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We study the instability of small AdS black holes with two independent rotation parameters in minimal

five-dimensional gauged supergravity to massless scalar perturbations. We analytically solve the Klein-

Gordon equation for low-frequency perturbations in two regions of the spacetime of these black holes:

namely, in the region close to the horizon and in the far-region. By matching the solutions in an

intermediate region, we calculate the frequency spectrum of quasinormal modes. We show that in the

regime of superradiance only the modes of even orbital quantum number undergo negative damping,

resulting in exponential growth of the amplitude. That is, the black holes become unstable to these modes.

Meanwhile, the modes of odd orbital quantum number do not undergo any damping, oscillating with

frequency-shifts. This is in contrast with the case of four-dimensional small Kerr-AdS black holes which

exhibit the instability to all modes of scalar perturbations in the regime of superradiance.
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I. INTRODUCTION

Nowadays the classical theory of black holes in four-
dimensional asymptotically flat spacetime is thought of as
elegant and well understood. General relativity provides a
unique family of exact solutions for stationary black holes
which, in the most general case, involves only three physi-
cal parameters: the mass, angular momentum and the
electric charge. Since classically the stationary black holes
are ‘‘dead’’ objects, it is of crucial importance to explore
their characteristic responses to external perturbations of
different sorts. Superradiance is one of such responses,
namely, it is a phenomenon of amplification of scalar,
electromagnetic and gravitational waves scattered by a
rotating black hole.

Though the phenomenon of superradiance, as a Klein-
paradox state of nongravitational quantum systems, has
been known for a long time (see [1] and references
therein), Zel’dovich was the first to suggest the idea of
supperradiant amplification of waves when scattering by
the rotating black hole [2]. In order to argue the idea he had
explored a heuristic model of the scattering of a wave by a
rotating and absorbing cylinder. It turned out that when the
wave spectrum contains the frequency ! fulfilling the
condition !<m�, where m is the azimuthal number or
magnetic quantum number of the wave and � is the
angular velocity of the cylinder, the reflection of the
wave occurs with amplification. In other words, the rotat-
ing cylinder effectively acts as an amplifier, transmitting its
rotational energy to the reflected wave. Zel’dovich con-
cluded that a similar phenomenon must occur with rotating
black holes as well, where the horizon plays the role of an
absorber. Similar arguments showing that certain modes of
scalar waves must be amplified by a Kerr black hole were
also given in [3]. A complete theory of the superradiance in
the Kerr metric was developed by Starobinsky in [4]. (See
also Ref. [5]). The appearance of the superradiance in

string microscopic models of rotating black holes was
studied in a recent paper [6].
Physically, the superradiant scattering is a process of

stimulated radiation which emerges due to the excitations
of negative energy modes in the ergosphere of the black
hole. It is a wave analogue of the Penrose process [7], in
which a particle entering the ergosphere decays into two
particles, one of which has a negative energy relative to
infinity and is absorbed by the black hole. This renders the
other particle to leave the ergosphere with greater energy
than the initial one, thereby extracting the rotational energy
from the black hole. In a quantum-mechanical picture, the
superradiance is of stimulated emission of quanta which
must be accompanied by their spontaneous emission as
well [2]. The spontaneous superradiance arises due to
quantum instability of the vacuum in the Kerr metric,
leading to a pair production of particles. When leaving
the ergosphere these particles carry positive energy and
angular momentum from the black hole to infinity, whereas
inside the ergosphere they form negative energy and angu-
lar momentum flows into the black hole [8].
The phenomenon of superradiance, after all, has a deep

conceptual significance for understanding the stability
properties of the black holes. As early as 1971
Zel’dovich [2] noted that placing a reflecting mirror (a
resonator) around a rotating black hole would result in
reamplification of superradiant modes and eventually the
system would develop instability. The effect of the insta-
bility was later studied in [9] and the system is now known
as a ‘‘black hole bomb.’’ This study has also created the
motivation to answer general questions on the stability of
rotating black holes against small external perturbations.
Using analytical and numerical methods, it has been shown
that the Kerr black holes are stable to massless scalar,
electromagnetic, and gravitational perturbations [10].
However, the situation turned out to be different for per-
turbing massive bosonic fields. As is known, classical
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particles of energy E and mass m, obeying the condition
E<m, perform a finite motion in the gravitational poten-
tial of the black hole. From quantum-mechanical point of
view there exists a certain probability for tunneling such
particles through the potential barrier into the black hole.
In consequence of this, the bound states of the particles
inside the potential well must become quasistationary or
quasinormal (see, for instance [11] and references therein).
Similarly, for fields with mass �, the wave of frequency
!<� can be thought of as a ‘‘bound particle’’ and there-
fore must undergo repetitive reflections between the po-
tential well and the horizon. In the regime of
superradiance, this will cause exponential growth of the
number of particles in the quasinormal states, developing
the instability [12–15]. Thus, for massive bosonic fields the
potential barrier of the black hole plays the role of a mirror
in the heuristic model of the black hole bomb. There are
also alternative models where a reflecting mirror leading to
the instability arises due to an extra dimension which, from
a Kaluza-Klein point of view, acts as a massive term (see
for instance, Ref. [16]).

In recent years, the question of the stability of black
holes to external perturbations has been the subject of
extensive studies in four- and higher-dimensional space-
times with a cosmological constant. In particular, analyti-
cal and numerical works have revealed the perturbative
stability of nonrotating black holes in de Sitter or anti-de
Sitter (dS/AdS) spacetimes of various dimensions [17,18].
Though the similar general analysis concerning the stabil-
ity of rotating black holes in the cosmological spacetimes
still remains an open question, significant progress has
been achieved in understanding their superradiant instabil-
ity [19–22]. The causal structure of the AdS spacetime
shows that spatial infinity in it corresponds to a finite
region with a timelike boundary. Because of this property,
the spacetime exhibits a ‘‘boxlike’’ behavior, ensuring the
repetitive reflections of massless bosonic waves between
spatial infinity and a Kerr-AdS black hole. The authors of
work [19] have shown that the Kerr-AdS black hole in five
dimensions admits a corotating Killing vector which re-
mains timelike everywhere outside the horizon, provided
that the angular velocity of the boundary Einstein space
does not exceed the speed of light. This means that there is
no way to extract energy from the black hole. However,
these authors have also given simple arguments showing
that for over-rotating Kerr-AdS black holes whose typical
size is constrained to rþ < l, where l is a length scale
determined by the negative cosmological constant, the
superradiant instability may occur. That is, the small
Kerr-AdS black holes may become unstable against exter-
nal perturbations. The idea was further developed in
[20,21]. In particular, it was found that there must exist a
critical radius for the location of the mirror in the black
hole bomb model. Below this radius the superradiant con-
dition is violated and the system becomes classically sta-

ble. Extending this fact to the case of the small Kerr-AdS
black holes in four dimensions, the authors proved that the
black holes indeed exhibit a superradiant instability to
massless scalar perturbations. Later on, it was shown that
the small Kerr-AdS black holes are also unstable to gravi-
tational perturbations [22]. In a recent work [23], it was
argued that the instability properties of the Kerr-AdS black
holes to gravitational perturbations are equivalent to those
against massless scalar perturbations.
The main purpose of the present paper is to address the

superradiant instability of small rotating charged AdS
black holes with two independent rotation parameters in
minimal five-dimensional gauged supergravity. In Sec. II
we discuss some properties of the spacetime metric given
in the Boyer-Lindquist coordinates which are rotating at
spatial infinity. In particular, we define a corotating Killing
vector and calculate the angular velocities of the horizon as
well as its electrostatic potential. We also discuss the
‘‘hidden’’ symmetries of the metric and demonstrate the
separability of the Hamilton-Jacobi equation for massive
charged particles.Section III is devoted to the study of the
Klein-Gordon equation. We show that it is completely
separable for massive charged particles and present the
decoupled radial and angular equations in the most com-
pact form. In Sec. IV we consider the near-horizon behav-
ior of the radial equation and find the threshold frequency
for the superradiance. In Sec. V we examine the instability
of the small AdS black holes to low-frequency scalar
perturbations. Here we construct the solution of the radial
equation in the region close to the horizon and in the far-
region. By matching these solutions in an intermediate
region, we obtain the frequency spectrum for the quasinor-
mal modes. We show that in the regime of superradiance
the black hole exhibits instability to ‘‘selective’’ modes of
the perturbations: Namely, only the modes of even orbital
quantum number ‘ exponentially grow with time. We also
show that the modes of odd ‘ do not exhibit any damping,
but oscillate with frequency-shifts. In the Appendix we
study the angular equation for AdS modified spheroidal
harmonics in five dimensions.

II. THE METRIC AND ITS PROPERTIES

The general metric for rotating charged AdS black holes
in the bosonic sector of minimal supergravity theory in five
dimensions was recently found in [24]. The theory is
described by the action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
Rþ 12

l2
� 1

4
F��F

��

þ 1

12
ffiffiffi
3

p ������F��F��A�

�
; (1)

leading to the coupled Einstein-Maxwell-Chern-Simons
field equations
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R�
� ¼ 2

�
F��F

�� � 1

6
��

�F��F
��

�
� 4

l2
��

�; (2)

r�F
�� þ 1

2
ffiffiffi
3

p ffiffiffiffiffiffiffi�g
p ������F��F�� ¼ 0: (3)

The general black hole solution of [24] to these equations
can be written in the form

ds2¼�
�
dt�asin2	

�a

d
�bcos2	

�b

dc

��
f

�
dt�asin2	

�a

d


�bcos2	

�b

dc

�
þ2Q

�

�
bsin2	

�a

d
þacos2	

�b

dc

��

þ�

�
r2dr2

�r

þd	2

�	

�
þ�	sin

2	

�

�
adt�r2þa2

�a

d


�
2

þ�	cos
2	

�

�
bdt�r2þb2

�b

dc

�
2þ1þr2l�2

r2�

�
abdt

�bðr2þa2Þsin2	
�a

d
�aðr2þb2Þcos2	
�b

dc

�
2
; (4)

where

f ¼ �r � 2abQ�Q2

r2�
þQ2

�2
;

�a ¼ 1� a2

l2
; �b ¼ 1� b2

l2
;

�r ¼ ðr2 þ a2Þðr2 þ b2Þð1þ r2l�2Þ þ 2abQ

þQ2 � 2Mr2;

�	 ¼ 1� a2

l2
cos2	� b2

l2
sin2	;

� ¼ r2 þ a2cos2	þ b2sin2	: (5)

We see that the metric is characterized by the parameters of
mass M, electric charge Q as well as by two independent

rotation parameters a and b. The cosmological constant is
taken to be negative determining the cosmological length
scale as l2 ¼ �6=�. Throughout this paper we suppose
that the rotation parameters satisfy the relation a2, b2 < l2.
For the potential one-form of the electromagnetic field,

we have

A ¼ �
ffiffiffi
3

p
Q

2�

�
dt� asin2	

�a

d
� bcos2	

�b

dc

�
: (6)

We recall that in their canonical forms, the Kerr-
Newman-AdS metric in four dimensions as well as the
Kerr-AdS metric in five dimensions are given in the
Boyer-Lindquist coordinates which are rotating at spatial
infinity. In order to be able to make an easy comparison of
our description with those in four and five dimensions, we
give the metric (4) in the asymptotically rotating Boyer-
Lindquist coordinates x� ¼ ft; r; 	; 
; c g with � ¼ 0, 1,
2, 3, 4 (see Ref. [25]). It is easy to see that for Q ¼ 0, it
recovers the five-dimensional Kerr-AdS solution of [26].
The authors of [24] have calculated the physical parame-

ters and examined the global structure and the supersym-
metric properties of the solution in (4). In particular, they
showed that for appropriate ranges of the parameters, the
solution is free of closed timelike curves(CTCs) and naked
singularities, describing a regular rotating charged black
hole.
The determinant of the metric (4) does not involve the

electric charge parameter Q and is given by

ffiffiffiffiffiffiffi�g
p ¼ r�sin	 cos	

�a�b

; (7)

whereas, the contravariant metric components have the
form

g00 ¼ � 1

�

�ðr2 þ a2Þðr2 þ b2Þ½r2 þ l2ð1��a�bÞ� þ 2ab½ðr2 þ a2 þ b2ÞQþ abM�
�r

� l2
�
1��a�b

�	

��
;

g11 ¼ �r

r2�
; g22 ¼ �	

�
; g03 ¼ �a

�

�
a�b

�	

� ðr2 þ b2Þ½bQþ a�bðr2 þ a2Þ� þ 2abðaQþ bMÞ
�r

�
;

g04 ¼ �b

�

�
b�a

�	

� ðr2 þ a2Þ½aQþ b�aðr2 þ b2Þ� þ 2abðbQþ aMÞ
�r

�
;

g33 ¼ �2
a

�

�
cot2	þ�b

�	

þ ðr2 þ b2Þ½b2 � a2 þ ðr2 þ a2Þð1��bÞ� � 2bðaQþ bMÞ
�r

�
;

g44 ¼ �2
b

�

�
tan2	þ�a

�	

þ ðr2 þ a2Þ½a2 � b2 þ ðr2 þ b2Þð1��aÞ� � 2aðbQþ aMÞ
�r

�
;

g34 ¼ ��a�b

�

�
ab

l2

�
1

�	

� ðr2 þ a2Þðr2 þ b2Þ
�r

�
þ 2abMþ ða2 þ b2ÞQ

�r

�
:

(8)

The horizons of the black hole are governed by the equation �r ¼ 0, which can be regarded as a cubic equation with
respect to r2. It has two real roots; r1 ¼ r2þ and r2 ¼ r20. The largest of these roots, r

2þ > r20, represents the radius of the
event horizon. However, when the equations
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�r ¼ 0;
d�r

dr
¼ 0 (9)

are satisfied simultaneously, the two roots coincide, r2þ ¼
r20 ¼ r2e, representing the event horizon of an extreme
black hole. From these equations, it follows that the pa-
rameters of the extreme black hole must obey the relations

2Mel
2¼2ðr2eþa2þb2þ l2Þr2eþr4eþa2b2þða2þb2Þl2;

(10)

Qe ¼ r2e
l
ð2r2e þ a2 þ b2 þ l2Þ1=2 � ab: (11)

The time translational and rotational (bi-azimuthal)
isometries of the spacetime (4) are defined by the Killing
vector fields

�ðtÞ ¼ @=@t; �ð
Þ ¼ @=@
; �ðc Þ ¼ @=@c : (12)

Using these Killing vectors one can also introduce a coro-
tating Killing vector

� ¼ �ðtÞ þ�a�ð
Þ þ�b�ðc Þ; (13)

where �a and �b are the angular velocities of the event
horizon in two independent orthogonal 2-planes of rota-
tion. We have

�a ¼ �a½aðr2þ þ b2Þ þ bQ�
ðr2þ þ a2Þðr2þ þ b2Þ þ abQ

;

�b ¼ �b½bðr2þ þ a2Þ þ aQ�
ðr2þ þ a2Þðr2þ þ b2Þ þ abQ

:

(14)

It is straightforward to show that the corotating Killing
vector in (13) is null on the event horizon of the black hole,
i.e. it is tangent to the null generators of the horizon,
confirming that the quantities �a and �b are indeed the
angular velocities of the horizon.

We also need the electrostatic potential of the horizon
relative to an infinitely distant point. It is given by

�H ¼ �A � � ¼ �ðA0 þ�aA
 þ�bAc Þjr¼rþ : (15)

Substituting into this expression the components of the
potential in (6), we find the explicit form for the electro-
static potential

�H ¼
ffiffiffi
3

p
2

Qr2þ
ðr2þ þ a2Þðr2þ þ b2Þ þ abQ

: (16)

It is also important to note that, in addition to the global
isometries, the spacetime (4) also possesses hidden sym-
metries generated by a second-rank Killing tensor. The
existence of the Killing tensor ensures the complete sepa-
rability of variables in the Hamilton-Jacobi equation for
geodesic motion of uncharged particles [27]. Below, we

describe the separation of variables in the Hamilton-Jacobi
equation for charged particles.

A. The Hamilton-Jacobi equation for charged particles

The Hamilton-Jacobi equation for a particle of electric
charge e moving in the spacetime under consideration is
given by

@S

@�
þ 1

2
g��

�
@S

@x�
� eA�

��
@S

@x�
� eA�

�
¼ 0; (17)

where, � is an affine parameter. Since the potential one-
form (6) respects the Killing isometries (12) of the space-
time as well, L�A

� ¼ 0, we assume that the action S can

be written in the form

S ¼ 1

2
m2�� Etþ L

þ Lc c þ SrðrÞ þ S	ð	Þ; (18)

where the constants of motion represent the mass m, the
total energy E and the angular momenta L
 and Lc

associated with the rotations in 
 and c 2-planes.
Substituting this action into Eq. (17) and using the metric
components in (8) along with the contravariant compo-
nents of the potential

A0 ¼
ffiffiffi
3

p
Q

2�

ðr2 þ a2Þðr2 þ b2Þ þ abQ

�r

;

A3 ¼
ffiffiffi
3

p
Q�a

2�

aðr2 þ b2Þ þ bQ

�r

;

A4 ¼
ffiffiffi
3

p
Q�b

2�

bðr2 þ a2Þ þ aQ

�r

;

(19)

and

A�A� ¼ � 3Q2r2

4��r

; (20)

we obtain two independent ordinary differential equations
for r and 	 motions:

�r

r2

�
dSr
dr

�
2 þ ðabE� b�aL
 � a�bLc Þ2

r2

� ½ðr2 þ a2Þðr2 þ b2Þ þ abQ�2
�rr

2

�
�
E� L
�a½aðr2 þ b2Þ þ bQ�

ðr2 þ a2Þðr2 þ b2Þ þ abQ

� Lc�b½bðr2 þ a2Þ þ aQ�
ðr2 þ a2Þðr2 þ b2Þ þ abQ

�
ffiffiffi
3

p
2

eQr2

ðr2 þ a2Þðr2 þ b2Þ þ abQ

�
2 þm2r2 ¼ �K;

(21)
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�	

�
dS	
d	

�
2 þ L2


�
2
aðcot2	þ�bÞ þ L2

c�
2
bðtan2	þ�aÞ � 2abl�2L
Lc�a�b

�	

þ E2l2ð�	 ��a�bÞ � 2EðaL
 þ bLc Þ�a�b

�	

þm2ða2cos2	þ b2sin2	Þ ¼ K; (22)

where K is a constant of separation. The complete separa-
bility in the Hamilton-Jacobi equation (17) occurs due to
the existence of a new quadratic integral of motion K ¼
K��p�p�, which is associated with the hidden symmetries
of the spacetime. Here K�� is an irreducible Killing tensor
generating the hidden symmetries. Using Eq. (22) along
with�m2 ¼ g��p�p�, we obtain that the Killing tensor is
given by

K�� ¼ l2
�
1��a�b

�	

�
��
t �

�
t þ�a�b

�	

½að��
t �

�

 þ ��


�
�
t Þ

þ bð��
t �

�
c þ �

�
c�

�
t Þ� þ 1

�	

�
�2

aðcot2	þ�bÞ��

�

�



þ�2
bðtan2	þ�aÞ��

c�
�
c � ab�a�b

l2

� ð��

�

�
c þ ��

c�
�

Þ
�

� g��ða2 cos	2 þ b2 sin	2Þ þ�	�
�
	 �

�
	: (23)

This expression agrees with that given in [27] up to terms
involving symmetrized outer products of the Killing vec-
tors. Similarly, for the vanishing cosmological constant,
l ! 1, it recovers the result of work [28].

III. THE KLEIN-GORDON EQUATION

We consider now the Klein-Gordon equation for a scalar
field with charge e and mass � in the background of the
metric (4). It is given by

ðD�D� ��2Þ� ¼ 0; (24)

where D� ¼ r� � ieA� and r� is a covariant derivative

operator. Decomposing the indices as � ¼ f1; 2;Mg in
which M ¼ 0, 3, 4, we can write down the above equation
in the form

1

r

@

@r

�
�r

r

@�

@r

�
þ 1

sin2	

@

@	

�
sin2	�	

@�

@	

�

þ
�
gMN @2�

@xM@xN
� 2ieAM @�

@xN
� e2AMA

M

�
�

¼ �2��: (25)

It is easy to show that with the components of gMN given in
(8) and with Eqs. (19) and (20), this equation is manifestly
separable in variables r and 	. That is, one can assume that
its solution admits the ansatz

� ¼ e�i!tþim

þimc c Sð	ÞRðrÞ; (26)

where m
 and mc are the ‘‘magnetic’’ quantum numbers

related to 
 and c 2-planes of rotation, so that they both
must take integer values. In what follows, for the sake of
certainty, we restrict ourselves to the case of positive
frequency (!> 0) and positive m
 and mc .

The substitution of the expression (26) into Eq. (25)
results in two decoupled ordinary differential equations
for angular and radial functions. The angular equation is
given by

1

sin2	

d

d	

�
sin2	�	

dS

d	

�
þ 1

�	

½!2l2ð�a�b ��	Þ

�m2

�

2
aðcot2	þ�bÞ �m2

c�
2
bðtan2	þ�aÞ

þ 2�a�b

�
!am
 þ!bmc þ ab

l2
m
mc

�

� �	�
2ða2cos2	þ b2sin2	Þ

�
S

¼ ��S; (27)

where � is a constant of separation. With regular boundary
conditions at 	 ¼ 0 and 	 ¼ =2, this equation describes a
well-defined Sturm-Liouville problem with eigenvalues
�‘ð!Þ, where ‘ is thought of as an ‘‘orbital’’ quantum
number. The corresponding eigenfunctions are five-
dimensional (AdS modified) spheroidal functions Sð	Þ ¼
S‘m
mc

ð	ja!; b!Þ. In some special cases of interest,

the eigenvalues were calculated in the Appendix, see
Eq. (A14).
The radial equation can be written in the form

�r

r

d

dr

�
�r

r

dR

dr

�
þUðrÞR ¼ 0; (28)

where

UðrÞ ¼ ��r

�
�þ�2r2 þ ðab!� b�am
 � a�bmc Þ2

r2

�

þ ½ðr2 þ a2Þðr2 þ b2Þ þ abQ�2
r2

�
�
!� m
�a½aðr2 þ b2Þ þ bQ�

ðr2 þ a2Þðr2 þ b2Þ þ abQ

� mc�b½bðr2 þ a2Þ þ aQ�
ðr2 þ a2Þðr2 þ b2Þ þ abQ

�
ffiffiffi
3

p
2

eQr2

ðr2 þ a2Þðr2 þ b2Þ þ abQ

�
2
: (29)

When the cosmological constant vanishes, l ! 1, the
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above expressions agree with those obtained in [29] for a
five-dimensional Myers-Perry black hole.

IV. THE SUPERRADIANCE THRESHOLD

The radial equation can be easily solved near the hori-
zon. For this purpose, it is convenient to introduce a new
radial function R defined by

R ¼
�

r

ðr2 þ a2Þðr2 þ b2Þ þ abQ

�
1=2

R (30)

and a new radial, the so-called tortoise coordinate r�,
obeying the relation

dr�
dr

¼ ðr2 þ a2Þðr2 þ b2Þ þ abQ

�r

: (31)

With these new definitions the radial Eq. (28) can be
transformed into the form

d2R
dr2�

þ VðrÞR ¼ 0; (32)

where the effective potential is given by

VðrÞ¼��r½r2ð�þ�2r2Þþðab!�b�am
�a�bmc Þ2�
½ðr2þa2Þðr2þb2ÞþabQ�2

� �r

2ru3=2
d

dr

�
�r

ru3=2
du

dr

�

þ
�
!�m
�a½aðr2þb2ÞþbQ�

ðr2þa2Þðr2þb2ÞþabQ

�mc�b½bðr2þa2ÞþaQ�
ðr2þa2Þðr2þb2ÞþabQ

�
ffiffiffi
3

p
2

eQr2

ðr2þa2Þðr2þb2ÞþabQ

�
2
: (33)

For brevity, we have also introduced

u ¼ ðr2 þ a2Þðr2 þ b2Þ þ abQ

r
: (34)

In what follows, we consider a massless scalar field, � ¼
0. We see that at the horizon r ¼ rþ (�r ¼ 0), the effective
potential in Eq. (33) becomes

VðrþÞ ¼ ð!�m
�a �mc�b � e�HÞ2: (35)

With this in mind, it is easy to verify that for an observer
near the horizon, the asymptotic solution of the wave
equation

� ¼ e�i!tþim

þimc c e�ið!�!pÞr�Sð	Þ; (36)

corresponds to an ingoing wave at the horizon. The thresh-
old frequency

!p ¼ m
�a þmc�b þ e�H (37)

determines the frequency range

0<!<!p (38)

for which, the phase velocity of the wave changes its sign.
As in the four-dimensional case [10], this fact is the
signature of the superradiance. That is, when the condition
(38) is fulfilled there must exist a superradiant outflow of
energy from the black hole. From Eq. (37), it follows that
the electric charge of the black hole changes the super-
radiance threshold frequency for charged particles.
Next, turning to the asymptotic behavior of the solution

at spatial infinity, we recall that in this region the AdS
spacetime reveals a boxlike behavior. In other words, at
spatial infinity the spacetime effectively acts as a reflective
barrier. Therefore, we require the vanishing field boundary
condition

� ! 0 as r ! 1: (39)

With the boundary conditions (36) and (39), namely, re-
quiring a purely ingoing wave at the horizon and a purely
damping wave at infinity, we arrive at a characteristic-
value problem for complex frequencies of quasinormal
modes of the massless scalar field, see [14]. The imaginary
part of these frequencies describes the damping of the
modes. A characteristic mode is stable if the imaginary
part of its complex frequency is negative (the positive
damping), while for the positive imaginary part, the
mode undergoes exponential growth (the negative damp-
ing). In the latter case, the system will develop instability.

V. INSTABILITY

In this section we describe the instability for small-size
five-dimensional AdS black holes, rþ � l, in the regime
of low-frequency perturbations. That is, we assume that the
wavelength of the perturbations is much larger than the
typical size of the horizon, 1=! � rþ. In addition, we also
assume slow rotation, i.e. we restrict ourselves to linear
order terms in rotation parameters a and b. With these
approximations, we can apply the similar method first
developed by Starobinsky [4] and later on used by many
authors (see, [21] and references therein) to construct the
solutions of the radial Eq. (28) in the region near the
horizon and in the far-region. It is remarkable that there
exists an intermediate region where the two solutions over-
lap and matching these solutions enables us to calculate the
frequency of quasinormal modes and explore the (in)stabil-
ity of these modes.

A. Near-region solution

For small and slowly rotating black holes, in the region
close to the horizon, r� rþ � 1=!, and in the regime
of low-frequency perturbations, 1=! � rþ, the radial
Eq. (28) can be approximated by the equation
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4�x

d

dx

�
�x

dR

dx

�
þ ½x3þð!�!pÞ2 � ‘ð‘þ 2Þ�x�R ¼ 0;

(40)

where we have used the new radial coordinate x ¼ r2 and

�x ’ x2 � 2MxþQ2 ¼ ðx� xþÞðx� x�Þ: (41)

The superradiance threshold frequency is given by
Eq. (37), in which one must now take

�a ’ a

xþ
þ bQ

x2þ
; �b ’ b

xþ
þ aQ

x2þ
; �H ’

ffiffiffi
3

p
2

Q

xþ
:

(42)

In obtaining the above equations we have neglected the
term involving r2þ=l2 as well as all terms with square and
higher orders in rotation parameters. With the approxima-
tion employed, the eigenvalues �‘ are replaced by their
five-dimensional flat spacetime value �‘ ’ ‘ð‘þ 2Þ. (See
the Appendix).

Next, it is convenient to define a new dimensionless
variable

z ¼ x� xþ
x� x�

; (43)

which in the near-horizon region goes to zero, z ! 0. Then
Eq. (40) can be put in the form

zð1� zÞd
2R

dz2
þ ð1� zÞdR

dz
þ

�
1� z

z
�2 � ‘ð‘þ 2Þ

4ð1� zÞ
�
R¼ 0;

(44)

where

� ¼ x3=2þ
2

!�!p

xþ � x�
: (45)

It is straightforward to check that the ansatz

RðzÞ ¼ zi�ð1� zÞ1þ‘=2FðzÞ; (46)

when substituting into the above equation, takes us to the
hypergeometric equation of the form (A9) for the function
FðzÞ ¼ Fð�;�; �; zÞ with
�¼ 1þ ‘=2þ 2i�; �¼ 1þ ‘=2; �¼ 1þ 2i�:

(47)

The physical solution of this equation corresponding to the
ingoing wave at the horizon, z ! 0, is given by

RðzÞ ¼ Az�i�ð1� zÞ1þ‘=2Fð1þ ‘=2; 1þ ‘=2� 2i�; 1

� 2i�; zÞ; (48)

where A is a constant. For large enough values of the
wavelength, this solution may overlap with the far-region
solution. Therefore, we need to consider the large r (z! 1)
limit of this solution. For this purpose, we use the func-
tional relation between the hypergeometric functions of the

arguments z and 1� z [30], which in our case has the form

Fð1þ ‘=2; 1þ ‘=2� 2i�; 1� 2i�; zÞ

¼ �ð�1� ‘Þ�ð1� 2i�Þ
�ð�‘=2Þ�ð�‘=2� 2i�ÞFð1þ ‘=2; 1þ ‘=2

� 2i�; 2þ ‘; 1� zÞ

þ �ð1þ ‘Þ�ð1� 2i�Þ
�ð1þ ‘=2Þ�ð1þ ‘=2� 2i�Þ ð1� zÞ�1�‘

� Fð�‘=2� 2i�;�‘=2;�‘; 1� zÞ: (49)

Taking this into account in Eq. (48), we obtain that the
large r behavior of the near-region solution is given by

R� A�ð1� 2i�Þ
�
�ð�1� ‘Þðr2þ � r2�Þ1þ‘=2

�ð�‘=2Þ�ð�‘=2� 2i�Þ r
�2�‘

þ �ð1þ ‘Þðr2þ � r2�Þ�‘=2

�ð1þ ‘=2Þ�ð1þ ‘=2� 2i�Þ r
‘

�
; (50)

where we have also used the fact that Fð�;�; �; 0Þ ¼ 1.

B. Far-region solution

In this region rþ � M the effects of the black hole are
suppressed and the radial Eq. (28) in this approximation is
reduced to the form

�
1þ r2

l2

�
d2R

dr2
þ

�
3

r
þ 5r

l2

�
dR

dr
þ

�
!2

1þ r2

l2

� ‘ð‘þ 2Þ
r2

�
R¼ 0:

(51)

Defining a new variable

y ¼
�
1þ r2

l2

�
; (52)

we can also put the equation into the form

yð1� yÞd
2R

dy2
þ ð1� 3yÞdR

dy
� 1

4

�
!2l2

y
� ‘ð‘þ 2Þ

y� 1

�
R¼ 0:

(53)

We note that this is an equation in a pure AdS spacetime
and therefore, we look for its solution satisfying the bound-
ary conditions at infinity, y ! 1, and at the origin of the
AdS space, y ! 1.
Again, one can show that the ansatz

R ¼ y!l=2ð1� yÞ‘=2FðyÞ; (54)

transforms Eq. (53) into the hypergeometric equation of
the form (A9), where the parameters of the hypergeometric
function Fð�;�; �; yÞ are given by

�¼ 2þ ‘=2þ!l=2; �¼ ‘=2þ!l=2; �¼ 1þ!l:

(55)

The solution of this equation vanishing at y ! 1, i.e.
obeying the boundary condition (39), is given by
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RðyÞ ¼ By�2�‘=2ð1� yÞ‘=2Fð2þ ‘=2þ!l=2; 2þ ‘=2

�!l=2; 3; 1=yÞ; (56)

where B is a constant. We are also interested in knowing
the small r (y ! 1) behavior of this solution. Using the
expansion of the hypergeometric function in (56) in terms
of the hypergeometric functions of the argument 1� y
given by

Fð2þ ‘=2þ!l=2; 2þ ‘=2�!l=2; 3; 1=yÞ

¼ �ð3Þ�ð1þ ‘Þy2þ‘=2�!l=2ðy� 1Þ�1�‘

�ð2þ ‘=2þ!l=2Þ�ð2þ ‘=2�!l=2Þ
� Fð1� ‘=2�!l=2;�1� ‘=2�!l=2;�‘;

1� yÞ þ �ð3Þ�ð�1� ‘Þy2þ‘=2þ!l=2

�ð1� ‘=2þ!l=2Þ�ð1� ‘=2�!l=2Þ
� Fð2þ ‘=2þ!l=2; ‘=2þ!l=2; 2þ ‘; 1� yÞ;

(57)

we find that for small values of r the asymptotic solution
has the form

RðrÞ � B�ð3Þð�1Þ‘=2

�
�

�ð1þ ‘Þl2þ‘r�2�‘

�ð2þ ‘=2þ!l=2Þ�ð2þ ‘=2�!l=2Þ

þ �ð�1� ‘Þl�‘r‘

�ð1� ‘=2þ!l=2Þ�ð1� ‘=2�!l=2Þ
�
: (58)

Requiring the regularity of this solution at the origin of the
AdS space (r ¼ 0), we obtain the quantization condition

2þ ‘=2�!l=2 ¼ �n; (59)

where n is a non-negative integer being a ‘‘principal’’
quantum number. We recall that with this condition the
gamma function �ð2þ ‘=2�!l=2Þ ¼ 1. Thus, we find
that the discrete frequency spectrum for scalar perturba-
tions in the five-dimensional AdS spacetime is given by

!n ¼ 2nþ ‘þ 4

l
: (60)

This formula generalizes the four-dimensional result of
works in [31,32] to five dimensions. Since at infinity the
causal structure of the AdS black hole is similar to that of
the pure AdS background, it is natural to assume that
Eq. (60) equally well governs the frequency spectrum at
large distances from the black hole. However, the impor-
tant difference is related to the inner boundaries which are
different; for the AdS spacetime we have r ¼ 0, while for
the black hole in this spacetime we have r ¼ rþ.
Therefore, to catch the effect of the black hole, the solution
(58) must ‘‘respond’’ to the ingoing wave condition at the
boundary r ¼ rþ. Physically, this means that one must take
into account the possibility for tunneling of the wave
through the potential barrier into the black hole and scat-

tering back. As we have described above, this would result
in the quasinormal spectrum with the complex frequencies

! ¼ !n þ i�; (61)

where � is supposed to be a small quantity, describing the
damping of the quasinormal modes. Taking this into ac-
count in Eq. (58), we first note that

�ð2þ ‘=2þ!l=2Þ�ð2þ ‘=2�!l=2Þ
¼ �ð4þ ‘þ nþ il�=2Þ�ð�n� il�=2Þ: (62)

Next, applying to this expression the functional relations
for the gamma functions [30]

�ðkþ zÞ ¼ ðk� 1þ zÞðk� 2þ zÞ . . . ð1þ zÞ�ð1þ zÞ;
�ðzÞ�ð1� zÞ ¼ 

sinz
; (63)

where k is a non-negative integer, it is easy to show that for
l� � 1

�ð2þ ‘=2þ!l=2Þ�ð2þ ‘=2�!l=2Þ

¼ � 2i

l�

ð‘þ 3þ nÞ!
ð�1Þnþ1n!

: (64)

Similarly, one can also show that

�ð1� ‘=2þ!l=2Þ�ð1� ‘=2�!l=2Þ
¼ �ð�1� ‘� nÞ�ð3þ nÞ: (65)

Substituting now these expressions into Eq. (58), we obtain
the desired form of the far-region solution at small values
of r. It is given by

R ¼ B�ð3Þð�1Þ‘=2
�

�ð�1� ‘Þl�‘r‘

�ð�1� ‘� nÞ�ð3þ nÞ

þ i�
ð�1Þnþ1n!�ð1þ ‘Þ

2ð3þ ‘þ nÞ! l3þ‘r�2�‘

�
: (66)

C. Overlapping

Comparing the large r behavior of the near-region solu-
tion in (50) with the small r behavior of the far-region
solution in (66), we conclude that there exists an inter-
mediate region rþ � r� rþ � 1=! where these solu-
tions overlap. In this region we can match them which
allows us to obtain the damping factor in the form

� ¼ �2i
ðr2þ � r2�Þ1þ‘

l3þ2‘

ð3þ ‘þ nÞ!ð1þ ‘þ nÞ!
ð�1Þ‘n!ð2þ nÞ!½‘!ð1þ ‘Þ!�2

� �ð1þ ‘=2Þ�ð1þ ‘=2� 2i�Þ
�ð�‘=2Þ�ð�‘=2� 2i�Þ : (67)

We note that in this expression the quantity � is given by

� ¼ r3þ
2

!n �!p

r2þ � r2�
: (68)
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It is also important to note that, in contrast to the related
expression in four dimensions [21], Eq. (67) involves the
term ‘=2 in the arguments of the gamma functions.
Therefore, its further evaluation requires us to consider
the cases of even and odd values of ‘ separately.

1. Even ‘

In this case using the functional relations [30]

�ðkþ izÞ�ðk� izÞ ¼ �ð1þ izÞ�ð1� izÞYk�1

j¼1

ðj2 þ z2Þ;

(69)

�ð1þ izÞ�ð1� izÞ ¼ z

sinhz
; (70)

one can show that

�ð1þ ‘=2Þ�ð1þ ‘=2� 2i�Þ
�ð�‘=2Þ�ð�‘=2� 2i�Þ

¼ �2i�½ð‘=2Þ!�2 Y‘=2
j¼1

ðj2 þ 4�2Þ: (71)

Substituting this expression into Eq. (67) we find that

� ¼ �ð!n �!pÞ 2ð3þ ‘þ nÞ!ð1þ ‘þ nÞ!
ð�1Þ‘n!ð2þ nÞ!½‘!ð1þ ‘Þ!�2

� r3þðr2þ � r2�Þ‘
l3þ2‘

½ð‘=2Þ!�2 Y‘=2
j¼1

ðj2 þ 4�2Þ: (72)

We see that the sign of this expression crucially depends on
the sign of the factor ð!n �!pÞ and in the superradiant

regime !n < !p it is positive. In other words, we have the

negative damping effect, as we have discussed at the end of
Sec. IV, resulting in exponential growth of the modes with
characteristic time scale � ¼ 1=�. Thus, the small AdS
black holes under consideration become unstable to the
superradiant scattering of massless scalar perturbations of
even ‘ or equivalently of even sum m
 þmc . We recall

that we consider the positive frequency modes and the
positive magnetic quantum numbers m
 and mc .

2. Odd ‘

In order to evaluate the combination of the gamma
functions appearing in Eq. (67) for odd values of ‘, we
appeal to the relations [30]

�

�
kþ 1

2

�
¼ 1=22�kð2k� 1Þ!!;

�

�
1

2
þ iz

�
�

�
1

2
� iz

�
¼ 

coshz
: (73)

Using these relation along with those given in (63), after
some algebra, we obtain that

�ð1þ ‘=2Þ�ð1þ ‘=2� 2i�Þ
�ð�‘=2Þ�ð�‘=2� 2i�Þ

¼ ð‘!!Þ2
21þ‘

Yð‘þ1Þ=2

j¼1

��
j� 1

2

�
2 þ 4�2

�
: (74)

With this in mind, we put Eq. (67) in the form

� ¼ �i
ðr2þ � r2�Þ1þ‘

l3þ2‘

ð3þ ‘þ nÞ!ð1þ ‘þ nÞ!ð‘!!Þ2
ð�1Þ‘2‘n!ð2þ nÞ!½‘!ð1þ ‘Þ!�2

� Yð‘þ1Þ=2

j¼1

��
j� 1

2

�
2 þ 4�2

�
: (75)

We see that this expression is purely imaginary and it does
not change the sign in the superradiant regime. In other
words, these modes do not undergo any damping, but they
do oscillate with frequency-shifts.

VI. CONCLUSION

In this paper, we have discussed the instability properties
of small-size, rþ � l, charged AdS black holes with two
rotation parameters, which are described by the solution of
minimal five-dimensional gauged supergravity recently
found in [24]. The remarkable symmetries of this solution
allow us to perform a complete separation of variables in
the field equations governing scalar perturbations in the
background of the AdS black holes.
We have begun with demonstrating the separability of

variables in the Hamilton-Jacobi equation for massive
charged particles as well as in the Klein-Gordon equation
for a massive charged scalar field. In both cases, we have
presented the decoupled radial and angular equations in
their most compact form. Next, exploring the behavior of
the radial equation near the horizon, we have found the
threshold frequency for the superradiance of these black
holes. Restricting ourselves to slow rotation and to low-
frequency perturbations, when the characteristic wave-
length scale is much larger than the typical size of the
black hole, we have constructed the solutions of the radial
equation in the region close to the horizon and in the far-
region of the spacetime. Performing the matching of these
solutions in an overlapping region of their validity, we have
derived an analytical formula for the frequency spectrum
of the quasinormal modes.
Analyzing the imaginary part of the spectrum for modes

of even and odd ‘ separately, we have revealed a new
feature: In the regime of superradiance only the modes of
even ‘ undergo the negative damping, exponentially grow-
ing their amplitudes. On the other hand, the modes of odd ‘
turn out to be not sensitive to the regime of superradiance,
oscillating without any damping, but with frequency-shifts.
This new feature is inherent in the five-dimensional AdS
black hole spacetime and absent in four dimensions where
the small-size AdS black holes exhibit the instability to all
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modes of scalar perturbations in the regime of superra-
diance [21].

We emphasize once again that our result was obtained in
the regime of low-frequency perturbations and for small-
size, slowly rotating AdS black holes. Therefore, its valid-
ity is guaranteed for a certain range of the perturbation
frequencies and parameters of the black holes within the
approximation employed. The full analysis beyond this
approximation requires a numerical work. Meanwhile,
one should remember that the characteristic oscillating
modes for the instability to occur (for superradiance) are
governed by the radius of the AdS space. This means that
the instability will not occur for an arbitrary range of the
black hole parameters. We also emphasize that the differ-
ent stability properties of even and odd modes of scalar
perturbations arise only in the five-dimensional case with
reflective boundary conditions. The physical reason for this
is apparently related with the ‘‘fermionic constituents’’ of
the five-dimensional AdS black hole. Therefore, it would
be interesting to explore this effect in the spirit of work
[33] using an effective string theory picture, where even ‘
refers to bosons and odd ‘ to fermions. This is a challeng-
ing project for future work.
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APPENDIX: ANGULAR EQUATION

The angular Eq. (27) can be transformed into a second-
order Fuchsian equation by defining a new variable z ¼
sin2	. Performing straightforward calculations, we obtain

d2S

dz2
þ

�
1

z
þ 1

z� 1
þ 1

z� c

�
dS

dz
þ 1

4zð1� zÞ�2
z

�
�
��z!

2l2 �m2

�

2
a

z
�m2

c�
2
b

1� z
þ ð�a ��bÞðm2


�a

�m2
c�bÞ þ�a�bl

2

�
!þ a

l2
m
 þ b

l2
mc

�
2

þ�zð���2½b2zþ a2ð1� zÞ�Þ�S ¼ 0; (A1)

where

�z ¼ �a þ ð�b ��aÞz; c ¼ �a

�a ��b

: (A2)

This equation has four regular singular points z ¼ 0, 1, c,
1 and therefore can also be put in the form of the Heun
equation [34]

d2H

dz2
þ

�
1þ 2�

z
þ 1þ 2�

z� 1
þ 1þ 2�

z� c

�
dH

dz

þ "�zþ �

zðz� 1Þðz� cÞH ¼ 0; (A3)

where the functions HðzÞ and SðzÞ are related by

SðzÞ ¼ z�ð1� zÞ�ðz� cÞ�HðzÞ; (A4)

and the associated parameters are given by

2� ¼ m
; 2� ¼ mc ; 2l� ¼ !l2 þ am
 þ bmc ;

2� ¼ m
 þmc þ 2ð�þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2�2=4

q
Þ;

2" ¼ m
 þmc þ 2ð�þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2�2=4

q
Þ;

2� ¼ �ð2�þm
Þð1þm
Þ � cðm
 þmc þm
mc Þ
þ c

2�a

½���2a2 �!2l2 þ�bð4�2 �m2

 �m2

c Þ�:
(A5)

We note that the regularity of the point at z ¼ 1 gives the
following relation between the parameters

�þ " ¼ 2ð�þ �þ �þ 1Þ: (A6)

We also note that the regularity of the solutions requires
that the magnetic quantum numbers m
 and mc must take

non-negative values. Therefore, below we imply only these
values for m
 and mc . It turns out that for some special

cases, namely, when the black hole has two equal rotation
parameters (a ¼ b, �a ¼ �b ¼ �) or its rotation is slow
enough, the above equation has only three regular singular
points z ¼ 0, 1,1. That is, the corresponding solution can
be expressed in terms of the hypergeometric functions. We
consider now these cases separately.

1. Equal rotation parameters

In this case Eq. (A1) reduces to the form

zð1� zÞ d
2S

dz2
þ ð1� 2zÞ dS

dz
þ 1

4

��
!l2 þ aðm
 þmc Þ

l

�
2

�m2



z
� m2

c

1� z
þ ���2a2 �!2l2

�

�
S ¼ 0: (A7)

One can easily verify that with the substitution

SðzÞ ¼ zm
=2ð1� zÞmc =2FðzÞ: (A8)

Equation (A7) goes over into the standard hypergeometric
differential equation

zð1� zÞd
2F

dz2
þ ½�� ð�þ �þ 1Þz� dF

dz
� ��F ¼ 0;

(A9)

where the parameters are given by
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2� ¼ 1þ �þm
 þmc ; 2� ¼ 1� �þm
 þmc ;

� ¼ 1þm
;

�2 ¼ 1þ
�
!l2 þ aðm
 þmc Þ

l

�
2 þ ���2a2 �!2l2

�
:

(A10)

The general solution of this equation for z 2 ð0; 1Þ has the
form (see, for instance [30])

FðzÞ ¼ A1z
1��Fð�� �þ 1; �� �þ 1; 2� �; zÞ

þ B1Fð�;�; �; zÞ; (A11)

where A1 and B1 are constants. From the regularity of the
solution at z ¼ 0 and z ¼ 1, we obtain A1 ¼ 0 and

� ¼ �

�
ð2jþm
 þmc Þð2jþm
 þmc þ 2Þ

� 2!aðm
 þmc Þ �
a2ðm
 þmc Þ2

l2

�

þ a2ð!2 þ�2Þ; (A12)

where j is a non-negative integer. Introducing now ‘ ¼
2jþm
 þmc , we can put this expression in the form

� ¼ �

�
‘ð‘þ 2Þ � 2!aðm
 þmc Þ �

a2ðm
 þmc Þ2
l2

�

þ a2ð!2 þ�2Þ: (A13)

We note that the new integer ‘ being the orbital quantum
number must obey the condition ‘ 	 m
 þmc . Thus, it

must take even (odd) values if the sum m
 þmc is even

(odd). We also note that in the a ¼ b case, the eigenvalues
are the same as in the absence of rotation (with redefinition
of the separation constant). That is,

�‘ ¼ ‘ð‘þ 2Þ: (A14)

This is in agreement with the result obtained in [29].

2. Slow rotation

When the rotation of the black hole is slow enough, we
can discard all terms of higher than linear order in rotation
parameters a and b. In this case the angular Eq. (A1) takes
the simple form

zð1� zÞd
2S

dz2
þ ð1� 2zÞdS

dz
� 1

4

�m2



z
þ m2

c

1� z
��‘

�
S¼ 0;

(A15)

where

�‘ ¼ �þ 2!ðam
 þ bmc Þ: (A16)

The similar substitution as in (A8) transforms this equation
into Eq. (A9) with the parameters

2� ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �‘

p þm
 þmc ;

2� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �‘

p þm
 þmc ;

� ¼ 1þm
:

(A17)

It is easy to verify that its regular solution at z ¼ 0 and z ¼
1 implies the eigenvalues given in (A14).
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