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In this paper we study the Landau levels in the nonrelativistic dynamics of a neutral particle which

possesses a permanent magnetic dipole moment interacting with an external electric field in the curved

space-time background with the presence or absence of a torsion field. The eigenfunction and eigenvalues

of the Hamiltonian are obtained. We show that the presence of the topological defect breaks the infinite

degeneracy of the Landau levels arising in this system. We also apply a duality transformation to discuss

this same quantization for a dynamics of a neutral particle with a permanent electric dipole moment.
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I. INTRODUCTION

One of the simplest possible physical problems is the
quantum description of the motion of a charged particle in
a two-dimensional space under an influence of a homoge-
neous magnetic field perpendicular to the velocity [1]. In
this situation, Landau levels arise, that is, the system dis-
plays quantized energy levels in the plane perpendicular to
the magnetic field. The Landau levels have an important
role in the study of several physical problems, such as, e.g.,
the quantum Hall effect [2], different two-dimensional
surfaces [3–5], anyons’ excitations in a rotating Bose-
Einstein condensate [6,7], and other ones. The investiga-
tion of the appearance of quantum phases in the quantum
dynamics of the electromagnetic dipole is based on the
Aharonov-Casher effect [8] for the dynamics of a magnetic
dipole submitted an external electric field, that is a recip-
rocal effect of the Aharonov-Bohm [9] effect. The dual of
the Aharonov-Casher effect was studied independently by
He and McKellar [10] and Wilkens [11], who demon-
strated that the quantum dynamics of the electric dipole
in the presence of a magnetic field exhibits a geometrical
quantum phase. In fact, the dynamics of dipoles can give
rise to a variety of interesting physical effects [12–14].
Ericsson and Sjöqvist developed an analog of Landau
quantization for neutral particles in the presence of an
external electric field [15]. The idea is based on the
Aharonov-Casher effect within which neutral particles
can interact with an electric field via a nonzero magnetic
dipole moment. In the same way, the analog of Landau
quantization for neutral particles possessing a nonzero
electric dipole moment can be obtained by use of the He-
McKellar-Wilkens effect [16]. To solve the problem of

magnetic monopoles in this system, we proposed the study
of an analog of Landau quantization in a quantum dynam-
ics of an induced electric dipole in the presence of crossed
electric and magnetic fields [17].
In the last few decades, the subject of topological defects

has drawn special attention in several areas of physics [18–
23]. Recently, the quantum dynamics of relativistic [24–
28] and nonrelativistic [29–32] particles in the presence of
a topological defect has been studied. The influence of a
topological defect to the Landau levels in the presence of a
topological defect has been investigated in recent years
[33,34]. In [35], the Landau levels have been investigated
in the continuum elastic medium with a topological defect
in the presence of an external magnetic field. It was shown
that the presence of topological defects breaks the infinite
degeneracy of the Landau levels. In [36], the Landau levels
were investigated in the presence of a density of screw
dislocations.
The relativistic and nonrelativistic quantum dynamics of

a neutral particle with permanent magnetic and electric
dipole moments which interacts with externals fields was
studied in flat space-time in [37,38], in the curved space-
time in [26,39], and in the presence of a torsion field in
[40]. In this paper, we construct an analog of Landau
quantization for a neutral particle with permanent magnetic
dipole moment which interacts with an external electric
field in a cosmic string and cosmic dislocation space-time.
We use a nonrelativistic analysis of this problem due to the
possibility to obtain a simple exact solution of this problem
and we compare the flat space limit obtained here with the
results of the previous works [15–17].
This paper is organized as follows. In Sec. II we study

the analog of Landau levels obtained in the cosmic string
background. In Sec. III, we analyze the Landau Levels in
flat space-time, but in the presence of a torsion. In Sec. IV,
we discuss the Landau levels in curved space-time back-
ground with the presence of the torsion. In Sec. V, we
present our conclusions.
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II. LANDAU LEVEL FOR A NEUTRAL PARTICLE
IN THE COSMIC STRING SPACE-TIME

In this section, we study the Landau levels which arise
within the dynamics of a neutral particle with nonzero
magnetic dipole in the presence of a topological defect,
that is, a cosmic string. The line element in the curved
space-time with such a topological defect is given by the
following expression [18]:

ds2 ¼ �dt2 þ d�2 þ �2�2d’2 þ dz2; (1)

where � is called a deficit angle and is defined as � ¼
1� 4$G=c2 where $ is the linear mass density of the
cosmic string. The azimuthal angle varies in the interval:
0 � ’< 2�. The deficit angle can assume only values for
which �< 1 (unlike of this, in [22,23], it can assume
values greater than one, which correspond to an anticonical
space-time with negative curvature). This geometry pos-
sesses a conical singularity represented by the following
curvature tensor:

R�;’
�;’ ¼ 1� �

4�
�2ð~rÞ; (2)

where �2ð ~rÞ is the two-dimensional delta function. This
behavior of the curvature tensor is denominated as conical
singularity [41]. The conical singularity gives rise to the
curvature concentrated on the cosmic string axis, in all
other places the curvature is zero.

Through the study of the relativistic dynamics of this
neutral particle, it is convenient to construct a frame which
allows us to define the spinors in the curved space-time.We

can introduce the frame using a noncoordinate basis �̂a ¼
ea�dx

�, with its components ea�ðxÞ satisfies the following
relation [42,43]:

g��ðxÞ ¼ ea�ðxÞeb�ðxÞ�ab: (3)

The components of the noncoordinate basis ea�ðxÞ form
tetrad or Vierbein. The tetrad has an inverse one defined as

dx� ¼ e�a�̂
a, where

ea�e
�
b ¼ �a

b; e�ae
a
� ¼ ��

�: (4)

For the metric corresponding to a cosmic string we choose
the tetrad and its inverse to be

ea� ¼
1 0 0 0
0 cos’ ��� sin’ 0
0 sin’ �� cos’ 0
0 0 0 1

0
BBB@

1
CCCA;

e�a ¼
1 0 0 0
0 cos’ sin’ 0
0 � sin’

��
cos’
�� 0

0 0 0 1

0
BBB@

1
CCCA;

(5)

which yields the correct flat space-time limit for � ¼ 1.
Taking the Cartan’s structure equations

Ta ¼ d�̂a þ!a
b�̂

b; (6)

with Ta ¼ Ta
��dx

�dx� and !a
b ¼ !�

a
b. Solving for the

tetrads given in (5), we obtain

!’
1
2 ¼ �!’

2
1 ¼ 1� �: (7)

The relativistic dynamics of the neutral particle in this
curved space-time was studied in [39]. In the same paper,
the nonrelativistic behavior of the neutral particle in curved
space-time was obtained through the application of the
Foldy-Wouthuysen approximation [44] to the Dirac equa-
tion. Here, we use the nonrelativistic approach to inves-
tigate the Landau level quantization in the presence of a
topological defect due to a possibility to solve this problem
exactly. We suggest that the dipole magnetic moments are
parallel to the z-axis of the space-time. The nonrelativistic
equation is

i
@�

@t
¼ m�þ

�
1

2m
ð ~pþ ~�Þ2 ��2E2

2m

þ �

2m
~r � ~Eþ�n̂ � ~B

�
�; (8)

where the first term above represents the rest energy of the
neutral particle and the last four terms represent the
Schrödinger-Pauli equation in curved space-time. The
unit vector n̂ indicates the direction of the magnetic dipole

moment and the vector ~�was defined in such a way that its
components are given in the local reference frame by

�j ¼ �ðn̂� ~EÞj þ 1
2ð1� �Þe’j: (9)

Notice that the first term in (9) is the Aharonov-Casher
coupling and another term arises due to the presence of a
topological defect. Here we employ the same procedure
which was adopted by Ericsson and Sjöqvist [15] in the flat
case. We need a field configuration in which that quantum
dynamics of a magnetic dipole would exhibit bound states.
At this moment we must configure the electric field in a

way providing the conditions pointed out in Ref. [15] to be
satisfied. Thus, we choose that the electric field is deter-
mined by the only nonzero component, being of the form

~E ¼ ��

2
�̂; (10)

with � a linear density charge. For this field configuration it
is easy to verify that the conditions [15]

@ ~E

@t
¼ 0; ~r� ~E ¼ 0; (11)

are satisfied. In this case, the Aharonov-Casher uniform
magnetic field in the curved space-time is given by

~B AC ¼ ~r� ~� ¼ ��ẑ: (12)

Using the field configuration given in the expression (10),
we study the Landau-Aharonov-Casher quantization which
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occurs within the nonrelativistic behavior of the neutral
particle which has a permanent dipole moment. We apply
the Schrödinger-Pauli equation (8), and using the ansatz
� ¼ e�iEtc we have

Ec ¼ � 1

2m

�
@2c

@�2
þ 1

�

@c

@�
þ 1

�2�2

@2c

@’2
þ @2c

@z2

�

� i

2m

�
��

�
þ ð1� �Þ

�2�2

�
@c

@’
þ�2�2

8m
�2c

þ 1

8m

ð1� �Þ2
�2�2

c þ��

2m
c þ��

4m

ð1� �Þ
�

c : (13)

The solution of the Schrödinger-Pauli equation can be
written in the form

c ð�;’; zÞ ¼ eil’eikzRð�Þ: (14)

Thus, Eq. (13) becomes

ER ¼ � 1

2m

�
R00 þ 1

�
R0
�
þ k2

2m
Rþ 	2

2m

R

�2�2
þ 	!

2�
R

þm!2

8
�2Rþ!

2
R; (15)

where we defined 	 ¼ lþ ð1��Þ
2 and ! ¼ ��=m. Now, we

make a convenient change of variables:


 ¼ m!

2
�2; (16)

which gives us the expression


R00 þ R0 þ
�
�� 	2

4�2

� 


4

�
R ¼ 0; (17)

where we defined � as

� ¼ E
!
� k2

2m!
� 	

2�
� 1

2
: (18)

We can write the solution of Eq. (17) as

Rð
Þ ¼ e�ð
=2Þ
j	j=2�F
�
��;

j	j
�

þ 1;


�
: (19)

This solution satisfies the usual asymptotic requirements
and the finiteness at the origin for the bound state. We have

the following equation for Fð��; j	j� þ 1;
Þ:


F00 þ
�j	j
�

þ 1� 


�
F0 þ

�
�� 1

2
� j	j

2�

�
F ¼ 0: (20)

We find that the solution of Eq. (20) is the degenerated
hypergeometric function

F ¼ F

�
��;

j	j
�

þ 1;


�
: (21)

The wave function is normalized if and only if the series in
(21) is a polynomial of degree �, therefore

�� 1

2
� j	j

2�
¼ �; (22)

where � is an integer number. With this condition, we
obtain discrete values for the energy, given by

E �;l ¼ !

�
�þ jlþ ð1��Þ

2 j
2�

þ lþ ð1��Þ
2

2�
þ 1

�
þ k2

2m
; (23)

with � ¼ 0; 1; 2; . . . and l ¼ 0;�1;�2; . . . These energy
levels are the Landau-Aharonov-Casher levels for a neutral
particle with a permanent magnetic dipole moment which
interacts with an external electric field in the presence of a
topological defect. We can see clearly that, as in Ref. [35],
the topology of the defect breaks the infinite degeneracy of
the Landau levels obtained in [16] since the term 1=� is not
an integer. One should notice that these results are similar
to results found for Landau levels of a charged particle in
the presence of disclination [33]. These levels are indepen-
dent of the orbit center of a classical cyclotron motion and
agree with the results of [15–17,35]. However, they do not
depend of the direction of the rotation as in [16] due to the
definition of the angular frequency ! done for us above. In
the limit � ! 1, we recuperate the energy levels obtained
in [16] plus the contribution of the free motion along the
z-axis.

III. LANDAU LEVELS FOR A NEUTRAL
PARTICLE IN THE PRESENCE OFA COSMIC

DISLOCATION

In this section we investigate the Landau-Aharonov-
Casher levels in the presence of a cosmic dislocation,
with the line element given by [45]

ds2 ¼ �dt2 þ d�2 þ �2d’2 þ ðdzþ �d’Þ2; (24)

where the parameter � is related with the torsion of the
defect, or, within the crystallography language, with the
Burgers vector. In the same way as in the previous section,
it is convenient to construct a local reference frame with
the spinor defined in this background [42,43]. We choose
for our local vierbein [40]

ea�ðxÞ ¼
1 0 0 0
0 cos’ �� sin’ 0
0 sin’ � cos’ 0
0 0 � 1

0
BBB@

1
CCCA;

e�aðxÞ ¼
1 0 0 0
0 cos’ sin’ 0
0 � sin’

�
cos’
� 0

0 �
� sin’ � �

� cos’ 1

0
BBB@

1
CCCA:

(25)

Solving the Cartan’s structure equation (6), we have that
the contribution given by the torsion field is

T3 ¼ ��ð�Þd’ ^ d�: (26)
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Again, we suggest that the directions of the magnetic
moments of dipoles are parallel to the z-axis of the space-
time. Following Ref. [40], we conclude that the nonrela-
tivistic behavior of the neutral particle in the flat space-
time, but in the presence of the torsion, is given by the
Schrödinger-Pauli equation

Ec ¼ 1

2m
ð ~pþ ~�Þ2 ��2E2

2m
þ 1

8
�n̂ � ~S

þ �

2m
~r � ~Eþ�n̂ � ~B; (27)

where the vector ~� has the following components:

�i ¼ �ðn̂� ~EÞi � 1
8S

0ni; (28)

and we write them in terms of the irreducible component of
the torsion tensor S� ¼ ���	T��	, called the axial four-

vector.
Notice that the first term in Eq. (28) is an Aharonov-

Casher coupling and the second one is related with the
torsion of topological defect. To define the field configu-
rations in this background, we suggest that the dipole mo-
ments are parallel to the z-axis again and that the electric
field is outside of the defect. Thus, the electric field sat-
isfying the conditions pointed out in Ref. [15] is given by
the expression (10), with the Aharonov-Casher uniform
magnetic field given by (12). In this case, the
Schrödinger-Pauli equation in the presence of the torsion
field takes the form

Ec ¼� 1

2m

�
@2c

@�2
þ 1

�

@c

@�
þ 1

�2

�
@

@’
��

@

@z

�
2
c þ@2c

@z2

�

� i

2m
��

�
@

@’
��

@

@z

�
c þ�2�2

8m
�2c þ��

2m
c :

(29)

The solution of the above equation has the same general
form (14). Thus, we define ! ¼ ��=m and have

ER ¼ � 1

2m

�
R00 þ 1

�
R0
�
þ k2

2m
Rþ ðl� �kÞ2

2m

R

�2

þ!

2
ðl� �kÞRþm!2

8
�2Rþ!

2
R: (30)

Again, we carry out a change of variables identical to (16).
Afterwards, we arrive at the equation


R00 þ R0 þ
�
�0 � ðl� �kÞ2

4

� 


4

�
R ¼ 0; (31)

where �0 is

�0 ¼ E
!
� k2

2m!
� 1

2
ðl� �kÞ � 1

2
: (32)

To obtain the solution for Eq. (31) we use again the

procedure developed in Sec. II, where the radial wave
function is assumed to be of the following form:

Rð
Þ ¼ e�ð
=2Þ
jl��kj=2Fð��; jl� �kj þ 1;
Þ: (33)

The energy levels in this case look like

E �;l ¼ !

�
�þ jl� �kj

2
þ ðl� �kÞ

2
þ 1

�
þ k2

2m
; (34)

with � ¼ 0; 1; 2; . . . and l ¼ 0;�1;�2; . . . This expression
is the analog of the Landau levels of a neutral particle with
a permanent magnetic dipole moment interacting with an
external electric field in the presence of a defect, more
precisely, in the presence of a torsion field plus a contri-
bution of the kinetic energy of the free motion in the
z-direction of the space-time. Notice that this result is
similar to the result obtained for Landau levels in the
presence of a screw dislocation in [34]. Again, the infinite
degeneracy of the Landau levels obtained in [16] is elim-
inated due to the coupling of the torsion with the angular
moment l, which agrees with the results given in [35].
However, if we take � ¼ 0 we recuperate the infinite
degeneracy pointed out in [16].

IV. LANDAU LEVELS FOR THE NEUTRAL
PARTICLE IN THE PRESENCE OF THE MASSIVE

COSMIC DISLOCATION

In this section we study the Landau-Aharonov-Casher
quantization in the quantum dynamics of a neutral particle
with a permanent magnetic dipole moment in the presence
of a massive cosmic string [45], where the line element is
given by

ds2 ¼ �dt2 þ d�2 þ �2�2d’2 þ ðdzþ �d’Þ2: (35)

The matrix form of the tetrad and its inverse is

ea�ðxÞ ¼
1 0 0 0
0 cos’ ��� sin’ 0
0 sin’ �� cos’ 0
0 0 � 1

0
BBB@

1
CCCA;

e�aðxÞ ¼
1 0 0 0
0 cos’ sin’ 0
0 � sin’

��
cos’
�� 0

0 �
�� sin’ � �

�� cos’ 1

0
BBB@

1
CCCA:

(36)

Following the study carried out in [40], we find that the
nonrelativistic behavior of the neutral particle in the flat
space-time but in the presence of the torsion is described
by the Schrödinger-Pauli equation

Ec ¼ 1

2m
ð ~pþ ~�Þ2 ��2E2

2m
þ 1

8
�n̂ � ~S

þ �

2m
~r � ~Eþ�n̂ � ~B; (37)

where the vector ~� in this case has the following compo-
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nents:

�i ¼ �ðn̂� ~EÞi þ 1
2ð1� �Þ � 1

8S
0ni: (38)

Again, we suppose that the direction of the dipole mo-
ments is parallel to the z-axis of the topological defect. The
field configuration is identical to the previous sections, thus
the electric field is given by the expression (10). Hence, the
Schrödinger-Pauli equation is written as

Ec ¼� 1

2m

�
@2c

@�2
þ 1

�

@c

@�
þ 1

�2�2

�
@

@’
��

@

@z

�
2 þ@2c

@z2

�

� i

2m

��

�

�
@

@’
��

@

@z

�
c � i

2m

ð1��Þ
�2�2

�
�
@c

@’
��

@c

@z

�
þ�2�2

8m
�2c þ 1

8m

ð1��Þ2
�2�2

c

þ��

2m
c þ��

4m

ð1��Þ
�

c : (39)

The general solution is described by the ansatz (14). Again,
we define ! ¼ ��=m and obtain

ER ¼ � 1

2m

�
R00 þ 1

�
R0
�
þ k2

2m
Rþ 1

2m

�2

�2�2
Rþ!�

2�
R

þm!2

8
�2Rþ!

2
R; (40)

where � is defined as

� ¼ ðl� �kÞ þ 1
2ð1� �Þ: (41)

Making the change of variables similar to (16), we get


R00 þ R0 þ
�
~�� �2

4�2

� 


4

�
R ¼ 0; (42)

where the parameter ~� is defined as

~� ¼ E
!
� k2

2m!
� �

2�
� 1

2
: (43)

The solution for this equation can be written in the form

Rð
Þ ¼ e�ð
=2Þ
j�j=2�F
�
��;

j�j
�

þ 1;


�
: (44)

The energy levels associated with this system are

E �;l ¼ !

�
�þ jðl� �kÞ þ 1

2 ð1� �Þj
2�

þ ðl� �kÞ þ 1
2 ð1� �Þ

2�
þ 1

�
þ k2

2m
; (45)

with � ¼ 0; 1; 2; . . . and l; k ¼ 0;�1;�2; . . . This expres-
sion for the energy levels is also the analog of the Landau

levels in the presence of the deficit angle and the torsion.
Note that if we consider � ¼ 0 we recuperate the Landau
levels obtained in the expression (23). However, if we
consider � ! 1 we recuperate the Landau levels given in
the expression (34). In the same way as in the previous
section, we find that the infinite degeneracy of the Landau
levels obtained in [16] is broken since the parameters of the
topology � and of the torsion � in the expression (34) are
not integer.

V. CONCLUSIONS

In this paper we studied the nonrelativistic quantum
dynamics of a neutral particle with a permanent magnetic
dipole moment in the presence of a topological defect. We
have used the Aharonov-Casher coupling to obtain the
analog of Landau quantization in this dynamics. We solved
the Schrödinger-Pauli equation in the space-time of a
cosmic string, cosmic dislocation, and massive cosmic
dislocation. We have obtained the eigenvalues and eigen-
function in three cases. We demonstrated that in the ap-
propriate limits we obtain the Landau-Aharonov-Casher
levels found by Ericsson and Sjöqvist [15]. We have shown
that the presence of defects breaks the infinite degeneracy
of the Landau-Aharonov-Casher levels and observed that
the topology of the space-time breaks the infinite degener-
acy of the Landau levels obtained in flat space-time [16]
since the term 1=� is not an integer. In the same way, the
presence of the torsion, in the cosmic dislocation case, also
breaks the infinite degeneracy of the Landau levels. Both
results agree with the conclusions of [35] where an external
uniform magnetic field is applied in the space with topo-
logical defects. At the end of the day, one can verify that in
the limit � ! 1 and � ¼ 0, the space-time becomes flat,
and we recuperate the Landau levels obtained in [16] and,
consequently, the infinite degeneracy of the energy levels.
On the other hand, the analysis of the solution of the Dirac
equation in the present situation demands a more careful
investigation on this topic and studies on this subject are in
progress and will be published elsewhere.
We claim that we can obtain the results of the non-

relativistic quantum dynamics of the neutral particle with
a permanent electric dipole moment interacting with an
external magnetic field via the He-Mckellar-Wilkens cou-
pling [10,11]. We carried out this study employing the
duality transformation in the equations of motion of the
Landau-Aharonov-Casher problem in the presence of a
topological defect and obtained the He-Mckellar-Wilkens
quantization for a neutral particle in the presence of a
topological defect. The equations of motion for the
Landau-He-McKellar-Wilkens effect case has the same
form as the equations for the Landau-Aharonov-Casher
effect case. Indeed, changing � by �d and E by B, we
obtain the equation of motion for the latter. In this sense we
observed in the curved case the same duality transforma-
tions which take place in flat space-time.
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