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I. INTRODUCTION

In recent years the study of the higher-dimensional
Einstein equations has led to interesting new types of
solutions. Study of the generalized Weyl solutions by
Emparan and Reall [1], for instance, has led to the con-
struction of black ring solutions [2] and their generaliza-
tions (see e.g. [3] for a review).

The generalized Weyl solutions have been classified in
terms of their rod structure [1]. They also include multi
black hole solutions, analyzed in more detail by Tan and
Teo [4], as well as sequences of Kaluza-Klein (KK) bub-
bles and black holes, analyzed by Elvang and Horowitz [5]
and Elvang, Harmark, and Obers [6].

The presence of KK bubbles leads to interesting features
for the black hole solutions. Black hole solutions with
spherical horizon topology can, for instance, become arbi-
trarily large in the presence of a bubble [5]. In contrast,
because of the finite size of the circle at infinity, without a
bubble such KK black holes are limited in size, as demon-
strated by Kudoh and Wiseman [7].

The bubbles also provide the means to hold the black
holes apart, allowing for multi black hole spacetimes with-
out conical singularites. Small pieces of bubble are suffi-
cient to hold large black holes in equilibrium, i.e., they
compensate the gravitational attraction of the black holes
and at the same time prevent them from merging [5].

Recently, Kastor, Ray, and Traschen [8] also addressed
the role of KK bubbles for the laws of black hole mechan-
ics. Introducing the notion of bubble surface gravity, they
obtained interesting relations, displaying an interchange
symmetry between bubble and black hole properties.

Here we address the question as to how the properties of
such Kaluza-Klein black hole-bubble spacetimes are af-
fected by the presence of charge. In particular, we consider
the five-dimensional Einstein-Maxwell-dilaton (EMD)
gravity with arbitrary dilaton coupling parameter �. In
the limit � ! 0, Einstein-Maxwell theory is recovered.
We here focus on the solution of two charged black holes
on a Kaluza-Klein bubble.

In Sec. II we recall the action and equations of motion.
We present the exact solution of two charged black holes
on a Kaluza-Klein bubble in Sec. III. We analyze the
horizon and global properties of this solution in Sec. IV.
In Sec. V we derive Smarr-like formulas for the mass and
tension and present the first law. We address the extremal
limit in Sec. VI and compare with charged black strings in
Sec. VII. We present our conclusions in Sec. VIII.

II. EMD GRAVITY

We consider the five-dimensional EMD gravity with
action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ðR� 2g��@�’@�’� e�2�’F��F
��Þ
(1)

and arbitrary dilaton coupling parameter �.
The field equations are given by

R�� ¼ 2@�’@�’þ 2e�2�’

�
F��F

�
� � 1

6
g��F��F

��

�
;

r�ðe�2�’F��Þ ¼ 0; r�r�’ ¼ ��

2
e�2�’F��F

��:

(2)

The 5D EMD gravity has a dual description in terms of
the 3-form field strength H defined by

H ¼ e�2�’ ? F; (3)

where ? denotes the Hodge dual. In terms of the 3-form
field strength H the action can be written as follows:

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ðR� 2g��@�’@�’� 1
3e

2�’H���H
���Þ:

(4)

The corresponding field equations of the dual theory are

R�� ¼ 2@�’@�’þ e2�’
�
H���H

��
� � 2

9
g��H���H

���

�
;

r�ðe2�’H���Þ ¼ 0; r�r�’ ¼ �

6
e2�’H���H

���:

(5)
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III. EXACT SOLUTION

As an explicit example of the sequences of Kaluza-Klein
bubbles and black holes [6], let us consider the solution
describing two vacuum black holes on a Kaluza-Klein
bubble discussed by Elvang and Horowitz [5]. This vac-
uum solution has metric

ds2 ¼ �e2Utdt2 þ e2Uc dc 2 þ e2U�d�2

þ e2�ðd�2 þ dz2Þ; (6)

where

e2Ut ¼ ðR2 � �2ÞðR4 � �4Þ
ðR1 � �1ÞðR3 � �3Þ ; (7)

e2Uc ¼ ðR1 � �1ÞðR4 þ �4Þ; (8)

e2U� ¼ R3 � �3
R2 � �2

; (9)

e2� ¼ Y14Y23

4R1R2R3R4

�
Y12Y34

Y13Y24

�
1=2 R1 � �1

R4 � �4
; (10)

and

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2i

q
; (11)

Yij ¼ RiRj þ �i�j þ �2; (12)

�1 ¼ z� a; �2 ¼ z� b;

�3 ¼ zþ b; �4 ¼ zþ c:
(13)

The metric functions Ut, U�, and Uc may be regarded

as Newtonian potentials produced by line masses along the
z axis with densities 1=2. These effective sources or rods
characterize the solution [1]. The rod structure of this
solution is shown in Fig. 1. The two finite rods �c < z <
�b and b < z < a for the t coordinate correspond to event
horizons of the space-time, while the finite rod �b < z <
b for the � coordinate corresponds to the bubble. The two
semi-infinite rods z <�c and z > a for the c coordinate

then ensure that all sources add up to an infinite rod along
the z axis, as required [1].
Using the method of [9] we generate a new EMD

solution from the above vacuum solution [5]. This solution
then describes two charged S3-black holes sitting on a
Kaluza-Klein bubble in the EMD gravity. For � ¼ 0 it
reduces to a solution of Einstein-Maxwell gravity. The
space-time metric of the solution is given by the line
element

ds2 ¼ � e2Ut

½cosh2	� e2Utsinh2	�2=1þ�2
5

dt2

þ ½cosh2	� e2Utsinh2	�1=1þ�2
5

� ½e2Uc dc 2 þ e2U�d�2 þ e2�ðd�2 þ dz2Þ�: (14)

The electric potential � and the dilaton field are given by

� ¼
ffiffiffi
3

p
tanh	

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q 1� e2Ut

1� tanh2	e2Ut
; (15)

e��’ ¼ ½cosh2	� e2Utsinh2	��2
5
=1þ�2

5 ; (16)

where �5 ¼
ffiffi
3

p
2 � and 	 is an arbitrary parameter. The

Maxwell 2-form is, respectively,

F ¼ �d� ^ dt: (17)

VI. ANALYSIS OF THE SOLUTION

A. Asymptotic behavior

In order to study the asymptotic behavior of the solution
we introduce the asymptotic coordinate r defined by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
: (18)

Then in the asymptotic limit r ! 1 we find

gtt � �1þ aþ c� 2b

r

�
1þ 2

sinh2	

1þ �2
5

�
; (19)

g�� � 1þ 1

r

�
ðaþ c� 2bÞ sinh

2	

1þ �2
5

� 2b

�
; (20)

gc c � �2

�
1� 1

r

�
ðaþ c� 2bÞ sinh

2	

1þ �2
5

� ðaþ cÞ
��

;

(21)

� �
ffiffiffi
3

p
2

cosh	 sinh	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q ðaþ c� 2bÞ
r

; (22)

e��’ � 1þ �2
5sinh

2	

1þ �2
5

ðaþ c� 2bÞ
r

: (23)

b a−b−c

Ut

φ

ψ

U

U

FIG. 1. The thin lines denote the z axis, and the thick lines
denote the effective sources along this axis for the metric
functions Ut, U�, and Uc .
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The leading asymptotic form of the metric is

ds2 ��dt2 þ �2dc 2 þ d�2 þ dz2 þ d�2: (24)

In other words, asymptotically the space-time isM4 � S1.
The compact dimension is parameterized by �. In what
follows we will consider spacetimes with a fixed length L
of the Kaluza-Klein circle at infinity.

B. Regularity

The rod structure of the solution in general entails
conical singularities. To cure such conical singularities at
the location of the rods, the associated coordinate must be
periodic with a particular period.

(i) For the semi-infinite rods ð�1; c� and ½a;þ1Þ cor-
responding to the c c part of the metric regularity
requires the period

�c ¼ 2
lim
�!0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2g��
gc c

vuut ¼ 2
: (25)

(ii) For the finite rod ½�b; b� corresponding to the ��
part of the metric regularity requires the period

�� ¼ 2
lim
�!0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2g��
g��

vuut ¼ 8

bðaþ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðbþ cÞp ¼ L;

(26)

where L is the length of the KK circle at infinity.

C. Horizons

1. First black hole horizon

The first black hole horizon is located at � ¼ 0 for�c <
z <�b. The metric of the spatial cross section of the
horizon is given by

ds2h ¼ cosh2=1þ�2
5	

�
zþ b

z� b
d�2 þ 4ða� zÞðzþ cÞdc 2

þ ðz� bÞ
ðzþ bÞða� zÞðzþ cÞ

ðaþ cÞ2ðc� bÞ
ðcþ bÞ dz2

�
:

The orbits of � and c shrink to zero size at z ¼ �b and
z ¼ �c, respectively. This shows that the black hole hori-
zon topology is S3.

By the direct calculation we find the horizon area

Að1Þ
h ¼ 32
2cosh3=1þ�2

5	
bðaþ cÞ2ðc� bÞ

ðbþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

aþ b

s

¼ 4
cosh3=1þ�2
5	Lðaþ cÞðc� bÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
c� b

cþ b

s
: (27)

The temperature of the horizon can be obtained from the
surface gravity and is given by

Tð1Þ ¼ 1

4


cosh�3=1þ�2
5	

aþ c

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ b

c� b

s

¼ cosh�3=1þ�2
5	

2b

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðc� bÞp : (28)

2. First black hole near horizon metric

The near horizon geometry of the left black hole can be
illustrated by performing the coordinate transformation [4]

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðc� bÞ

R2

s
R2 sin2�; (29)

z ¼ � 1

2

�
1� c� b

R2

�
R2 cos2�: (30)

The near horizon metric then becomes

ds2 ¼ �cosh�4=1þ�2
5	

fbð�Þ
fað�Þ

�
1� 2ðc� bÞ

R2

�
dt2

þ cosh2=1þ�2
5	

fbð�Þ
fað�Þ

�
�
2ðaþ cÞ2
bþ c

��
1� 2ðc� bÞ

R2

��1
dR2 þ R2d�2

�

þ fað�Þ
2f2bð�Þ

R2cos2�d�2 þ 2f2að�Þ
fbð�Þ R

2sin2�dc 2

�
(31)

with

fbð�Þ ¼ 2bþ ðc� bÞcos2�;
fað�Þ ¼ aþ bþ ðc� bÞcos2�; (32)

corresponding to a distorted black hole.

3. Second black hole horizon

The second black hole horizon is located at � ¼ 0 for
b < z < a. The metric of its spatial cross section is

ds2h ¼ cosh2=1þ�2
5	

�
z� b

zþ b
d�2 þ 4ða� zÞðzþ cÞdc 2

þ ðzþ bÞ
ðz� bÞða� zÞðzþ cÞ

ðaþ cÞ2ða� bÞ
ðaþ bÞ dz2

�
:

(33)

The orbits of� and c shrink to zero size at z ¼ b and z ¼
a, respectively, showing that the horizon topology is S3.
The horizon area is

A ð2Þ
ðhÞ ¼ 32
2cosh3=1þ�2

5	
bðaþ cÞ2ða� bÞ

ðaþ bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b

bþ c

s

¼ 4
cosh3=1þ�2
5	Lðaþ cÞða� bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b

aþ b

s

and its temperature
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Tð2Þ ¼ 1

4


cosh�3=1þ�2
5	

aþ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

a� b

s

¼ cosh�3=1þ�2
5	

2b

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ cÞða� bÞp : (34)

The near horizon metric for the second black hole can be
found from the near horizon metric of the first black hole
by interchanging the parameters a and c. The near horizon
metric shows that the second black holes is distorted by the
interaction with the first black hole and the Kaluza-Klein
bubble.

4. Bubble

The bubble is located at � ¼ 0 for �b < z < b. The
metric on the bubble for t ¼ const and � ¼ 0 is given by

ds2bubble ¼
�
cosh2	� ðb2 � z2Þ

ða� zÞðzþ cÞ sinh
2	

�
1=1þ�2

5

�
�
4ða� zÞðzþ cÞdc 2 þ 4b2ðaþ cÞ2

ðaþ bÞðbþ cÞ
� dz2

b2 � z2

�
: (35)

As it is clear from the rod structure diagram and as one sees
from the bubble metric, the orbits of c do not vanish at
z ¼ �b. So the bubble has cylindrical topology.

5. Distance between black holes

The proper distance along a curve with c ¼ const be-
tween the black holes is given by

l12 ¼ 2bðaþ cÞcosh1=1þ�2
5	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðbþ cÞp

�
Z b

�b

�
1� ðb2 � z2Þ

ða� zÞðzþ cÞ tanh
2	

�
1=2ð1þ�2

5
Þ

� dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � z2

p : (36)

It can be shown that

1
4L � l12 � 1

4Lcosh
1=1þ�2

5	: (37)

D. Masses

1. ADM mass

In order to compute the ADM mass of the solution we
use the general results of [10,11]. We then find

MADM ¼ 1

2
L

�
aþ c�bþ 3sinh2	

2ð1þ�2
5Þ
ðaþ c� 2bÞ

�

¼ 4

bðaþ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþbÞðbþ cÞp

�
�
aþ c�bþ 3sinh2	

2ð1þ�2
5Þ
ðaþ c� 2bÞ

�
: (38)

With the asymptotic form of the relevant metric compo-
nents given by

gtt ’ �1þ ct
r
; g�� ’ 1þ c�

r
; (39)

the mass (38) can be directly read off from the asymptotics
of the metric potentials [12–14]

MADM ¼ 1
4Lð2ct � c�Þ: (40)

The ADM mass can also be calculated via the general-
ized Komar integral introduced in [11]

MK ¼ � L

16


I
1
dS���ð2��r�
� þ 
�r���Þ; (41)

where dS��� is the surface element and 
 ¼ @=@t, � ¼
@=@� are the time translation and the Killing vector asso-
ciated with the fifth dimension, respectively. Here the
integration is performed over a two-dimensional sphere
at spatial infinity of M4.

2. Intrinsic masses

When dealing with multiobject configurations it is use-
ful to properly define the intrinsic mass of each object in
the configuration. As in four dimensions, the natural defi-
nition of the intrinsic mass of each black hole is the Komar
integral evaluated on the horizon of the corresponding
black hole

MH
i ¼ � L

16


I
H i

dS���ð2��r�
� þ 
�r���Þ: (42)

Here the integration is over a two-dimensional surface
which is an intersection of the horizon with a constant t
and � hypersurface.
The intrinsic masses of the black holes for the solution

under consideration are given by

MH
1 ¼ 1

2
Lðc� bÞ ¼ 4


bðaþ cÞðc� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðbþ cÞp ¼ 1

4

�1A

ð1Þ
h

¼ 1

2
Tð1Þ
h Að1Þ

h ; (43)

MH
2 ¼ 1

2
Lða� bÞ ¼ 4


bðaþ cÞða� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðbþ cÞp ¼ 1

4

�2A

ð2Þ
h

¼ 1

2
Tð2Þ
h Að2Þ

h ; (44)

where �i is the surface gravity of the ith black hole.

JUTTA KUNZ AND STOYTCHO YAZADJIEV PHYSICAL REVIEW D 79, 024010 (2009)

024010-4



3. Bubble mass

In the same way we can define the intrinsic mass of the
Kaluza-Klein bubble

Mbubble ¼ � L

16


I
bubble

dS���ð2��r�
� þ 
�r���Þ

¼ 4

b2ðaþ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðbþ cÞp ¼ 1

2
Lb: (45)

The integration is over the two-dimensional boundary of a
constant t and � hypersurface at the bubble.

It is worth noting that the intrinsic mass of the bubble is
given by

Mbubble ¼ L

8

�bAðbÞ (46)

where �b is the so-called bubble surface gravity and AðbÞ
is the bubble area. These quantities have been introduced in
[8] and will be discussed in more detail in the next section.
In our case the bubble is smooth, i.e., there are no conical
singularities at the bubble. For such bubbles one obtains [8]

�b ¼ 2


L
; (47)

and

A ðbÞ ¼ 2Lb; (48)

where L is the length of the Kaluza-Klein circle at infinity.

Note that �b and AðbÞ are not affected by the presence of
charge.

E. Electric charge

The electric charge of the ith black hole is defined by

Qi ¼ 1

2


I
H i

e�2�’ ? F ¼ 1

2


I
H i

H: (49)

Explicit calculations give

Qi ¼
ffiffiffi
3

p
cosh	 sinh	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q MH
i : (50)

Thus the individual black holes have the same charge to
mass ratio.

Denoting by �H
i the electric potential evaluated on the

horizon H i, we obtain explicitly

�H
1 ¼ �H

2 ¼
ffiffiffi
3

p
tanh	

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q : (51)

F. Dilaton charge

Finally, we define the dilaton charge � via the asymp-
totic behavior of the dilaton field

’ � �

r
¼ ��2

5sinh
2	ðaþ c� 2bÞ

�ð1þ �2
5Þr

: (52)

Comparison with the electric charges and potential then
yields the relation

Q1�
H
1 þQ2�

H
2 ¼ �L

�

�
: (53)

The dilaton charge thus represents no independent
parameter.

V. SMARR-LIKE RELATIONS AND FIRST LAW

A. Mass formula

It can be checked that our solution satisfies the following
Smarr-like relation

MADM ¼ MH
1 þQ1�

H
1 þMH

2 þQ2�
H
2 þMbubble:

(54)

Here Eq. (53) can be used to replace the electromagnetic
contributions by the dilaton contribution.
Below we give a general proof of the Smarr-like relation

(54). Our starting point is the generalized Komar integral
(41). Using the Gauss theorem we find that the ADM mass
can be written as a sum of a bulk integral over a constant t
and � hypersurface and surface integrals on the black
holes horizons and the bubble

MADM ¼ � L

16


I
1
dS���ð2��r�
� þ 
�r���Þ

¼ L

8


Z
�
dS��½2��R��


� � 
�R���
��

�X
i

L

16


I
H i

dS���ð2��r�
� þ 
�r���Þ

� L

16


I
bubble

dS���ð2��r�
� þ 
�r���Þ:
(55)

On the horizons we have

dS��� ¼ 3!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þp 
½�N����d!; (56)

where d! is the magnitude of the two-dimensional surface
element and N� is the second null normal to the horizon
normalized such as 
�N� ¼ �1. Substituting into the ho-
rizon surface integrals and taking into account that 
 and �
are commuting we obtain

� L

16


I
H i

dS���ð
�r���Þ ¼ 0 (57)

and therefore
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� L

16


I
H i

dS���ð2��r�
� þ 
�r���Þ

¼ � L

16


I
H i

dS���ð2��r�
�Þ

¼ � L

4


I
H i

d!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
N�
�r�
�: (58)

By definition, on the horizons 
�r�
� ¼ �i

�, where �i

is the surface gravity of the ith horizon. Hence we obtain
N�
�r�
� ¼ �iN�


� ¼ ��i and therefore

� L

16


I
H i

dS���ð2��r�
� þ 
�r���Þ

¼ � L

4


I
H i

d!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
N�
�r�
�

¼ �iL

4


I
H i

d!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
; (60)

where we have made use of the fact that the surface gravity
is constant on the horizon.

Further, taking into account that

L
I
H i

d!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
¼

I
H i

d!d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
¼ AðiÞ

h

(62)

is the area of the ith horizon we find that

� L

16


I
H i

dS���ð2��r�
� þ 
�r���Þ

¼ 1

4

�iA

ðiÞ
h

¼ 1

2
TðiÞAðiÞ

h ¼ MH
i : (63)

Let us denote by n1� and n2� the unit spacelike normals to

the bubble surface. The bubble surface gravity is defined
by the following equality on the bubble (see [8]):

r½���� ¼ �bðn1�n2� � n1�n
2
�Þ: (64)

As shown in [8], the bubble surface gravity �b is constant
on the bubble surface. In our case this is obvious since
�b ¼ 2
=L. For the bubble surface element we can write

dS��� ¼ 3!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgð
; 
Þjp 
½�n1�n2��d!: (65)

Substituting in the bubble surface integral and taking into
account that � vanishes on the bubble we have

I
bubble

dS���ð2��r�
�Þ ¼ 0; (66)

and therefore we find

Mbubble ¼ � L

16


I
bubble

dS���ð2��r�
� þ 
�r���Þ

¼ � L

16


I
bubble

dS���ð
�r���Þ

¼ L�b

8


I
bubble

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð
; 
Þj

q
d! ¼ L

8

�bAðbÞ;

(67)

where

A ðbÞ ¼
I
bubble

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð
; 
Þj

q
d! (68)

is the bubble area as defined in [8].
Let us now evaluate the bulk integral

Ibulk ¼ L

8


Z
�
dS��½2��R��


� � 
�R���
��: (69)

Using the field Eqs. (2) we obtain

Ibulk ¼ L

2


Z
�
dS��

�
e�2�’

�
F��


�F�
� � 1

4
F2
�

�
��

� 1

2
e�2�’F���

�F�
�
�

�
: (70)

Making use of the Lie symmetriesL
A ¼ 0 andL�A ¼
0 as well as the field equations one can show that the
following relations are satisfied:

e�2�’F
�
�
�F�

� ¼ �r�ðe�2�’F��
�A�Þ;
e�2�’F

�
���F�

� ¼ �r�ðe�2�’F����A�Þ;
1
4e

�2�’F2
� ¼ r�ðe�2�’
½�F���A�Þ:
(71)

Using these relations and the fact that the integrand has
vanishing Lie derivative with respect to the Killing vector
� the bulk integral can be presented as a sum of surface
integrals by applying the Gauss theorem

Ibulk ¼
X
i

L

4


I
H i

dS���

�
e�2�’ðF��
�A� þ 
�F��A�Þ�� � 1

2
e�2�’F����A�


�

�

þ L

4


I
bubble

dS���

�
e�2�’ðF��
�A� þ 
�F��A�Þ�� � 1

2
e�2�’F����A�


�

�

� L

4


I
1
dS���

�
e�2�’ðF��
�A� þ 
�F��A�Þ�� � 1

2
e�2�’F����A�


�

�
: (72)
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The Killing vector � vanishes on the bubble and there-
fore the surface integral on the bubble vanishes too. The
same holds for the surface integral at infinity since we
consider a gauge in which A� vanishes at infinity. As a
consequence we find that only the first term in (72) sur-
vives. Further, we consider pure electric solutions satisfy-
ing

F½��
�� ¼ 0; ��F�� ¼ 0: (73)

Under these conditions and using the two-dimensional
horizon surface element (56) we find that

Ibulk ¼
X
i

L

4


I
H i

ð�
�A�Þe�2�’F��ð
�N� � 
�N�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
d!

¼ X
i

1

4


I
H i

ð�
�A�Þe�2�’F��ð
�N� � 
�N�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�;�Þ

q
d�d!

¼ X
i

1

4


I
H i

ð�
�A�Þe�2�’F��dS��; (74)

where we have taken into account that

ð
�N� � 
�N�Þgð�;�Þd�d! ¼ ð
�N� � 
�N�ÞdA
¼ dS�� (75)

is the three-dimensional surface element on the horizon.
In the final step we use the fact that the potential � ¼

�
�A� is constant
1 on the horizon and therefore we obtain

Ibulk ¼
X
i

�H
i

1

4


I
H i

e�2�’F��dS�� ¼ X
i

�H
i Qi:

(76)

In this way we have proven the Smarr-like formula

MADM ¼ X
i

MH
i þX

i

�H
i Qi þMbubble: (77)

Obviously the above relation can be generalized easily
for the case when more than one bubble is present in the
configuration.

B. Tension

A Smarr-like relation can also be found for the tension.
The tension can be calculated by the following Komar

integral [11]:

T L ¼ � 1

16


I
1
dS���ð��r�
� þ 2
�r���Þ: (78)

With the asymptotic form of the relevant metric compo-
nents given by Eq. (39), the tension can be directly read off
from the asymptotics of the metric potentials [12–14]

T L ¼ 1
4Lðct � 2c�Þ: (79)

Following the same method as for the derivation of the
Smarr-like relation for ADM mass we find

T L ¼ 1

2

X
i

MH
i þ 2Mbubble: (80)

Combining this relation with the relation for ADM mass
one can easily show that the following relation holds

T L ¼ 1

2
MADM � 1

2

X
i

�H
i Qi þ 3

2
Mbubble:

C. First law

In the absence of bubbles the first law can be derived
following the well-known method. In the presence of bub-
bles we have to find the contribution of the bubbles to the
first law. It was, however, shown in [8] that the smooth
bubbles (i.e. without conical singularities) do not give any
contribution to the first law. In this paper we consider,
namely, smooth bubbles. Therefore, in our case the first
law conserves its usual form

�MADM ¼ 1
4T

ð1Þ�Að1Þ
h þ�1�Q1 þ 1

4T
ð2Þ�Að2Þ

h þ�2�Q2:

(81)

Let us note again that we keep L fixed.

VI. EXTREMAL LIMIT

The extremal solutions are obtained in the limit 	 ! 1,
keeping the charges Q1 and Q2 fixed. The explicit form of
the extremal solutions is the following:

ds2 ¼ �
�
1þ q2

R2

þ q1
R3

��ð2=1þ�2
5
Þ
dt2

þ
�
1þ q2

R2

þ q1
R3

�
1=1þ�2

5

�
ðR2 � �2ÞðR3 þ �3Þdc 2

þ R3 � �3
R2 � �2

d�2 þ Y23

2R2R3

R2 � �2
R3 � �3

ðd�2 þ dz2Þ
�
;

� ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q q2
R2
þ q1

R3

1þ q2
R2
þ q1

R3

;

e��’ ¼
�
1þ q2

R2

þ q1
R3

�
�2
5
=1þ�2

5
; (82)

where the parameters q1 and q2 are given by

1The fact that the potential� is constant on the horizon can be
shown by the well-known manner. On the horizon we have
R��


�
� ¼ 0 which, in view of the field equations, implies
that @�� is null on the horizon. Since 
� is null on the horizon
and orthogonal to @�� it follows that on the horizon @�� is
proportional to 
�, @�� ¼ �
�. For an arbitrary vector ��

tangential to the horizon we have L�� ¼ ���
� ¼ 0 (on the
horizon) which shows that � is constant on the horizon.

CHARGED BLACK HOLES ON A KALUZA-KLEIN BUBBLE PHYSICAL REVIEW D 79, 024010 (2009)

024010-7



qi ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

3

s
Qi

L
: (83)

Strictly speaking, the extremal solutions are singular and
they cannot be interpreted as extremal black holes. As one
can see the dilaton field is divergent on the candidate
horizons R2 ¼ 0 and R3 ¼ 0 for � � 0. As we shall
show below, only in the Einstein-Maxwell case (� ¼ 0)

the solutions describe two extremal black holes sitting on a
Kaluza-Klein bubble.
The extremal solutions can be casted in new coordinates

r and # by performing the transformation

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rb

p
sin#; z ¼ ðr� bÞ cos#; (84)

which gives

ds2 ¼ �
�
1þ q2

r� b� b cos#
þ q1

r� bþ b cos#

��ð2=1þ�2
5
Þ
dt2

þ
�
1þ q2

r� b� b cos#
þ q1

r� bþ b cos#

�
1=1þ�2

5

�
dr2

1� 2b
r

þ r2d#2 þ r2sin2#dc 2 þ
�
1� 2b

r

�
d�2

�
;

� ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q �
1� 1

1þ q2
r�b�b cos# þ q1

r�bþb cos#

�
;

e��’ ¼
�
1þ q2

r� b� b cos#
þ q1

r� bþ b cos#

�
�2
5
=1þ�2

5
: (85)

The new coordinates r and # appear to be more suitable
from a physical point of view and the extremal solutions
look more tractable. In the particular case q2 ¼ q1 ¼ 0we
obtain the 5D solution describing a static KK bubble in
standard spherical coordinates. The extremal solutions can
be interpreted physically as solutions describing two
charged objects whose gravitational attraction is balanced
by the electric repulsion in the presence of a Kaluza-Klein
bubble.

Let us now show that, in the Einstein-Maxwell case, the
extremal solutions describe two extremal black holes on a
Kaluza-Klein bubble. For this purpose we consider the
metric in the vicinity of the candidate-horizon r ¼ 2b,
# ¼ 0 and put

r ¼ 2bþ y21; # ¼ y2; (86)

where y1 and y2 are small. Expanding the metric around
r ¼ 2b and # ¼ 0 and performing the coordinate trans-
formation

dt ¼ d��
ffiffiffiffiffiffiffiffiffiffiffi
2bq32

q
d

�
1

R

�
(87)

where R ¼ y21 þ b
2 y

2
2, we obtain

ds2 ¼ �R2

q22
d�2 �

ffiffiffiffiffiffi
2b

q2

s
dRd�þ 8bq2d�

2
3: (88)

Here d�2
3 is the metric on the unit three-dimensional

sphere, i.e.,

d�2
3 ¼ d�2 þ sin2�dc 2 þ cos2�d�2

1; (89)

where �1 ¼ �=4b and � ¼ arctanð
ffiffi
b
2

q
y2
y1
Þ. Since L ¼ 8
b

in the extremal limit the angle �1 has the canonical period
��1 ¼ 2
.
It is seen from (88) that the metric remains regular as

r ! 2b and # ! 0, and the same is true for the electro-
magnetic field. Therefore r ¼ 2b, # ¼ 0 is a (degenerate)
event horizon with S3 topology as follows from (88). The
radius of the horizon is

ffiffiffiffiffiffiffiffiffiffiffi
8bq2

p
and hence the area of the

horizon is

A ð2ÞE
h ð� ¼ 0Þ ¼ 2

ffiffiffiffi



p �
2Q2ffiffiffi
3

p
�
3=2

: (90)

The area is also found from (34) by taking the extremal
limit.
In the same manner one can show that r ¼ 2b, # ¼ 
 is

a (degenerate) event horizon with S3 topology and area

A ð1ÞE
h ð� ¼ 0Þ ¼ 2

ffiffiffiffi



p �
2Q1ffiffiffi
3

p
�
3=2

: (91)

The extremal limit of (27) gives the same expression for
the area of the first extremal black hole. For the two
extremal Einstein-Maxwell black holes sitting on a
Kaluza-Klein bubble we have

ME
bubble ¼ 4
b2 ¼ L2

16

;

ME
ADM ¼ L2

16

þ

ffiffiffi
3

p
2

ðQ1 þQ2Þ:
(92)

When � � 0 we consider near extremal (NE) solutions.
We here find that the area of the NE black holes tends to
zero

A ð1ÞNE
h ð� � 0Þ ! 0; Að2ÞNE

h ð� � 0Þ ! 0: (93)

JUTTA KUNZ AND STOYTCHO YAZADJIEV PHYSICAL REVIEW D 79, 024010 (2009)

024010-8



The temperature of the NE black holes is

TðiÞð�2
5 < 2Þ ! 0; TðiÞð�2

5 ¼ 2Þ ! 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2
Qi

p ;

TðiÞð�2
5 > 2Þ ! 1:

(94)

The mass of the bubble and the ADM mass are, respec-
tively,

MNE
bubble � 4
b2 ¼ L2

16

;

MNE
ADM � L2

16

þ

ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q ðQ1 þQ2Þ:
(95)

The proper distance l12 between the black holes be-
comes arbitrarily large when extremality is approached.

VII. BLACK STRINGS

For the vacuum solution the question was addressed
whether the total area of the two black holes A2BH is
larger or smaller than the area of a black string As

h with

the same mass [5]. It turned out, that

A 2BH <As
h

showing that the black string is entropically favored. Here,
we address this question for charged black holes.

In order to generate the solution describing a five-
dimensional black string in Einstein-Maxwell-dilaton
gravity we consider the four-dimensional Schwarzschild
solution trivially embedded in five dimensions

ds2Sch ¼ �
�
1� 2m

r

�
dt2 þ dr2

1� 2m
r

þ r2d�2 þ dx25: (96)

Using the method of Ref. [9] and (96) as a seed solution
one obtains the following EMD solution

ds2 ¼ � 1� 2m
r

½1þ 2m
r sinh2	1�2=1þ�2

5

dt2

þ
�
1þ 2m

r
sinh2	1

�
1=1þ�2

5

�
�

dr2

1� 2m
r

þ r2d�2 þ dx25

�
;

e�2�’ ¼
�
1þ 2m

r
sinh2	1

�
2�2

5
=1þ�2

5
;

� ¼
ffiffiffi
3

p
2

cosh	1 sinh	1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

5

q 2m

rþ 2msinh2	1

:

(97)

An alternative derivation of this solution has been given in
[15].

The ADM mass, the charge, the horizon area, and the
temperature of the EMD black string are given by

Ms
ADM ¼ mL

�
1þ 3

2ð1þ �2
5Þ
sinh2	1

�
;

Qs ¼
ffiffiffi
3

p
cosh	1 sinh	1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
5

q mL;

As
h ¼ 16
cosh3=1þ�2

5	1m
2L;

Ts ¼ cosh�ð3=1þ�2
5
Þ	1

8
m

(98)

and the following Smarr-like relation is satisfied:

Ms
ADM ¼ 1

2A
s
hT

s þ�hQ
s: (99)

The extremal limit of the black string solution is ob-
tained for 	1 ! 1 and m ! 0 keeping the charge Qs

finite. The extremal solution is singular with zero horizon
area for all coupling parameters �5. The temperature of the
near extremal solution tends to zero for �2

5 < 1=2, to

infinity for �2
5 > 1=2, and the temperature is finite for

�2
5 ¼ 1=2.
Comparing now the area of two charged black holes

A2BH with the area of a charged string of the same mass,
charge, and the length L of the Kaluza-Klein circle, we find

A 2BH <As
h: (100)

This shows that the solution is globally unstable as all
solutions of this type.

VIII. CONCLUSION

We have constructed a solution of two black holes on a
Kaluza-Klein bubble in Einstein-Maxwell-dilaton theory
and studied the consequences of the presence of charge for
the properties of this solution. Furthermore, we have ob-
tained a generalized Smarr relation and first law for this
solution, extending recent vacuum results [8].
While we have focussed here on a particular solution [5],

the calculations are easily extended to general sequences of
smooth KK bubbles and black holes [6]. For these we
expect the Smarr relation

M ¼ X
i

MH
i þX

i

�H
i Qi þ

X
i

Mi
bubble

and first law

�M ¼ 1

4

X
i

Ti�Ai
h þ

X
i

�H
i �Qi:

As for all solutions of the considered type, the question
of their classical stability remains open.
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Future work may involve the inclusion of rotation [16].
Considering the solutions from the point of view of string
theory, on the other hand, may necessitate the inclusion of
further fields for consistency.
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