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We consider properties of near-critical solutions describing a test static axisymmetric D-dimensional

brane interacting with a bulk N-dimensional black hole ðN >DÞ. We focus our attention on the effects

connected with curvature corrections to the brane action. Namely, we demonstrate that the second order

phase transition in such a system is modified and becomes first order. We discuss possible consequences of

these results for merger transitions between caged black holes and black strings.
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I. INTRODUCTION

Transitions with a change of Euclidean topology is a
subject of wide physical interest. One interesting example
is the phase transition connected with a nucleation of a
black hole in a thermal bath. Consider a thermal field with
temperature T in a flat spacetime. One can use Euclidean
fields on a spacetime with the topology RD�1 � S1 to
describe a canonical ensemble for such a field. The size
of the compact dimension S1 is� ¼ 1=T. A nucleation of a
black hole changes the Euclidean topology from RD�1 �
S1 to SD�2 � R2. The corresponding Euclidean space after
the black hole nucleation is the Gibbons-Hawking instan-
ton [1].

Another important example of a similar phenomenon is
the so-called merger phase transition which occurs in
models with large extra dimensions when a black hole is
localized in a spacetime which has additional k compact
dimensions (D ¼ 4þ k) (a caged black hole, for reviews
see [2–6]). In the absence of the black hole such a space-
time has the topology R4 � Tk. Kol argued [7] that the
black hole-black string phase transition includes a local
topology change of the corresponding Euclidean manifold
so that the singular geometry is a cone over SD�3 � S2 [8].
This topology change is similar to the conifold transition
[9]. In the black hole phase the SD�3 is contractible while
in the black string phase the S2 is contractible. In order to
achieve this topology change one has to pass a configura-
tion which is singular at the tip of the cone. The ‘‘double-
cone’’ over SD�3 � S2 is given by

ds2 ¼ d�2 þ �2

D� 2
½d�2 þ cosð�Þ2dt2

þ ðD� 4Þd�2
D�3�: (1)

For more details see [2,10].
Kol [11] proposed that there exists a relation between

merger transitions and Choptuik’s critical collapse [12,13].
This correspondence can be achieved by performing two
analytic continuations. The physics of the critical collapse

and merger transitions have some common features like a
singular critical solution which turns out to be an attractor
and a self-similar solution in the neighborhood of the
singular point. A better understanding of one of the sys-
tems may shed light on the other.
It is interesting that there also exists a close similarity

between the properties of merger transitions and a toy
model proposed some time ago for study transitions during
which the Euclidean topology is changed [14–16]. This
model consists of an N-dimensional static bulk black hole
and a D-dimensional brane (D<N) interacting with this
black hole. The brane is assumed to be a test brane and
infinitely thin. The former assumption means that one
neglects the effects connected with the gravitational field
of the brane, while the latter one implies that the effects of
the brane thickness are neglected and its world sheet is a
minimal surface which provides an extremum of the Dirac-
Nambu-Goto (DNG) action. It is assumed that the brane is
static and axisymmetric so that the induced geometry on
the brane possesses the OðD� 1Þ group of isometry. It is
also assumed that far from the black hole the brane surface
is parallel to the equatorial plane of the bulk black hole. For
such a brane there exists two qualitatively different con-
figurations: One, which is called subcritical, is a brane
which does not intersect the black hole event horizon,
and the other, supercritical, is a brane crossing the horizon.
In the latter configuration the induced geometry on the
world sheet of the brane is the geometry of a
D-dimensional black hole, which is called a brane black
hole, or briefly BBH. Such a black hole is absent for a
subcritical configuration. Thus by changing the position of
the brane at infinity (asymptotic data), one generates a
transition between BBH and no-BBH phases (see Fig. 1).
If this change is done adiabatically, then one deals with a

one parameter set of quasistatic solutions. After Wick’s
rotation of time one gets a one parameter set of Euclidean
induced metrics, with a change of the Euclidean topology
of the induced metric at some critical value of the asymp-
totic data, which plays the role of an order parameter. The
Euclidean topology changes from S1 � RD�1 for the sub-
critical configuration to R2 � SD�2 for the supercritical. It
was demonstrated [14–16] that when the effects of the
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brane stiffness are neglected the relation between the
asymptotic data and the mass of the induced BBH for the
transition between sub- and supercritical configurations is
universal, that is it does not depend on the bulk black hole
characteristics. Moreover, there is no mass gap for a cre-
ation of a BBH, so that the corresponding phase transition
is of the second order. The near-critical solutions possess
discrete (for D � 6) or continuous (for D> 6) self-
similarity, which makes this transition formally similar
both to the merger transitions and the near-critical collapse
discovered by Choptuik [12]. (For a general review of the
critical collapse see e.g. [13]. See also a discussion [17] of
the critical collapse in a higher dimensional spacetime.).
These properties and close similarity of near-critical solu-
tions for both the BBH model and merger transitions make
it interesting to consider in the framework of the BBH
model some general problems which exist for this class of
models.

Before discussing these problems we mention that the
universality of the near-critical behavior in the BBH model
is a consequence of the following fact: only near-horizon
properties of these solutions are important . In this near-
horizon domain there is no dimensionful parameter which
determines the behavior of the system. As a result of this
the system has scaling properties and the related phase
transition is of the second order. This is why the model
captures many universal features of various physical sys-
tems [18]. One important example of such a system pro-
vides a holographic description of the meson melting phase
transition of matter in the fundamental representation [19–
23]. The configuration consists of Nc color Dp-branes and
Nf flavor Dq-branes when p < q. The addition of the

flavor Dq-branes is dual to the addition of matter in the
fundamental representation in the gauge theory. In the limit
Nc � Nf the Dp-branes are described by a p-brane super-

gravity action (‘‘black Dp-branes’’) while the Dq-branes
are described by the DNG action. In other words, we can
say that there are Dq-branes in the background of Dp-
branes. In this system, the point where the brane touches
the black hole horizon corresponds to a certain temperature
where the mesons melt [24]. The holographic description
of the melting corresponds to the transition from the sub-
critical embedding to the supercritical one.

Let us consider merger transitions in more detail. It is
evident that the double-cone solution (1) is smooth every-
where except for the tip � ¼ 0 where the curvature be-

comes singular. Near the tip the Kretchsman curvature
scalar R2 ¼ R����R

���� infinitely grows

R 2 ¼ 4ðD� 3Þ2ðD� 2Þ
ðD� 4Þ�4

: (2)

The existence of the infinite curvature indicates that the
solution obtained in the framework of classical Einstein
gravity should be modified by quantum corrections. In
other words, the naked singularity that is formed during
the merger transition in its classical description might be
resolved by the inclusion of quantum corrections into the
classical action [25]. This conclusion is important. It
means that if the transition between a black hole and black
string phases occurs through the merger transition, one can
expect the formation of a region with very high (up to the
Planckian) curvature in a system characterized by macro-
scopic parameters (size of extra dimensions). An important
question is how quantum gravity effects modify an adopted
picture of classical merger transition.
Trying to answer this question one inevitably meets two

difficult problems. One is of technical origin, namely, how
the near-critical solutions for the merger problem are
modified by quantum gravity corrections, for example,
by adding to the Einstein-Hilbert action quadratic curva-
ture corrections which arise in one loop computations. One
can expect that the corresponding corrections become
important when the curvature near the tip reaches the
Planckian scale. The other more difficult problem is the
following. At the corresponding Planckian scale the higher
loop quantum gravity terms might also become important.
If this happens, it would indicate that a complete solution
of the problem requires the summation of all quantum
loops or the use of a more fundamental theory of gravity,
such as string theory. All of the above makes the problem
very complicated for analysis.
For this reason it is interesting to analyze a much simpler

BBH model which has qualitatively the same behavior as
merger transitions. Its critical solutions also have curvature
singularity at the cone tip where it touches the horizon. One
can expect that adding terms quadratic in the extrinsic
curvature to the classical DNG Lagrangian, which are
analogous to local one loop corrections in quantum gravity,
may ‘‘cure’’ this ‘‘disease.’’ Such curvature corrections
naturally arise as a result of the stiffness effect [26]. In
the case of strings they were suggested by Polyakov [27].
We can think about such terms as corrections that come

FIG. 1 (color online). Three possible types of configurations—the subcritical embedding (left) where the brane does not touch the
black hole horizon, the supercritical (right) where we have an induced black hole on the brane (BBH), and the critical (center) which is
singular at its tip.
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from the finite thickness of the brane which is ignored in
the DNG action. The DNG action can be considered as the
zeroth order in the expansion in the width over a typical
length in the system [28,29]. Usually the small parameter
in such an expansion is the ratio of the thickness of the
brane to the characteristic radius of the brane bending. It is
instructive first to study effects connected with the leading
order terms in this expansion. In this analogy the thickness
of the brane plays the role similar to the Planck scale.
Moreover, if one describes the brane as a special topologi-
cally stable solution of some nonlinear field theory, one
may, in principle, answer not only the question of how the
quadratic curvature corrections modify the near-critical
solutions, but also investigate the complete field theoretical
object behavior in the near-critical regime. Effectively this
corresponds to the summation of all the stiffness
corrections.

In the present paper we focus on the first problem,
namely, we will analyze how the lowest order stiffness
corrections modify the phase transition in the BBH
systems.

A good analogy that helps to understand the effect of
stiffness terms is a stiff bar. Consider the bending of a stiff
bar. When we take into account the effect of the stiffness of
the bar, its bending costs energy. Hence we cannot bend the
bar as much as we want and it would eventually break long
before a sharp tip is created. The sharp tip corresponds to
the singular critical solution of the DNG action. One might
expect that inclusion of higher derivative terms to the
Lagrangian would prevent the creation of such a singular
solution and will form a first order phase transition long
before. Indeed, as we will see this is what happens in the
BBH system for the subcritical configuration.

The higher derivative corrections to the BBH system can
serve as a toy model for the singularity resolution of ‘‘small
BHs.’’ Small BHs are singular limits of BH parameters in
which the horizon becomes singular (see for example
[30,31]). If we look at the induced BH on the brane, the
critical solution has a singularity exactly of this type.

The paper is organized as follows. In Sec. II we review
the main results concerning the near-critical branes ob-
tained in the absence of stiffness in the BBH model. In
Sec. III we discuss the curvature corrections for a stiff
brane. The stiff brane equations are presented in Sec. IV.
Section V contains the analysis of near-critical solutions in
the linear approximation. In Secs. VI and VII the numerical
results for near-critical branes are presented. Section VIII
contains a summary of the obtained results and their
discussion.

II. NONSTIFF BRANES

In this section we briefly review the main results of [16]
concerning the behavior of near-critical D-dimensional
branes without stiffness interacting with a bulk static
spherically symmetric N-dimensional black hole. We do

this mainly to explain the setup of the problem and to fix
the notations we will use later. The Schwarzschild-
Tangherlini metric of the bulk N-dimensional spacetime is

dS2 ¼ g��dx
�dx� ¼ �FdT2 þ F�1dr2 þ r2d�2

N�2;

(3)

where F ¼ 1� ðrg=rÞN�3 and d�2
N�2 is the metric of a

ðN � 2Þ-dimensional unit sphere SN�2. We define the co-
ordinates �i (i ¼ 1; . . . ; N � 2) on this sphere by the rela-
tions

d�2
iþ1 ¼ d�2iþ1 þ sin2�iþ1d�

2
i : (4)

We denote by x� (� ¼ 0; . . . ; N � 1) the bulk spacetime
coordinates and by �aða ¼ 0; . . . ; D� 1Þ the coordinates
on the brane world sheet. The functions x� ¼ X�ð�aÞ
determine the brane world sheet describing the embedding
of the ðD� 1Þ-dimensional object (brane) in a bulk
N-dimensional spacetime. We assume that D � N � 1.
In the absence of stiffness, the brane configuration in an

external gravitational field g�� can be obtained by solving

the equations which follow from the DNG action [32–34]

S ¼
Z

dD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� det	ab

p
; (5)

where 	ab ¼ g��X
�
;aX�

;b is an induced metric on the brane

world sheet. We set the brane tension factor, which does
not enter the brane equations, equal to 1. It is well known
that an extremum of this action is a minimal surface. Let
n
�
ðiÞ be unit normals to the brane and

KðiÞ

� ¼ �@X�

@�

@X�

@��
r�n

ðiÞ
� (6)

be an extrinsic curvature tensor. (r� is a covariant deriva-
tive with respect to the bulk metric g��.) Then the nonstiff

brane equations are of the form

KðiÞ ¼ g
�KðiÞ

� ¼ 0: (7)

For the axially symmetric D-dimensional static brane
(with the isometry group OðD� 1Þ) the induced metric is
ðn ¼ D� 2)

ds2 ¼ 	abd�
ad�b

¼ �FdT2 þ ½F�1 þ r2ðd�=drÞ2�dr2 þ r2sin2�d�2
n;

(8)

and the action (5) reduces to

S ¼ �TAn

Z
drL;

L ¼ rnsinn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Fr2ðd�=drÞ2

q
:

(9)

Here �T is the interval of time and An ¼ 2�n=2=�ðn=2Þ
is the surface area of a unit n-dimensional sphere.
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By analyzing the brane equation it is easy to show [16]
that for a brane which asymptotically approaches the
equatorial plane � ¼ �=2 one has

� ¼ �

2
þ qðrÞ; q ¼ p

r
þ p0

�
r�1 lnr; for n ¼ 1;
r�n; for n > 1:

(10)

We call the set of parameters fp; p0g, which characterizes
the solution, the asymptotic data.

The same solution can be determined by its behavior
near the horizon. A subcritical brane is uniquely specified
by the distance of its tip from the horizon. The condition of
the brane surface regularity at this point requires that its
tangent plane at the tip is orthogonal to the symmetry axis.
This fixes the second constant in the solution. Similarly, a
regular brane crossing the horizon is orthogonal to the
horizon surface, so that a unique constant fixing the solu-
tion is the ‘‘gravitational’’ radius of the induced BBH. A
solution separating the sub- and supercritical solution is a
critical solution. We denote by fp�; p0�g its asymptotic data.

Figure 2 illustrates the near-critical behavior of a super-
critical brane. (A similar graph for subcritical branes can
be easily obtained from this one by evident changes.) A
near-critical brane configuration is characterized by a pa-
rameter R0, which is its radius at the intersection with the
horizon. For a subcritical brane a similar parameter is Z0,
the proper distance of the tip of the brane from the horizon.
We consider a case when R0 (Z0) is much smaller than the
gravitational radius rg of the bulk black hole. In the vicinity

of the horizon, located at Z ¼ 0, that is for Z � rg, one has

r� rg � �Z2=2; F � �2Z2; (11)

where � ¼ 1
2 ðdF=drÞjrg is the surface gravity. We call this

region a near (or Rindler) zone. The corresponding in-
duced metric for a near-critical brane in the Rindler zone is

ds2 ¼ ��2Z2dT2 þ
��

dZ

d


�
2 þ

�
dR

d


�
2
�
d
2 þ R2d�2

n:

(12)

Here ðZð
Þ; Rð
ÞÞ is a brane equation written in a para-
metric form. The action (5) for this induced metric is

S ¼ ��TAnS; (13)

S ¼
Z

d
ZRn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdZ=d
Þ2 þ ðdR=d
Þ2

q
: (14)

This action is evidently invariant under the transformations


 ! ~
ð
Þ. In the regions where either Z or R is a mono-
tonic function of 
, these functions themselves can be used
as parameters. As a result, one obtains two other forms of
the action which are equivalent to S

S ¼
Z

dZLR ¼
Z

dRLZ; (15)

where

L R ¼ ZRn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02

p
; LZ ¼ ZRn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _Z2

p
: (16)

Here the prime stands for the derivative with respect to Z,
while the dot stands for the derivative with respect to R.
The corresponding Euler-Lagrange equations are

ZRR00 þ ðRR0 � nZÞð1þ R02Þ ¼ 0; (17)

RZ €Zþ ðnZ _Z� RÞð1þ _Z2Þ ¼ 0: (18)

It is easy to check that the form of Eqs. (17) and (18) is
invariant under the following transformations:

RðZÞ ¼ k ~Rð ~ZÞ; Z ¼ k ~Z; (19)

ZðRÞ ¼ k ~Zð ~RÞ; R ¼ k ~R: (20)

Equations (17) and (18) have a simple solution

R ¼ ffiffiffi
n

p
Z (21)

which plays a special role. We call it a critical solution. It
describes a critical brane which touches the horizon of the
bulk black hole at one point, Z ¼ R ¼ 0. It separates the
two different families of solutions, supercritical and
subcritical.
The relation between R0 and fp; p0g is of the form

lnR0 ¼ 	 ln�pþ fðln�pÞ þ . . . ; (22)

where

	 ¼ 2

nþ 2
; �p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� p�Þ2 þ ðp0 � p0�Þ2

q
; (23)

and the function fðzÞ is periodic, fðzþ!Þ ¼ fðzÞ, with

FIG. 2 (color online). This figure schematically shows a con-
figuration of a supercritical brane in the regime when it is close
to the critical one. Z is a proper distance from the horizon as a
function of the radius R. R0 is the radius of the surface of the
intersection of the brane with the horizon. In the region where
Z � rg the curvature surface of the horizon can be neglected

(the Rindler domain).
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the period

! ¼ �ðnþ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4n� n2

p : (24)

Our aim is to study how the near-critical solutions are
modified when a brane is stiff. We assume that the effective
width of the brane is much smaller that the gravitational
radius of the black hole. In this approximation, as in the
case of a nonstiff brane, the main features of the phase
transition in the BBH system are determined by the brane
behavior in the near zone, that is close to the event horizon
of the bulk black hole, where the Rindler approximation is
valid.

III. STIFF BRANES

In this work we consider the Dirac-Nambu-Goto action
with minimal stiffness correction terms which play the role
of higher curvature corrections [35]:

S ¼ �
Z

dnþ2�
ffiffiffiffiffiffiffiffi�	

p ð1þ BK2 þ CK2Þ: (25)

Here 	 is the determinant of the induced metric given in

Eq. (5), K ¼ P
iK

ðiÞ�
� is the trace of the extrinsic curvature

tensor, and K2 ¼ P
iKðiÞ��K

ðiÞ�� is its square. A minimal

model of stiffness corrections involves only quadratic
powers of the extrinsic curvature tensor. In this work we
will concentrate on the above ‘‘truncated’’ model as a toy
model whose solution gives us the static configuration of a
stiff brane embedded close to the horizon of the bulk black
hole, namely, in the Rindler zone.

In the particular case of a domain wall the stiffness
coefficients were calculated in the framework of a micro-
scopic model of a vacuum defect in field theory with
spontaneous symmetry breaking [29]. In this work we
show that the exact numerical values of the coefficients
do not affect the qualitative features of the solution.
Nevertheless the sign of the coefficients is important.
Positive stiffness coefficients

B;C > 0

ensure us that the energy density for the static solution

� ¼ �L ¼ ffiffiffiffiffiffiffiffi�	
p ð1þ BK2 þ CK2Þ (26)

is positive since K2 and K2 are both non-negative.
Before going further let us discuss two interesting spe-

cial cases of the general theory.
C ¼ 0 case. In this special case the stiff string equations

have a simple exact solution. Namely, any solution of the
DNG equations (7) is at the same time a solution of the stiff
string equations. Indeed, a general variation of the action
can be split into the variation along the brane and the
transverse one. Variations along the brane surface vanish
identically. For transverse variations, multiplying the equa-
tions of motion by a normal to the brane gives

n
�
ðiÞ

�L
�X� ¼ KðiÞð1þ BK2Þ; �2B

ffiffiffiffiffiffiffiffi�	
p

Kn
�
ðiÞ

�K

�X� ¼ 0:

(27)

Now, substituting the DNG equation KðiÞ ¼ 0 into the
right-hand side of (27), we see that it vanishes. Hence

KðiÞ ¼ 0 is a solution of the stiff string equations.
BþC ¼ 0 case. This case is not interesting for our

consideration since it violates the positive energy condi-
tion, but it is of mathematical interest. Let us notice that the
Gauss-Codazzi relation for a flat bulk spacetime implies

R ¼ K2 �K2: (28)

Thus one can rewrite the action (25) in the following form:

S ¼ �
Z

dnþ2�
ffiffiffiffiffiffiffiffi�	

p ð1þ BRþ ðBþ CÞK2Þ: (29)

For Bþ C ¼ 0 the term with K2 vanishes.
Let us return to the discussion of the general case. The

units of the stiffness coefficients are length-squared.
Therefore under scaling transformation of the spatial co-
ordinates

R ! sR; Z ! sZ; (30)

we have

K2 ! s�2K2; K2 ! s�2K2: (31)

Using this transformation we can set one of the coeffi-
cients to be unit, say C ¼ 1. We can think about it as taking

the basic unit length of the stiff string to be
ffiffiffiffi
C

p
. Then we

are left only with one free parameter B in the action. We
will use this choice later in Secs. VI and VII, when we will
discuss the results of the numerical calculations.
For completeness we give here the components of the

extrinsic curvature for the brane ðZð
Þ; Rð
ÞÞ with the
induced metric (12):

K

 ¼ P�1A; KTT ¼ �Z
dR

d

P�1;

K�� ¼ R
dZ

d

P�1; (32)

where

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdZ=d
Þ2 þ ðdR=d
Þ2

q
; (33)

A ¼ dZ

d


d2R

d
2
� dR

d


d2Z

d
2
: (34)

The action (25) for the induced metric (12) takes the
following form:
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S ¼ ���TAn

Z
d
L;

L ¼ L0 þ BL1 þ CL2; L0 ¼ ZRnP ;

L1 ¼ ZRnP
�
A
P 3

þ dR=d


ZP
þ n dZ=d


RP

�
2
;

L2 ¼ RnðdR=d
Þ2
ZP

þ nZðdZ=d
Þ2Rn�2

P
þ ZRnA2

P 5
:

(35)

The action (25) is evidently invariant under transforma-

tions 
 ! ~
ð
Þ as in the nonstiff case. In a general case, a
variation of this action gives equations containing fourth
derivatives, while the corresponding constraint equations
are of the third order [36].

IV. EULER-LAGRANGE EQUATIONS FOR STIFF
BRANES

In the regions where either Z or R is a monotonic
function of 
, one of the coordinates can be used as a
parameter. As a result, one obtains two additional forms of
the action:

S ¼ �
Z

dZLR ¼ �
Z

dRLZ; (36)

where

LR ¼ ZRnP
�
1þ B

�
R00

P 3
þ R0

ZP
þ n

RP

�
2

þ C

�
R002

P 6
þ R02

Z2P 2
þ n

R2P 2

��
; (37)

LZ ¼ ZRnP
�
1þ B

�
1

ZP
� €Z

P 3
þ n _Z

RP

�
2

þ C

� €Z2

P 6
þ 1

Z2P 2
þ n _Z2

R2P 2

��
: (38)

P in the first relation means P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02p

, while in the

second equation one has P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _Z2

p
.

As in the nonstiff case, the form with RðZÞ is useful for
the description of the supercritical brane while ZðRÞ is
more suitable for the description of subcritical branes.
The equation for RðZÞ takes the following form:

�2bZ3R3ð1þR02Þ2Rð4Þ þ 4bZ2R2ðR02 þ 1Þ½5ZRR0R00

� ðR02 þ 1ÞðnZR0 þRÞ�Rð3Þ þFðR;R0;R00; ZÞ ¼ 0; (39)

where

FðR; R0; R00; ZÞ ¼ 5bZ3R3ð1� 6R02ÞR003 þ 3bZ2R2ð1þ R02Þ½5RR0 þ nZð4R02 � 1Þ�R002 þ Z3R3ð1þ R02Þ3R00

� ZRð1þ R02Þ2ð2½2bþ 3B�nZRR0 þ bR2½R02 � 2� þ nZ2½bþ 3B� 3Bnþ 2bðn� 2ÞR02�ÞR00

þ ð1þ R02Þ3ðR3R0½Z2 þ Z2R02� � nZR2½Z2 þ Z2R02�Þ � ð1þ R02Þ3ð½b� 3Bðn� 1Þ�nZ2RR0

� bnZR2R02 þ bR3R0½R02 þ 2� þ n½n� 2�Z3½bþ Bðn� 1Þ þ 2bR02�Þ (40)

and b ¼ Bþ C.
A similar equation for ZðRÞ is

� 2bR3Z3ð1þ _Z2Þ2Zð4Þ þ 4bR2Z2ð1þ _Z2Þ½5RZ _Z €Z�ð1þ _Z2ÞðnZþ R _ZÞ�Zð3Þ þGðZ; _Z; €Z; RÞ ¼ 0; (41)

where

GðZ; _Z; €Z; RÞ ¼ 5bR3Z3ð1� 6 _Z2Þ €Z3 þ 3bR2Z2ð1þ _Z2Þ½5nZ _Zþ Rð4 _Z2 � 1Þ� €Z2 þ R3Z3ð1þ _Z2Þ3 €Z
� RZð1þ _Z2Þ2ð2½3Bþ 2b�nRZ _Z� bR2½2 _Z2 � 1� þ nZ2½2bðn� 2Þ þ ð3Bþ b� 3BnÞ�Þ €Z
� R2Z2ðR� nZ _ZÞð1þ _Z2Þ4 þ ð1þ _Z2Þ3ð�bnR2Z _Zþ nRZ2½b� 3Bðn� 1Þ� _Z2 þ bR3½1þ 2 _Z2�
þ 2bnðn� 2ÞZ3 _Zþ nðn� 2ÞZ3 _Z3½bþ Bðn� 1Þ�Þ: (42)

Let us denote

l ¼ maxð ffiffiffiffi
B

p
;

ffiffiffiffi
C

p Þ: (43)

l has dimensionality of the length. The extrinsic curvature
corrections are dominant for R;Z & l where the stiff brane
differs significantly from the DNG brane. The significant
effect of the stiffness is localized in the region where the
original DNG brane is extremely bent. This happens in the
neighborhood of the point R ¼ Z ¼ 0 which is defined by
the length scale l. For R; Z � l the solution for the stiff

brane-BH system approaches the DNG brane-BH system.
In particular, R ¼ ffiffiffi

n
p

Z is the attractor solution for the
DNG brane-BH system and therefore it should be also an
attractor for the stiff brane-BH system.

V. NEAR-CRITICAL MODES

Let us study linear perturbations to the attractor solution
for the case of a stiff brane. Our objective is to obtain the
modes in the neighborhood of the attractor far away from
the singular region Z � l but still located in the Rindler
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zone. The modes will guide us later in the setting of the
boundary conditions for stiff branes.

Let us substitute in the equation for R (39) the following
expression:

RðZÞ ¼ ffiffiffi
n

p
Zþ �ðZÞ (44)

and keep only linear terms in �ðZÞ. Then we obtain the
following linearized equation:

as0ðZÞ�þ a�1
sðZÞ�0 þ as2ðZÞ�00 þ as3ðZÞ�ð3Þ þ as4ðZÞ�ð4Þ

¼ 2Cðn� 1Þðnþ 1Þ2n�ð1=2ÞZ; (45)

as0ðZÞ ¼ ðnþ 1Þ½2Bðn� 5Þ � Cðnþ 7Þ� þ a0ðZÞ;
as1ðZÞ ¼ ðnþ 1ÞZ½2Bð16� nÞ � 17Cðn� 1Þ� þ a1ðZÞ;
as2ðZÞ ¼ �ðnþ 1ÞZ2½2Bðnþ 1Þ þ Cð2n� 1Þ� þ a2ðZÞ;
as3ðZÞ ¼ �4ðBþ CÞðnþ 1ÞZ3;

as4ðZÞ ¼ �2ðBþ CÞZ4: (46)

Here aiðZÞ are the coefficients in the linearized DNG brane
equations:

a0ðZÞ ¼ ðnþ 1Þ2Z2; a1ðZÞ ¼ ðnþ 1Þ2Z3;

a2ðZÞ ¼ ðnþ 1ÞZ4:
(47)

Now let us take the limit Z � l and as a result we obtain
the following equation:

ðnþ 1Þ2½Z�þ Z2�0� þ ðnþ 1ÞZ3�00 � 2ðBþ CÞ
� ½2ðnþ 1ÞZ2�ð3Þ þ Z3�ð4Þ�

¼ 2Cðn� 1Þðnþ 1Þ2n�ð1=2Þ: (48)

The leading term of the particular solution at large Z is

�P ¼ Cðn2 � 1Þffiffiffi
n

p
Z

þO
�
1

Z2

�
; (49)

and therefore it does not have an effect on the attractor R ¼ffiffiffi
n

p
Z at large Z, as expected. A general solution of (48) is a

sum of this particular solution and a general solution of the
homogeneous equation obtained from (48) by omitting the
right-hand side. It is interesting that this homogeneous
solution depends only on the sum Bþ C of the stiffness
coefficients.

Since the homogeneous equation is of the fourth order, it
has four linearly independent solutions (asymptotic
modes). Two of the asymptotic modes reproduce the
asymptotic solutions for the DNG brane:

�	 Z�ð1=2Þðn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�4n�4

p
Þ: (50)

The other two modes appear only for the stiff brane:

�	 exp

�



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2ðBþ CÞ

s
Z

�
: (51)

The additional two modes above are added due to the
stiffness corrections. One of the additional modes is an
unstable mode which takes the solution away from the
attractor. This mode should be eliminated by appropriate
boundary conditions in order to reproduce the DNG solu-
tions at large distances.
Thus we arrive to a boundary value problem. Let us take,

for example, the subcritical configuration where the solu-
tion can be written as ZðRÞ (a similar discussion is appli-
cable to the supercritical configuration with some evident
changes). Since Eq. (41) is of the fourth order, we need
four initial values (in case of an initial value problem). The
configuration is axially symmetric with the symmetry axis
R ¼ 0 and it is plausible that the stiff brane solution
preserves the same axial symmetry. Consider a brane pass-
ing through the point Zð0Þ ¼ Z0 (the proper distance of the
tip of the brane from the horizon). The axial symmetry and
the regularity of the brane at R ¼ 0 enforces _Zð0Þ ¼ 0 and

Zð3Þð0Þ ¼ 0, while €Zð0Þ remains a free parameter. This free
parameter will allow us to eliminate the unstable mode by
finding the specific value for €Zð0Þ.
In conclusion, we have a boundary value problem defin-

ing near-critical solutions of the stiff brane equations: In
order to obtain the right asymptotic behavior at large R

Z ! Rffiffiffi
n

p

for a brane which passes at Zð0Þ ¼ Z0 we have to tune the
parameter €Zð0Þ ¼ €Z0.

VI. NUMERICAL RESULTS FOR STIFF BRANES:
n ¼ 1 CASE

Using a numerical shooting analysis we obtained the
values of €Z0 for which there is a solution for the subcritical
brane that satisfies the boundary conditions. It starts at Z0

and asymptotically goes to the attractor. A similar analysis
was performed for the supercritical configuration where
values of R00ð0Þ were determined as a function of R0 (the
radius of the BBH horizon).
Let us start by examining the case n ¼ 1. As we will see,

this case is qualitatively different from n > 1. For B ¼ 0
the action [Eq. (35)] is completely symmetric for the
interchange of R $ Z. This discrete symmetry of the
equations implies the same results for the subcritical and
supercritical configurations. For this reason we give here
the results for the subcritical configuration B ¼ 0 and n ¼
1 (Fig. 3) when for the supercritical configuration the graph
is the same (up to the interchange of R $ Z). The plot at
this figure shows €Z0 as a function of Z0 for near-critical
configurations. The finite gap in the neighborhood of the
point R ¼ Z ¼ 0 demonstrates the first order phase tran-
sition in the BBH system. A detailed interpretation of this
picture is given below in the discussion of the case n ¼ 2
(where the same picture appears only in the subcritical
configuration).
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For the case of B � 0 the action (35) is no longer
symmetric under the reflection R $ Z. Nevertheless we
find numerically that the results are symmetric within the
used accuracy. Evidence for this symmetry we can find in
the linearized equations for a perturbation around the
attractor. In Sec. V we studied linearized perturbations to
the supercritical configuration

RðZÞ ¼ ffiffiffi
n

p
Zþ �ðZÞ: (52)

Keeping only linear terms in �ðZÞ gave us Eq. (45). For the
special case of n ¼ 1 this equation reads

ðBþ CÞZ4�ð4ÞðZÞ þ 4ðBþ CÞZ3�ð3ÞðZÞ
þ Z2ð4Bþ C� Z2Þ�00ðZÞ � 2Z3�0ðZÞ
� 2ðZ2 � 4B� 4CÞ�ðZÞ ¼ 0: (53)

In a similar way for the subcritical configuration sub-
stitution of

ZðRÞ ¼ Rffiffiffi
n

p þ �ðRÞ (54)

into Eq. (41) and keeping only linear terms in �ðRÞ gives
the following linear equation (n ¼ 1):

ðBþ CÞR4� ð4ÞðRÞ þ 4ðBþ CÞR3� ð3ÞðRÞ
þ R2ð4Bþ C� R2Þ €�ðRÞ � 2R3 _�ðRÞ
� 2ðR2 � 4B� 4CÞ�ðRÞ ¼ 0: (55)

Hence the symmetry R $ Z is demonstrated analyti-
cally in the linear approximation. This does not imply an
exact reflection symmetry of the solutions, but at least
makes it possible.

VII. NUMERICAL RESULTS FOR STIFF BRANES:
n > 1 CASE

For n > 1 there is no reflection symmetry of the action
anymore, and sub- and supercritical solutions behave quite
differently. Let us start with the subcritical configuration

and demonstrate that it exhibits the same qualitative fea-
tures as n ¼ 1. This is a good place to compare the details
of the new picture with the nonstiff case.
Consider, for example, the case of n ¼ 2 and B ¼ 1 in

Fig. 4. The value of €Z0 is plotted as a function of the
position where the brane crosses the axis of symmetry
Z0. In the case of DNG branes, i.e. without stiffness, the
dependence of €Z0 on Z0 is determined from the Euler-
Lagrange equation (18) to be (see in [16]):

€Z 0 ¼ 1

ðnþ 1ÞZ0

: (56)

This function is plotted in Fig. 4 for comparison with the
case of stiff branes.
Few features can be observed in the graph:
(i) There is a finite gap 0< Z0 & 1 in which the solu-

tion for the embedded stiff brane does not exist at all.
Hence the singular point is resolved for the subcrit-
ical branch. This is a characteristic feature of first
order phase transitions.

(ii) €Z0 is bounded, unlike DNG branes [Eq. (56)] for
which €Z0 is unbounded

(iii) For 1 & Z0 & 1:25 we see coexistence of two
branches of solutions. For any Z0 in this range there

1 2 3 4 5 6 7
Z0

0.02

0.04

0.06

0.08

Z
..

0 B 0

FIG. 3. €Z0 as a function of Z0 for n ¼ 1 and B ¼ 0. The
symmetry of the action in this case implies that the same graph
is valid to the supercritical configuration as well—R00ð0Þ as a
function of R0.

1 2 3 4 5
Z0

0.05

0.1

0.15

Z
..

0 B 1

FIG. 4 (color online). €Z0 as a function of Z0 for n ¼ 2. The
dashed line is the same function for DNG branes (without
stiffness terms).

1 1.05 1.1 1.15 1.2
Z0

180

185

190

195

200

205

E B 1

FIG. 5. The energy density integrated for 0 � R � 5 as a
function of Z0 comparing two branches in the segment (1 &
Z0 & 1:25). Note that the minimal energy is obtained at the point
which corresponds approximately to €Z0 ¼ 0.
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are two possible values of €Z0 and thus two possible
configurations of the stiff brane. One can compare
the energy [see (38)] of the two branches. A numeri-
cal comparison of the energies (Fig. 5) reveals that
the branch with the lower values of €Z0 is energeti-
cally favored. The branch with higher energy corre-
sponds to a local phase at maximum. This solution
should be unstable and separates two stable phases in
a first order phase transition.

(iv) There are solutions for stiff branes that satisfy the
boundary conditions with negative €Z0. Such solu-
tions exist only for �0:025 & €Z0 & 0.

(v) There exists an ‘‘end point’’ in the plot with minimal
value of €Z0. For €Z0 less than this value a solution
does not exist.

(vi) At large values of Z0 we see that the effects of
stiffness are negligible. The points of the stiff branes
approach the DNG branes at large values of Z0.

In order to check that the obtained results are robust we
repeated the same calculations for various values of B. In
all cases we found that the same qualitative behavior
repeats itself: A finite gap in the existence of solutions
for 0<Z0 & l, two branches of solutions in a small neigh-
borhood of Z0 	 l, etc.

For illustration we give in Fig. 6 two graphs for two
values of B with four orders of magnitude difference (B ¼
0:01, 100).

In addition we checked for various dimensions n ¼ 4, 5
and found the same qualitative behavior (see Fig. 7 for n ¼
4 as an example). Despite the fact that n � 4 is different

from n � 5 since in the former the phase space behavior of
the critical solution behaves as of a focal point and in the
latter as a node (see [16]). This type of transition in the
near-critical solutions has no influence on the neighbor-
hood of the singular point R ¼ Z ¼ 0 where the stiffness
terms are dominant.
It is surprising that when we repeated similar calcula-

tions for supercritical stiff branes with n > 1we found that
for the supercritical configurations there is no singularity
resolution. The stiffness terms break the symmetry be-
tween the supercritical and subcritical brane-black hole
systems. The supercritical solutions show no gap nor
double-branch behavior. As an example let us look at the

1 2 3 4 5
Z0

0.05

0.1

0.15

0.2

Z
..

0 B 1

FIG. 7. €Z0 as a function of Z0 for n ¼ 4, B ¼ 1.

1 2 3 4 5
R0

0.2

0.4

0.6

0.8

R’’(0) B 1

FIG. 8. R00ð0Þ as a function of R0 (supercritical) for n ¼ 2, B ¼
1.
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Z0

0.0005

0.001

0.0015

0.002
Z
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FIG. 6. €Z0 as a function of Z0 for n ¼ 2. B ¼ 100, 0.01.
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R0
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15

20

R’’(0) B 0.5

FIG. 9. R00ð0Þ as a function of R0 (supercritical) for n ¼ 2, B ¼
0:5.
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supercritical configuration for n ¼ 2. For B< 0:906 we
did not find evidence for the existence of a solution in the
vicinity of the point Rð0Þ ¼ R00ð0Þ ¼ 0. See Fig. 8 for B ¼
1 and Fig. 9 for B ¼ 0:5. We stress that in both cases the
curvature singularity still exists.

VIII. DISCUSSION

We observed that due to the stiffness corrections the
singularity of the critical solution is resolved for n ¼ 1 in
a symmetric form (both in the subcritical and supercritical
configurations) and for n > 1 only for subcritical configu-
rations. We observed this resolution in the creation of a
finite gap and a clear signature of a first order phase
transition. This signature is observed in a typical hysteresis
curve of coexistence of two phases—stable and unstable.
For n ¼ 1we see a first order phase transition on both sides
of the singularity (supercritical and subcritical configura-
tions) when for n > 1 we see only half of this picture—a
first order phase transition in the subcritical configuration.

We expect that a similar picture would emerge in merger
transitions when higher derivative corrections are included.
Inclusion of higher derivative corrections might cause the
merger transition to become first order in nature and create
a finite gap between the thin black string (‘‘the waist’’) and
the caged black hole. This way the naked singularity and
the violation of cosmic censorship hypothesis that appear

in the classical approximation would be resolved. This
might also be a natural way to resolve the apparent tension
between the suggested scenario for the merger transition
and the observation that such a pinch-off can occur only at
infinite affine parameter along the horizon [37]. The reso-
lution is the following. When the system approaches the
Planckian scale, at a finite time, the first order phase
transition takes the system to the second phase.
Therefore with quantum corrections the ‘‘pathologies’’ of
infinite affine parameter and naked singularity would be
resolved.
The asymmetry that we found might be a result of the

incompleteness of the truncated model that we used to
describe the full effect of quantum corrections. It might
be also a hint on an asymmetry which is generic in the
topology change in general.
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