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We discuss a class of exact solutions of a three-parameter nonminimally extended Einstein-Maxwell

model, which are attributed to nonminimal magnetic monopoles of the Dirac type. We focus on the

investigation of the gravitational field of Dirac monopoles for those models, for which the singularity at

the central point is hidden inside of an event horizon independently on the mass and charge of the object.

We obtain the relationships between the nonminimal coupling constants, for which this requirement is

satisfied. As explicit examples, we consider in detail two one-parameter models: first, the nonminimally

extended Reissner-Nordström model (for the magnetically charged monopole) and, second, the

Drummond-Hathrell model.
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I. INTRODUCTION

In 1969, Penrose formulated the so-called cosmic cen-
sorship conjecture [1], which assumes, in particular, that
singularities have to be hidden inside of an event horizon
and invisible to distant observers [2,3]. In the minimal
Einstein theory, there exist a number of exact solutions,
which can be considered as counterexamples to this cen-
sorship conjecture. For instance, the static spherically
symmetric solutions to the Einstein equations with mass-
less scalar field [4] always describe a naked singularity
[5,6]. Naked singularities also appear, when we deal with
the Reissner-Nordström metric, if M2 <Q2

ðeÞ þQ2
ðmÞ (M,

QðeÞ, and QðmÞ are the mass, electric and magnetic charges,

respectively), or with the Kerr metric, if M< jJj (J is an
angular momentum). The solution for an individual elec-
tron with M � jQðeÞj (in the geometrical units) gives the

simplest example of the naked singularity, because the
gravitational attraction is negligible compared to the
Coulomb repulsion, and the corresponding metric has no
horizons.

We assume that a nonminimal interaction between elec-
tromagnetic and gravitational fields can eliminate this
contradiction; i.e., the nonminimality results in the appear-
ance of a new horizon, which hides the singular central
point. Indeed, curvature coupling constants, which are
involved in the nonminimal three-parameter Einstein-
Maxwell model, can be naturally associated with charac-
teristic lengths of the nonminimal interaction and, thus, at
least one extra parameter rq appears (see, e.g., [7,8]) in

addition to the standard Schwarzschild radius rg and

Reissner-Nordström radius rQ. This nonminimal extension

sophisticates essentially the causal structure of space-time

around the charged objects, and the appearance of an addi-
tional horizon, related to the censorship conjecture, be-
comes possible.
In order to illustrate this idea, we consider now exact

solutions of the nonminimal Einstein-Maxwell model de-
scribing the magnetic monopoles of the Dirac type. In the
minimal theory, the solution of this type demonstrates a
naked singularity in the center; nevertheless, the curvature
coupling is shown to lead to the hiding of this singularity
inside of the nonminimal horizon. The exact three-
parameter nonminimal solutions of the Dirac type can be
represented in an explicit analytic form, which simplifies
the discussion. These solutions can be considered as a
direct reduction of the solutions, obtained for the non-
minimal SUð2Þ symmetric quasi-Abelian Wu-Yang mono-
pole [9], to the model with Uð1Þ symmetry.
The paper is organized as follows. In Sec. II we discuss

shortly the fundamentals of the model and represent a
three-parameter family of exact solutions describing a
nonminimal Dirac monopole. In Sec. III we consider rela-
tionships among three coupling constants, for which the
space-time metric possesses a singularity ‘‘clothed’’ in a
horizon for arbitrary mass and charge of the object. In
Sec. IVAwe consider nonminimal horizons for the exactly
integrable model of the Reissner-Nordström type. In
Sec. IVB we discuss in detail the one-parameter
Drummond-Hathrell model, the horizon radius being ob-
tained and estimated explicitly. In the last section we
summarize the results.

II. THREE-PARAMETER FAMILY OF EXACT
SOLUTIONS FOR NONMINIMAL MONOPOLES

OF THE DIRAC TYPE

A. Nonminimally extended Einstein-Maxwell theory

The three-parameter nonminimal Einstein-Maxwell the-
ory can be formulated in terms of the action functional
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Here g ¼ detðgikÞ is the determinant of the metric tensor
gik, and R is the Ricci scalar. The Latin indices without
parentheses run from 0 to 3. The Maxwell tensor Fik is
expressed, as usual, in terms of a potential four-vector Ak:

Fik ¼ riAk �rkAi; (2)

where the symbol ri denotes the covariant derivative. The
tensor Rikmn is defined as follows (see [7]):

Rikmn � q1
2
Rðgimgkn � gingkmÞ

þ q2
2
ðRimgkn � Ringkm þ Rkngim � RkmginÞ

þ q3R
ikmn; (3)

where Rik and Rikmn are the Ricci and Riemann tensors,
respectively, and q1, q2, and q3 are the phenomenological
parameters describing the nonminimal coupling of electro-
magnetic and gravitational fields. The variation of the
action functional with respect to potential Ai yields

rkðFik þRikmnFmnÞ ¼ 0: (4)

In a similar manner, the variation of the action with respect
to the metric yields

Rik � 1
2Rgik ¼ 8�TðeffÞ

ik : (5)

The effective stress-energy tensor TðeffÞ
ik can be divided into

four parts:

TðeffÞ
ik ¼ TðMÞ

ik þ q1T
ðIÞ
ik þ q2T

ðIIÞ
ik þ q3T

ðIIIÞ
ik : (6)

The first term

TðMÞ
ik � 1

4gikFmnF
mn � FinFk

n (7)

is a stress-energy tensor of the pure electromagnetic field.
The definitions of other three tensors are related to the
corresponding coupling constants q1, q2, and q3:

TðIÞ
ik ¼ RTðMÞ

ik � 1
2RikFmnF

mn þ 1
2½rirk � gikrlrl�

� ½FmnF
mn�; (8)

TðIIÞ
ik ¼ �1

2gik½rmrlðFmnFl
nÞ � RlmF

mnFl
n�

� FlnðRilFkn þ RklFinÞ � RmnFimFkn

� 1
2rmrmðFinFk

nÞ
þ 1

2rl½riðFknF
lnÞ þ rkðFinF

lnÞ�; (9)

TðIIIÞ
ik ¼ 1

4gikR
mnlsFmnFls � 3

4F
lsðFi

nRknls þ Fk
nRinlsÞ

� 1
2rmrn½Fi

nFk
m þ Fk

nFi
m�: (10)

One may check directly that the tensor TðeffÞ
ik satisfies the

equation rkTðeffÞ
ik ¼ 0.

Below, we consider nonminimally extended Einstein-
Maxwell equations (4)–(10) for the case of the static
spherically symmetric space-time metric

ds2 ¼ �2Ndt2 � dr2

N
� r2ðd�2 þ sin2�d’2Þ; (11)

where N and � are functions of the radial variable r only.

B.Minimal solution with naked singularity as a starting
point

In the minimal Einstein-Maxwell theory, the exact static
spherically symmetric solution of the Reissner-Nordström
type is the following:

�ðrÞ ¼ 1; NðrÞ ¼ 1� 2M

r
þQ2

ðeÞ þQ2
ðmÞ

r2
: (12)

When M<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ðeÞ þQ2
ðmÞ

q
, there are no horizons, and the

central point r ¼ 0 is classified as the naked singularity.
WhenQðeÞ ¼ 0 andM< jQðmÞj, one deals with a magnetic

naked singularity.
The nonminimal Einstein-Maxwell model for the static

spherically symmetric space-time and central electric and
magnetic charges was studied for two special sets of the
coupling constants: The first one satisfies the equalities
q1 þ q2 þ q3 ¼ 0 and 2q1 þ q2 ¼ 0 (see, e.g., [8,10–
12]), and the second one relates to q1 þ q2 ¼ 0 and q3 ¼
0 [8].

C. Nonminimal Dirac monopoles

Here we assume that electric charge is absent: QðeÞ ¼ 0.
One can check directly that Eqs. (2) and (4) are satisfied
identically, when the potential of the electromagnetic field
Ai and the field strength tensor Fik outside a pointlike
magnetic charge QðmÞ have the form

Ak ¼
QðmÞffiffiffiffiffiffiffi
4�

p ð1� cos�Þ�’
k ; (13)

Fik ¼
QðmÞffiffiffiffiffiffiffi
4�

p sin�ð��
i �

’
k � ��

k�
’
i Þ: (14)

Surprisingly, these quantities depend neither on the radial
variable r nor on the coupling parameters q1, q2, and q3.
Thus, the well-known solution with a monopole-type mag-
netic field satisfies the nonminimally extended Maxwell
equations. As a next step, we solve the Einstein equations,
which can be reduced for the given ansatz to the following
pair of key equations:

�0

�

�
1� �q1

r4

�
¼ �

r5
ð10q1 þ 4q2 þ q3Þ; (15)
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�

¼ 1� �

2r2
þ �

r4
ðq1 þ q2 þ q3Þ: (16)

When q1 � 0, these key equations give the following
three-parameter family of solutions:

� ¼
�
1� �q1

r4

�
�
; � � 10q1 þ 4q2 þ q3

4q1
; (17)

N ¼ 1� 2M

r

�
1� �q1

r4

��ð�þ1Þ

þ �

2r

Z 1

r

dx

x2

�
1þ 6
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��
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�
�

�
�
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r4

��ð�þ1Þ
: (18)

In the special case, when q1 ¼ 0, the two-parameter family
of solutions takes the form

� ¼ exp

�
��ð4q2 þ q3Þ

4r4

�
; (19)

N ¼ 1� 2M

r
exp

�
�ð4q2 þ q3Þ

4r4

�
þ �

2r

Z 1

r

dx

x2

�
1þ 6q2

x2

�

� exp

�
�ð4q2 þ q3Þ

4

�
1

r4
� 1

x4

��
: (20)

Here � is a convenient positive constant with the dimen-
sionality of area � ¼ 2Q2

ðmÞ, and M is a constant of inte-

gration describing the asymptotic mass of the monopole.
These solutions are direct Uð1Þ analogs of the nonminimal
Wu-Yang monopole solutions obtained in Ref. [9], and
they may be indicated as the nonminimal Dirac monopoles.
Clearly, when q1 ¼ q2 ¼ q3 ¼ 0, the obtained solutions
reduce to the minimal one (12) with QðeÞ ¼ 0.

III. CONDITIONS FOR THE ABSENCE OF NAKED
SINGULARITY

In Refs. [9,13], we attracted special attention to the
solution (17)–(20) with a regular metric. In particular, it
was shown that, when q1 ¼ �q, q2 ¼ 4q, q3 ¼ �6q, and
q is positive, there are no horizons if the mass of the
monopole is less than some critical mass MðcritÞ. Now we

focus on the analysis of the metrics, which have at least one
horizon for arbitrary mass and magnetic charge QðmÞ, and
we search for the relevant relationships among the cou-
pling constants q1, q2, and q3. It is convenient to divide our
analysis into three parts for the cases q1 < 0, q1 ¼ 0, and
q1 > 0, respectively.

A. First case: q1 < 0

The main problem we are going to solve is the follow-
ing: for what values of q1, q2, and q3 the equation

NðrÞ ¼ 0 (21)

has at least one positive solution, when the parameters
M � 0 and � > 0 are arbitrary. For the derivation of basic
inequalities, we use the following method. First, taking
into account (18), we rewrite Eq. (21) in the form

2M ¼ r

�
1þ �jq1j

r4

�
�þ1 þ �

2

Z 1

r

dx

x2

�
1þ 6

x2
ð4q1 þ q2Þ

�

�
�
1þ �jq1j

x4

�
�
: (22)

Second, we make the replacement z ¼ rð�jq1jÞ�1=4 in this
equation, thus introducing a new dimensionless variable z.
Third, we rewrite the obtained equation as follows:

1

2

ffiffiffiffiffiffiffiffi
�

jq1j
s

¼ SðzÞ; (23)

SðzÞ � 1R1
z d���2ð1þ ��4Þ�

�
��

12� 3q2
jq1j

�Z 1

z
d���4ð1þ ��4Þ� þ 2M

ð�jq1jÞ1=4

� zð1þ z�4Þ�þ1

�
: (24)

Since for negative q1 the expression ð1þ ��4Þ, obtained by
replacement, does not take on a zero value, the function
SðzÞ is continuous in the interval z 2 ð0;þ1Þ. At the
limiting case z ! þ1, this function takes on the negative
infinite value limz!þ1SðzÞ ¼ �1. We assume that the
equality (23) should be fulfilled for arbitrary magnetic
charge, i.e., for an arbitrary non-negative value of the

parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=jq1j

p
. Thus, the function SðzÞ should reach

an infinite value at least in one of the points of the interval
z 2 ð0;þ1Þ. Being continuous at z > 0, the function SðzÞ
can reach infinity only at z ¼ 0. Consequently, one should
estimate the behavior of SðzÞ in the vicinity of this point.
The simple analysis shows that in this limit SðzÞ tends to
infinity, when � � �3=4. In addition, the infinite value is

positive, i.e., Sð0Þ ¼ þ1, when 12� 3q2
jq1j > 4�þ 3 only.

After the substitution of the expression for � from (17), we
obtain the basic inequalities

13q1 þ 4q2 þ q3 � 0; q1 þ q2 þ q3 > 0: (25)

B. Second case: q1 ¼ 0

When q1 vanishes, we take Eq. (20) instead of (18) and
exponential function expf�ð4q2 þ q3Þ=4r4g instead of
ð1þ �jq1j=r4Þ�. The procedure for obtaining the basic
inequalities is similar to the one used in the previous
case, and it yields the same inequalities (25).

C. Third case: q1 > 0

When q1 is positive, the situation differs essentially from
that of the two previous cases. First of all, the metric (11),
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(17), and (18) is ill-defined for a fractional �, when r <ffiffiffiffiffiffiffiffi
�q14

p
. If � is an integer, the metric has a singularity at r <ffiffiffiffiffiffiffiffi

�q14
p

. Therefore, we have to restrict our consideration by

the interval r <
ffiffiffiffiffiffiffiffi
�q14

p
only. Let us show now that no

horizon for arbitrary mass and magnetic charge exists for
this interval. The procedure of finding of basic inequalities
is similar to that of the first case, but now we obtain a

modified auxiliary function ~SðzÞ instead of SðzÞ [see (24)]:
~SðzÞ � � 1R1

z d���2ð1� ��4Þ�

�
��

12þ 3q2
q1

�Z 1

z
d���4ð1� ��4Þ� � 2M

ð�q1Þ1=4

þ zð1� z�4Þ�þ1

�
: (26)

The function ~SðzÞ is continuous in the interval z 2 ð1;þ1Þ
and limz!þ1 ~SðzÞ ¼ �1. In order to resolve the equation

1

2

ffiffiffiffiffi
�

q1

s
¼ ~SðzÞ; (27)

for arbitrary magnetic charge, we should require that ~SðzÞ
tends to positive infinity at z ! 1, i.e., limz!1

~SðzÞ ¼ þ1.

However, ~Sð1Þ is finite, and thus it is impossible.

D. Basic inequalities

Summing up the results of the three previous subsec-
tions, we can presume that in the nonminimal model under
consideration the metric (11) and (17)–(20) has at least one
event horizon for arbitrary values of the mass M � 0 and
magnetic charge QðmÞ, when the three following inequal-

ities are valid:

q1 � 0; 13q1 þ 4q2 þ q3 � 0;

q1 þ q2 þ q3 > 0:
(28)

Since the first and second inequalities are unstrict, there are
three interesting particular cases.

1. 13q1 þ 4q2 þ q3 � 0

If the second inequality is strict, i.e., � � �3=4, the
value of the function NðrÞ at the center is finite and
negative:

Nð0Þ ¼ ðq1 þ q2 þ q3Þ
ð13q1 þ 4q2 þ q3Þ< 0: (29)

Since Nð1Þ ¼ 1> 0, and NðrÞ is a continuous function,
there is at least one point at r > 0, say, r�, in which
Nðr�Þ ¼ 0. This fact demonstrates explicitly that the sin-
gular point of origin r ¼ 0 is hidden inside of an event
horizon.

2. 13q1 þ 4q2 þ q3 ¼ 0 and q1 � 0

When� ¼ �3=4 and q1 � 0, the functionNðrÞ behaves
in the vicinity of r ¼ 0 as

NðrÞ 	 A lnr; A ¼ 3ð4q1 þ q2Þ
q1

> 0: (30)

Thus, at the point of origin Nð0Þ ¼ �1, and one has at
least one solution of the equation NðrÞ ¼ 0, as in the
previous case.

3. 13q1 þ 4q2 þ q3 ¼ 0 and q1 ¼ 0

When � ¼ �3=4 and q1 ¼ 0, one obtains that q2 is
negative, and at r ! 0 the function NðrÞ behaves as

NðrÞ 	 ��jq2j
r4

: (31)

Thus, the values Nð0Þ are now infinite, but also negative,
confirming our conclusion that there exists at least one
point with Nðr�Þ ¼ 0.
The inequalities (28) can be rewritten in the simple form

using the following reparametrization:

q1 ¼ �Q1; q2 ¼ 4Q1 �Q2 �Q3;

q3 ¼ �3Q1 þQ2 þ 4Q3:
(32)

In these new terms, the basic inequalities read

Q1 � 0; Q2 � 0; Q3 > 0; (33)

separating the first octant with two boundary planes in the
auxiliary three-dimensional space of parameters Q1, Q2,
and Q3. A true number of horizons for each set of q1, q2,
and q3, satisfying (28) depends on relations among the
mass, charge, and coupling constants. Below, we consider
a number of exact solutions illustrating our conclusions.

IV. EXPLICIT EXAMPLES OF EXACT SOLUTIONS
WITH NONMINIMAL HORIZONS

A. Nonminimal solution of the Reissner-Nordström
type with q1 ¼ 0, 4q2 þ q3 ¼ 0

The given set of parameters relates to the third (special)
case, considered in the previous subsection. When q1
vanishes and q3 ¼ �4q2, the formulas (19) and (20) yield

�ðrÞ ¼ 1; NðrÞ ¼ 1� 2M

r
þ �

2r2
þ �q2

r4
: (34)

We deal with the one-parameter nonminimal generaliza-
tion of the Reissner-Nordström solution. This exact solu-
tion is characterized by the infinite central value Nð0Þ, this
value being negative if q2 < 0. Thus, starting from
Nð1Þ ¼ 1> 0, the continuous function NðrÞ tends to
Nð0Þ ¼ �1 and crosses the line N ¼ 0 at least once for
arbitrary mass and charge. In other words, the equation
NðrÞ ¼ 0 leads to the quartic equation

r4 � 2Mr3 þ �

2
r2 þ �q2 ¼ 0; (35)

which has at least one positive real root and, thus, guaran-
tees that the space-time possesses at least one horizon
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for arbitrary mass and charge. For this case, the in-
equalities (28) yield that �3q2 > 0, in agreement with
our conclusion.

Generic requirements for M, �, and q2, which classify
the number of nonminimal horizons, can be found using
the well-known Ferrari method (see, e.g., [14]); neverthe-
less, we restrict ourselves to two explicit examples only,
demonstrating the cases with one and three horizons.

1. M ¼ 0: One horizon

In the minimal model, the condition M ¼ 0 leads to the
Reissner-Nordström solution with a naked singularity. In
the nonminimal model, the quartic equation (35) reduces to
the biquadratic one, and, clearly, the only positive real root
is

r ¼ rðHÞ ¼ 1

2

ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16jq2j

�

s
� 1

vuut
: (36)

In the minimal limit q2 ! 0, the radius of the horizon rðHÞ
tends to zero. When jq2j � �, rðHÞ !

ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

p
; when

jq2j 
 �, rðHÞ ! ð�jq2jÞ1=4.

2. � ¼ 2M2: Three horizons

In the minimal model, the condition � ¼ 2M2 (or,
equivalently,M2 ¼ Q2

ðmÞ) introduces the so-called extreme

Reissner-Nordström black hole, for which two horizons
coincide. For the nonminimal model, Eq. (35) can be
presented as a product of two quadratic equations.
Clearly, for arbitrary mass there exists the positive real root

rðH1Þ ¼ M

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

p
M

s �
: (37)

In addition, when M> 4
ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

p
, there are two roots else

rðH2;3Þ ¼ M

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

p
M

s �
: (38)

When q2 ! 0, one obtains from (37) and (38)

rðH1Þ ’ Mþ
ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

q
; rðH2Þ ’ M�

ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

q
;

rðH3Þ ’
ffiffiffiffiffiffiffiffiffiffiffi
2jq2j

q
:

(39)

This means that nonminimal coupling removes the degen-
eration, which appears if the mass coincides with the
charge, and splits the double horizon of the extreme
Reissner-Nordström magnetic black hole into two space-
apart horizons with the radii rðH1Þ and rðH2Þ, respectively.
The radius of the third nonminimal horizon rðH3Þ tends to
zero at vanishing coupling parameter q2.

B. Nonminimal model of the Drummond-Hathrell type

The one-parameter Drummond-Hathrell model arises
from the calculation of the one-loop QED corrections to
the Einstein-Maxwell Lagrangian in curved space-time
[15]. For this model q1 ¼ �5q, q2 ¼ 13q, and q3 ¼
�2q, where q ¼ �	2

180� (� � 1=137 is the fine structure

constant, and 	 � 4� 10�13 m is the Compton wave-
length of the electron). Clearly,

q1 � 0; 13q1 þ 4q2 þ q3 ¼ �15q < 0;

q1 þ q2 þ q3 ¼ 6q > 0;
(40)

i.e., this set of the coupling constants satisfies basic in-
equalities (28).

1. Number of horizons

In the Drummond-Hathrell model � ¼ 0, and the metric
functions �ðrÞ and NðrÞ take the following explicit form
[16]:

�ðrÞ ¼ 1; NðrÞ ¼ r4 � 2Mr3 þ�r2=2� 2�q

r4 þ 5�q
: (41)

At the point of origin, Nð0Þ ¼ �2=5< 0 in agreement
with (29), as well as Nð1Þ ¼ 1; thus, at least one horizon
exists for arbitrary mass and charge. Let us mention that
Nð0Þ � 1; consequently, the metric (41) possesses the so-
called ‘‘mild’’ or ‘‘conic’’ singularity. This means that the
metric functions themselves �ðrÞ and NðrÞ are finite at r ¼
0, whereas the Ricci scalar is infinite because of the term
½1� NðrÞ�=r2. The same situation is described in Ref. [8]
for the Fibonacci model.
In order to find the number of horizons for the metric

(41), let us consider in more detail the roots of the numera-
tor of NðrÞ, i.e., analyze the quartic equation

r4 � 2Mr3 þ �r2

2
� 2�q ¼ 0: (42)

We divide the analysis into two cases: � > 96q and � �
96q. When � > 96q, it is convenient to introduce the
following auxiliary quantities:

M1;2 ¼ 2r1;2
3

þ �

6r1;2
; r1;2 ¼

ffiffiffiffi
�

p
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 96q

�

s �
1=2

:

(43)

There are three different possibilities:
(i) M1 <M<M2: Equation (42) has three real positive

solutions.
(ii) M ¼ M1 or M ¼ M2: There are two different solu-

tions, since a couple of solutions coincide.
(iii) M<M1 or M>M2: Equation (42) has only one

real positive solution.

When � � 96q, Eq. (42) has only one positive real root for
arbitrary mass M. In other words, for arbitrary magnetic
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charge (i.e., for any �), one can find at least one horizon
attributed to any mass M, and the naked singularity does
not exist in the nonminimal Drummond-Hathrell model.

As a simple explicit illustration let us assume that the
monopole mass M is vanishing. Then the single positive
solution to (42) can be written in the explicit form

rh0 ¼
ffiffiffiffi
�

p
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32q

�

s
� 1

�
1=2

: (44)

If q ¼ 0, this horizon turns into the point of origin. When
q � �, rh0 tends to 2

ffiffiffi
q

p
; when q 
 �, rh0 �

ffiffiffiffiffiffiffiffiffi
2�q4

p
. Thus,

this horizon is essentially nonminimal.

2. Numerical estimation of the radius of the nonminimal
horizon

The nonminimal Drummond-Hathrell model is espe-
cially attractive, since all of the parameters of the model
can be directly estimated. Indeed, the value of q can be

readily estimated as q ¼ �	2

180� � 2� 10�30 m2. The quan-

tity
ffiffiffiffi
�

p
is proportional to the magnetic chargeQðmÞ, and for

a magnetic monopole with unit charge it can be estimated
as

ffiffiffiffi
�

p ’ 10�34 m [17]. Thus, we deal with the case q 
 �,
the inequality � � 96q is valid, and there is only one
horizon according to our previous analysis. The radius of
nonminimal horizon can be found now from the formula

rh � ð2�qÞ1=4 	 10�25 m: (45)

The choice of this formula can be motivated as follows.
The mass of the monopole is unknown, but we assume that
it is less than the Planck mass, which guarantees thatM �ffiffiffiffi
�

p
. Then, using Eq. (44) for vanishing mass, and taking

into account that q 
 �, we obtain (45). Thus, our con-
clusion is that the nonminimal horizon in the Drummond-
Hathrell model has the radius of the order 10�25 m. This
value is much greater than the Planck length Lpl 	
10�35 m but is much smaller than the Compton wavelength
of the electron 	 � 4� 10�13 m.

V. DISCUSSION

The logic of the development of the nonminimal
Einstein-Maxwell theory prompts that the phenomenolog-
ically introduced coupling constants q1, q2, and q3, which
have the dimensionality of area, either have to be associ-

ated with some known constants of Nature or some new
nonminimal radii should be introduced and properly mo-
tivated. One attempt to realize this idea was made in
Ref. [7], where the approach based on the symmetry of
the susceptibility tensor Rikmn (3) is proposed. In
Refs. [8,9,13,18], special sets of coupling parameters
were found, for which the metric functions of nonmini-
mally coupled systems happened to be regular, and the
absence of singularity became one of the arguments for the
nonminimal extension of the Einstein-Maxwell theory.
Here we analyzed a new possibility to fix the coupling

constants, which is related to the censorship conjecture. We
discussed the three-parameter family of exact solutions of
the nonminimal Einstein-Maxwell model, which can be
associated with magnetic monopoles of the Dirac type. We
have shown explicitly that the singular point r ¼ 0 appears
to be hidden by some nonminimal horizon independently
on the mass and magnetic charge, when the basic inequal-
ities (28) are satisfied. In terms of new appropriate parame-
ters Q1, Q2, and Q3 [see (32)] such a kind of nonminimal
clothing is possible, when these new parameters belong to
the first octant of the auxiliary three-dimensional Q space
(including two of three separating planes). As it was shown
by the example of the nonminimal Drummond-Hathrell
model (see Sec. IVB), the radius of the nonminimal event
horizon can be estimated as rh 	 10�25 m; i.e., it can be
greater by 10 orders than the Planck length Lpl. In forth-

coming papers we intend to analyze nonminimal models
with electric charge and the dyonic model in order to find
analogous necessary conditions prescribed by the censor-
ship conjecture. We believe that the combination of re-
quirements obtained for nonminimal magnetic monopoles,
electrically charged objects, and dyons could fix the choice
of coupling constants and define unambiguously the radius
of the event horizon rðPÞ associated with the censorship

conjecture, proposed by Penrose.
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