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The first spectral numerical simulations of 16 orbits, merger, and ringdown of an equal-mass non-

spinning binary black hole system are presented. Gravitational waveforms from these simulations have

accumulated numerical phase errors through ringdown of & 0:1 radian when measured from the begin-

ning of the simulation, and& 0:02 radian when waveforms are time and phase shifted to agree at the peak

amplitude. The waveform seen by an observer at infinity is determined from waveforms computed at finite

radii by an extrapolation process accurate to & 0:01 radian in phase. The phase difference between this

waveform at infinity and the waveform measured at a finite radius of r ¼ 100M is about half a radian. The

ratio of final mass to initial mass is Mf=M ¼ 0:951 62� 0:000 02, and the final black hole spin is

Sf=M
2
f ¼ 0:686 46� 0:000 04.
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I. INTRODUCTION

Beginning with the groundbreaking binary black hole
evolutions of Pretorius [1] and the development of the
moving puncture method [2,3], it has recently become
possible to solve Einstein’s equations numerically for the
inspiral, merger, and ringdown of two black holes in a
binary orbit. Already these simulations have provided tests
of post-Newtonian approximations [4–14], have allowed
initial exploration of the orbital dynamics of spinning
binaries [15–20], have determined the recoil velocity of
the final black hole when the masses are unequal [21–24],
and have led to the discovery of dramatically large recoil
velocity from certain spin configurations [18,25–37].

Waveforms from these numerical simulations are im-
portant for gravitational-wave detectors such as LIGO and
LISA. This is not only because detected waveforms can be
compared with numerical models to measure astrophysical
properties of the sources of gravitational radiation, but also
because the detection probability itself can be increased via
the technique of matched filtering [38], in which noisy data
are convolved with numerical templates to enhance the
signal.

However, binary black hole simulations are time con-
suming: a single simulation following approximately 10
orbits, merger, and ringdown typically requires a few
weeks of runtime on approximately 50 or 100 processors
of a parallel supercomputer, and typically such a simula-
tion produces waveforms of only modest accuracy. This
large computational expense precludes, for example, pro-
ducing a full template bank of numerical waveforms cover-
ing the entire parameter space of black hole masses and
spins. Hence, there has been much interest in construction
of phenomenological analytical waveforms [7,39–41] that
can be computed quickly and are calibrated by a small
number of numerical simulations. While the accuracy of
typical simulations is sufficient for creating LIGO detec-

tion templates, it is most likely inadequate for LIGO
parameter estimation and is far from what is required for
LISA data analysis [42].
One approach to increasing the accuracy and efficiency

of simulations is to adopt more efficient numerical meth-
ods. In particular, a class of numerical techniques known as
spectral methods holds much promise. For smooth solu-
tions, the errors produced by spectral methods decrease
exponentially as computational resources are increased,
whereas the errors of finite difference methods, the meth-
ods used by the majority of binary black hole simulations,
decrease polynomially. Indeed, spectral methods have been
used to produce very accurate initial data for binary black
holes and neutron stars [43–56], and they have been used to
produce the longest and most accurate binary black hole
inspiral simulation to date [9,57].
However, a key difficulty with time-dependent spectral

binary black hole simulations has been handling the
merger of the two holes. For example, the spectral simu-
lations described in [9,12,57] are very accurate and effi-
cient, but they follow only the inspiral of the two black
holes, and fail just before the holes merge. This is sufficient
for some applications, such as comparing post-Newtonian
formulas with numerical results during the inspiral and
finding accurate analytic templates that match the numeri-
cal inspiral waveforms [9,12], but for most purposes the
merger is the most crucial part of the process: for instance
the gravitational-wave emission is the strongest during
merger, and details of the merger determine the recoil
velocity of the final black hole.
In this paper we present a spectral binary black hole

simulation that follows 16 orbits of the binary plus merger
and ringdown of the merged black hole. In Sec. II we
describe the equations, gauge conditions, and numerical
methods we use to solve Einstein’s equations; in particular,
Secs. II C and IID describe changes to our gauge condi-
tions that allow simulation of the merger, and our method
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for extending the evolution through ringdown. In Sec. III
we discuss extraction of the gravitational waveform from
the simulation, including the process of extrapolating the
waveform to infinity. Section III also includes an estimate
of the uncertainty in the waveform from several sources.
Finally, in Sec. IV we discuss outstanding difficulties and
future improvements.

II. SOLUTION OF EINSTEIN’S EQUATIONS

A. Initial data

The initial data describe two nonspinning black holes,
each with Christodoulou mass M=2, in quasicircular orbit
with low eccentricity. The initial data are exactly as de-
scribed in Ref. [9]. Briefly, initial data are constructed
within the conformal thin sandwich formalism [58,59]
using a pseudospectral elliptic solver [49]. We employ
quasiequilibrium boundary conditions [50,60] on spherical
excision boundaries, choose conformal flatness and maxi-
mal slicing, and use Eq. (33a) of Ref. [53] as the lapse
boundary condition. The spins of the black holes are made
very small (� 10�7) via an appropriate choice of the
tangential shift at the excision surfaces, as described in
[53]. Finally, the initial orbital eccentricity is tuned to a
very small value (� 5� 10�5) using the iterative proce-
dure described in Ref. [9], which is an improved version of
the procedure of Ref. [61].

B. Evolution of the inspiral phase

The evolution of the first �15 binary orbits is identical
to the simulation presented in Ref. [9]. We describe it here
briefly in order to facilitate the presentation of our method
for continuing the evolution through merger and ringdown,
which is described in Secs. II C and IID.

The Einstein evolution equations are solved with the
pseudospectral evolution code described in Ref. [57].
This code evolves a first-order representation [62] of the
generalized harmonic system [63–65]. We handle the sin-
gularities by excising the black hole interiors from the
computational domain. Our outer boundary conditions
[62,66,67] are designed to prevent the influx of unphysical
constraint violations [68–74] and undesired incoming
gravitational radiation [75,76], while allowing the out-
going gravitational radiation to pass freely through the
boundary.

We employ the dual-frame method described in
Ref. [57]: we solve the equations in an ‘‘inertial frame’’
that is asymptotically Minkowski, but our domain decom-
position is fixed in a ‘‘comoving frame’’ that rotates with
respect to the inertial frame and also shrinks with respect to
the inertial frame as the holes approach each other. The
positions of the holes are fixed in the comoving frame; we
account for the motion of the holes by dynamically adjust-
ing the coordinate mapping between the two frames. Note
that the comoving frame is referenced only internally in the

code as a means of treating moving holes with a fixed
domain. Therefore all coordinate quantities (e.g. black hole
trajectories, wave-extraction radii) mentioned in this paper
are inertial-frame values unless explicitly stated otherwise.
As described in [9], the mapping between inertial and

comoving coordinates for the inspiral, expressed in polar
coordinates relative to the center of mass of the system, is

r ¼
�
aðtÞ þ ð1� aðtÞÞ r

02

R02
0

�
r0; (1)

� ¼ �0; (2)

� ¼ �0 þ bðtÞ; (3)

where aðtÞ and bðtÞ are functions of time, and R0
0 is a

constant usually chosen to be roughly the radius of the
outer boundary in comoving coordinates. Here primes
denote the comoving coordinates. For the choice R0

0 ¼
1, the mapping is simply a rotation by bðtÞ plus an overall
contraction given by aðtÞ. The functions aðtÞ and bðtÞ are
determined by a dynamical control system as described in
Ref. [57]. This control system dynamically adjusts aðtÞ and
bðtÞ so that the centers of the apparent horizons remain
stationary in the comoving frame. Note that the outer
boundary of the computational domain is at a fixed comov-
ing radius R0

max, so the inertial-coordinate radius of the
outer boundary RmaxðtÞ is a function of time.
The gauge freedom in the generalized harmonic system

is fixed via a freely specifiable gauge source function Ha

that satisfies the constraint

0 ¼ Ca � �ab
b þHa; (4)

where �a
bc are the spacetime Christoffel symbols. To

choose this gauge source function, we first define a new
quantity ~Ha that has the following two properties: (1) ~Ha

transforms like a tensor, and (2) in inertial coordinates
~Ha ¼ Ha. We choose Ha so that the constraint equation
(4) is satisfied initially, and we demand that ~Ha0 is constant
in the moving frame, i.e., that @t0 ~Ha0 ¼ 0.

C. Extending inspiral runs through merger

If the inspiral runs described above are allowed to con-
tinue without any modification of the algorithm, then as the
binary approaches merger, the horizons of the black holes
become extremely distorted and the dynamical fields begin
to develop sharp (but numerically convergent) features
near each hole. These features grow rapidly in time, even-
tually halting the simulation before merger. This is due to a
gauge effect: The gauge condition used during the inspiral,
namely fixing Ha in time in the comoving frame, was
chosen based on the idea that each black hole is in quasie-
quilibrium in this frame. Once the black holes begin to
interact strongly, this gauge condition no longer allows the
coordinates to sufficiently react to the changing geometry,
and coordinate singularities develop.
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Therefore we must modify our gauge conditions in order
to handle merger. Because the inspiral gauge works so well
before merger, we choose to remain in that gauge until
some time t ¼ tg, and then we change (smoothly) to a new

gauge.
We have experimented with several gauge conditions

[77], but so far the simplest gauge choice that works, and
the one used in the simulations presented here, is based on
the gauge treatment of Pretorius [1,65,78]: We promote the
gauge source function Ha to an independent dynamical
field that satisfies

rcrcHa ¼ Qaðx; t; c abÞ þ �2t
b@bHa; (5)

where rcrc is the curved space scalar wave operator (i.e.
each component of Ha is evolved as a scalar), c ab is the
spacetime metric, and ta is the timelike unit normal to the
hypersurface. The driving function Qa is

Qt ¼ fðx; tÞ�1

1� N

N� ; (6)

Qi ¼ gðx; tÞ�3

Ni

N2
: (7)

Here N and Ni are the lapse function and the shift vector,
�, �1, �2, and �3 are constants, and fðx; tÞ and gðx; tÞ are
prescribed functions of the spacetime coordinates (we
describe our choices for these objects below).

Equation (5) is a damped, driven wave equation with
damping parameter �2 and driving function Qa. The driv-
ing termQt in Eq. (6) was introduced by Pretorius [1,65] to
drive the lapse function towards unity so as to prevent it
from becoming small. The driving termQi is new; it drives
the shift vector towards zero near the horizons. This causes
the horizons to expand in coordinate space, and has the
effect of smoothing out the dynamical fields near the
horizon and preventing gauge singularities from develop-
ing. A different gauge choice that causes similar coordinate
expansion of the horizons was introduced in Ref. [79].
Care must be taken so that the horizons do not expand
too quickly relative to the excision boundaries; otherwise
the characteristic fields will fail to be purely outgoing (into
the holes) at the excision boundaries, and excision will fail.
We find that with appropriate choices of �1, �3, fðx; tÞ, and
gðx; tÞ as described below, the horizons expand gradually
and not too rapidly.

For the runs presented here we choose � ¼ 4, �1 ¼ 0:1,
�2 ¼ 10, and �3 ¼ 0:4. The functions fðx; tÞ and gðx; tÞ in
Eqs. (6) and (7) are chosen based on two criteria: the first is
that the driving terms Qa are nonzero only near the black
holes where they are needed; if these terms are nonzero in
the wave-extraction zone they lead to complicated gauge
dynamics in this region, making waveform extraction dif-
ficult. The second criterion is that the driving terms are
turned on in a gradual manner so that the gauge does not
change too rapidly. We choose

fðx; tÞ ¼ gðx; tÞ
¼ ð2� e�ðt�tgÞ=�1Þð1� e�ðt�tgÞ2=�2

2Þe�r02=�2
3 ; (8)

where r0 is the coordinate radius in comoving coordinates,
and the constants are �1 � 17:5M, �2 � 15M, and �3 �
40M. Here M is the sum of the initial Christodoulou
masses of the two holes.
Equation (5) is a second-order hyperbolic equation,

which we evolve in first-order form by defining new fields
�H

a and �H
ia, representing (up to the addition of con-

straints) the appropriate time and space derivatives of Ha,
respectively:

�H
a ¼ �tb@bHa; (9)

�H
ia ¼ @iHa: (10)

The representation of wave equations of this type in first-
order form is well understood, see e.g., Refs. [62,80]; the
result for Eq. (5) is

@tHa ¼ �N�H
a þ Nk�H

ka; (11)

@t�
H
a ¼ Nk@k�

H
a � Ngki@k�

H
ia � �H

2 N
k@kHa

þ �H
2 N

k�H
ka þ Nð�kj

j � gkj@jNÞ�H
ka

þ NK�H
a þQa; (12)

@t�
H
ia ¼ Nk@k�

H
ia � N@i�

H
a þ �H

2 N@iHa ��H
a @iN

þ�H
ka@iN

k � �H
2 N�H

ia; (13)

where gij is the spatial metric and K is the trace of the

extrinsic curvature. We choose the constraint-damping
parameter �H

2 to be �H
2 ¼ 4=M.

These equations are symmetric hyperbolic, and require
boundary conditions on all incoming characteristic fields at
all boundaries. The characteristic fields for Eqs. (11)–(13)
in the direction of a unit spacelike covector ni are

UH�
a ¼ �H

a � ni�H
ia � �H

2 Ha; (14)

ZH1
a ¼ Ha; (15)

ZH2
ia ¼ ð�k

i � nin
kÞ�H

ka: (16)

The (coordinate) characteristic speeds for UH�
a , ZH1

a , and
ZH2
ia are �N � niN

i, 0, and �niN
i, respectively.

At the excision boundaries all characteristic fields are
outgoing (i.e. into the holes) or nonpropagating, so no
boundary conditions are necessary and none are imposed.
At the outer boundary, we must impose boundary condi-
tions on UH�

a and ZH2
ia . Define

DtðUH�
a Þ � @t�

H
a � ni@t�

H
ia � �H

2 @tHa; (17)

DtðZH1
a Þ � @tHa; (18)
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DtðZH2
ia Þ � ð�k

i � nin
kÞ@t�H

ka; (19)

where the time derivatives on the right-hand side are
evaluated using Eqs. (11)–(13). Then we impose the fol-
lowing boundary conditions:

@tU
H�
a ¼ ��H

2 DtðZH1
a Þ; (20)

@tZ
H2
ia ¼ DtðZH2

ia Þ þ 2nkN
knj@½i�H

j�a: (21)

Equation (20) is the outgoing-wave boundary condition
described in detail in Ref. [80]. Equation (21) ensures
that violations of the artificial constraint Cia �
�H

ia � @iHa ¼ 0 do not enter the domain through the
boundary; it is the direct analogue of the constraint-
preserving boundary condition we apply to the analogous
variable in the generalized harmonic formulation of
Einstein’s equations, Eq. (65) of Ref. [62].

Note that Eqs. (11)–(13) involve only first derivatives of
the spacetime metric, and similarly, the generalized har-
monic Einstein equations involve only first derivatives of
Ha. Therefore, adding Eqs. (11)–(13) to the system does
not change the hyperbolicity or characteristic fields of the
generalized harmonic Einstein equations, so we can im-
pose the same boundary conditions on the generalized
harmonic variables as we do during the inspiral, as de-
scribed in Refs. [57,66].

Equations (11)–(13) require as initial data the values of
Ha and �H

a at t ¼ tg. These quantities can be computed

from the gauge choice used during the inspiral for t � tg,

so we choose them to be continuous at t ¼ tg.

Note that Eqs. (11)–(13) and the boundary conditions
(20) and (21) are written in the inertial-coordinate system.
The equations are actually solved in the comoving-
coordinate system using the dual-frame method described
in Ref. [57].

With the modifications to the gauge conditions described
here, the evolution of the binary can be tracked up until
(and shortly after) the formation of a common horizon that
encompasses both black holes. Because of the more rapid
dynamics and the distortions of the horizons during the
merger, we typically increase the numerical resolution
slightly when we make these changes to the gauge con-

ditions (this is the difference between the first and second
entry in the Npts column in Table I). After the common

horizon forms, the problem reduces to evolving a single
highly distorted dynamical black hole, rather than two
separate black holes. We change the algorithm to take
advantage of this, as described in the next section.

D. Evolution from merger through ringdown

We make three main changes to our evolution algorithm
once we detect a common apparent horizon. First, because
there is now only one black hole and not two, we inter-
polate all variables onto a new computational domain that
contains only a single excised region. Second, we choose a
new comoving-coordinate system (and a corresponding
mapping to inertial coordinates) so that the new excision
boundary tracks the shape of the (distorted, rotating, pul-
sating) apparent horizon in the inertial frame, and so that
the outer boundary behaves smoothly in time. Third, we
modify the gauge conditions so that the shift vector is no
longer driven towards zero, allowing the solution to even-
tually relax to a time-independent state. We now discuss
these three changes in detail.
Our new computational domain contains only a single

excised region, and is much simpler than the one used until
merger. It consists only of nested spherical-shell subdo-
mains that extend from a new excision boundary R00

min,

chosen to be slightly inside the common apparent horizon,
to an outer boundary R00

max that coincides with the outer
boundary of the old domain.
To understand how we choose our new comoving frame,

first recall that in the dual-frame technique [57], the co-
moving frame is the one in which the computational do-
main is fixed, the inertial frame is the one in which the
coordinates are Minkowski-like at infinity, and the two
frames are related by a mapping that is chosen so that the
computational domain tracks the motion of the black holes.
Let xa represent the inertial coordinates (which are the
same before and after merger), let x0a represent the old
comoving coordinates, and let x00a represent the new co-
moving coordinates. The mapping between x0a and xa is
given by Eqs. (1)–(3). The mapping between x00a and xa is
chosen to be

TABLE I. Outer boundary parameters, collocation points, and CPU usage for several zero-spin binary black hole evolutions. The
first column identifies the inspiral run in the nomenclature of Ref. [9]. Npts is the approximate number of collocation points used to

cover the entire computational domain. The three values for Npts are those for the inspiral, merger, and ringdown portions of the

simulation, which are described in Sections II B, II C, and II D, respectively. The outer boundary parameters R0
max, R

00
max and R

0
0, as well

as run times T, are in units of the initial Christodoulou mass M of the system, which provides a natural time and length scale.

Run R0
max R00

max R0
0 Npts CPU-h CPU-h/T

30c1/N4 462 462 698 ð573; 593; 573Þ 8800 2.0

30c1/N5 462 462 698 ð623; 663; 633Þ 15 000 3.4

30c1/N6 462 462 698 ð673; 733; 703Þ 23 000 5.3

30c2/N6 722 96 1 ð713; 763; 633Þ 25 000 5.7
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r ¼ ~r

�
1þ sin2ð�~r=2R00

maxÞ
�
AðtÞR

0
max

R00
max

þ ð1� AðtÞÞ

� R03
max

R00
maxR

02
0

� 1

��
; (22)

~r ¼ r00 � qðr00ÞX‘max

‘¼0

X‘
m¼�‘

	‘mðtÞY‘mð�00; �00Þ; (23)

� ¼ �00; (24)

� ¼ �00 þ BðtÞ; (25)

where R0
max is the outer boundary of the premerger com-

putational domain in the old comoving coordinates, and
qðr00Þ, AðtÞ, BðtÞ, and 	‘mðtÞ are functions we will now
discuss.

First we describe the angular map: The function BðtÞ is
chosen so that the new comoving frame initially rotates
with respect to the inertial frame, but this rotation slows to
a halt after a short time. In particular,

BðtÞ ¼ B0 þ ðB1 þ B2ðt� tmÞÞe�ðt�tmÞ=
B ; (26)

where the constants B0, B1, and B2 are chosen so that BðtÞ
matches smoothly onto bðtÞ from Eq. (3): BðtmÞ ¼ bðtmÞ,
_BðtmÞ ¼ _bðtmÞ, and €BðtmÞ ¼ €bðtmÞ. Here tm is the time at
which we transition to the new domain decomposition. The
constant 
B is chosen to be on the order of 20M.

The radial map is a composition of two individual maps:
Eqs. (22) and (23). The purpose of Eq. (22) is to match the
outer boundary of the new domain smoothly onto that of
the old domain, while far from the outer boundary Eq. (22)
approaches the identity. We have found that without the use
of Eq. (22), the (inertial-coordinate) location of the bound-
ary changes nonsmoothly at t ¼ tm, thereby generating a
spurious ingoing gauge pulse that spoils waveform extrac-
tion. The function AðtÞ is

AðtÞ ¼ A0 þ ðA1 þ A2ðt� tmÞÞe�ðt�tmÞ=
A ; (27)

where the constants A0, A1, and A2 are chosen so that AðtÞ
matches smoothly onto aðtÞ from Eq. (1): AðtmÞ ¼ aðtmÞ,
_AðtmÞ ¼ _aðtmÞ, and €AðtmÞ ¼ €aðtmÞ. The constant 
A is
chosen to be on the order of 5M.

The other piece of the radial map, Eq. (23), is chosen so
that the apparent horizon is nearly spherical in the new
comoving coordinates x00a. The function qðr00Þ is

qðr00Þ ¼ e�ðr00�R00
AH

Þ3=�3
q ; (28)

where R00
AH is the radius of the apparent horizon in comov-

ing coordinates, and �q is a constant of order 20M. This

function qðr00Þ ensures that the piece of the radial map
represented by Eq. (23) acts only in the vicinity of the
merged hole and not in the exterior wave-extraction region.

We now discuss the choice of the functions 	‘mðtÞ that
appear in Eq. (23). Given the known location of the appar-

ent horizon in inertial coordinates, the 	‘mðtÞ determine the
shape of the apparent horizon in comoving coordinates. At
t ¼ tm, we choose these quantities so that the apparent
horizon is spherical (up to spherical harmonic component
‘ ¼ ‘max) in comoving coordinates: that is, if the
comoving-coordinate radius of the apparent horizon as a
function of angles is written as

r00AHð�00; �00Þ � X‘max

‘¼0

X‘
m¼�‘

Q‘mðtÞY‘mð�00; �00Þ; (29)

then for 1 � ‘ � ‘max we choose 	‘mðtmÞ so that
Q‘mðtmÞ ¼ 0. In addition, we choose 	00ðtmÞ ¼ 0; this
determines R00

AH. For t > tm, 	‘mðtÞ are determined by a
dynamical feedback control system identical to the one
described in Ref. [57], which adjusts these functions so that
the apparent horizon is driven to a sphere (up to spherical
harmonic component ‘ ¼ ‘max) in comoving coordinates.
This dynamical feedback control allows us to freely choose
the first and second time derivatives of 	‘m at t ¼ tm.
Simply choosing these to be zero causes the control system
to oscillate wildly before settling down, and unless the time
step is very small, these oscillations are large enough that
the excision boundary crosses the horizon and our excision
algorithm fails. So instead, we obtain the time derivatives
of 	‘m by finding the apparent horizon at several times
surrounding t ¼ tm, computing 	‘m at these times, and
finite differencing in time. For the equal-mass zero-spin
merger presented here, in Eq. (23) it suffices to sum only
over even ‘ and m and to choose ‘max ¼ 6.
The last change we make before continuing the simula-

tion past merger is to modify the functions fðx; tÞ and
gðx; tÞ, which before merger were given by Eq. (8), to

fðx; tÞ ¼ ð2� e�ðt�tgÞ=�1Þð1� e�ðt�tgÞ2=�2
2Þe�r002=�2

3 ; (30)

gðx; tÞ ¼ fðx; tÞe�ðt�tmÞ2=�2
4 ; (31)

where �4 ¼ 7M. The modification of gðx; tÞ turns off the
term in the gauge evolution equations that drives the shift
to zero near the holes. Before merger, it is advantageous to
have the shift driven to zero so that the horizons expand in
coordinate space and so that growing gauge modes remain
inside the common horizon. After merger, however, it is no
longer desirable for the horizon to expand, since this would
prevent the solution from eventually settling down to a
time-independent state in which the horizon is stationary
with respect to the coordinates.
To summarize, the steps involved in the transition from

evolving a binary black hole spacetime to evolving a
merged single black hole spacetime are as follows:
(1) Find the common apparent horizon in the inertial frame
at several times near t ¼ tm. (2) Solve for the 	‘mðtmÞ that
make the horizon spherical in the comoving frame, and
simultaneously solve for R00

AH. (3) Choose the inner bound-
ary of the new computational domain R00

min to be slightly
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less than R00
AH, and choose the outer boundary R00

max [for
sufficiently small aðtmÞ it is necessary to choose R00

max <
R0
max so that the mapping (22) is invertible]. At this point

the computational domain and the mapping (22)–(25) have
been determined. (4) Interpolate all dynamical variables
from the old computational domain onto the new one. This
interpolation is done via the spectral expansion in the old
domain, so it introduces no additional error. (5) Modify the
gauge source evolution equations so that the shift is no
longer driven to zero. (6) Continue the evolution on the
new computational domain. All of these steps can be
automated.

E. Properties of the numerical solution

In Table I we list outer boundary parameters, resolu-
tions, and run times of several runs we have done using the
algorithm described above. Three of these runs are identi-
cal except for numerical resolution, and the fourth is
performed on a different domain with a different outer
boundary location. As discussed above, the outer boundary
of our simulation varies in time because of the dual-frame
approach we use to follow the black holes. Figure 1 is a
spacetime diagram illustrating the region of spacetime
being evolved in our simulation.

We do not explicitly enforce either the Einstein con-
straints or the secondary constraints that arise from writing
the system in first-order form. Therefore, examining how
well these constraints are satisfied provides a useful con-
sistency check. Figure 2 shows the constraint violations for
run 30c1. The top panel shows the L2 norm of all the
constraint fields of our first-order generalized harmonic
system, normalized by the L2 norm of the spatial gradients

of the dynamical fields [see Eq. (71) of Ref. [62] ]. The
bottom panel shows the same quantity, but without the
normalization factor [i.e., just the numerator of Eq. (71)
of Ref. [62] ]. The L2 norms are taken over the portion of
the computational volume that lies outside apparent hori-
zons. At early times, t < 500M, the constraints converge
rather slowly with resolution because the junk radiation
contains high frequencies. Convergence is more rapid dur-
ing the smooth inspiral phase, after the junk radiation has
exited through the outer boundary.
The constraints increase as the holes approach each

other and the solution becomes increasingly distorted. At
t ¼ 3917M (t ¼ 3927M for resolution N4), the gauge
conditions are changed (cf. Sec. II C) and the resolution
is increased slightly (compare the first and second entry in
the Npts column in Table I). Because of the change of

resolution, the constraints drop rapidly by almost 2 orders
of magnitude, but then they begin to grow again. The
transition to a single-hole evolution (cf. Sec. II D) occurs
at t ¼ 3940M (t ¼ 3948M for resolution N4). At this time
the constraint norm drops by about an order of magnitude
because the region in which the largest constraint viola-
tions occur—the interior of the common horizon—is
newly excised.
After the binary proceeds through inspiral, merger, and

ringdown, it settles down to a final stationary black hole. In
our simulation this final state is not expressed in any
standard coordinate system used to describe Kerr space-
time, but nevertheless the final mass and spin of the hole
can be determined. The area A of the apparent horizon
provides the irreducible mass of the final black hole,

Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16�

p
; (32)
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FIG. 1 (color online). Spacetime diagram showing the space-
time volume simulated by the numerical evolutions listed in
Table I. Each curve represents the worldline of the outer bound-
ary for a particular simulation. The magnified views on the right
show that the outer boundary moves smoothly near merger. The
transition times tg ¼ 3917M and tm ¼ 3940M are indicated on

the right panels.
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FIG. 2 (color online). Constraint violations of run 30c1. The
top panel shows the L2 norm of all constraints, normalized by the
L2 norm of the spatial gradients of all dynamical fields. The
bottom panel shows the same data, but without the normalization
factor. The L2 norms are taken over the portion of the computa-
tional volume that lies outside apparent horizons.
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which we find to beMirr=M ¼ 0:884 33� 0:000 01, where
M is the sum of the initial irreducible masses of the black
holes. The uncertainty in Mirr=M is determined from the
difference between runs 30c1/N6, 30c1/N5, and 30c2/N6,
so it includes only uncertainties due to numerical resolu-
tion and outer boundary location. We have verified that the
uncertainty due to the finite resolution of our apparent
horizon finder is negligible.

The final spin Sf of the black hole can be computed by

integrating a quasilocal angular momentum density over
the final apparent horizon [81,82]. Our implementation of
this method is described in detail in Appendix A of [55].
Furthermore, an alternative method of computing the final
spin, which is based on evaluating the extremal values of
the two-dimensional scalar curvature on the apparent hori-
zon and comparing these values to those obtained analyti-
cally for a Kerr black hole, is also described in [55]. Using
these measures, we determine the dimensionless spin of the
final black hole to be Sf=M

2
f ¼ 0:686 46� 0:000 04,

where the uncertainty is dominated by the difference be-
tween runs 30c1/N6 and 30c1/N5 rather than by the dif-
ferences between different methods of measuring the spin.
Here Mf is the Christodoulou mass of the final black hole,

M2
f ¼ M2

irr þ
S2f

4M2
irr

: (33)

We find that the ratio of the final to initial black hole mass
isMf=M ¼ 0:951 62� 0:000 02. The mass and spin of the

final hole are consistent with those found by other groups
[2,4,83–85]. Physical parameters describing the evolutions
are summarized in Table II.

III. COMPUTATION OF THE WAVEFORM

The numerical solution of Einstein’s equations obtained
using the methods described above yields the spacetime
metric and its first derivatives at all points in the computa-
tional domain. In this section we describe how this solution
is used to compute the key quantity relevant for
gravitational-wave observations: the gravitational wave-
form as seen by an observer infinitely far from the source.

A. Waveform extraction

Gravitational waves are extracted from the simulation
on a sphere of coordinate radius r using the Newman-
Penrose scalar �4, following the same procedure as in
Refs. [61,86]. To summarize, we compute

�4 ¼ �C��
�‘
�‘� �m� �m
; (34)

where

‘� ¼ 1ffiffiffi
2

p ðt� � r�Þ; (35a)

m� ¼ 1ffiffiffi
2

p
r

�
@

@�
þ i

1

sin�

@

@�

�
�
: (35b)

Here ðr; �; �Þ denote the standard spherical coordinates in
the inertial frame, t� is the timelike unit normal to the
spatial hypersurface, and r� is the outward-pointing unit
normal to the extraction sphere. We then expand �4 in
terms of spin-weighted spherical harmonics of weight�2:

�4ðt; r; �; �Þ ¼ X
lm

�lm
4 ðt; rÞ�2Ylmð�;�Þ; (36)

where the �lm
4 are expansion coefficients defined by this

equation.
Note that our choice ofm� is not exactly null nor exactly

of unit magnitude at finite r, as is required by the standard
definition. The resulting �lm

4 computed at finite r will
therefore disagree with the waveforms observed at infinity.
Our definition does, however, agree with the standard
definition of �lm

4 as r ! 1. Because we extrapolate the
extracted waves to find the asymptotic radiation field (see
Sec. III C), these tetrad effects should not play a role:
Relative errors in �lm

4 introduced by using the simple
coordinate tetrad fall off like powers of M=r, and thus
should vanish after extrapolating to obtain the asymptotic
behavior. More careful treatment of the extraction
method—such as those discussed in Refs. [87–89]—may
improve the quality of extrapolation and would be interest-
ing to explore in the future.
In this paper, we focus on the dominant ðl; mÞ ¼ ð2; 2Þ

mode. Following common practice (see e.g. [84,85]), we
split the extracted waveform into real phase � and real
amplitude A, defined by

�22
4 ðr; tÞ ¼ Aðr; tÞe�i�ðr;tÞ: (37)

The gravitational-wave frequency is given by

! ¼ d�

dt
: (38)

The minus sign in Eq. (37) is chosen so that the phase
increases in time and ! is positive.
The ðl; mÞ ¼ ð2; 2Þ waveform, extracted at a single ra-

dius for run 30c1/N6, is shown in Fig. 3. The short pulse at
t� 200M is caused by imperfect initial data that are not

TABLE II. Physical parameters describing the equal-mass
nonspinning binary black hole evolutions presented here. The
dimensionful quantity M is the initial sum of the Christodoulou
masses of the black holes. Uncertainty estimates include nu-
merical uncertainties and the effects of varying the outer bound-
ary location.

Initial orbital eccentricity: e� 5� 10�5

Initial spin of each hole: Si=M
2 & 10�7

Time of evolution: T=M ¼ 4330
Final Christodoulou mass: Mf=M ¼ 0:951 62� 0:000 02
Final spin: Sf=M

2
f ¼ 0:686 46� 0:000 04
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precisely in equilibrium; this pulse is usually referred to as
‘‘junk radiation.’’

B. Convergence of extracted waveforms

In this section we examine the convergence of the gravi-
tational waveforms extracted at fixed radius, without ex-
trapolation to infinity. This allows us to study the behavior
of our code without the complications of extrapolation.
The extrapolation process and the resulting extrapolated
waveforms are discussed in Sec. III C.

Figure 4 shows the convergence of the gravitational-
wave phase � and amplitude A with numerical resolution.
For this plot, the waveform was extracted at a fixed inertial-
coordinate radius of r ¼ 60M. This fairly small extraction
radius was chosen to allow a comparison of the simulations
30c1 and 30c2. Each solid line in the top panel shows the
absolute difference between � computed at some particu-
lar resolution and � computed from our highest-resolution

run, labeled 30c1/N6 in Table I. The solid curves in the
bottom panel similarly show the relative amplitude differ-
ences. When subtracting results at different resolutions, no
time or phase adjustment has been performed. The noise at
early times is due to ‘‘junk radiation’’ generated near t ¼
0. While most of this radiation leaves through the outer
boundary after one crossing time, some remains visible for
a few crossing times.1 The plots show that the phase
difference accumulated over 16 orbits plus merger and
ringdown is less than 0.1 radians for our medium resolu-
tion, and the relative amplitude differences are less than
0.015; these numbers can be taken as an estimate of the
numerical truncation error of our medium resolution run.
Also shown as a dotted curve in each panel of Fig. 4 is

the difference between our highest-resolution run, 30c1/
N6, and a similar run but with a different outer boundary
location, 30c2/N6. The 30c2 run initially has a more distant
outer boundary than 30c1, but during the inspiral the outer
boundary moves rapidly inward, as seen in Fig. 1, so that
extraction of the full waveform is possible only for extrac-
tion radii r & 75M. Comparing runs 30c1 and 30c2 pro-
vides an estimate of the uncertainty in the waveform due to
outer boundary effects such as imperfect boundary con-
ditions that might reflect outgoing waves. From Fig. 4 we
estimate this uncertainty to be 0.03 radians in phase and
half a percent in amplitude (when no time shift is applied).
Figure 5 is the same as Fig. 4 except each waveform is

time shifted and phase shifted so that the maximum am-
plitude of the wave occurs at the same time and phase. This
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FIG. 3 (color online). Gravitational waveform extracted at
finite radius r ¼ 225M, for the case 30c1/N6 in Table I. The
left panel zooms in on the inspiral waveform, and the right panel
zooms in on the merger and ringdown.
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FIG. 4 (color online). Convergence of waveforms with nu-
merical resolution and outer boundary location. Shown are phase
and amplitude differences between numerical waveforms �22

4

computed using different numerical resolutions. Shown also is
the difference between our highest-resolution waveforms using
two different outer boundary locations. All waveforms are
extracted at r ¼ 60M, and no time shifting or phase shifting is
done to align waveforms.
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FIG. 5 (color online). Convergence of waveforms with nu-
merical resolution and outer boundary location. Same as Fig. 4
except waveforms are time shifted and phase shifted so that the
maximum amplitude occurs at the same time and phase.

1The junk radiation at early times is discussed in more detail in
Ref. [9] [specifically, just before Eq. (9) and in the third para-
graph of Sec. II E], which presents the exact same waveform as
shown here but without merger and ringdown.
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type of comparison is relevant for analysis of data from
gravitational-wave detectors: when comparing experimen-
tal data with numerical detection templates, the template
will be shifted in both time and phase to best match the
data. For this type of comparison, Fig. 5 shows that the
numerical truncation error of our medium resolution run is
less than 0.01 radians in phase and 0.1% in amplitude for
t > 1000M. At earlier times, the errors are somewhat
larger and are dominated by residual junk radiation. Our
uncertainty due to outer boundary effects is similar to that
in Fig. 4: about 0.02 radians in phase and half a percent in
amplitude. Boundary effects are most prominent during the
ringdown.

C. Extrapolation of waveforms to infinity

Our numerical simulations cover only a finite spacetime
volume, as shown in Fig. 1, so it is necessary to extract our
numerical waveforms at a finite distance from the source.
However, gravitational-wave detectors measure wave-
forms as seen by an observer infinitely far from the source.
Accordingly, after extracting waveforms at multiple finite
radii, we extrapolate these waveforms to infinite radius
using a procedure similar to that described in [9]. This
extrapolation procedure is intended to remove not only
near-field effects that are absent at infinity, but also gauge
effects that can be caused by the time dependence of the
lapse function or the nonoptimal choice of tetrad for com-
puting �4.

The extraction procedure described in Sec. III Ayields a
set of waveforms �22

4 ðt; rÞ, with each waveform extracted
at a different radius. To extrapolate to infinite radius we
must compare waveforms at different radii, but these wave-
forms must be offset in time by the light-travel time
between adjacent radii. To account for this time shift, for
each extraction radius we compute �22

4 ðu; rÞ, where u is
the retarded time at that radius. Assuming for simplicity
that the background spacetime is nearly Schwarzschild, we
compute the retarded time u using

u � ts � r�; (39)

where ts is some approximation of Schwarzschild time,
and the tortoise-coordinate radius [90] is

r� ¼ rareal þ 2MADM ln

�
rareal

2MADM

� 1

�
: (40)

Here MADM is the ADM mass of the initial data, and

rareal ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
, where A is the measured (time-dependent)

area of the extraction sphere. If we were to choose ts to be
simply the coordinate time t, then the retarded time coor-
dinate u would fail to be null, largely because the lapse
function in our simulation is time dependent and differs
from the Schwarzschild value. We attempt to account for
this by assuming that our background spacetime coordi-
nates are Schwarzschild, but with gtt replaced by �N2

avg,

where Navg is the (time-dependent) average value of the

lapse function measured on the extraction sphere. Under
these assumptions, it can be shown that the one-form

Navgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–2MADM=rareal

p dt� dr� (41)

is null, so we equate this one-form with du and thus define

ts ¼
Z t

0

Navgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–2MADM=rareal

p dt: (42)

We show below (cf. Fig. 9) that choosing Eq. (42) instead
of ts ¼ t significantly increases the accuracy of our ex-
trapolation procedure during merger and ringdown.
Having computed the retarded time at each extraction

radius, we now consider the extracted waveforms as func-
tions of retarded time u and extraction radius rareal, i.e.
�22

4 ðu; rarealÞ. At each value of u, we have the phase and
amplitude of �22

4 at several extraction radii rareal.
Therefore at each value of u, we fit phase and amplitude
separately to a polynomial in 1=rareal:

�ðu; rarealÞ ¼ �ð0ÞðuÞ þ
Xn
k¼1

�ðkÞðuÞ
rkareal

; (43)

rarealAðu; rÞ ¼ Að0ÞðuÞ þ
Xn
k¼1

AðkÞðuÞ
rkareal

: (44)

The phase and amplitude of the desired asymptotic wave-
form are thus given by the leading-order term of the
appropriate polynomial, as a function of retarded time:

�ðuÞ ¼ �ð0ÞðuÞ; (45)

rarealAðuÞ ¼ Að0ÞðuÞ: (46)

Figure 6 shows phase and amplitude differences be-
tween extrapolated waveforms that are computed using
different values of polynomial order n in Eqs. (43) and
(44). For the extrapolation we use waveforms extracted at
radii 75M, 85M, 100M, 110M, 130M, 140M, 150M,
160M, 170M, 180M, 190M, 200M, 210M, and 225M.
From Fig. 6 it is clear that increasing n increases the
accuracy of the extrapolation in smooth regions, but also
amplifies any noise present in the waveform. Our preferred
choice, n ¼ 3, gives a phase error of 0.005 radians and a
relative amplitude error of 0.003 during most of the inspi-
ral, and a phase error of 0.01 radians and a relative ampli-
tude error of 0.01 in the ringdown. The junk radiation
epoch ts � r� & 1000M has moderately larger errors
than the ringdown. If we were to choose instead n ¼ 4,
we would gain higher accuracy in the smooth regions at the
expense of increased noise in the junk radiation epoch and
slightly larger errors during the merger and ringdown.
Figure 7 is the same as the top panel of Fig. 6, except

zoomed to late times. Note that during merger and ring-
down, the extrapolation procedure does not converge with
increasing extrapolation order n: the phase differences are
slightly larger for larger n. This lack of convergence sug-
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gests that the nonextrapolated numerical waveform con-
tains some small contamination that does not obey the
fitting formulas, Eqs. (43) and (44). Figure 8 shows the n ¼
1 and n ¼ 2 convergence curves from Fig. 7, but computed
for two different numerical resolutions, 30c1/N5 and 30c1/
N6. The N5 and N6 lines are very close to each other in this
figure, indicating that the lack of convergence with ex-
trapolation order n is not dominated by insufficient nu-
merical resolution. We suspect that the main contribution is
instead due to gauge effects. Such gauge effects might be
reduced by improving the gauge conditions in the numeri-
cal simulation or by adopting more sophisticated wave
extraction and extrapolation algorithms that better com-
pensate for dynamically varying gauge fields.

Indeed, we have already made a first attempt at correct-
ing for a time-dependent lapse function by using ts from
Eq. (42) to compute the retarded time. Figure 9 illustrates

the importance of this correction. Figures 7 and 9 differ
only in the choice of ts used to compute the retarded time:
In Fig. 7, ts is obtained from Eq. (42), and in Fig. 9, ts is
simply the coordinate time t. Using the naive choice ts ¼ t
clearly results in much larger phase differences that di-
verge with increasing n and grow in time.
In Fig. 10 we examine the difference between extrapo-

lated waveforms and waveforms that have been extracted
at a finite radius. We compare our preferred waveform,
30c1/N6 extrapolated to infinity using n ¼ 3, versus non-
extrapolated waveforms and versus extrapolated wave-
forms with different values of n. Because the
extrapolated and nonextrapolated waveforms differ by
overall time and phase offsets which are irrelevant for
many purposes, each waveform in Fig. 10 has been shifted
in time and phase so as to best match with the n ¼ 3
extrapolated waveform. This best match is determined by
a simple least-squares procedure: we minimize the func-
tion

fðt0; �0Þ ¼
X
i

�
A1ðtiÞei�1ðtiÞ � A2ðti þ t0Þeið�2ðtiþt0Þþ�0Þ

�
2
;

(47)

by varying t0 and �0. Here A1, �1, A2, and �2 are the
amplitudes and phases of the two waveforms being
matched, and the sum goes over all times ti at which
waveform 1 is sampled.
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FIG. 8 (color online). Effect of numerical resolution on ex-
trapolation to infinity. The solid curves are identical to the
‘‘n ¼ 1’’ and ‘‘n ¼ 2’’ curves from Fig. 7. The dotted curves
are the same quantities computed using the lower resolution run
30c1/N5.
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FIG. 9 (color online). Effect of ts on extrapolation to infinity.
Same as Fig. 7, except the quantity ts that appears in the retarded
time, Eq. (39), is chosen to be coordinate time t rather than the
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this figure and Fig. 7.
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to late times. The peak amplitude of the waveform occurs at ts �
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amplifies noise.
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We find from Fig. 10 that extrapolation to infinity has a
large effect on the phase of the final waveform and a much
smaller effect on the amplitude, when comparing to data
extracted at our outermost extraction radius, r ¼ 225M.
The r ¼ 225M waveforms have an accumulated phase
difference of 0.2 radians relative to the extrapolated wave-
form, much larger than the difference between different
extrapolation orders or different numerical resolutions. For
extraction at smaller radii, the differences are larger still,
the r ¼ 60Mwaveform having a phase difference of 0.8 ra-
dians and amplitude difference of 20% compared to the
extrapolated waveform. We find that the phase differences
between extrapolated and nonextrapolated waveforms
scale quite accurately like 1=r, and the amplitude differ-
ences scale roughly like 1=r2:5, where r is the extraction
radius. These scalings seem to be related to near-field
effects, for which one expects scalings like 1=r in phase
and 1=r2 in amplitude [86].
Figure 11 presents the final waveform after extrapolation

to infinite radius. There are 33 gravitational-wave cycles
before the maximum of j�4j. The simulation is further able
to resolve ten gravitational-wave cycles during ringdown,
during which the amplitude j�4j drops by 4 orders of
magnitude.

IV. DISCUSSION

We have presented the first spectral computation of a
binary black hole inspiral, merger, and ringdown, and we
have extracted accurate gravitational waveforms from our
simulation. A key ingredient in handling the merger phase
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FIG. 11 (color online). Final waveform, extrapolated to infinity. The top panels show the real part of �22
4 with a linear y axis, the

bottom panels with a logarithmic y axis. The right panels show an enlargement of merger and ringdown.
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FIG. 10 (color online). Comparison of extrapolated and non-
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infinity using n ¼ 3. Each selected waveform is labeled by the
numerical resolution (N4, N5, or N6), and either the extraction
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trapolation orders. Phase differences between resolutions N5 and
N6, and amplitude differences between all three resolutions, are
indistinguishable on the plot.
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is a choice of gauge that causes the individual holes to
expand in coordinate size. This eliminates the coordinate
singularities that prevented our earlier simulations from
continuing through merger. The largest downside to the
gauge used here is that the success of the method depends
sensitively on some of the gauge parameters, namely �1

and �2 in Eq. (8), and �1 and �3 in Eqs. (6) and (7). If these
parameters are chosen poorly, the characteristic fields at
the excision boundaries fail to be purely outgoing (i.e. into
the holes) at some instant in time, causing the code to
terminate due to lack of a proper boundary condition at
an excision boundary. An alternative approach to gauge
conditions for the generalized harmonic system [77] is in
progress, and promises to be more robust.

We compute the spin of the final black hole with three
distinct diagnostics, one based on approximate rotational
Killing vectors, the others based on the minimum and
maximum of the scalar curvature of the apparent horizon
(�AKV, �

min
SC , and �max

SC in the language of Appendices A

and B of [55]). We find that these diagnostics agree to an
exquisite degree. Since these diagnostics coincide exactly
for a Kerr black hole, this suggests that the final state is
indeed a Kerr black hole. The uncertainty of the final spin
quoted in Sec. II E is due to numerical truncation error (i.e.
differences between resolutions 30c1/N5 and 30c1/N6),
rather than due to differences between spin diagnostics,
and we find Sf=M

2
f ¼ 0:686 46� 0:000 04, and Mf ¼

ð0:951 62� 0:000 02ÞM.
The physical waveform at infinity produced by any

numerical relativity code should of course be independent
of the coordinates used during the simulation. However, in
practice it is difficult to remove coordinate effects from the
waveform for several reasons. First, waveforms are typi-
cally extracted on coordinate spheres (not geometric
spheres) of finite radius as functions of coordinate time
(which may not agree with proper time at infinity). Second,
the extracted waveform on a given sphere is typically
expanded in spin-weighted spherical harmonics
sY‘mð�;�Þ using the � and � coordinates from the simu-
lation rather than some geometrically defined � and �
coordinates. Finally, standard formulas equating �4 with
the asymptotic radiation field assume that �4 is computed
at infinity. Such gauge ambiguities can be significant for
the accuracy of waveforms from numerical simulations
[87–89]. Indeed, if we choose a deliberately ‘‘bad’’ gauge

just after merger by omitting the factor e�r002=�2
3 in the

function fðx; tÞ [cf. Equation (30)], we find that the lapse
function oscillates in time even at large distances, and that
the resulting waveform extracted at a finite radius differs
by more than a radian in phase from the waveform pre-
sented here. We defer further discussion of gauge effects
on the waveform to a future paper.

We have also shown that extrapolation of waveforms to
infinity is crucial: waveforms extracted at a finite radius
differ (particularly in phase) from waveforms extrapolated
to infinity by far more than the numerical errors, as shown
in Fig. 10. Although it is likely that the need for extrapo-
lation may be somewhat reduced by more sophisticated
algorithms for wave extraction at finite radius, it appears
that most of the difference between waveforms that have
and have not been extrapolated to infinity is due to physics
(in the form of near-zone effects) rather than to gauge and
tetrad ambiguities [86].
We are currently extending our methods to binary black

holes with unequal masses and nontrivial spins. Inspiral
simulations for these more generic systems have already
been computed by our code; it remains to be seen whether
mergers of more generic black hole systems can be simu-
lated with the methods described here, or whether alter-
native gauge conditions, such as those described in
Ref. [77], will be necessary.
It would be interesting to compare the waveforms pre-

sented here with those from other groups computing binary
black hole mergers, particularly since other groups use
different numerical methods, different formulations of
the equations, and different gauge conditions than our
group. Several such comparisons are presently under way.
Waveforms are available at http://www.black-holes.org/

Waveforms.html.
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Pan, H. P. Pfeiffer, and M.A. Scheel, Phys. Rev. D 78,
104020 (2008).
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[87] A. Nerozzi, M. Bruni, L.M. Burko, and V. Re, in

Proceedings of the Albert Einstein Century International
Conference, Paris, France, 2005, pp. 702–707 [AIP Conf.
Proc. 861, 702 (2006)].

[88] E. Pazos, E. N. Dorband, A. Nagar, C. Palenzuela, E.
Schnetter, and M. Tiglio, Classical Quantum Gravity 24,
S341 (2007).

[89] L. Lehner and O.M. Moreschi, Phys. Rev. D 76, 124040
(2007).

[90] D. R. Fiske, J. G. Baker, J. R. van Meter, D.-I. Choi, and
J.M. Centrella, Phys. Rev. D 71, 104036 (2005).

SCHEEL, BOYLE, CHU, KIDDER, MATTHEWS, AND PFEIFFER PHYSICAL REVIEW D 79, 024003 (2009)

024003-14


