
Geometric description of BTZ black hole thermodynamics

Hernando Quevedo*
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(Received 11 November 2008; published 15 January 2009)

We study the properties of the space of thermodynamic equilibrium states of the Bañados-Teitelboim-

Zanelli (BTZ) black hole in (2þ 1) gravity. We use the formalism of geometrothermodynamics to

introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is

nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating

the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole

which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy

turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that

thermodynamic curvature is a measure of thermodynamic interaction.
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I. INTRODUCTION

The spacetime of a black hole in (2þ 1) dimensions
with negative cosmological constant provides an example
of a lower-dimensional toy model which shares many of
the important conceptual issues of general relativity in
(3þ 1) dimensions, but avoids some of the difficulties
found in mathematical computations. This spacetime is
known as the Bañados-Teitelboim-Zanelli (BTZ) black
hole [1], and it warrants attention in its own right (for a
review, see [2]). A key feature of this model lies in the
simplicity of its construction. It is a spacetime with con-
stant negative curvature and is obtained as a discrete
quotient of three-dimensional anti-de Sitter space [3].
The BTZ spacetime is free of curvature singularities.
Even so, all characteristic features of black holes such as
the event horizon and Hawking radiation are present so that
this model is a genuine black hole. Furthermore, despite its
simplicity, the BTZ black hole plays an outstanding role in
many of the recent developments in string theory, specially
in the context of the AdS/CFT conjecture [4]. One of the
most interesting aspects of black holes is related to their
thermodynamic properties. In the case of the BTZ black
hole, the extensive thermodynamic variables are the mass
M, angular momentum J, and entropy S which is propor-
tional to the horizon area. The intensive variables are the
angular velocity at the horizon � and the Hawking tem-
perature T. Although these quantities satisfy the laws of
macroscopic thermodynamics, their microscopic origin
remains obscure, and it is believed that it is related to the
problem of quantization of gravity.

On the other hand, it is possible to introduce differential
geometric concepts in ordinary thermodynamics. The most
known structures were postulated by Weinhold [5] and
Ruppeiner [6,7] who introduced Riemannian metrics in
the space of equilibrium states of a thermodynamic system.
These geometric structures can obviously be applied in
black hole thermodynamics. For instance, the components
of Weinhold’s metric are simply defined as the second
derivatives of the mass with respect to the extensive vari-
ables. The calculations are straightforward, but the geo-
metric properties of the resulting manifolds are puzzling
[8,9]. For instance, in the case of the BTZ black hole
thermodynamics, where M ¼ MðS; JÞ, the curvature of
the equilibrium space turns out to be flat [10–12]. This
flatness is usually interpreted as a consequence of the lack
of thermodynamic interaction. However, if one applies a
Legendre transformation M ! ~M ¼ M� J�, the result-
ing manifold is curved. This result is not in agreement with
ordinary thermodynamics which is manifestly Legendre
invariant. To overcome this inconsistency, the theory of
geometrothermodynamics (GTD) was proposed recently
[13–15]. It incorporates arbitrary Legendre transforma-
tions [16] into the geometric structure of the equilibrium
space in an invariant manner. In this work, we study the
equilibrium space of the BTZ black hole, and propose a
thermodynamic metric whose curvature is nonzero and
reproduces its main thermodynamic properties. In particu-
lar, we will see that the thermodynamic curvature is free of
singularities. In GTD, this is interpreted as a consequence
of the nonexistence of singular points at the level of the
heat capacity, indicating that no (second-order) phase tran-
sitions occur. It turns out that these results coincide with
the predictions of ordinary black hole thermodynamics as
proposed by Davies [17]. We also include in our analysis
the case of an additional dilatonic field and a Chern-
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Simons term at the level of the action. In all the cases
presented in this work, it turns out that GTD correctly
reproduces the thermodynamic properties of the corre-
sponding system. Moreover, we analyze the leading loga-
rithmic corrections to the entropy and show that they
correspond to small perturbations at the level of the curva-
ture of the equilibrium space. This can be considered as an
additional indication that the thermodynamic curvature can
be used to measure the thermodynamic interaction of a
system.

This paper is organized as follows. In Sec. II we review
the most important aspects of the BTZ black hole, empha-
sizing the thermodynamic interpretation of its physical
parameters. In Sec. III we use the formalism of GTD to
construct the thermodynamic phase space and the space of
equilibrium states for the BTZ black hole. Section IV is
devoted to study the GTD of generalizations of the BTZ
black hole, including an additional dilatonic field and a
Chern-Simons term. In all the cases we investigate the
influence of small corrections of the entropy on the ther-
modynamic curvature. Finally, Sec. V contains discussions
of our results and suggestions for further research.
Throughout this paper we use units in which c ¼ kB ¼
@ ¼ 8G ¼ 1.

II. THE BTZ BLACK HOLE

The BTZ black hole metric in spherical coordinates can
be written as

ds2 ¼ �
�
�Mþ r2

l2
þ J2

4r2

�
dt2 þ r2

�
d’� J

2r2
dt

�
2

þ dr2

�Mþ r2

l2
þ J2

4r2

; (1)

where M and J are the mass and angular momentum,
respectively. The BTZ metric is a classical solution of
the field equations of (2þ 1) gravity which follow from
the action I ¼ 1=ð16�ÞR d3x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ, where � ¼

�1=l2 is the cosmological constant. The BTZ metric is
characterized by a constant negative curvature and, there-
fore, can be obtained as a region of anti-de Sitter space with
an appropriate identification of the boundaries [1]. The
roots of the lapse function (gtt ¼ 0Þ

r2� ¼ l2

2

�
M�

�
M2 � J2

l2

�
1=2

�
(2)

define the horizons r ¼ r� of the spacetime. In particular,
the null hypersurface r ¼ rþ can be shown to correspond
to an event horizon, which in this case is also a Killing
horizon, whereas the inner horizon at r� is a Cauchy
horizon. From the expressions for the horizon radii, the
following useful relations are obtained:

M ¼ r2þ þ r2�
l2

; J ¼ 2rþr�
l

: (3)

From the area-entropy relationship, S ¼ 4�rþ, we obtain
an expression of the form S ¼ SðM; JÞ that can be rewritten
as

M ¼ S2

16�2l2
þ 4�2J2

S2
: (4)

This equation relates all the thermodynamic variables en-
tering the BTZ metric in the form M ¼ MðS; JÞ so that if
we impose the first law of thermodynamics dM ¼ TdSþ
�dJ, the expressions for the temperature and the angular
velocity can easily be computed as T ¼ @M=@S, � ¼
@M=@J. It is convenient to write the final results in terms
of the horizon radii by using the relations (3):

T ¼ r2þ � r2�
2�l2rþ

; � ¼ r�
lrþ

: (5)

The temperature is always positive and vanishes only in the
case of an extremal black hole, i.e., when rþ ¼ r�. The
heat capacity at constant values of J is given as

C ¼ T
@T

@S
¼ 4�rþðr2þ � r2�Þ

r2þ þ 3r2�
: (6)

Following the fundamentals of black hole thermodynamics
as formulated by Davies [17], the main thermodynamic
properties of the BTZ black hole can be derived from the
behavior of its thermodynamic variablesM, T,�, and C in
terms of the extensive variables S and J. We see that all
thermodynamic variables are well behaved, except perhaps
in the extremal limit rþ ¼ r�, where the Hawking tem-
perature and the heat capacity vanish. Since an absolute
zero temperature is not allowed by the third law of ther-
modynamics, we conclude that the thermodynamic de-
scription breaks down in the extremal limit. The fact that
the heat capacity C is always positive and free of singular
points is usually interpreted as an indication that the BTZ
black hole is a thermodynamically stable configuration
where no phase transitions can occur. This is in contrast
with black hole configurations in higher dimensions which,
in general, are characterized by regions of high instabilities
and a rich phase transitions structure.
It should be mentioned that Davies’ formulation of

phase transitions for black holes is not definitely settled
and is still a subject of discussion. Alternative criteria for
the existence of phase transitions of black holes have been
proposed in different contexts [18–21]. A definite defini-
tion could be formulated only on the basis of a microscopic
description that would lead to the ordinary macroscopic
thermodynamics of black holes in the appropriate limit.
Such a microscopic model for black holes must be related
to a hypothetical model of quantum gravity which is still
out of reach. We therefore use the intuitive definition of
phase transitions as it is known from ordinary thermody-
namics of black holes [17].
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III. GEOMETROTHERMODYNAMICS OF THE
BTZ BLACK HOLE

For the geometric description of the thermodynamics of
the BTZ black hole in GTD, we first introduce the five-
dimensional phase space T with coordinates
fM;S; J; T;�g, a contact one-form � ¼ dM� TdS�
�dJ, and a metric

G ¼ ðdM� TdS��dJÞ2 þ ðTSþ�JÞð�dTdS

þ d�dJÞ; (7)

which is Legendre invariant as described below. The triplet
ðT ;�; GÞ defines a contact Riemannian manifold that
plays an auxiliary role in GTD. It is used to properly handle
Legendre transformations. In fact, a Legendre transforma-
tion involves in general all the thermodynamic variables
M, S, J, T, and � so that they must be independent from
each other as they are in the phase space. Consider, for
instance, the general Legendre transformation

fM;S; J; T;�g ! f ~M; ~S; ~J; ~T; ~�g with M ¼ ~M�
~S ~T�~J ~� and S ¼ � ~T, J ¼ � ~�, T ¼ ~S, � ¼ ~J. If we
apply this transformation to the metric (7), it is easy to
show that in the new coordinates it can be written as

~G ¼ ðd ~M� ~Td~S� ~�d~JÞ2 þ ð ~T ~Sþ ~� ~JÞð�d ~Td~S

þ d ~�d~JÞ; (8)

an expression which clearly indicates the Legendre invari-
ance of the metric G. We will see below that the metric (7)
is especially adapted for the analysis of the canonical
ensemble in which the thermodynamical potential is usu-
ally given as the function M ¼ MðS; JÞ [22]. Since in
ordinary thermodynamics different ensembles are related
by Legendre transformations, the phase space T turns out
to be the appropriate arena to handle different statistical
ensembles. For instance, the Legendre transformation
mentioned above could be used to consider the geometric
description of the corresponding grand-canonical
ensemble.

The choice of the metric G as given in Eq. (7) follows
from imposing Legendre invariance. Indeed, the terms
entering this metric are of the form EaIa and dEadIa (a ¼
1, 2), where Ea ¼ ðS; JÞ are the extensive variables and
Ia ¼ ðT;�Þ are the corresponding intensive variables, i.e.,
the variables and their differentials appear always in pairs
in which each extensive variable is multiplied by its dual
intensive variable. This choice guarantees invariance with
respect to Legendre transformations which interchange
extensive and intensive variables. We will use this criterion
to construct analogous metrics in Sec. IV. Similar metrics
were obtained in GTD in order to propose an invariant
geometric description of the thermodynamics of higher
dimensional black holes [23,24].

In GTD, we introduce also the geometric structure of the
space of equilibrium states E in the following manner: E is
a two-dimensional submanifold ofT that is defined by the

smooth embedding map ’: E ! T , satisfying the condi-
tion that the ‘‘projection’’ of the contact form � on E
vanishes, i.e., ’�ð�Þ ¼ 0, where ’� is the pullback of ’,
and that G induces a Legendre invariant metric g on E by
means of g ¼ ’�ðGÞ. In principle, any two-dimensional
subset of the set of coordinates of T can be used to
coordinate E. For the sake of simplicity, we will use the
set of extensive variables S and J which in ordinary ther-
modynamics corresponds to the energy representation.
Then, the embedding map for this specific choice is ’:
fS; Jg � fMðS; JÞ; S; J; TðS; JÞ;�ðS; JÞg. The condition
’�ð�Þ ¼ 0 is equivalent to the first law of thermodynamics
and the conditions of thermodynamic equilibrium

dM ¼ TdSþ�dJ; T ¼ @M

@S
; � ¼ @M

@J
; (9)

whereas the induced metric becomes

g ¼
�
S
@M

@S
þ J

@M

@J

��
�@2M

@S2
dS2 þ @2M

@J2
dJ2

�
: (10)

This metric determines all the geometric properties of the
equilibrium space E. We see that in order to obtain the
explicit form of the metric it is only necessary to specify
the thermodynamic potentialM as a function of S and J. In
ordinary thermodynamics this function is usually referred
to as the fundamental equation from which all the equa-
tions of state can be derived [25].
In general, it is possible to show that any metric in E can

be obtained as the pullback of a metric in T . In particular,
the Weinhold metric gW ¼ ð@2M=@Ea@EbÞdEadEb, with
Ea ¼ fS; Jg, can be shown to be generated by a metric of
the form GW ¼ dM2 � ðTdSþ�dJÞ2 þ dSdT þ d�dJ
which can be shown to be noninvariant with respect to
Legendre transformations [13]. This explains why
Weinhold’s metric leads to contradictory results when
different thermodynamic potentials are used in its
definition.
As for the BTZ black hole, the fundamental equation

M ¼ MðS; JÞ follows from the area-entropy relationship
and is given in Eq. (4). Then, it is easy to compute the
explicit form of the thermodynamic metric (10) which,
using the expressions for S and J in terms of rþ and r�,
can be written as

g ¼ � r2þ þ 3r2�
4�2l4

dS2 þ 1

l2
dJ2: (11)

The corresponding thermodynamic curvature turns out to
be nonzero and the scalar curvature can be expressed as

R ¼ � 3

2

l4

ðr2þ þ 3r2�Þ2
: (12)

The general behavior of this curvature is illustrated in
Fig. 1. The equilibrium manifold is a space of negative
curvature for any values of the horizon radii and no sin-
gular points are present. This means that thermodynamic
interaction is always present and that no phase transitions
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can take place. Consequently, the BTZ black hole corre-
sponds to a stable thermodynamic configuration. This in-
terpretation coincides with the interpretation derived in
Sec. II from the analysis of the thermodynamic variables.
The heat capacity vanishes at the extremal limit rþ ¼ r�
and becomes negative for rþ < r�. This region is, how-
ever, not allowed by the definition of the horizon radii. We
conclude that the geometry of the equilibrium space cor-
rectly describes the thermodynamic behavior of the BTZ
black hole. Indeed, one of the main goals of GTD is to
interpret thermodynamic curvature as a measure of ther-
modynamic interaction and curvature singularities as
points of phase transitions. We see that the thermodynamic
metric proposed in GTD for the BTZ black hole meets
these goals.

We also see from Fig. 1 that the thermodynamic curva-
ture is regular even at the extremal limit and below. This is
probably a consequence of the fact the there is no singu-
larity inside the horizon. In fact, in the four-dimensional
case the geometric description of black hole thermodynam-
ics breaks down in the region r� > rþ as a consequence of
the presence of a naked singularity [23].

To finish this section, it is worth mentioning that it is
possible to consider the cosmological constant � as an
additional extensive thermodynamic variable. In this case,
the equilibrium space becomes three dimensional and it
turns out that instead of � it is necessary to consider the
radius of curvature l2 as the additional variable. However,
it would be necessary to perform a more detailed analysis
in terms of statistical ensembles in order to understand the
radius of curvature as a realistic thermodynamic variable
[26].

IV. GEOMETROTHERMODYNAMICS OF BTZ
GENERALIZATIONS

In this section we will investigate the geometry of the
equilibrium space of certain generalizations of the BTZ

black hole. Our goal is to see whether these generalizations
can also be interpreted as sources of thermodynamic inter-
action in the sense that they affect the thermodynamic
curvature of the equilibrium space. We will focus our
analysis on BTZ black holes with a dilatonic field, and
an additional Chern-Simons (CS) term as well as thermal
fluctuations of the BTZ black hole. We will see that in all
the cases GTD correctly describes the thermodynamics of
the corresponding system.
In order to investigate the effect of an additional dila-

tonic field it is necessary to consider Lagrangians of the
form L ¼ R� 2�þ ð4�Þ2 � Vð�Þ. Since the potential
Vð�Þ can take, in principle, any desired form, the number
of possible exact solutions to the corresponding field equa-
tions could be quite big. However, if we focus on black
hole configurations the number of solutions reduces dras-
tically. In fact, it turns out [27] that dilatonic black hole
solutions are known only for very specific potentials which
can be written as truncated series of the functions cotð�Þ
and cotð ffiffiffi

2
p

�Þ. Because of the uncommon form of these
potentials, the physical interpretation of the dilatonic field
is, at least, puzzling. In all the known cases [27], the found
solutions are characterized by a dilatonic field which tends
asymptotically to a constant value, say L, that is usually
associated to the dilatonic charge. These solutions are
generalizations of the BTZ spacetime in the sense that
when the asymptotically constant dilaton vanishes, they
all reduce to the nonrotating (J ¼ 0) BTZ case. We per-
formed a detailed analysis of the known dilatonic black
hole configurations by considering the charge L as a ther-
modynamic variable. The area-entropy relationship is then
used to obtain a thermodynamic fundamental equation of
the form S ¼ SðM;LÞ from which all the relevant thermo-
dynamic variables can be derived. It turns out that the
general behavior of the Hawking temperature and the
heat capacity is not significantly affected by the presence
of the dilatonic field. This result is confirmed by the
analysis of the corresponding thermodynamic curvature

FIG. 1. Heat capacity and thermodynamic curvature of the BTZ black hole. A typical behavior is depicted for the specific values
l ¼ 1 and r� ¼ 1. The curvature is completely regular for the entire domain of the horizon radii.
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of the metric of the equilibrium manifold which, as in the
case of the BTZ spacetime, can easily be constructed from
the explicit form of the fundamental equation S ¼
SðM;LÞ. Indeed, the thermodynamic curvature is negative
and regular in the entire region outside the outer horizon,
and approaches a constant value in the limiting case of an
extremal black hole. Our analysis shows that the presence
of a dilatonic field essentially does not affect the thermo-
dynamic behavior of the BTZ black hole. Perhaps the
found solutions are too simple from a physical point of
view due to the form of the potential which is chosen as a
polynomial in a certain function with unspecified coeffi-
cients that can be adjusted to derive the mentioned exact
solutions. Nevertheless, our results also show that GTD can
handle correctly this kind of dilatonic generalization of the
BTZ black hole.

A. The Chern-Simons charge

The inclusion of CS charges is important in the study of
gravitational anomalies and for the case of (2þ 1) gravity
it was performed in [28,29]. The addition of the gravita-
tional CS term to the Einstein-Hilbert action with cosmo-
logical constant results in a new theory that is known as
topologically massive gravity [30]. The BTZ solution turns
out to be an exact solution of the corresponding field
equations with a different mass and angular momentum
[29]:

M ¼ M0 � k

l2
J0; J ¼ J0 � kM0; (13)

where M0 and J0 are the mass and angular momentum
parameters of the original BTZ solution as given in Eq. (3),
and k is the Chern-Simons coupling constant. Moreover,
the expression for the entropy results modified into [29,31]

S ¼ 4�

�
rþ � k

l
r�

�
: (14)

It is then easy to show that, in terms of the new parameters
M and J, the horizon radii can be expressed as

r� ¼ l

2

��
lMþ J

l� k

�
1=2 �

�
lM� J

lþ k

�
1=2

�
; (15)

which can then be introduced into the modified entropy
(14) to obtain the fundamental equation in the entropy
representation S ¼ SðM; JÞ. The resulting equation can
then be rewritten as

M ¼ 1

8�2k2

�
S2 þ 8�2kJ þ S

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � k2ÞðS2 þ 16�2kJÞ

q �
;

(16)

which is the fundamental equation in the mass representa-
tion. Introducing this fundamental equation into Eq. (10)
and expressing the result in terms of the horizon radii, we
obtain the thermodynamic metric,

g ¼ 2lr3þ þ kr�ðr2� � 3r2þÞ
2l2r4þðl2 � k2Þ

�
�
kr�ðr2� þ 3r2þÞ � lrþðr2þ þ 3r2�Þ

4�2l2
dS2

þ ðlrþ � kr�ÞdJ2
�
; (17)

which describes the geometry of the equilibrium space and
reduces to the thermodynamic metric for the BTZ black
hole (11) in the limiting case k ! 0. Other important
thermodynamic quantities can be computed from the fun-
damental equation (16). For instance, the Hawking tem-
perature T ¼ @M=@S and the heat capacity
C ¼ Tð@2M=@S2Þ�1 at constant J can be written in the
form

T ¼ r2þ � r2�
2�l2rþ

;

C ¼ 4�ðl2 � k2Þr2þðr2þ � r2�Þ
l½lrþðr2þ þ 3r2�Þ � kr�ðr2� þ 3r2þÞ�

:

(18)

The computation of the scalar curvature of the thermo-
dynamic metric (17) is straightforward, but the resulting
expression cannot be written in a compact form. We ana-
lyzed numerically the behavior of the thermodynamic
curvature for different sets of values of the parameters l
and k and the horizon radii rþ and r�. We found only one
curvature singularity which is, however, always located at
a distance rþ that lies inside the inner horizon r�. Clearly,
this singularity is unphysical although it corresponds to a
divergency which exists at the level of the heat capacity.
In the physically meaningful interval rþ � r� with the

additional condition l > k, which is necessary in order for
the fundamental equation (16) to be well defined, it can be
shown that the heat capacity is always positive, indicating
that the BTZ-CS black hole is thermodynamically stable.
The thermodynamic curvature corresponding to the metric
(17) in this interval is as depicted in Fig. 2. The heat
capacity and the thermodynamic curvature are indeed af-
fected by the presence of the CS charge, but the general
behavior remains the same. We only observe that the
thermodynamic curvature has now a minimum value
from which it grows as the outer horizon radius approaches
the inner radius. Nevertheless, the behavior is completely
regular in the entire physical interval. The fact that the
curvature is free of singularities is interpreted in GTD as an
indication of the absence of phase transitions structure. We
conclude that the geometry of the equilibrium space, as
described by the thermodynamic metric (17), correctly
describes the thermodynamics of the BTZ-CS black hole.
An additional numerical analysis of the thermodynamic

curvature shows that it diverges in the limit k ! l, indicat-
ing that at this point a phase transition occurs. This result
seems to be relevant in the context of the recently proposed
theory of chiral gravity [32]. Indeed, in an attempt to
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determine the microscopic origin of the entropy of (2þ 1)-
dimensional black holes, the canonical quantization of
topological massive gravity has been investigated with
the result that the massive gravitons of the BTZ black holes
possess negative energy, making the theory unstable and
inconsistent. However, in the limiting case of chiral grav-
ity, which corresponds to the limit k ¼ l, the negative
energy modes vanish, suggesting the possibility of a stable
and consistent theory which is dual to a conformal field
theory (CFT) on the boundary. If, furthermore, the zero-
energy modes of the chiral limit could be discarded as pure
gauge by choosing the boundary conditions in an appro-
priate form, the possibility would arise of obtaining a
microscopic derivation of the black hole entropy by using
the Cardy formula. This result has been intensively dis-
cussed in recent works [33–39]; it now seems to become
clear that, if global issues are taken into account properly,
in the chiral limit all the unpleasant modes of topological
massive gravity vanish, and the dual CFT permits a micro-
scopic determination of the black hole entropy.

The above result seems to be reinforced by the fact that
in GTD the thermodynamic curvature, corresponding to
the equilibrium space of the BTZ-CS black hole, diverges
at the chiral limit. Indeed, the singularity at the level of the
thermodynamic curvature indicates the existence of a point
with a second-order phase transition where usually the
associated system may undergo an abrupt change of state,
accompanied by drastic modifications of its physical prop-
erties. It could be that the point where chiral gravity arises
from topologically massive gravity corresponds to a phase
transition in which all the states with negative energy
vanish, giving rise to a more symmetric, stable and con-
sistent theory dual to a CFT. Obviously, a more detailed
analysis of the chiral point will be necessary in order to
establish the conjectured relationship between the phase
transition at the level of thermodynamic curvature and the
vanishing of the negative modes. This, however, is beyond
the scope of the present work.

B. Thermal fluctuations

If the canonical ensemble of a specific system is ther-
modynamically stable, it is well known that its entropy is
subject to logarithmic and polynomial corrections, when
thermal corrections are taken into account. If S0 denotes
the entropy calculated in the canonical ensemble of a
thermodynamic system with temperature T and heat ca-
pacity C, the leading term of the thermal fluctuations leads
to the entropy correction [40]

S ¼ S0 � 1
2 lnðCT2Þ: (19)

This and higher order corrections have been analyzed for
many classes of black holes [41–43]. It has been pointed
out that, up to an additive constant, the leading correction
is logarithmic,

S ¼ S0 � 3
2 lnðS0Þ; (20)

and of quite general nature in the sense that it can be
derived from a semiclassical approach as well as from
completely different approaches to quantum gravity [44].
The BTZ black hole as well as the Chern-Simons and
dilatonic generalizations analyzed above are characterized
by heat capacities which are positive in the physically
meaningful interval. This means that these structures are
thermodynamically stable and their corrections to the en-
tropy can be analyzed by using Eq. (20).
For the purposes of the present work, it is interesting to

verify whether GTD is able to correctly handle entropy
corrections in the sense that a small perturbation of the
entropy would correspond to a small perturbation of the
thermodynamic curvature. To investigate this question it is
necessary to formulate GTD and the above results in the
entropy representation. One of the advantages of GTD is
indeed its flexibility in regard to different representations.
We use as intuitive guidance the first law of thermodynam-

FIG. 2. The heat capacity and the thermodynamic curvature of the BTZ-CS black hole for the choice of values l ¼ 1, k ¼ 1=2, and
r� ¼ 1 and the interval rþ > r�. The heat capacity is always positive and the thermodynamic curvature is free of singularities,
ensuring thermodynamic stability.
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ics in the entropy representation, i.e., dS ¼ ð1=TÞdM�
ð�=TÞdJ. Then, the fundamental equation should read S ¼
SðM; JÞ and the conditions for thermodynamic equilibrium
are @S=@M ¼ 1=T and @S=@J ¼ ��=T so that 1=T and
��=T are the variables dual to M and J, respectively.
Consequently, the coordinates for the thermodynamic
phase space T of the BTZ black hole can be chosen as
fS;M; J; 1=T;��=Tg, and the fundamental form is �S ¼
dS� ð1=TÞdMþ ð�=TÞdJ. Applying the same prescrip-
tion used to construct the metric (7), we obtain the follow-
ing metric for the phase space in the entropy
representation:

GS ¼
�
dS� 1

T
dMþ�

T
dJ

�
2

þ
�
M

T
� J

�

T

��
�dMd

�
1

T

�
� dJd

�
�

T

��
: (21)

As for the coordinates of the space of equilibrium states E,
the natural choice is fM; Jg so that the smooth map ’: E !
T with the condition ’�ð�SÞ ¼ 0 implies the fundamental
equation S ¼ SðM; JÞ and the equilibrium conditions given
above. It is then easy to compute the metric gS ¼ ’�ðGSÞ
which can be written as

gS ¼
�
M

@S

@M
þ J

@S

@J

��
� @2S

@M2
dM2 þ @2S

@J2
dJ2

�
: (22)

This metric represents the geometry of the equilibrium
space for any thermodynamic system with fundamental
equation S ¼ SðM; JÞ. In the particular case of the BTZ
black hole it reads

S0 ¼ 2
ffiffiffi
2

p
�l

�
Mþ

�
M2 � J2

l2

�
1=2

�
1=2

: (23)

Then, using the relationships (3), the corresponding ther-
modynamic metric can be expressed as

gS ¼ 2�2l4r2þðr2þ þ 3r2�Þ
ðr2þ � r2�Þ3

�
dM2 � 1

l2
dJ2

�
; (24)

from which it can be shown that the thermodynamic cur-
vature in the entropy representation becomes

RS ¼ ðr2þ � r2�Þ2ð5r4þ � 6r2þr2� þ 9r4�Þ
4�2r4þðr2þ þ 3r2�Þ3

: (25)

We notice that this curvature essentially reproduces the
results obtained in Sec. III for the BTZ black hole geo-
metrothermodynamics in the mass representation. In Fig. 3
the general behavior of the curvature (25) is shown for a
specific choice of the parameters. It can be seen that the
curvature is free of singularities in the entire interval,
indicating that it corresponds to a stable thermodynamic
system.
In order to investigate in GTD the entropy correction for

the BTZ black hole, we must introduce the entropy (23)
into the general expression for the logarithmic correction
(20), and the resulting corrected entropy must be inserted
into the general form of the thermodynamic metric (22)
from which the corresponding curvature can be derived in
the standard manner. The resulting expressions cannot be
written in a compact form. Therefore, we perform a graph-
ical analysis. The results are presented in Fig. 3. The
graphics show clearly that a small correction of the entropy
leads to a small perturbation of the thermodynamic curva-
ture. We performed similar analysis for the BTZ-CS and
BTZ dilatonic black holes. The thermodynamic metrics of
the corresponding equilibrium spaces in the entropy rep-
resentation can be derived as described above for the BTZ
black hole. In general, we conclude that a small perturba-
tion at the level of the entropy corresponds to a small
perturbation at the level of the thermodynamic curvature.
We interpret this result as a further indication that in GTD
the thermodynamic curvature can be used as a measure of
thermodynamic interaction.

FIG. 3. Behavior of the entropy and thermodynamic curvature for the BTZ black hole (solid curves) and the corresponding
corrections (dashed curves). Our choice of parameter values is l ¼ 1, r� ¼ 1, and rþ > 1.
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V. CONCLUSIONS

In this work we used the formalism of GTD to construct
a thermodynamic metric for the space of equilibrium states
of the BTZ black hole and its generalizations which in-
clude an additional Chern-Simons term and a dilatonic
field. In all these cases we showed that the thermodynamic
curvature (scalar) is in general different from zero, indicat-
ing the presence of thermodynamic interaction, and free of
singularities, indicating the absence of phase transitions.
This result is in accordance with the goals of GTD and
allows us to investigate the thermodynamic properties of
the BTZ black holes in terms of the geometric properties of
the corresponding space of equilibrium states.

The thermodynamic metric proposed in this work has
been applied to the case of black hole configurations in
four and higher dimensions with and without cosmological
constant [23,24]. In general, it has been shown that this
thermodynamic metric correctly describes the thermody-
namic behavior of the corresponding black hole configu-
rations. One additional advantage of this thermodynamic
metric is its invariance with respect to total Legendre
transformations. This means that the results are indepen-
dent of the thermodynamic potential used to generate the
thermodynamic metric. Also, the generality of the method
of GTD allows us to easily implement different thermody-
namic representations. In particular, in the case of BTZ
black holes we presented in Sec. III the mass representa-
tion and in Sec. IVB the entropy representation.

For all BTZ black holes analyzed in this work, we
showed that small perturbations at the level of the thermo-
dynamic potential lead to small perturbations at the level of
the thermodynamic curvature. This is not a trivial result
that contrasts with the results obtained by using other
metric structures. In fact, Weinhold’s metric leads to a
zero thermodynamic curvature for the BTZ black hole
and to big perturbations of the curvature when small per-
turbations of the entropy are taken into account [11]. This
is not in agreement with the idea of describing a thermo-
dynamic interaction in terms of curvature, which is one of
the aims of applying geometric concepts in thermodynam-
ics. In the case of GTD, we have shown that the thermody-
namic curvature vanishes in the case of an ideal gas [45]
where no thermodynamic interaction is present. In all the
cases investigated so far in which thermodynamic interac-
tion is present, the thermodynamic curvature turns out to be
nonvanishing. Moreover, if the thermodynamic system
possesses a nontrivial phase transition structure at the level
of the heat capacity, as in the case of the van der Waals gas
and higher dimensional black hole configurations, the cor-
responding thermodynamic curvature turns out to diverge

at exactly those points where phase transitions occur
[13,23,24]. Here we have shown that the thermodynamic
metric proposed for the equilibrium space not only leads to
a nonzero thermodynamic curvature for the BTZ black
hole, but also induces small perturbations on the thermo-
dynamic curvature when small perturbations of the ther-
modynamic potential are taken into account. We interpret
this result as an additional indication that the thermody-
namic curvature proposed in GTD could be used as a
realistic measure for thermodynamic interaction.
Nevertheless, a deeper and more general analysis will be
necessary to establish the definite significance of the ther-
modynamic curvature.
It would be interesting to further analyze the manifold of

equilibrium states of the BTZ black hole in the context of
the variational principles proposed in GTD [45]. If it turns
out that the thermodynamic metric investigated in the
present work for the BTZ black holes satisfies the
Nambu-Goto–like equations [46], an additional interpreta-
tion of BTZ configurations would emerge in terms of
bosonic strings. Recently, we analyzed the set of geodesics
in the equilibrium space of thermodynamic systems in the
specific case of an ideal gas [47] and found a very rich
geometric structure. It would be interesting to study the
geometric structure of the space of geodesics in the case of
the BTZ black hole. Moreover, in analogy to the inves-
tigation reported in [48], an additional test of the applica-
bility of GTD could be performed in the case of two-
dimensional gravity theories in which simpler black hole
configurations exist.
In our geometric construction of GTD as presented

above, the thermodynamic phase space plays only an aux-
iliary role in the sense that it is used only to correctly apply
Legendre transformations and to guarantee Legendre in-
variance of metric structures. Nevertheless, it would be
interesting to analyze its geometric properties. We know,
for instance, that its curvature must be nonzero since a flat
metric in the phase space is not Legendre invariant. It
would be interesting to classify the phase space in terms
of the properties of its curvature. Another open question is
the significance of the geodesics of the phase space and
their relation to the geodesics of the equilibrium space
which, at least in the case of the ideal gas, represent
quasistatic thermodynamic processes [47].
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