7= 0 bases {p; p;} and {n; 7i;}
coincide, the initial conditions for Egs. (25) are

yi(r=0) =0. (26)

The construction of parallel-propagated vectors in a
different Darboux subspace is exactly analogous, indepen-
dent of the other constructions.
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IV. KERR-NUT-(A)DS SPACETIMES AND THEIR
PROPERTIES

A. Canonical metric element and Kerr-NUT-(A)dS
spacetimes

The most general canonical metric element admitting
the PCKY tensor reads [18,19]

g = nzl(wﬂwp“ + @ ol) + w'w" — &' @"
u=1
+ cwfws, 27
where the basis 1-forms are (u =1,...,n — 1)
dr . dx

o' =

VO’

n—1 ) n—1 .
@' =0, Y Aldy;, @t =.J0, Y Aldy,
j=0 j=0
. LI —c
W =VO 3 AVdy;,  0.=-g. (28)
Jj=0

We enumerate the basis {@w} so that @”" is a timelike 1-form
(the only one). Here

AY = Z Xpy X AV = Z Xy Xy

v <.<vj v <..<v;
vitu
X n
e o — 2 _ 2 2 — _,2
Q.= Uﬂ—”(x,, x3,), x5 = —r
N v=1

(29)

and X w» X, are arbitrary functions of Xy Ty respectively.
Time is denoted by ¢, azimuthal coordinates by ¢ ;, j =
1,...,m=D —n— 1, ris the Boyer-Lindquist type ra-
dial coordinate, and Xy M= 1,...,n— 1 stand for lati-
tude coordinates.

The inverse metric reads

n—1
_1 _ ~ ~ ~ o~
g = Z (epep +€,8,) + eze, — €,8; + sece,
n=1

(30)
where

€y = VQnar’ eﬁ, = Q,u,axﬂy

1 o .
é, = P2=1-)g
i Y

s 3D
é,U« — (_)C2 )n—l—]al//j’

'\/Q_MUM Jj=0
0

eé —_ l//n
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The PCKY tensor for the canonical metric reads [12,32]

n—1
h =Y x,0" NdF —ro" A" 32)
n=1

Equations (27) and (32) mean that the basis {w} is an
“orthogonal Darboux basis” of k. We call such a basis a
canonical one. The canonical basis is fixed uniquely by the
PCKY tensor up to 2D rotations in each of the Killing-
Yano 2-planes @" A @", w” A @". The basis {w} is a
special canonical basis for which many of the Ricci coef-
ficients of rotation vanish [18,19,33]. We call it a principal
canonical basis.

The PCKY tensor h generates the whole towers of
explicit and hidden symmetries [13]. Namely, it generates
all the isometries @, , and, in particular, the primary
Killing vector &, (4)

1

It also generates the set of the second-rank irreducible
Killing tensors (j = 1, ..., m)

n—1
KV = Y Al(wtoh + ot dh)
u=1

+ AV (@l — @) + sAVw . (34)

These objects are responsible for complete integrability of
geodesic motion in the canonical spacetime.

When the vacuum Einstein equations with the cosmo-
logical constants are imposed

Rab = (_1)n(D - 1)Cngab’ (35)

metric functions X, (x,) and X,(r) take the following
specific form [33]:

n
X, == ¥ el
k=g

L ec

— 2% _ 1-¢
X, E cixy — 2b,x, * + 2
k=¢e M

—2MrlTe + 8—2C,
,
(36)

and the canonical element becomes the general Kerr-NUT-
(A)dS spacetime derived by Chen, Lii, and Pope [20]. The
parameter c,, is proportional to the cosmological constant
and the remaining constants c;, ¢ > 0, and b u are related to
rotation parameters, mass, and NUT parameters.

B. Geodesics

As we mentioned above, the geodesic motion in the
canonical background (27)—(29) is completely integrable
[27-29]. In particular, the null geodesic velocity takes the
following form [13,15]:
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1" = f(zﬂwﬂ +1,0P) + el @f, (37)
n=1
where
ly = W(W2 X, V)2,
] :Lﬂ I, =— il (38)

V=AW’

Here, the constants o, = l(pu=1,...,
dent of one another and we have defined

n) are indepen-

m m
D NN YA
j=1 Jj=1
m m
W, = Z P2n=1=)r . W = Z(_x2 )n—l—j\p‘
n ) M m J*
j=0 =0

(39)

The quantities W; and «; are conserved and connected with
the Killing vectors and the Killing tensors, respectively.
We also have

Ky, = — —. (40)

c

The coordinate components of the velocity are

g
= U—"(Wg - X,V,)'2,

= |U 0, XV = W'
. ol (—y2)n=1-k 2n=1-0) W
= R W - W —e—"§
¢k /J«Zl UMXM . Uan " SCA(H) .
4D

One can symbolically integrate equations for . Let f be
an arbitrary function of r and x,, obeying

ro_ fn(r) n_lfv(xv)
f= 7 +VZ=1 T (42)

Then f can be written as (see Appendix C in [21])

o, f.dr o, sign(U,)f,dx,

fzfm—x—‘HZ JEV — W2

In particular, using the following identities (see, e.g., [34]):

(43)
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1 1 ol
= — + Rk
A r?U, ;x,z,U,,
2(n—1) n—1 2\n—1 (44)
e (—x3)
U, = U
we find that
o, fPOdr "o, sign(U,)fWdx,
b= [y ,
IW2=x,v, & ,/XMVM - w2
W, . N0
;k) _ _X_:rz(n 1=k 4 Sc_rgak"’
1% 30
(k) _ " 2\n—1-k _ S 45
I XM( )CM) SCX%L kn ( )

Similarly, we have

/ o,rPn gy [0’,, sign(U,)(—x2)" dx,
T = + .

VW}% - Xnvn v=1 VXVVV - WI%

(46)

V. PARALLEL TRANSPORT IN KERR-NUT-(A)DS
SPACETIMES

A. Parallel-propagated frame

We shall construct the parallel-propagated frame for a
geodesic motion in four steps. First, to simplify the calcu-
lations, we use the freedom of local 2D rotations in the KY
2-planes of & to introduce the velocity adapted canonical
basis in which n components of the velocity vanish. Next,
we generate parallel-transported vectors m, r, and possibly
Z. In the third step, by studying the eigenvalue problem for
the operator F2, we find the orthonormal 1-forms {¢/, £’}
spanning each of the 2D Darboux subspaces V;. Finally, in
each V; we rotate these 1-forms by an (affine parameter)-
dependent rotation to obtain the (dual) parallel-transported
frame.?

1. Velocity adapted canonical basis

In order to construct the velocity adapted canonical basis
we perform the boost transformation in the {®", w"} 2-
plane and the rotation transformations in each of the
{@", w"} 2-planes

6" = cosha,®" + sinha, ",

o" = sinha,®" + cosha,w",

47)

S

H = cosaMdW + sinaﬂw“,

m>
I
)
. m>

ot = — sinaﬂd)“ + cosa, w”, 0

In our setup it is somewhat more natural to work with 1-
forms. One could, of course, similarly construct the parallel-
transported frame of vectors.
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Here, we choose

cosha,, = l~ sinha,, = lf’
kj ki 48)
I , 1y
cosa, = =, sina,, = =,
kg kg
and
~ ’V ~ ,V
— 72 _ 2 —_ _ n — 72 2 Jd
k= \/lﬁ Iz = U kﬂ—‘/lﬂ+lﬂ— U—#
(49)

Such a transformation preserves the form of the metric as
well as the form of the PCKY tensor.

n—1
g = Z (0% 0 + 6~ 6™) + 070" — 6"6" + s0°0¢,

o (50)

n—1
h = Z x,0% Aot —ro" Ao".
u=1
Hence, the basis {o} is still canonical. Moreover, one
obtains the following form of the velocity:

n
1= kyo" + elc0f. (51)
n=1

This form simplifies considerably the subsequent calcula-
tions, especially the task of solving the eigenvalue problem
for F?. We remark, that in the adapted basis {o} the
components of the velocity depend on constants «; only;
the constants W; and o, are absorbed in the definition of
the new frame.

2. Parallel-transported vectors in V,,

The eigenspace V|, is spread by I, the vectors m and n
given by (9) and (12), and, in an even number of spacetime
dimensions, by z (20). Let us express these vectors in the
velocity adapted basis (47). The vector [ is given by (49)
and (51). Using (50) and (51), we find

1
=3

- lgﬁroﬁ + EBlgoé], (52)

mb° =

n—1
[Z (Eﬂﬁﬁ’a - ]gﬂxﬂoﬁ“) + ];;lﬁéﬁ
u=1

2
+ }(C - —)5ﬂ + Eﬁﬂoﬁ +eClo%,  (53)
K

where
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= ( k2 + Z xp kg — K1/32) (54)
Moreover, using Eq. (33) we find
B:l'le‘a,/m:qlo,
and so
B =Yy (55)

Using Eq. (46) one can express this angle as a function of r
and x,,.

In an even number of spacetime dimensions we have an
additional vector z. We find

xn_loﬁ A 6ﬁ + z X1 )\6#
n=1

.xn_lo"l A 6,&

f OC)C]...

(56)

Here, the symbol o means equality up to a constant factor,
and X,, denotes that in the sum over u, x,, is replaced by r.
In consequence, we have the following expression for the
(normalized) vector z:

1 .
ZL’ = 7()(?1 ...xn,lkﬁo”
1

..xﬂ...xn_liﬂoﬂ) (57)

Using the transformation inverse to (47),

®" = cosha, 6" — sinha, 0",

o' = —sinha,0" + cosha, 0",
(58)

H = oL — i A
@ cosa,, 0 sina, 0",
wH = sinaM6“ + cosa 0%, W = 0,

one can easily obtain the above parallel-transported vectors
in the principal basis {w}.

3. Darboux subspaces V;

Using (51) and (53) one can write down F in the velocity
adapted basis. The general expression is quite involved and
therefore we do not state it here. What is important is that
one can show that F is independent of 3. Let us denote {{}
the (dual) Darboux basis of F. Then, for a generic geode-
sic, we have

n—2+e . .
> NAL (59)

i=1

F =

Here, {{ 3} l f} are orthonormal vectors spanning the
Darboux subspace V;, A; >0 are all different and corre-
spond to the eigenvalues of F?; F*v; = —\?v;, v; € V,.
Obtaining the general form of {¢’, £'} is the biggest ob-
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stacle in writing down a general formula for the parallel-
propagated basis in an arbitrary number of dimensions.
Concrete examples are in the next section.

4. Parallel-transported basis

In order to construct parallel-transported vectors in each
of the Darboux subspaces V; we perform the rotation

a = cosy,[f — siny,-ff i = sinyig‘f + cosyiff,
= f=-0-1. (60)
with the initial conditions y;(7 = 0) = 0.

When 7y, given by the last equation can be written in the
form

n—1 —1
o=+ [le-m] L e
n=1
where M; is some constant, we can use the identity

[(ﬂ s [Tee - )@)]_1 -
pn=1

1
z (x — )tz)U
(62)

to symbolically integrate [cf. Eqs. (42) and (43)]

Y = o, ydr ” ! (o, sign(U, )7g)dx
i e ————— ’
WXV, = 1 XV, W 63
y0 =M ) = L
P+ A X2 = A2

We shall now give explicit examples of parallel-propagated
frames in D = 4, 5, 6 canonical spacetimes.

VI. SPECIAL CASES
A. Parallel transport in 4D

The parallel transport along generic geodesics in the
four-dimensional canonical spacetime, derived earlier in
[23,24], is from the point of view of the above described
theory trivial. We write it only for completeness and be-
cause it encapsulates the important subcase of parallel
transport in the Carter’s class of solutions [35,36]—de-
scribing, among others, a 4D rotating charged black hole
in the cosmological background (see also Appendix C).

The metric reads

lw! (64)
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5 X 5 U
@ = ‘/Fi(dlﬁo +xidyy), @' = ,/der,

(65)
A X 7 U
@l =g do — rdyn). ol = ,/dexl,
and U, = —U, = x? + r2. The PCKY tensor is
h =xel Ad - re Ao (66)
The components of the velocity are
~ W2 ()
[5= , l; = W3 — X,V,,
RLAD SRV 67
~ _Wl (o8]
l; = , l; = \/X vV, — W2,
oy oy vt
where
W2=r2‘PO+‘P1, V2=_K1>O,
(68)
Wl = —x%‘l’o + q’], Vl = Ki.

In the velocity adapted frame {o}, (47), the parallel-

transported frame reads

ks
b — =5 + 3 + _
m \/_Kl( Bo° + ro ,Bo x10 ,
7 + 2 U J— 2 ~ N
n® = —1<7'B 52 — Bro® + 7'8 ol + Bxlol),
K1 2
b ]E 5
z° = (x,0* +ro ) (69)

=
where 8 = W, or, in terms of r and x,,

B _ / Uz‘l’ol’zd}’ + / Ul\Pox%dxl .

VWi- XV, X v —wp

(70)

B. Parallel transport in 5D

Next, we consider the 5D canonical spacetime. The
metric reads

g = -0+ D+ dd + oo + oiw (71)
where
-5 _ | X2 2 5 _
w~ = —(dlpo +X1d¢1), w dr
U,
(72)

s X 5 U
@' = N’i(dlﬂo — ridy), o' = ‘,?:dxly

€= g[dlﬁo + (xf = Adpy — xirrdy,],
I
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and U, = —U, = x} + r?. The PCKY tensor is

h=x0' Ad —re’ Ao (73)

The components of the velocity are

~ Wz ()
[ = , I, = \/Wz—XV,
2 X2U2 2 /X2U2 2 2
~ _Wl 0'1
I, = s I, = XV, — W2
Y, /) o7 S A R
.
€ \/Exlr
where
4 (2
Wy =-xW,+V, ——2, V=« +—3,
X
! 09
4 4
WZZVZ\P()"'\PI'F—Z V2:_Kl+—§.
cr
In the velocity adapted frame {0}, (47), we have
b= ~262 + 12161 + [0,
1 . .
b kAz—kAz-i- k”l— kAl
m \/__KI(B 50° — rkso” + Bkio' — x kjo
+ Bléoe)r (76)
2 2N
n =IEQ<C— . )~2+k B—02+k( ﬁ)a‘
K1 K K
+ k; B,y Cl.08,
K]
where
-V - _ Vi
2 Uz’ 1 U]’
1 - -
C= F(_’Ak% +xtkt — k1B, (77)
5= f az‘lforzdr o1 Woxidx,
N sz2 VXV — W
The 2-form F reads
- 34
F=MAL A= ol , (78)

where

VP =) F 5 rF
= <— 0"+ —==0 +oe),
VU,

rxy VU,
5 /.2 + 2 2 ~ A
YA (— A 0® + 01). (79)
JO, P2+ 2 F,F,

Here we have introduced
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xllg Vl@
, Fxl = = \/__Vl’ (80)

which are functions of r, x;, respectively. Using (60) we
find

M
(xF = A2)(r* + 2%’
_ /\2\1',2\1,0 - \qufl — CKj
A/ T CKq ’

which is of the form (61). Therefore, the parallel-
propagated forms {7, 77} are given by (60), where

7=[ oyy,dr ]‘ U,yxldxl
VW3 =XV, «/

M
2+ 22

,)'/:
1)

(82)

Yr 7)(1 -

1_)‘2

C. Parallel transport in 6D

Finally we consider the 6D canonical spacetime. The
metric reads

2
w’ + Z (W w” + d"dr),
n=1

U 7 U
= w’—Zd)cz, o' = |ldx,
X5 Xy

A X
&> = ,/fwo +Adyy + x33d i),
3

g= -0 + o’

R U, R
w’ = . [—dr w?

5 X

@’ = ‘fﬁz(dkbo +ALdy, — xirtdy,),

3 X

@' = ,/Ulwo A dyy = B (83)
1

Here

AX1 = x% - r2

A, = x% + x%,
A, =xt—r% = (x7 + )3 + r?),

U, = —(x% + 1’2)(xl - xz) U= x}+ rz)(xl - x3).
The PCKY tensor is

h=x0' Ad +x,0° A@* —ro’ A@°.  (84)

The components of the velocity are

PHYSICAL REVIEW D 79, 024018 (2009)

W3=r4‘1’0+r2‘1’1 +\P2, V3: —r2K1 - Ky,
Wz = xg‘l’o - x%‘l’l + \I’Zx V2 = _X%Kl + K,
W] == Xéll\:[fo - X%\Pl + \1}2, V] == _X%K] + K.

(86)

The parallel-transported vectors spanning V,, are

1 Kj
Zr. XN~ Bx, .
+ ) [kﬂ<c + —")M + kg, By o":l,
u=1 K1 K
1 . . .
7" = \/—_rcz(xlxzk§03 — rx1k;0% — rx;k;ol), (87)
where

- V - V. ~ 1%
3= — 3 ks = -2 ki = ~L
Us U, U,

C= 2—( i3+ x§k2 + x“k2 — Kk, 8%),

B [ \1’00'37‘ [ \Poa'zxngQ
X3 V’; X2 V2 -

+[ ‘I’oa'lxldxl .
VXV — W

The 2-form F reads

F =M AL, A= , (88)

where
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2 2 2 2
r*+ A°)(A° —x 5 5 5
¢ = \/( l)]( 2)(F163 + Fy6° +6'),
1

s \/(rZ + A2)(A2 — x2)

(rFy0° + x,F,0% + x,0").

A U,
(89)
Here we have introduced
Fl=——— == 90
! K (rF + A?) 2 K1 (A% — x%) ©0)
Using Eq. (60) we find
—AMW, — A2, + 24,
(W, 1 0) ©1)

T @D - OE+ A

This means that also in 6D the angle y can be symbolically
integrated—it is given by (63)—and the parallel-
transported forms {77, 7}, (60), explicitly constructed.

VII. PRINCIPAL NULL DIRECTIONS

So far we have described the construction of a parallel-
propagated frame along generic null geodesics. Similar to
the timelike case, with the increasing number of spacetime
dimensions, the number of degenerate cases increases for
which this construction has to be modified. One type of
degeneracy occurs for special geodesics for which the
spectrum of the operator F is degenerate. These geodesics
are characterized by a special choice of constants of mo-
tion and the parallel transport along them was partly de-
scribed in [21]. In this section, we concentrate on a more
fundamental degeneracy which happens when the very
construction of the external vector n, (12), fails. Such a
degeneracy occurs for the velocity vector I which is the
eigenvector of the PCKY tensor. In this case one cannot
proceed with constructing the 2-form F and the whole
procedure described in Sec. II breaks down. In the follow-
ing subsection we show that such a situation occurs for an
important class of geodesics called the principal null di-
rections. The parallel-propagated frame along these direc-
tions is described in the next subsection.

A. Principal null directions as the eigenvectors of the
PCKY tensor

The principal null directions (the Weyl aligned null
geodesics, see, e.g., [37]) play an important role in many
physical situations. In a spacetime admitting the PCKY
tensor the principal null directions, /., coincide with the
(real) eigenvectors of the PCKY tensor

.. h==*M-5, (92)

see [38] or Appendix C.1 in [16].
Namely, for the canonical metric element the affine-
parametrized principal null directions are [33,39]
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1
VO,

1 & .
(6, + e;) = +0, + X ;)r%"‘l‘f)a%.
=

li:

(93)

These directions are characterized by the following con-
stants of motion:

K; =0, W, =0, (94

where j=0,...,n — 1 and the constant V¥, is relevant
only in odd dimensions. Equation (93) gives also coordi-
nate components of /., which lead to the equations for
geodesics

' ' . r2(n—1—j)
F= *1, X, =0, b= X 95)
where w = 1,...,n— 1 and j=0,..., m. These can be

integrated to get

r==r,

+r r2(n—1—j)
;= rjo ——dr+ y. 96

B. Parallel transport

Now, we turn to the task of parallel transport along the
principal null direction I, .* The parallel-propagated frame
can be obtained by a sequence of local Lorentz transfor-
mations of the canonical basis {I, n, e;, €, e.},

1 1
= —= n = _(éﬁ - eﬁ)’ 97

V2 V2

along the geodesic (see Appendix B). Here, u =
I,...,n — 1, and e, is relevant only in an odd number of
spacetime dimensions. The resulting parallel-propagated
frame is {17, In, ”eﬂ, ”éﬂ, ”eé}, where

! l
VO,
n—1
In=yo,n+ ) \/EVQM~,@ + ev2/0 e
wn=1

+ (;1 0, + sQe)JLQ_nl,

l (€, + ep),

] =

X2 + r? xi + VOn
le, =L e, +——~ (éM + V2Y l),
X2 + 2 xi + 2 \/_Q_’:
le, = e, + /22 Oy (98)

*The parallel transport along I_ is analogous.
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Similar to 4D, it may be convenient to find a parallel-
propagated complex null frame. This is done in
Appendix B.

VIII. CONCLUSIONS

In this paper we have studied the equations describing
the parallel-transport along null geodesics in spacetimes
which possess a (nondegenerate) principal conformal
Killing-Yano (PCKY) tensor. When the vacuum Einstein
equations with the cosmological constant are imposed, this
class of metrics coincides with the Kerr-NUT-(A)dS space-
times, describing the higher-dimensional rotating black
holes with NUT parameters, in an asymptotically flat or
(A)dS background. In particular, a solution of this problem
gives effective tools for studying the polarization of light
beams in backgrounds of considered black hole metrics.

A tangent vector to the null ray, which is evidently
parallel-propagated, determines a (D — 1)-dimensional
null plane to which it is orthogonal. Our main observation
is, that using the PCKY tensor one can obtain a parallel-
propagated vector along the null geodesic which does not
belong to this null plane. We used these two parallel-
propagated vectors to construct a projection operator on a
(D — 2)-dimensional subspace. By using the eigenvectors
of the PCKY tensor projected to this subspace we found
two-dimensional Darboux planes invariant under the par-
allel transport, and by proper rotations in these planes we
constructed the required parallel-propagated basis. Though
the idea of this construction is rather simple, concrete
calculations in higher-dimensional spacetimes are quite
involved. We performed them concretely in spacetimes
with D = 6. In each of these cases the final first order
ordinary differential equations specifying rotations in the
2D Darboux planes were solved by the separation of
variables. We expect that this remains true for any number
of dimensions.

The class of the Kerr-NUT-(A)dS spacetimes we con-
sidered in this paper belongs to the algebraic type D. These
spacetimes possess two special congruences of null geo-
desics called the principal null directions. Tangent vectors
to these geodesics are ‘“‘eigenvectors’ of the Weyl tensor.
At the same time they are null eigenvectors of the PCKY
tensor. This property implies that for this subclass of null
geodesics the problem of the parallel transport becomes
degenerate and requires special consideration. We have
studied this degenerate case and directly solved the corre-
sponding equations of parallel transport. This result might
be useful for studying the peeling-off property in the Kerr-
NUT-(A)dS spacetimes.
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APPENDIX A: GEOMETRIC OPTICS IN HIGHER-
DIMENSIONAL SPACETIMES

It is well known that if the wave length of massless field
radiation is much smaller than a characteristic scale on
which the gravitational field changes one can use the
geometric optics approximation. In this approximation a
normal to a surface of constant phase is a null vector which
is tangent to a null geodesic describing a motion of a
massless quantum. We collect here useful relations of the
geometric optics in a higher-dimensional curved space-
time. To make the presentation concrete we discuss the
electromagnetic field propagation. We closely follow the
nice presentation of the Misner, Thorne, and Wheeler book
[1], which requires only tiny changes connected with the
number of dimensions D which is now not four but arbi-
trary. Maxwell equations in a spacetime with the metric
8up» (@, b =0,...,D — 1) in the Lorentz gauge have the
form

VPV, A% — R{AP =0, (A1)
V,A? = 0. (A2)

We write the potential A, in the form
A, = R A + 0(e)] e} (A3)

Here € is a small parameter.
Substituting (A3) into (A2) and keeping the term of the
leading order € ! one obtains

"A,=0, l,=V,S. (A4)
Similarly, substituting (A3) into (Al) and keeping the
1

terms of order € 2 and €' one gets
11" =0, (A5)
1
lbvb‘ﬂa = - iﬂavblb' (A6)

Since Vbla = vaaS = VaVbS = Valb
(AS) implies that

the equation

I’V,1* = V,1* = 0. (A7)
Hence integral lines of [¢
dx*
= [ A8
dr (A8

are null geodesics and 7 is an affine parameter.
We call [ plane a (D — 1)-dimensional null plane formed
by the vectors v orthogonal to I, v - I = (. Relation (A4)
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shows that the vector A lies in the [ plane. Consider a
gauge transformation of the potential A, — A, + V,a,
where o = N[eyexp(iS/e)]. This transformation gener-
ates the following map A, — A, + yl,. This means that
the vector A is determined up to the transformation

A — A+ yl (A9)

Thus for a nontrivial electromagnetic field the vector A is
spacelike. Let us write A = Ae, where e - ¢ = 1. We call
A the amplitude and e the polarization vector.

Since ¢V, e, = 0, the equation (A6) implies

Ve =0, (A10)

VA +IAV,IP = (A11)
The first equation, (A10), shows that the vector of polar-
ization e is parallel-transported along the null geodesic,
while the second equation implies

V. (A2%) = 0. (A12)
This conserved current gives the conservation law for the
“number of photon”

N = /dEuﬂzl“, (A13)
where d2, is a volume element of a (D — 1)-dimensional
spacelike Cauchy surface.

Denoted by e;, i=1,...,D—2 a set of (D—2)
parallel-propagated mutually orthogonal unit vectors. An
arbitrary vector of the linear polarization e can be decom-
posed in this basis as follows

D-2
= be, (Al4)
i=1
where b; are constant coefficients.

APPENDIX B: PARALLEL TRANSPORT ALONG
PRINCIPAL NULL DIRECTIONS

In this appendix we present the details of the construc-
tion of a parallel-transported frame along the principal null
directions. Besides the basis {/, n, e, €, € 2}, it is useful to
consider also the complex null Darboux basis
{l, n, mﬂ, 11_1/1, eg},

m ., =

SN

mw=1...,n
ucts

- . _ I
(€, + iey), m; = —=(é,

V2

— 1, with the only nonvanishing scalar prod-

—iey), (B)

Il -n=—1, mp i, =1, (B2)

in which the PCKY tensor h, (32), takes the form
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h=rl"An®+iYx,m," A" (B3)

The covariant derivatives of the Darboux basis along the
principal null direction I = [ are

VQnr
V, 1= =1,
Vo,

\/Zrn—i- \/-\/_Q—;

+\/—Z‘/E

V, n=
N N \VO»
Xy roo.
x(xi-i—rze’a—i_xi-l-rzeﬂ)’
X, V2x, O, (B4)
vl+ell ) + Zeﬂ 2 + 2 l
X, tr X, tr 0,
. V2r |0,
Ve, 2 s T3 2 L
Xy, +r Xyt 0,
V) e = V22,

AN o

For the null basis these are equivalent to

ix i

VO,

V,.m, = a 2+
LI xi + 2 M X, t+ir \/Q_n
Vimg = tmy - V2R
Xﬂ + r Qn (BS)
Vl n = Qn’rn + 8\/5 Qe

SN o Jo,

[0)] ( —i i _ )
+ el —m, + —m ),
MZI VO, \x, —ir ¥ x,+ir "

with the equations for I and e, unchanged.

Now, we change these Darboux bases to the parallel-
transported ones by a sequence of the local Lorentz trans-
formations. (Such transformations preserve the orthogo-
nality and the normalization of the frame.) Guided by Eq.
(93), our first transformation is the boost in the {l, n} plane

Bl = l o.n Be =e,
b n a
VOu
Bé,&:éﬂ’ Beezeé’ Bm =m,, B”_’,a:m[u
(B6)

The covariant derivatives along I, changes to
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VhBl = 0,

n—1
+ &2 Oc e,
m "

2 2 Ya 2 2
xu-i-r xﬂ+r

V, Be, = \/E—VQGBI, (B7)
r
or, for the null frame
ix i\/O
V, B — BB 4 b _BJ
LM xi + 72 " x, +ir
vV, B = TiX g WO BJ
L S R R S
u ©
n—1
—i i
V. Bn=Y Bm, + B
Lo Z Q”(x —r e Ty Ma
n=1 M M
+ ev24/0Be,,. (B8)

Next transformation is a multinull rotation, leaving BJ
fixed. Actually, this transformation can be decomposed
into a sequence of commuting null rotations each of which
combines only vectors I, n and vectors m > M from one
KY 2-plane. Namely, for each pw = 1,...,n — 1 we per-
form the null rotation characterized by the parameter \/Q_M ,

N7 =By, Nmﬂ=Bmﬂ+ 0,51,
N> _ B, B N, _B
m, ="m;, +40, I, e, =Be., (B9)
N; _ Bj [0 B
€, = eﬂ-i-\/z 0.°1
in odd dimension accompanied by
Ne, =Be, + v24/0.BL. (B10)

The transformed vectors are orthogonal and have to be
completed by properly transformed vector Bn,
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n—1
Np =By + #Zl\/_Q_;(Bmﬂ +Bii,) + £v/20 Be,
n—1
+ (Z 0, + sQE)Bl
w=1
n—1
=Bn+glﬁ\/z ¢, + V20 e,

¥ (le 0, + 20 ). (B11)
=

Let us remark here, that since the parameters of the null
rotations are real, each of them actually mix only three
directions Bl, Bn, Be 45 the direction Be ; remains fixed.
The covariant derivatives of the null rotated frame are
simple

Vth el 0, V1+Nn == 0, V1+Neé = 0,
X X
_ X Ny By _ _ L N
Vi x2 +r? ‘w Vi"e, 242w
w
ix ix
V, B = B N V, Bm. = B Np,
i ) I
ok xi + 2 A H xi + 2 A

(B12)

Finally, we perform the spatial rotation in each spatial
KY 2-plane, by the angle ¢, = arctan~,
"

l] =Ng Il =Np lg, = Neé,
l, —_  *w N, T N
e. e e,
g X2+ r? g X2 + r? g
H H (B13)
- r X ~
lg. = Ne, +-——#_Ng_
g X2+ r? g X2 + r? g
M M
I _ ey e _ [u + iry -
H x, +ir # H X, —ir K

The resulting frame i, I, ”eﬂ, ”'éﬂ, ”eg} (or, alternatively,
Iz, I, ”mﬂ, ”n‘zﬁ, ”e@}) is parallel-transported

Combining all the transformations together we arrive at
the result (98), or, for the complex null frame
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n—1
+ 3 o, (my +my) + ev24/0ce.
un=1

I = zr{ VQM
m. . zr\ i \/__;l)
e _ [u + ir{ - JO
m; = ., ir\m“ + \/_:l)

le, = e, + \/5‘/Z (B15)

9

APPENDIX C: PARALLEL TRANSPORT IN THE
PLEBANSKI-DEMIANSKI FAMILY OF
SOLUTIONS

In the main text we have demonstrated how to construct
a parallel-propagated frame along null geodesics in space-
times admitting the PCKY tensor. In this appendix we
show how to modify this construction for an important
family of 4D spacetimes described by the Plebanski-
Demianski metric. Such a family generally admits only a
nonclosed generalization of the PCKY tensor—the (non-
degenerate) conformal Killing-Yano (CKY) tensor. Our
construction generalizes the results presented in [23,24].

1. Plebanski-demianski metric

The Plebanski-Demianski metric [40] describes a large
class of four-dimensional type D spacetimes. The concrete
form of physical metrics is obtained by a due limiting
procedure (see, e.g., [41] for a recent review). In this way
one can obtain, for example, the metric of an accelerated
rotating charged black hole in the cosmological
background.

The whole Plebanski-Demianski class of solutions pos-
sesses the CKY tensor [42]. Such a tensor is responsible for
complete integrability of a null geodesic motion. When the
acceleration parameter is removed the corresponding sub-
class of solutions obtained earlier by Carter [35,36] allows
the PCKY tensor [43] and the solution of parallel transport
was already described in Sec. VI A (see also [21] for the
timelike case). In order to see the impact of the presence of
a nontrivial acceleration on parallel transport, we write the
Plebanski-Demianski metric in the notations of Sec. VI A.
So we have

g =00+ 0+ e + ool (CD

where
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= \/7(d¢0+x1d¢1) ‘02_9\/%‘1

d)] =0 F(dl//()_rzdl//l), wi ZQ\/idxl
1
(C2)

Here, U, = —U, =x?+r* and Q = (1 —x;r)”!. For
X, = X;(x;) and X, = X,(r) we refer to the metric as the
off shell metric. Such a metric possesses two (Hodge dual)
nondegenerate CKY 2-forms [42]

h=Q(—re’ A +x 0 Ad), (C3)

k=00 Ad+rol Adb), (C4)

which are connected with the background isometries as

S =

These isometries together with the hidden symmetry of the
CKY tensor make the null geodesic motion in the off shell
background (C1) and (C2) completely integrable. The
tetrad components of the velocity are

. W,
Iy=——>2r, = VW2 = V)Xo,
2 0UX,0, 2 Q,/XZU; 202

1 1
S = —70h =0y, —30k =9, (&

(Co)
- —W1
L= ——, lA=—‘[VX W2,
L QUX, 0, ayx o, vV !
where
W2=r2\P0+\II1, sz _K1>O,
(CT)
Wl = —x%‘lfo + ‘Ifl! Vl = Kj.

The constant «; corresponds to the conformal Killing
tensor Q,, = k,.k,¢, whereas the constants ¥, and ¥,
are associated with the Killing vectors @, and @,
respectively.*
For the special choice of metric functions
X, = —k — 2nx| + ex} — 2mx}
2 2 4

+ (k+ e* + g* + A/3)x],

X, =k+ e+ g>—2mr+ er* —2nr’ — (k+ A/3)r%,

(C8)
and the vector potential
1 er 5 gx 5
A =—_— 0% + ') C9
Q(JUZXZ VU X, )
“One can formally recover the “nonaccelerating” class of

solutions [35,36] by taking the conformal factor () = 1. After
that, the CKY tensor & becomes the PCKY tensor discussed
earlier and k becomes the Killing-Yano tensor. At the same time
& still coincides with @, and & vanishes.
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the Plebanski-Demianski metric obeys the Einstein-
Maxwell equations with ¢ and g the electric and magnetic
charges and the cosmological constant A.

2. Construction of a parallel-propagated frame

Let us now construct a parallel-propagated frame in the
off shell background (C1) and (C2). We start by observing
that having a CKY 2-form w, that is a 2-form obeying the
CKY equations

VXw=%X4dw+XL’/\§L’, §"=—ﬁ5w,
(C10)

and a null geodesic velocity vector I, one can construct the
following parallel-transported vector:

w=(.w)"+ gl B=1-&
Indeed, using the defining property (C10) we obtain

(C11)

w=(lJm)ﬂ+Bl=§lJ(1de)
. IPAENF+BI=1B—1-&).

Here we have used the obvious fact that the first term in the
second line is zero and then proceeded in the same way as
in Sec. [IT A.

In particular, this means that for the off shell Plebanski-
Demianski metric we may construct the following two
parallel-transported vectors:

1
=3

(C12)

m =

[T .h)¥ + B,1], (C13)

-

[ k)* + Bl] (C14)

=K

g
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Moreover, using (C5) we find®

B =Yy, By =Y. (C15)
The last parallel-transported vector n is simply determined

by the normalization conditions

(C16)
n-z=20, n-:

Let us explicitly write down the form of the (off shell)
parallel-transported frame in the velocity adapted basis {0},
(47). We have

. s - - 1 JV,
1° = ki(—o2 + o), ky = —ky = Q —,U—z,
i P . B )
mb = \/_I_KI(—,Bho2 + rQo” + B,6' — x;Qol),
L. 2 + 2 + 2 N
e I
K1 2
02U, — B2 — 32 . .
+ 2 Z'Bh Pi o'+ Q(Byx; — ,Bkr)ol:l,
¢b = ki (—Byo* + x,Q0? + Bi6' + rQo'). (C17)

—K

It is easy to see, that one can formally recover the “‘non-
accelerating” limit of the PCKY tensor, Eq. (69), by
setting ) = 1 (B, = 0).

SLet us remark here, that contrary to Sec. IV B one cannot, for
the Plebanski-Demianski metric, “‘separate” the affine parame-
ter 7 as in (46). Formally, this is due to the presence of a
nontrivial (nonseparable) conformal factor ().
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