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(Received 3 November 2008; published 29 January 2009)

We examine the full nonlinear dynamics of closed Friedmann-Robertson-Walker universes in the

framework of D-branes formalism. Friedmann equations contain additional terms arising from the bulk-

brane interaction that provide a concrete model for nonsingular bounces in the early phase of the Universe.

We construct nonsingular cosmological scenarios sourced with perfect fluids and a massive inflaton field,

which are past eternal, oscillatory, and may emerge into an inflationary phase due to nonlinear resonance

mechanisms. Oscillatory behavior becomes metastable when the system is driven into a resonance

window of the parameter space of the models, with consequent breakup of KAM tori that trap the

inflaton, leading the Universe to the inflationary regime. A construction of the resonance chart of the

models is made. Resonance windows are labeled by an integer n � 2, where n is related to the ratio of the

frequencies in the scale factor/scalar field degrees of freedom. They are typically small compared to the

volume of the whole parameter space, and we examine the constraints imposed by nonlinear resonance in

the physical domain of initial configurations so that inflation may be realized. We discuss the complex

dynamics arising in this preinflationary stage, the structural stability of the resonance pattern and some of

its possible imprints in the physics of inflation. We also approach the issue of initial configurations that are

connected to a chaotic exit to inflation. Pure scalar field bouncing cosmologies are constructed. Contrary

to models with perfect fluid components, the structure of the bouncing dynamics is highly sensitive to the

initial amplitude and to the mass of the inflaton; dynamical potential barriers allowing for bounces appear

as a new feature of the dynamics. We argue that if our actual Universe is a brane inflated by a parametric

resonance mechanism triggered by the inflaton, some observable cosmological parameters should then

have a signature of the particular resonance from which the brane inflated.
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I. INTRODUCTION

The issue of the initial conditions of our present
Universe is connected to the problem of the initial singu-
larity and to the possible solutions adopted to circumvent
this problem, which lie in the realm of a quantum theory of
gravitation. In fact we may consider that the initial con-
ditions of our present expanding Universe were fixed when
the early Universe emerged from a Planckian regime and
started its classical evolution. However, by evolving back
the initial conditions using Einstein classical equations the
Universe is driven toward a singular point where the clas-
sical regime is no longer valid. This is an indication that
classical general relativity is not a complete theory and in
this domain quantum processes must be taken into account.
Therefore, initial conditions from which our classical
Universe evolved should crucially depend on the version
of quantum gravity theory adopted to describe the dynam-
ics in the neighborhood of the classical singularity. This
implies that recent observational results in cosmology
could in principle guide us in narrowing the possibilities
of choices. Inflationary cosmology, for instance, although a
highly appealing theoretical paradigm, relies on assump-
tions about how the Universe emerged from the cosmic

singularity. In this vein, models for a preinflationary phase,
including quantum corrections and consistent with the
inflationary paradigm, are important to be examined.
Among several propositions to describe the dynamics in

this preinflationary semiclassical domain are, for instance,
quantum loop cosmology [1] and the string based formal-
ism of D branes [2], both of them leading to corrections in
Einstein’s equations and encompassing general relativity
as a classical (low energy) limit. In the case of spatially
homogeneous and isotropic cosmologies, the basic result-
ing distinction between the two approaches lies in the
corrections introduced in Friedmann’s Hamiltonian con-
straint: quantum loop cosmology leads to corrections in the
kinetic energy term of matter fields while bulk-brane cor-
rections lead to extra potential energy terms. In both cases
we may have bounces in the scale factor corresponding to
the avoidance of a singularity in the models.
In the present paper we adhere to the string based

formalism of D branes. In this scenario extra dimensions
are introduced, the bulk space, and all the matter in the
Universe would be trapped on a brane with three spatial
dimensions; only gravitons would be allowed to leave the
surface and move in the full bulk [3]. At low energies
general relativity is recovered but at high energies signifi-
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cant changes are introduced in the gravitational dynamics.
Our main interest here is connected to the high-energy/
quantum corrections that are dominant in the neighborhood
of the singularity, resulting in a repulsive force that avoids
the singularity and leads the Universe to undergo non-
singular bounces. An elegant geometrical derivation of
braneworld dynamics embedded in five-dimensional
spacetimes may be found in Refs. [4,5] where both high-
energy local corrections as well as nonlocal bulk correc-
tions on a Friedmann-Robertson-Walker (FRW) brane are
analyzed. Bouncing braneworld models were constructed
by Shtanov and Sahni [6] based upon a Randall-Sundrum
type action with one extra timelike dimension.

Here, we examine the full nonlinear dynamics of spa-
tially closed FRW preinflationary braneworld models with
a massive scalar field (the inflaton) and several noninter-
acting perfect fluids. The matter fields evolve on the brane,
where high-energy/quantum gravity corrections due to the
bulk are included and implement nonsingular bounces. We
have previously approached analogous models with a ra-
diation fluid plus a scalar field in the form of small pertur-
bations, where the brane corrections were due to the
radiation fluid only or to a phantom-type fluid [7].

With the full nonlinear dynamics new possibilities for
cosmological scenarios arise, as nonsingular oscillatory
bouncing cosmologies sourced with a pure scalar field, or
with a scalar field plus several perfect fluid components
that allow to model the effect of dark matter together with
barionic matter in the gravitational dynamics. Such non-
singular oscillatory solutions have the theoretical advan-
tage of avoiding the problem of initial conditions at past
infinity occurring with one-single bounce solutions and,
further, are favored by entropy considerations. We make a
detailed examination of nonlinear parametric resonance
mechanisms that are present in the full dynamics and
turn these bounded oscillatory solutions metastable allow-
ing the model to emerge naturally into an inflationary
phase. We consider the restriction such mechanisms im-
pose on the initial configurations so that the models may
realize inflation.

We organize the paper as follows. In Sec. II, we give a
brief introduction to the framework of the braneworld
formulation, making explicit the assumptions used in ob-
taining the dynamics, and derive the full dynamical equa-
tions of the models. In Sec. III, we describe some basic
structures (as critical points, invariant planes, and attractors
at infinity) that constitute the skeleton of phase space and
allow to organize the dynamics in phase space. In Sec. IV,
we restrict the matter content of the models to a massive
scalar field plus dust and radiation, which constitute a
minimal set of ingredients appropriate for a preinflationary
model, and analyze the constraints on the parameters of the
model so that the dynamics may allow for bounded oscil-
latory bouncing solutions. In Secs. V and VI we make a
semi-analytical approach to nonlinear resonance phe-

nomena in the models that may turn the oscillatory
bounded solutions into metastable ones, with an inflation-
ary behavior, and we construct the resonance charts of the
dynamics. In Sec. VII, we treat the case of bouncing
cosmologies sourced by a pure scalar field. Section VIII
is devoted to the exam of the dynamics of initial condition
sets connected to a chaotic exit to inflation. Section IX
contains the conclusions and final discussions. Throughout
the paper we use units such that @ ¼ c ¼ 1.

II. THE MODEL AND ITS DYNAMICS

Our task here is to derive the full nonlinear dynamical
equations of the models, (actually a four-dimensional au-
tonomous dynamical system with one first integral) and to
analyze structure of the associated phase space. In the
framework of D-brane formalism, we consider a closed
FRW metric on the four-dimensional braneworld em-
bedded in a five-dimensional conformally flat bulk. The
matter content of the models is constituted of a scalar field
� plus several noninteracting perfect fluids, each with
equation of state pi ¼ �i�i. These matter fields are con-
strained to propagate on the brane only.
We start by giving a brief introduction to braneworld

theory, making explicit the specific assumptions used in
obtaining the dynamics of the model. We rely on
Refs. [5,6], and our notation basically follows [8]. Let us
start with a four-dimensional Lorentzian brane � with
metric gab, embedded in a five-dimensional conformally
flat bulk M with metric gAB. Capital Latin indices range
from 0 to 4, small Latin indices range from 0 to 3. We
regard � as a common boundary of two pieces M1 and
M2 of M and the metric gab induced on the brane by the
metric of the two pieces should coincide although the
extrinsic curvatures of � in M1 and M2 are allowed to
be different. The action for the theory has the general form

S ¼ 1

2�5

�Z
M1

ðð5ÞR� 2�5Þ þ 2�
Z
�
K1 þ

Z
M2

ðð5ÞR

� 2�5Þ � 2�
Z
�
K2

�
þ 1

2

Z
�

�
1

�4

ð4ÞR� 2�

�

þ
Z
�
L4ðgab; �;�Þ: (1)

In the above ð5ÞR is the Ricci scalar of the Lorentzian five-
dimensional metric gAB on M, �5 is the five-dimensional

cosmological constant, and ð4ÞR is the scalar curvature of
the induced metric gab on �. The parameter � is denoted
the brane tension, and �5 and �4 are Einstein constants in
five and four dimensions, respectively. The unit vector nA

normal to the boundary � has the norm �. If � ¼ �1, the
signature of the bulk space is (�;�;þ;þ;þ), so that the
extra dimension is timelike. The quantity K ¼ Kabg

ab is
the trace of the symmetric tensor of extrinsic curvature
Kab ¼ Y;a

CY;b
DrCnD, where YAðxaÞ are the embedding

functions of � in M [6]. Also,
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L4 ¼ ffiffiffiffiffiffiffi�g
p �X

i

�i � 1

2
ðgab�;a�;b þm2�2Þ � �

2
ð4ÞR�2

�

(2)

is the Lagrangean density of the four-dimensional massive
inflaton field � plus the perfect fluids (with equation of
state pi ¼ �i�i), whose dynamics is restricted to the brane
�. They interact only with the induced metric gab. We
further assume that the inflaton field is nonminimally
coupled with gab, with coupling parameter �. All integra-
tions over the bulk and the brane are taken with the natural

volume elements
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð5Þg

q
d5x and

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
d4x,

respectively.
Variations that leave the induced metric on � intact

result in the equations

ð5ÞGAB þ�5gAB ¼ 0; (3)

while considering arbitrary variations of gAB and taking
into account (3) we obtain

ð4ÞGab þ �
�4

�5

ðSð1Þab � Sð2ÞabÞ ¼ �4ð�ab � �gabÞ; (4)

where Sab � Kab � Kgab. �ab is the energy-momentum
tensor of the matter fields on the brane, resulting from (2).
In the limit �4 ! 1 Eq. (4) reduces to the Israel-Darmois
junction condition [9]

ðSð1Þab � Sð2ÞabÞ ¼ ��5ð�ab � �gabÞ: (5)

We impose the Z2 symmetry [5] and use the junction
conditions (5) to determine the extrinsic curvature on the
brane

Kab ¼ � �

2
�5

��
�ab � 1

3
�gab

�
þ �

3
gab

�
: (6)

Now, using Gauss equation ð4ÞRabcd ¼
ð5ÞRMNRSY

M
;a Y

N
;bY

R
;cY

S
;d þ �ðKacKbd � KadKbcÞ together

with Eqs. (3) and (6) we arrive at the induced field equa-
tions on the brane

ð4ÞGab ¼ �
�
�5

2
þ 1

12
�2
5��

2

�
gab þ �2

5

6
���ab þ ��2

5	ab:

(7)

In the above

	ab ¼ �1
4�ac�

c
b þ 1

12��ab þ 1
8gab�cd�

cd � 1
24gab�

2: (8)

We remark the absence of the conformal tensor projection
in Eq. (7) since the four-dimensional brane is embedded in
a conformally flat bulk, which is the case of the FRW brane
to be considered. Accordingly Codazzi’s equations imply
that

Da�
a
b ¼ 0; (9)

where Da is the covariant derivative with respect to the

induced metric gab. Together with the contracted Bianchi’s
identities in (7) it results Da	

a
b ¼ 0, which corresponds to

a sufficient condition for gab to be embedded in a con-
formally flat bulk.
Eqs. (7) and (9) are the dynamical equations of the

gravitational field on the brane. In Eq. (7) we identify

�4 ¼
�
�5

2
þ 1

12
�2
5��

2

�
; GN ¼ �2

5��

48	
; (10)

respectively, as the effective cosmological constant, and
the effective Newton’s gravitational constant in the brane.
Both depend basically on the brane tension �. Equation (7)
is similar to Einstein equations in four dimensions, except
by the second term in the right-hand side (RHS) that is a
correction resulting from the brane-bulk interaction qua-
dratic in the extrinsic curvature, while Eq. (9) is the con-
servation law for the matter on the brane. We recall that for
the evaluation of the extrinsic curvature (6) we use the
energy-momentum of the matter fields on the brane. In our
model they are described by the Lagrangean density (2).
Let us consider the FRW metric on the brane given by

the line element

ds2 ¼ �dt2 þ aðtÞ2
�

dr2

1� kr2
þ r2ðd
2 þ sin2
d�2Þ

�
;

(11)

where aðtÞ is the scale factor. For the noninteracting perfect
fluids considered in (2), each with equation of state pi ¼
�i�i, we have then

�i ¼ Ei

a3ð1þ�iÞ ; (12)

where Ei is a constant of motion. The components of the
tensor 	ab [cf. (8)] are now expressed as

	00 ¼ 1

12

�X
i

�i þ �� þ�

�
2
; (13)

	ij ¼ 1

12

�X
i

�i þ �� þ �

�
2
gij þ 1

6

�X
i

�i þ �� þ�

�

�
�X

i

pi þ p� þ 2�

�
ðm2 þ �RÞ�2 � _�2 þ _a

a
� _�

�

� ��2

�
2
€a

a
þ _a2

a2
þ k

a2

��
gij; (14)

where

�� ¼ 1
2ð _�2 þm2�2Þ; p� ¼ 1

2ð _�2 �m2�2Þ; (15)

� ¼ 3�

��
_a2

a2
þ k

a2

�
�2 þ 2

_a

a
� _�

�
; (16)

and the curvature scalar R ¼ 6½ €a=aþ ð _a=aÞ2 þ k=a2�.
The equations of motion (7) and (9) reduce then to
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�
_a

a

�
2 þ k

a2
��4

3
¼ 8	GN

3

�X
i

�i þ 1

2
_�2 þ 1

2
m2�2

þ 3�

��
_a

a

�
2 þ k

a2

�
�2 þ 6�

_a

a
� _�

�

þ ��2
5

36

�X
i

�i þ 1

2
_�2 þ 1

2
m2�2

þ 3�

��
_a

a

�
2 þ k

a2

�
�2 þ 6�

_a

a
� _�

�
2
;

(17)

€�þ 3
_a

a
_�þm2�þ 6�

�
€a

a
þ

�
_a

a

�
2 þ k

a2

�
¼ 0; (18)

respectively. Equation (18) is the Klein-Gordon (KG)
equation for the inflaton field � while Eq. (17) is the
(0,0) equation in (7). Equation (17) is in fact a first integral
of the ði; jÞ equations provided the KG equation holds.

The nonminimal coupling of the inflaton with gravita-
tion considered here is partly motivated by quantum cal-
culations in curved spacetimes (taking into account
quantum backreaction, renormalization, etc.) and partly
by enlarging the possibilities of constructing successful
inflationary and preinflationary scenarios (cf. for instance
[10]). The case � ¼ 0 is the usual minimal coupling of the
scalar field with gravitation, and � ¼ 1=6 is the so-called
conformal coupling [11].

It is not difficult to see from Eq. (17) that the choice � ¼
�1 (corresponding to the extra dimension with timelike
character) will implement nonsingular bounces in the dy-
namics of the scale factor a, implying that the models are
nonsingular. In this case, the brane tension � is required to
be negative in order that the subsequent evolution of the
Universe be compatible with observations [cf. Equation
(10)].

In the remaining of the paper wewill restrict ourselves to
the case � ¼ �1 and positively curved FRW universes
(k > 0), as we are interested in preinflationary nonsigular
dynamics with metastable oscillatory behavior. Partly for
analytical and numerical simplicity wewill also restrict our
analysis to the case of conformal coupling � ¼ 1=6. The
basic features of this case encompass that of the minimal
coupling case � ¼ 0. Arbitrary �’s correspond to a higher
dimensional parameter space, the scope of which is beyond
the purpose of the present paper. The case of pure scalar
field bouncing cosmologies will demand a separate treat-
ment, and will be dealt with in Sec. VII. Finally, for
numerical computation purposes we fix �2

5 ¼ 6 and k ¼ 1.
Within the above restrictions, using the conformal time

variable � (defined by d� ¼ dt=a) and the rescaled scalar
field ’ ¼ a�, Eqs. (17) and (18) simplify to

a02 þ a2 ��4

3
a4 ¼ j�j

3
�ð�i; ’Þ � 1

6a4
½�ð�i; ’Þ�2; (19)

where

�ð�i; ’Þ �
�
a4
X
i

�i þ 1

2
ð’02 þ ð1þm2a2Þ’2Þ

�
; (20)

and

’00 þ ð1þm2a2Þ’ ¼ 0; (21)

where a prime denotes a derivative with respect to the
conformal time �. Equations (19) and (21) constitute the
basic dynamical equations to be dealt with in this paper,
defined in the phase space ða; ’; a0; ’0Þ.
We note that form ¼ 0 the dynamics is separable and, as

a consequence, integrable. The Klein-Gordon Eq. (21) has
the first integral E0

’ ¼ ð’02 þ ’2Þ=2 in this case.

III. THE SKELETON OF PHASE SPACE

From the above Eqs. (19) and (21) we derive the dy-
namical system

’0 ¼ p’; p0
’ ¼ �ð1þm2a2Þ’; a0 ¼ pa=6;

p0
a ¼ �6aþ 4�4a

3 � j�j
�X

i

ð3�i � 1Þ Ei

a3�i
�m2a’2

�

þ
�X

i

Ei

a3�iþ1
þ 1

2a2
ð’02 þ ð1þm2a2Þ’2Þ

�

�
�X

j

ð3�j þ 1Þ Ej

a3�jþ2
þ 1

a3
ð’02 þ ’2Þ

�
: (22)

The first and third Eqs. (22) are mere redefinitions. ðpa; aÞ
can be shown to be canonically conjugated (cf. description
of the invariant plane dynamics, for instance). This is not
the case of ðp’; ’Þ, since the first integral (19) is not a

Hamiltonian constraint in these variables due the presence
of fourth-order powers in ’0.
Three basic structures organize the dynamics in the

phase space of the above dynamical system, namely,
(i) an invariant plane, (ii) critical points, and
(iii) separatrices, allowing us to give a global description
of the motion of the models.
The invariant plane is defined by

’ ¼ 0; p’ � ’0 ¼ 0; (23)

where the dynamics is integrable; orbits with initial con-
ditions in this plane are totally contained in it, actually
being similar to the dynamics in the sector ða; paÞ of the
separable case. A first integral of motion is given by the
Hamiltonian constraint

p2
a

12
þ VðaÞ � j�jErad ¼ 0; (24)

where the potential VðaÞ is defined as

VðaÞ ¼ 3a2 ��4a
4 � j�j X

i�rad

Ei

a3�i�1
þ 1

2

�X
i

Ei

a3�iþ1

�
2
:

(25)
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The equations of motion are equivalent to Hamilton’s
equations generated from (24), corresponding to the third
and fourth Eqs. (22) restricted to the invariant plane (23).

A careful examination shows that for perfect fluids with
�1=3<�i � 1 the last term in the potential (25) acts as an
infinite potential barrier and is responsible for the avoid-
ance of the singularity a ¼ 0. These potential corrections
are equivalent to fluids with negative energy densities. This
is in accordance with the fact that indeed quantum effects
can violate the classical energy conditions, and may avoid
curvature singularities where classical general relativity
breaks down [12]. Such quantum violations tend to occur
on short scales and/or at high curvatures, which is the case
in our present models.

Critical points in the finite region of phase space are
stationary solutions of Eqs. (22), namely, the points (p’ ¼
0,’ ¼ 0, pa ¼ 0, a ¼ acrit), at which the RHS of Eqs. (22)
vanish. Obviously the critical points are contained in the
invariant plane, with a ¼ acrit being the real positive roots
of V 0ðaÞ ¼ 0, where a prime here denotes derivative with
respect to a. Depending on the values of the parameters
ð�4; �; Ei; �iÞ we may have from one to several real posi-
tive acrit. However, it is not difficult to verify that not all of
them satisfy the constraint Eq. (19) and that at most two
critical points are present, associated with one minimum
and one maximum of VðaÞ. As a matter of fact, this is the
case for a fixed �4 and sufficiently bounded values of Ei.
These limiting conditions on the Ei have not in general a
closed analytical form except for the cases of dust or
radiation, and will be dealt with in next section. For �4 ¼
0, the dynamical system has one critical point only, corre-
sponding to a minimum of the potential VðaÞ; such con-
figurations are not of interest for us since they
corresponding to perpetually nonsingular oscillating uni-
verses, a scenario where inflation cannot be realized.

To examine the nature of the critical points, and con-
sequently the nature of the motion in their neighborhood,
we linearize the dynamical system (22) about each acrit.
The resulting 4� 4 constant matrix of the linearization has
the four eigenvalues

�1;2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2a2crit

q
; �3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V 00ðacritÞ=6

q
:

(26)

related to the linearized motion about acrit in the sector
ð’;p’Þ and in the sector ða; paÞ, respectively. This char-
acterizes the minimum of VðaÞ as a center P0, with two
pairs of complex conjugated imaginary eigenvalues
(V 00ðacritÞ> 0), and the maximum P1 as a saddle-center
[13] with one pair of real eigenvalues with opposite signs
ðV 00ðacritÞ< 0Þ and one pair of imaginary eigenvalues.
These results can be easily interpreted if we expand the
integral of motion (19) about the critical points as

H � 1

12
p2
a þ 1

2
V 00ðacritÞða� acritÞ2

� j�j
2

ðp2
’ þ ð1þm2a2critÞ’2Þ

þ Ecrit � j�jErad þOð3Þ ¼ 0; (27)

where Oð3Þ denotes higher-order terms in the expansion
and Ecrit � VðacritÞ is the energy of the respective critical
point. In a small neighborhood of the critical point these
higher-order terms can be neglected and the motion is
separable into the two sectors with approximate constant
of motions

EðaÞ ¼ 1
12p

2
a þ 1

2V
00ðacritÞða� acritÞ2;

Eð’Þ ¼ 1
2ðp2

’ þ ð1þm2a2critÞ’2Þ; (28)

with EðaÞ � j�jEð’Þ þ Ecrit � j�jErad � 0 and jEcrit �
j�jEradj small. It is immediate to see that the sector
associated with Eð’Þ always correspond to rotational mo-

tion in the variables ð’; p’Þ about the critical points, while
the sector associated with EðaÞ corresponds to either

(i) rotational motion or (ii) hyperbolic motion in the vari-
ables ða; paÞ about the respective critical point; namely, the
minimum of the potential P0 corresponds to a center and
the maximum P1 corresponds to a saddle-center, as men-
tioned before. P0 and P1 define, respectively, a stable and
an unstable static Einstein universe. The stable Einstein
universe configuration has no classical analogue, arising
from the dynamical balance between the perfect fluid
energy content and the negative energy density connected
to the high-energy/quantum corrections in the potential.
We are now ready to describe the topology of the motion
about the critical points and its extension to a nonlinear
neighborhood of these points. This will be done in next
section for the case of a preinflationary model containing
cold dark matter (dust), dark energy (a positive cosmologi-
cal constant), and radiation.
Finally, from the saddle-center critical point (when

present) there emerges a structure of separatrices S con-
tained in the invariant plane. One of them tends to a
de Sitter attractor at infinity, defining a escape of orbits
to the inflationary regime. In fact, a straightforward analy-
sis of the infinity of the phase space shows the presence of a
pair of critical points in this region, one acting as an
attractor (stable de Sitter configuration) and the other as
a repeller (unstable de Sitter configuration). The scale
factor approaches the de Sitter attractor as að�Þ � ðC0 �
�Þ�1 for � ! C0, where � is the conformal time, or as

aðtÞ � expðt ffiffiffiffiffiffiffiffiffiffiffi
�4=3

p ÞÞ for t ! 1, where t is the cosmic
time.

IV. PRE-INFLATIONARY MODELWITH DARK
MATTER, DARK ENERGY, AND RADIATION

To proceed with our analysis further we will consider
braneworld models whose matter content is restricted to a
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dark matter component (dust) and radiation, together a
massive scalar field (the inflaton) and a dark energy com-
ponent described by the effective cosmological constant in
the brane [cf. Equation (10)]. The reasons for these re-
strictions are twofold. First the model contains a minimal
set of ingredients that is appropriate for a preinflationary
model. The second is more technical and has to do with the
number of independent perfect fluid components. A large
number of fluid components results in a higher dimensional
parameter space, what turns the numerical/analytical
analysis of parametric resonance quite involved.
Furthermore, the resonance patterns that are important
for the physics of inflation in this model are typical for
the dynamics of the general model as we will discuss later.
In this instance Eqs. (19)–(21) reduce then to

p2
a

12
þ VðaÞ � j�jErad � j�j

2
ð’02 þ ð1þm2a2Þ’2Þ

þ 1

2a2

�
Erad

a2
þ Edust

a

�
ð’02 þ ð1þm2a2Þ’2Þ

þ 1

8a4
ð’02 þ ð1þm2a2Þ’2Þ2 ¼ 0; (29)

and

’00 þ ð1þm2a2Þ’ ¼ 0; (30)

where

VðaÞ ¼ 3a2 ��4a
4 � j�jEdustaþ 1

2

�
Erad

a2
þ Edust

a

�
2
:

(31)

We remark that for the integrable case m ¼ 0, Eq. (29)
simplifies to

p2
a

12
þ ~VðaÞ � j�jðErad þ E0

’Þ ¼ 0; (32)

where

~VðaÞ ¼ 3a2 ��4a
4 � j�jEdusta

þ 1

2

�
Erad þ E0

’

a2
þ Edust

a

�
2
; (33)

with E0
’ � ð’02 þ ’2Þ=2 a constant of motion. If we com-

pare Eq. (32) with Eq. (24) for the invariant plane, and Eq.
(33) with Eq. (31) we may see that the integrable dynamics
(m ¼ 0) is analogous to the integrable dynamics in the
invariant plane up to the substitution Erad ! Erad þ E0

’. In

other words, the integrable scalar field behaves as a radia-
tion fluid in respect to the dynamics of the scale factor, a
fact that will be used in Sec. VII, for the case of pure scalar
field cosmology. We should remark that in the low energy
limit the cosmological constant on the brane �4 may be
interpreted as the effective vacuum energy of the inflaton
field and ’ are the spatially homogeneous expectation
values of the inflaton fluctuations about its vacuum state.
When these fluctuations are considered small or initially

small, namely, taken near the invariant plane, we may
neglect E0

’ and the integrable dynamics m ¼ 0 is approxi-

mately that of the invariant plane. The scalar field fluctua-
tions will then actually have the role of just triggering the
resonances in the perfect fluid cosmologies.
In Fig. 1 we depict the phase space portrait of the

integrable dynamics in the invariant plane (’ ¼ 0 ¼ p’)

for the case of dust and radiation, with j�jEdust sufficiently
bounded so that VðaÞ has a well (we adopted j�j ¼ 500
and Erad ¼ Edust ¼ 10�3). The critical points P0 (center)
and P1 (saddle-center) correspond to stable and unstable
Einstein universes. Typically the model allows for the
presence of perpetually bouncing universes (periodic or-
bits) in Region I of Fig. 1, associated with motion in the
potential well VðaÞ about the stable Einstein universe
configuration P0. These configurations are basically the
ones for which j�jErad < VðamaxÞ. Region I, understood as
a nonlinear neighborhood of P0, is bounded by the homo-
clinic separatrix S emerging from the saddle-center P1

[14]. Orbits in Region II are correspond to one-bounce
universes. A separatrix emerges from P1 toward the
de Sitter attractor at infinity, defining a escape to inflation.
Finally, it is worth mentioning here some basic structural

differences between the integrable dynamics in the invari-
ant plane and that of the integrable case (Eq. (32) and Eq.
(30) for m ¼ 0) whenever ’ð0Þ and/or p’ð0Þ are not zero.
The phase space portrait in the plane ða; paÞ is similar to
that of the invariant plane shown in Fig. 1, however, P1 and
P0 are no longer critical points but periodic orbits. The

 Escape to de Sitter
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FIG. 1. The phase portrait of invariant plane dynamics with the
critical points P0 (center) and P1 (saddle-center) corresponding
to stable and unstable Einstein universes. The periodic orbits of
Region I describe perpetually bouncing universes. Orbits in
Region II are solutions of one-bounce universes. A separatrix
S emerges from P1 toward the de Sitter attractor defining a
escape to inflation.

R. MAIER, I. DAMIÃO SOARES, AND E.V. TONINI PHYSICAL REVIEW D 79, 023522 (2009)

023522-6



integrable dynamics is not restricted to this plane but, in the
case of Region I, evolve on tori that are the direct product
of the closed curves in Region I to periodic orbits in the
sector ð’;p’Þ. In particular, the product of the separatrix S
that bounds the Region I times a periodic orbit with initial
conditions fixed by the constant E0

’ is a cylinder. The orbits

on this cylinder coalesce (for times � ! �1) to the peri-
odic orbit at P1 with the same constant of motion. This
cylinder is said to be homoclinic to the periodic orbit at P1.

As we mentioned already, for a fixed value of �4 the
potential VðaÞ has two extrema (one minimum and one
maximum) for suitably bounded values of ðj�j; Erad; EdustÞ,
corresponding to a well in the potential. For the case of
pure radiation we can show that VðaÞ will have this well
provided that

E2
rad <

2187

2048

1

�3
4

: (34)

The two extrema of VðaÞ for this case are critical points of
the dynamics since VðaÞ> 0 for all a > 0 implying that
even the minimum of the potential belongs to the physical
phase space domain. For Erad violating the above restric-
tion no extrema are present, and the system has no critical
point in the finite region of phase space. For the case of
pure dust VðaÞ has no extrema if

j�jEdust >
16

ffiffiffi
3

p
9

1ffiffiffiffiffiffi
�4

p :

For radiation plus dust we do not have a closed form for the
constraint conditions on the parameters. However, it is not
difficult to check that, in general, the increase of j�jEdust,
namely, the increase of the gravitational interaction
strength of the dust component, has the effect of taking
the minimum of VðaÞ out of the physical space leading
eventually to a destruction of the well. In other words, the
increase of j�jEdust has the effect of reducing the phase
space volume available for bounded and/or initially
bounded (metastable) configurations. This is illustrated in
Fig. 2 where we plot the potential VðaÞ for several increas-
ing values of j�jEdust with fixed�4 and Erad (as a matter of
fact we fixed �4 ¼ 1:5, Edust ¼ 0:001, Erad ¼ 0:01 and
varied j�j). We see that for j�jEdust * 2:3 the well in the
potential is no longer present.

The structure of motion about P0 will be the main object
of our interest in the following. This region is physically
more relevant than that of one-bounce models since it
avoids the theoretical problems of posing initial conditions
at past infinity, this issue being possibly brought to the
realm of a semiclassical quantization of the dynamics in
the Region I. Furthermore, maximum entropy considera-
tions [15] favor the stable Einstein universe as a suitable
past configuration about which initial states of the preinfla-
tionary universe oscillate. However, we must provide a
mechanism for such bounded and perpetually bouncing
universe configurations to become metastable so that they

may realize inflation and escape to the de Sitter attractor at
infinity. Such a mechanism will be the nonlinear resonance
provided by the interaction with the scalar field sector
ð’;p’Þ in the nonintegrable case, as we proceed to discuss.
We should finally remark that the increase of j�jEdust,

namely, the increase of Newton’s constant on the brane
and/or the increase of the dust content of the model, have
the effect of taking the stable Einstein universe configura-
tion out of the physical phase space (cf. Figure 2); in the
latter situation the physical phase space is not simply
connected presenting a void with the structure of a solid
torus.

V. NONLINEAR RESONANCE OF KAM TORI

We start by discussing the topology of motion about the
stable Einstein universe P0 that includes (i) the structure of
KAM tori that are present in the neighborhood of P0 and
arise from the tori of the integrable case m ¼ 0;
(ii) nonlinear resonance mechanisms inducing that either
KAM tori are destroyed by the resonance allowing the
orbit escape to the de Sitter attractor or the motion is
chaotic (confined between two KAM tori) but otherwise
stable.
Let us consider the energy surfaces j�jðErad þ E0

’Þ<
EcritðP1Þ � VðP1Þ corresponding to bounded motion in the
integrable case m ¼ 0, or to initially bounded motion in
the nonintegrable cases. This phase space region can in-
deed be characterized as a nonlinear neighborhood of the
center P0, and is foliated by the two-tori S1 � S1 that are
the topological product of periodic orbits of the separable
sectors ð’;p’Þ and ða; paÞ, with the two associated sepa-
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FIG. 2. Plots of the potential VðaÞ for increasing values of � �
j�jEdust. For higher values of j�jEdust the minimum is out of the
physical phase space and eventually disappears (for j�jEdust *
2:3) together with the potential well.
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rately conserved quantities E0
’ and E0

a ¼ ðp2
a=12þ ~VðaÞÞ

satisfying E0
a � j�jðErad þ E0

’Þ ¼ 0. The frequency a of

the periodic orbit in the sector ða; paÞ is given by the third-
kind elliptic integral [16]

1

a

¼
ffiffiffiffiffiffi
12

�4

s Z �2

�3

x2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 2�1xþ ð�2

1 þ �2
2ÞÞ

Q
6
i¼1ðx� �iÞ

q ;

(35)

where (�i, i ¼ 1 . . . 6) and (�1 � i�2) are, respectively, the
real and imaginary roots of ~VðaÞ � j�jðErad þ E0

’Þ ¼ 0

(�3 <�2 <�1 are the positive real roots). The two tori
of the integrable case are the topological product of the
above class of periodic orbits parametrized by E0

a with the
periodic orbits of the harmonic oscillator parametrized by
E0
’ (with frequency ’ ¼ 1=2	).
For future reference we note that the periodic orbits of

the sector ða; paÞ in the integrable case will be represented
by the elliptic fixed point (’ ¼ 0, p’ ¼ 0), namely, the

origin of the Poincaré map with surface of section pa ¼ 0,
in case E0

’ ¼ 0. For E0
’ � 0 the corresponding integrable

tori are represented by closed invariant curves about the
origin of the map. For a small nonintegrable parameter m
this picture is maintained with (’ ¼ 0, p’ ¼ 0) as a center
of a primary island of KAM tori; in fact, the KAM theorem
[17] establishes the stability of tori with a sufficiently
incomensurate frequency ratio, which in the present case
means a is sufficiently irrational. Other integrable tori are
destroyed by the nonintegrable perturbation, and the region
between two remaining invariant tori presents an intricate
dynamics (unstable periodic orbits, stable periodic orbits
surrounded by islands, broken separatrices, and stochastic
layers, this structure repeating down to smaller scales
[14]). The importance of KAM tori for Hamiltonian sys-
tems with two degrees of freedom comes from the fact that
they prevent the diffusion of trajectories in the whole phase
space, and thus preventing in our model the entrance to
inflation. As m increases numerical experiments show that
invariant KAM tori may be destroyed, with a consequent
loss of stability of the system. This is the case of interest to
us as orbits initially trapped about the center (’ ¼ 0, p’ ¼
0) can escape into the inflationary phase. An important
mechanism for this breakup of invariant tori is nonlinear
resonance that occurs in a restricted domain of parameters
of the system as we proceed to examine using a semi-
analytical approach.

If m is small and/or we start from an initial condition
ð’0; p’0Þ small (namely, near the invariant plane) we may

approximate Eq. (30) as

’00 þ ð1þm2a20ð�ÞÞ’ ¼ 0; (36)

where a0ð�Þ is a solution of a00 þ dVðaÞ=da 	 0
[cf. Equation (22)]. Equation (36) has the form of a
Lamé-type equation, and therefore parametric resonance

occurs when the ratio

R ¼ a

~’

(37)

is a rational number, where [18]

~ ’ ¼ 1

2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð0:9mÞ2

2
ð�2

3 þ �2
2Þ

s
: (38)

Under this condition ’ begins to grow exponentially in
time and to act on the dynamics of the scale factor a, which
in turn will modify (36). This feedback will restructure the
resonance, either (i) by leading the dynamics into a more
unstable behavior, with amplification of the resonance
mechanism and consequent breaking of the KAM tori
and escaping of the orbits; or (ii) by leading the orbits to
a general chaotic motion in a bounded region of phase
space. This general nonlinear resonance mechanism can be
given an approximate analytical treatment, through which
we can fix the dominant resonances, namely, the rational
numbers R corresponding to the dominant resonances. In
this approximation, where higher-order terms in ð’; p’Þ
are neglected, the first integral (29) is approximated by

H � E0
a � j�jE0

’ � j�j
2

m2a2’2 ’ j�jErad: (39)

Further, in the remaining nonintegrable term the variable a
and ’ are substituted by the integrable solutions a0ð�Þ and
’0ð�Þ. Since the Hamiltonian character of the first integral
is recovered in the approximation, we are led to introduce
action-angle variables ðJ a;�a;J ’;�’Þ, the angle varia-

bles being defined as (�a ¼ a�, �’ ¼ ~’�) such that

both �a and �’ vary in the interval ½0; 1� during a com-

plete cycle of the original variables. We remark that in the
numerical experiments considered we have E0

a 	 j�jErad

in the initial stages of the dynamics. E0
a is however not

conserved as the dynamics proceeds, the nonintegrable
term being responsible for the exchange of energy with
the sector ð’;p’Þ. Taking into account that the function

a0ð�Þ is periodic with period Ta ¼ �1
a , the expansion in

circular functions of the nonintegrable term of (39) takes
the form [16]

H i ¼ � j�j
2

m2J ð0Þ
a J ð0Þ

’

X
n

ðAn cos2n	�aÞ cos4	�’;

(40)

where An are numerical coefficients depending the pa-
rameters of the model through the roots of VðaÞ �
j�jErad � 0 [cf. Equation (35)], and a zero superscript
denotes action variables of the integrable case.
Hamilton’s equation for J a derived from (39) can be
integrated for each given term n of the series, yielding to
a first approximation
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J a � j�j
2

m2J ð0Þ
a J ð0Þ

’

X
n

An

2	n~’

�
cosð2	n�a � 4	�’Þ

R� 2=n

þ cosð2	n�a þ 4	�’Þ
Rþ 2=n

�
: (41)

From (41) we have that the dominant terms are the ones for
which R ’ 2=n. Therefore, for a fixed n � 2 the expression

R ¼ a

~’

¼ 2

n
; n � 2 (42)

determines a volume in the parameter space
ðj�j; Erad; Edust; mÞ in the neighborhood of which a
n-resonance occurs. It represents a further step beyond
the analysis of resonances (37) in the linear regime of
Lamé-type Eq. (36). The setup of the resonance is signaled
by the bifurcation of the periodic orbit at the origin (’ ¼ 0,
p’ ¼ 0) into an unstable periodic orbit plus one or two

characteristic stable periodic orbits of the resonance (ac-
cording, respectively, whether n is odd or even), a fact
crucial to realize inflation, as we will discuss later.

The resonance chart for the model can now be con-
structed numerically using the exact dynamics. Expression
(42)—where approximations as well as the neglect of non-
resonant terms were used—constitutes an accurate guide to
localize and label the resonances in the parameter space
(obviously for a fixed �4, the values of j�jEdust and E0

must be compatible with initially bounded motion).
However, in the actual chart of resonance constructed
numerically using the exact dynamics, these domains
will have a spread that is a correction of the approxima-
tions due the full dynamics.

The focus on the underlying bulk-brane structure of the
gravitational dynamics will lead us to examine initially the
plane ð�;mÞ of the parameter space, while fixing the total
mass energy of dust Edust and of radiation Erad in several
distinct ratios. For numerical purposes in all numerical
experiments we will fix �4 ¼ 1:5.

Figure 3 displays the resonant chart in the plane ð�;mÞ
of the parameter space for fixed Edust ¼ Erad ¼ 10�3. The
chart correspond to initial conditions taken near the invari-
ant plane, namely, near the periodic orbit at the origin (’ ¼
0, p’ ¼ 0), with pa ¼ p’ ¼ 0,’ ¼ 10�4. The continuous

lines are solutions of (42), while the gray regions spreading
about the lines are sections of the resonance windows by
the planes Edust ¼ 0:001, Erad ¼ 0:001. The remaining
(white) regions are domains of stable motion, with the
dynamics bounded by KAM tori. We restricted ourselves
up to the resonance n ¼ 5 in order to not overcrowd the
figure. On driving the system toward a resonance zone (by
an appropriate change ofm and/or j�j) we can turn a stable
configuration into a metastable onewith consequent escape
of the orbits to the de Sitter attractor at infinity in a finite
time. In the realm of our pre-inflationary models, stability
versus nonlinear resonance instability will be considered
connected to initial conditions near the invariant plane

only, namely, with ð’;p’Þ small, corresponding to spa-

tially homogeneous fluctuations of the inflaton field.
Nonlinear resonance will turn orbits generated from these
initial conditions from stable to unstable (and vice versa) as
a consequence of bifurcation of the critical point (’ ¼ 0,
p’ ¼ 0), at the origin of the Poincaŕe map with surface of

section pa ¼ 0, from a center to a saddle (and vice versa),
breaking up the KAM tori that trap the orbits about the
origin. We recall that the origin of the map is a periodic
orbit of period 1=a in the ða; paÞ sector. This is illustrated
by the two Poincaré maps of Fig. 4 with surface of section
pa ¼ 0, for E0 ¼ E1 ¼ 10�3 and j�j ¼ 500 fixed, and
m ¼ 5:85 in the domain of parametric resonance n ¼ 3
(top map), and m ¼ 7:1 in the domain of parametric
stability between the resonances n ¼ 3 and n ¼ 4 (bottom
map). The origin in the top map is a saddle, with two
associated centers, a consequence of the bifurcation of
the periodic orbit at the origin due to the resonance n ¼
3. No KAM tori is present about the origin of the map so
that orbits with initial conditions about the origin are not
trapped and free to escape for large regions of phase space
and eventually reach the de Sitter attractor at infinity,
realizing inflation. The parametric domain of resonance
thus favor inflation. The origin of the bottom map is a
center, enclosed by KAM tori that trap the orbits with
initial conditions in this neighborhood, forbidding escape
to the de Sitter infinity. Therefore, the region of parametric
stability of the system will be unfavorable to the physics of
inflation since the orbit (a configuration of the early uni-
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FIG. 3. Resonance chart in the plane ð�;mÞ for Erad ¼ Edust ¼
10�3 and ’0 ¼ 10�4. The continuous lines are solutions of the
approximate resonant condition (42), while the gray regions
about the lines are the parametric resonance windows for the
exact dynamics, corresponding to the bifurcation of the periodic
orbit at the origin. The white regions correspond to KAM stable
motion.
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verse) will be trapped in a stable state between two KAM
tori about the center at the origin. The structure of the
stochastic sea is distinct in each case. If the system is in the
region of parametric resonance, initial conditions near the
invariant plane may undergo a long-time diffusion through
the stochastic sea to large regions of phase space, and
finally escape to the de Sitter attractor. On the other
hand, when the system is in the region of parametric
stability initial conditions for orbits that diffuse are far
from the origin, beyond the borders of the main island of
the map, and diffusion with escape to de Sitter infinity is
extremely rapid.

Numerical experiments with the exact dynamics show
that the presence of dust has the effect of squeezing the
volume of the resonance windows, being thus less favor-
able to the occurrence of inflation. In Fig. 5 we show the
resonance windows n ¼ 3, corresponding to ’0 ¼ 10�4,
for fluid content with pure dust (Erad ¼ 0, Edust ¼ 0:001),
pure radiation (Erad ¼ 0:001, Edust ¼ 0), and a mixture of
both (Erad ¼ Edust ¼ 0:001), the latter already shown in
Fig. 3. Their range in the parameter space and relative size
are distinct, the available width for a fixed � being much
reduced when dust is present. For reference we give the
width�m of n ¼ 3 resonances windows for j�j ¼ 600 and
j�j ¼ 400, and for several distinct matter content:

Erad ¼ 10�3

Edust ¼ 0

Erad ¼ 10�3

Edust ¼ 10�4

Erad ¼ 10�3

Edust ¼ 10�3

Erad ¼ 0

Edust ¼ 10�3

�m (j�j ¼ 600) 1.1088 1.0446 0.51 665 0.55 880

�m (j�j ¼ 400) 1.4418 1.3850 0.9307 1.1305

Hence, if we demand that dark matter is present as a dust
fluid in this pre-inflationary phase then its total mass-
energy content must not be exceedingly large in compari-
son with the radiation content in order that inflation be
properly realized. In addition, we recall that, as discussed
in Sec. IV, the presence of dust has the effect of reducing
the available phase space volume for bounded and/or ini-
tially bounded (metastable) configurations about the
Einstein stable universe, as regulated by j�jEdust.
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FIG. 4. Poincaré maps with surface of section pa ¼ 0 for
(j�j ¼ 500, m ¼ 5:85) in the domain of parametric resonance
n ¼ 3 (top), and (j�j ¼ 500, m ¼ 7:1) in the domain of para-
metric stability between the resonances n ¼ 3 and n ¼ 4 (bot-
tom). The origin in the top map is a saddle, connected to the
bifurcation of the origin due to the resonance n ¼ 3, favoring
inflation. The bottom map has a center at the origin, enclosed by
KAM tori that trap the inflaton, preventing inflation.
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FIG. 5. Resonance windows n ¼ 3 for (1) dust plus radiation
(Erad ¼ Edust ¼ 10�3), (2) pure radiation (Erad ¼ 10�3, Edust ¼
0), and (3) pure dust (Erad ¼ 0, Edust ¼ 10�3). The range and
relative size of the windows are distinct, the case of pure dust
having a relative smaller volume though a more extended region
of parameters. The presence of dust has the effect of squeezing
the width of the resonance windows, reducing the domain of
favorable configurations to realize inflation as concerning the
parametric resonance mechanism.
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Summarizing, the instability versus the stability of the
origin (’ ¼ 0, p’ ¼ 0) is crucial for the dynamics of

inflation, having a bearing on the dynamics of the spatially
homogeneous expectation values ’ð�Þ of the inflaton field
related to the escape into inflation. In this instance the
initial conditions for ’ are assumed to be small, and are
to be taken near the invariant plane (23), which corre-
sponds to a neighborhood of the critical point of the map
at the origin (’ ¼ 0, p’ ¼ 0). Therefore, the region of

parametric stability is unfavorable for producing inflation
since the orbit (a configuration of the early Universe) will
be trapped in a stable state enclosed by two invariant tori of
a main KAM island of the map. On the other hand, on
driving the system to a region of parametric resonance,
orbits with initial conditions near the invariant plane are
turn into metastable configurations that either escape rap-
idly to de Sitter infinity or undergo a long-time diffusion
through stochastic regions of phase space before finally
escaping. The resonance windows in the complete parame-
ter space ð�;Erad; Edust; mÞ are constituted of n disjoint
four-dimensional volumes the sections of which—for in-
stance, with the surfaces Erad ¼ 10�3 and Edust ¼ 10�3—
result in the n gray regions of Fig. 3. The volumes of the
windows are small as compared to the whole volume of the
parameter space, and only initial configurations inside
them may realize inflation. We note that for a fixed m the
larger the order n of the resonance the stronger the gravi-
tational interaction in the braneworld universe inflated
from initial conditions connected with the resonance
considered.

VI. A PARTITION IN THERESONANCEWINDOWS
CODED BY DISRUPTIVE RESONANCES

From the point of view of the dynamics of inflation, the
resonance windows present a further structure connected
with disruptive resonances and/or long-time diffusion be-
fore escape to inflation. In fact, as we proceed to discuss, a
considerable domain of the resonance windows—although
corresponding to a bifurcation of the stable periodic orbit at
the origin—does not lead to escape into inflation and must
be properly discarded. To simplify our analysis we restrict
ourselves to the resonance window n ¼ 3 (cf. Figure 3) at
fixed j�j ¼ 350. The associated range of m lies in the
interval �m ffi ½7:78 431; 8:84 341�. A careful numerical
examination shows that in this interval of the resonance
zone we observe that three dynamically distinct regions are
present: (i) the domain on the left, ranging from the lower
limit up to m & 8:52, corresponds to configurations for
which the dynamics is highly unstable, the resonances
being disruptive with a rapid escape to inflation (up to � �
15 000). (ii) A threshold region 8:52<m< 8:56 that cor-
responds to configurations of orbits that undergo a long-
time diffusion (15 000< �< 100 000) before escaping to
inflation. (iii) The region on the right of the threshold,
ranging from m * 8:56 up to the upper limit of �m. The

motion of orbits connected to this latter parametric re-
gion—although corresponding to the case of a bifurcated
saddle at the origin—is resonant and chaotic, but otherwise
stable. Therefore, Region III should be discarded since
cosmological scenarios corresponding to these configura-
tions do not properly realize inflation.
The above dynamically distinct behaviors are illustrated

as follows. Figure 6 shows the time signals for m ¼ 7:99
taken in the region of disruptive resonance; the escape to
inflation occurs at � ’ 140 and time signals are used since
there is not enough recurrence for constructing a well-
defined Poincaré map. Figure 7 displays the Poincaré
map with surface of section pa ¼ 0 of a single orbit for
m ¼ 8:555, corresponding to the threshold Region II,
undergoing a long-time diffusion before exit to inflation,
at � ’ 64 000. Finally, the time signals shown in Fig. 8
correspond to m ¼ 8:6 in Region III near the right border
of the resonance window n ¼ 3. The motion is resonant
and chaotic, but otherwise stable. All Figures were gener-
ated with ’0 ¼ 0 ¼ pa, ’ ¼ 10�4.
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FIG. 6. Time signals for m ¼ 7:99 and j�j ¼ 350 correspond-
ing to the region of disruptive resonances, near the left border of
the n ¼ 3 resonance window of Fig. 3.
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The above substructure appears to be a feature of the
whole resonance window, as we have checked for other
values of j�j in the n ¼ 3 window, as well as for other
resonance windows. It is worth mentioning that in the case
of pure dust the subdomain of disruptive resonances is a
very thin sheet on the left border of the resonance window,
while the larger portion of the window that allows for
escape corresponds to long-time diffusion.
Finally, we should remark that—as concerning nonlin-

ear resonance phenomena—the general picture is that
bouncing oscillating braneworld models have a small re-
stricted domain in their parameter space where inflation
can be realized. Typically, variation of the parameters can
shrink or stretch the resonance zones. However, the under-
lying pattern of resonance windows and their internal sub-
structure is maintained as we have checked numerically. In
this sense the pattern is said to be structurally stable.

VII. PURE SCALAR FIELD BOUNCING
COSMOLOGIES: METASTABLE DYNAMICAL

CONFINEMENT

We now proceed to examine the case when the model
has no perfect fluid component. As we will see, even then
the bulk-brane corrections allow for the presence of either
perpetually oscillatory or metastable oscillatory models
that emerge into an inflationary phase after a finite time.
The dynamical equations in this case are given by Eq. (21),
namely, the KG equation

’00 þ ð1þm2a2Þ’ ¼ 0;

plus the modified Eq. (19)

a02 þ a2 ��4

3
a4 þ 1

6a4
�2ð’Þ � j�j

3
�ð’Þ ¼ 0; (43)

where

�ð’Þ ¼ 1
2½’02 þ ð1þm2a2Þ’2�: (44)

For the integrable case m ¼ 0, we have that �0 �
½’02ð�Þ þ ’2ð�Þ�=2 � ½’02ð0Þ þ ’2ð0Þ�=2 is a constant of
motion and Eq. (43) reduces then to

a02 þ VðaÞ ¼ j�j
3

�0; VðaÞ ¼ a2 ��4

3
a4 þ �2

0

6a4
;

(45)

so that the dynamics of the scale factor að�Þ is analogous to
that of a radiation dominated bouncing braneworld uni-
verse with total energy content �0 (cf. Eqs. (19) and (21)
for Erad � 0, other Ei=0). Physical motion imposes the
constraint VðaminÞ � j�j�0, where VðaminÞ is the mini-
mum of the potential (45), the inequality corresponding
to oscillatory motion. A distinct feature of the phase space
is that the infinite barrier avoiding the singularity as well as
the constant of motion j�j�0 are both built up with the
nonzero initial amplitudes of the inflaton field. A portrait of
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FIG. 7. Poincaré map with surface of section a0 ¼ 0 of a single
orbit, form ¼ 8:555 and j�j ¼ 350 in the threshold region of the
n ¼ 3 resonance window of Fig. 3. The orbit undergoes a long-
time diffusion before escape to inflation at � ’ 64 000. The map
exhibits the structure of the random motion of the orbit in the
stochastic sea about primary and secondary KAM islands of the
resonance.
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FIG. 8. Time signals for m ¼ 8:6 and j�j ¼ 350, correspond-
ing to the region (iii) near the right border of the n ¼ 3
resonance window of Fig. 3. The motion is resonant and chaotic,
but otherwise stable, with no exit to inflation.
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the phase space plane ða0; aÞ—analogous to that in Fig. 2—
may be constructed by varying j�j�0. In the domain
VðaminÞ � j�j�0 <VðamaxÞ the dynamics lies on tori that
are the product of the periodic orbits in this phase plane
times the circles ’02 þ ’2 ¼ 2�0. The minimum configu-
ration is a stable Einstein universe sourced by a massless
inflaton. This stable Einstein universe is a limiting one-
dimensional torus, being actually the product of the point
(a0 ¼ 0, a ¼ amin) times the circle defined by �0 ¼
VðaminÞ=j�j. Contrary to the cases with a perfect fluid
component, the Einstein universe is not a critical point of
the dynamics. No invariant plane is present.

The compact phase space domain containing tori is
analogously restricted by (34) with the obvious substitu-
tion of E0 by �0. We note that, for fixed � and �4, each of
the integrable tori is generated by just one curve with initial
conditions ð’0

0; ’0Þ. In this sense the energy surfaces

j�j�0 ¼ const contain just one curve.
An analogous portrait can be constructed for a single

orbit with initial conditions ð’0
0; ’0Þ by varying �, char-

acterizing thus universes with distinct gravitational
strengths GN ¼ j�j=8	. The corresponding tori yield
qualitatively the same stable dynamics, about the stable
Einstein universe sourced by a massless conformal inflaton
with a minimal gravitational strength.

For the nonintegrable case, with m small (and
j�jm2’ð0Þ2=6 sufficiently smaller than 1, as we discuss
below), the pattern is that of stable motion on KAM
invariant tori or between two invariant KAM tori resulting
from the integrable case. The stability of motion implies
that all orbits are trapped between invariant tori and cannot
escape to inflation, namely, inflation cannot be realized for
these configurations. This is illustrated in Fig. 9 where we
construct the Poincaré map with surface of section a0 ¼ 0
for fixed parameters (�4 ¼ 1:5, j�j ¼ 500, m ¼ 8:15).
The innermost circle about the origin of the map is the
section of the one-dimensional torus [namely, the periodic
orbit in the plane ð’0; ’Þ] corresponding to the stable
Einstein universe. In this example the stable Einstein uni-
verse—sourced by a massive (m ¼ 8:15) conformal infla-
ton—is described by a0 ¼ 0, a ’ 0:00 519 690 052) times
the circle in the ð’0; ’Þ plane generated, for instance, from
the initial conditions (’0ð0Þ ¼ 0, ’ ’ 0:000 696 503 226)
with associated energy constant �0 ’ 0:2 429 935� 10�6.
Below this scalar field energy no oscillatory motion is
found, resulting in the void (no physical motion) about
the origin of the map bounded by the above described
innermost circle. The pattern of KAM tori sections, with
eventual bifurcated secondary islands, extends up to initial
conditions a0 ¼ 0, ’0 ¼ 0, and ’0 ’ 0:01 105 , where ap-
proximately the last confining KAM torus lies. In this
region of trapped orbits we may note, for instance, 8
secondary islands (the far right centered about ’0 ¼
0:01 079) connected to a 8=5 bifurcation. The outside
region, denoted the stochastic sea in border of the main

KAM island, corresponds to the domain of initial condi-
tions where inflation can be realized in pure scalar field
sourced braneworld cosmologies. In this stochastic sea we
may have either a rapid escape to inflation (for ’0 ¼
0:0118 with � ’ 210, or for ’0 ¼ 0:01 125 with � ’ 500,
for instance) or a diffusion with escape, for instance about
the border of the two sets of 3 secondary islands connected
to a 3=2 bifurcation (for ’0 ¼ �0:011 305with � ’ 1690).
For larger initial conditions, namely ’0 * 0:01 234, no
bifurcated islands are found in the stochastic sea but finite
time oscillations are still found due to a mechanism of
dynamical partial confinement, connected to values of the
parameter

& � j�jm2’ð0Þ2=6; (46)

sufficiently close to 1, as we describe in the following.
Let us recall that the potential VðaÞ in (45) presents a

well (with possible oscillatory motion) for properly
bounded values of �0 restricted by (34). Furthermore,
VðaÞ � j�j�0=3 ¼ 0 must have three real positive roots
such that oscillatory motion is present. However, the re-
striction (34) was derived for the integrable case and for the
spatial curvature parameter rescaled to k ¼ 1. Actually the
presence of the physical well is due to the balance between
the spatial curvature term and the infinite barrier term
originated from the bulk-brane correction, more specifi-
cally, the balance between the values of the parameters k
and �0. It is not difficult to see that, in the integrable case,

–0.01

–0.005

0

0.005

0.01

Ρϕ

–0.012 –0.008 –0.004 0 0.002 0.006 0.01 0.014

ϕ

FIG. 9. Poincaré map with surface of section a0 ¼ 0 for pure
scalar filed cosmologies, with j�j ¼ 500 and m ¼ 8:15. The
innermost circle about the origin is a one-dimensional torus
corresponding to a stable Einstein universe sourced by a scalar
field. The domain inside this circle is unphysical. The last KAM
torus shown has initial conditions (’0

0 ¼ 0, ’0 ’ 0:01 105).
Escape to inflation may occur in the outer border (for ’0 >
0:01 105) with oscillatory motion due to partial confinement of
orbits.
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the decrease (increase) of k with �0 fixed as well as the
increase (decrease) of �0 for k fixed, may destroy (or
create) a well. Now for the nonintegrable case (m � 0) a
careful examination of the integral constraint (43) shows
that the term proportional to m2 in the RHS will contribute
to correct the curvature term to an effective spatial curva-
ture (keff ’ 1� &) at the initial times. For the parameter
configuration of Fig. 9 numerical evaluations show that the
above effects will be crucial for the dynamics of the scale
factor að�Þ when keff & 0:157, that corresponds to ’0 *
0:01 234. In this instance, two possibilities arise: (i) for
0:01 234 & ’0 < 0:1334, ’0

0 ¼ 0, the function

P ðaÞ � a2 ��4

3
a4 þ 1

6a4
�2ð’0Þ � j�j

3
�ð’0Þ; (47)

[cf. (43)] has two extrema (one maximum and one mini-
mum) but P ðaÞ ¼ 0 has only one real positive root a0,
meaning that the value of the relative maximum of P ðaÞ is
smaller than zero. The orbit evolved from this initial
condition would in principle be expected to escape without
bounce. However, due to the increase of the effective time-
dependent spatial curvature keff ’ 1� j�jm2’ð�Þ2=6, the
relative maximum of P ðaÞ is raised above zero at a later
time so that the orbit bounces back. This is illustrated in
Fig. 10(a) where we plot P ðaÞ for the initial time with
(’0

0 ¼ 0, ’0 ¼ 0:0126), which has the only real root a0 ’
0:016 955 927 198 (continuous curve), and for the time of
the first bounce of the orbit generated from these initial
conditions (dashed curve). The first bounce corresponds to
the point (’0

0 ’ �0:0 144 932, ’0 ’ �0:00 419 929) with
keff � 0:9. We note that the dashed curve represents a
dynamical potential with its maximum above zero, allow-
ing for the bounce. The adjustment of this effect with the
period of the massive scalar field allows for a series of
bounces of the orbit before it finally escapes, as shown in
Fig. 10(b). (ii) For’0 * 0:1334 P ðaÞ has no extremum but
due to the effective time-dependent curvature two extrema
are dynamically created, with the relative maximum above
zero, so that the orbit undergoes bounces in a relatively
smaller number than in case (i) before escaping. It is worth
mentioning that this effect may be present for ’0 <
0:01 234, provided we properly increase the parameters
m and/or j�j to turn & sufficiently small.

Finally, we should remark that the dynamics of pure
scalar field brane cosmologies is not connected to a para-
metric resonance pattern. The features of initial condition
domains that realize inflation in this case are similar to the
ones for the domain of parametric stability (compare the
Poincaré maps in Fig. 4 (bottom) and Fig. 9), as the
configurations that realize inflation are the ones at the
border of the primary KAM islands, corresponding to large
values of ’.

VIII. MOTION ABOUT THE SADDLE-CENTER:
HOMOCLINIC CHAOS AND THE CHAOTIC EXIT

TO INFLATION

The saddle-center critical P1 induces, in the phase space
of the models, the topology of stable and unstable homo-
clinic cylinders, which emanate from unstable periodic
orbits that exist in their neighborhood. This structure was
examined in some detail in [19] and is briefly discussed
here for completeness. The nonintegrability of the dynam-
ics induces the breaking and crossing of the homoclinic
cylinders leading to a chaotic exit to inflation as we pro-
ceed to show in this section, where for simplicity we
restrict ourselves to two perfect fluid components (dust
and radiation only) as in Sec. IV.
Our starting point is a fundamental property of saddle-

centers given by Moser’s theorem [20]. Moser’s result
states that it is always possible to find a set of canonical
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FIG. 10. Plot of the function P ðaÞ for the initial time (con-
tinuous curve) and the time of the first bounce (dashed curve).
The occurrence of the bounce is due to the dynamical raising of
the potential as a consequence of the increase of the effective
spatial curvature keffð�Þ as ’ decreases. The first bounce occurs
when keff � 0:9. A sequence of this process produces the oscil-
latory behavior shown below.
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variables such that in a small neighborhood of a saddle-
center the energy integral of motion (19) is separable into
rotational and hyperbolic motion pieces. The variables
ða; pa; ’; p’Þ of our system are already of the Moser

type and, in a linear neighborhood of P1, we have the
separable rotational motion energy piece Eð’Þ and the

hyperbolic motion energy piece EðaÞ as expressed in (28).

We recall that in this case V 00ðacritÞ< 0. In this approxi-
mation, we note that the scale factor að�Þ has pure hyper-
bolic motion and is completely decoupled from the pure
rotational motion of the inflaton fluctuation ’. Let us
consider the possible motions in this neighborhood. In
the case of Ea ¼ 0 and pa ¼ 0 ¼ ða� acritÞ, the motion
corresponds to unstable periodic orbitsT j�jErad

in the plane

ð’;p’Þ. Such orbits depend continuously on the parameter

j�jErad. For Ea ¼ 0 there is still the possibility pa ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6jV00ðacritÞj
p ða� acritÞ, which defines the linear stable

VS and unstable VU one-dimensional manifolds. The direct
product of the periodic orbit T j�jErad

with VS and VU

generates, in the linear neighborhood of the saddle-center,
the structure of pairs of stable ðT j�jErad

� VSÞ and unstable
(T j�jErad

� VU) two-dimensional cylinders. We note that

for Ecrit 	 j�jErad the manifolds VS and VU are tangent at
P1 to the separatrices S of the invariant plane containing
the saddle-center; hence a pair of cylinders (one stable and
one unstable) emanates from the neighborhood of P1 to-
ward a� 0, while another pair emanates towards the two
de Sitter attractors at infinity (cf. Figure 1). Orbits on the
cylinders coalesce into the periodic orbit T j�jErad

asymp-

totically, the orbits being contained in the same energy
surface j�jErad as that of the periodic orbit; these orbits are
denoted homoclinic to the periodic orbit T j�jErad

or simply

homoclinic orbits. Noticing that in general EðaÞ �
j�jEð’Þ þ Ecrit � j�jErad � 0 [cf. (27) and (28)] and that

E’ is strictly positive we must have Ecrit � j�jErad > 0;

hence, only energy surfaces satisfying this condition con-
tain homoclinic cylinders.

The nonlinear extension of the plane of rotational mo-
tion (when Oð3Þ terms in (27) are taken into account) is a
two-dimensional manifold, the center manifold of unstable
periodic orbits of the system parametrized with the energy
j�jErad. The intersection of the center manifold with the
energy surface j�jErad is a periodic orbit T j�jErad

from

which two pairs of cylinders emanate, as in the linear
case previously described. It can be shown that in general
the nonlinear extension of the center manifold folds, so that
the unstable periodic orbits are no longer contained in the
plane ð’;p’Þ. Now the extension of the cylinders away

from the periodic orbits depends crucially on the integra-
bility or nonintegrability of the system.

In the integrable case (m ¼ 0) the homoclinic cylinders
are the topological product of the separatrices S times the
periodic orbit with energy E0

’. We are basically interested

in the pair of cylinders (one stable and one unstable) that

emerge from the periodic orbit toward decreasing values of
a, namely, in Region I. It is not difficult to see that, in the
integrable case, the unstable cylinder coalesces smoothly
into the stable one. However, when the nonintegrability is
switched on (namely, m � 0), the smooth continuation of
the unstable cylinder into the stable one breaks, inducing
the transversal crossing of them. The points of intersection
define homoclinic orbits, which emerge from the periodic
orbit along the unstable cylinder and return to it along the
stable one, in an infinite time. Typically if the two-
dimensional cylinders intersect transversally once, they
will intersect each other an infinite number of times, pro-
ducing an infinite set of homoclinic orbits that are bi-
asymptotic to the unstable periodic orbit of the center
manifold. This infinite set of homoclinic orbits is denoted
the intersection manifold. The dynamics near homoclinic
orbits is very complex, associated with the presence of the
well-known horseshoe structures (cf. [14,21] and referen-
ces therein), with the homoclinic intersection manifold
giving origin to the homoclinic tangle, which is a signature
of chaos in the model.
This manifestation of homoclinic chaos is illustrated in

Fig. 11 where the fractality of the initial conditions basin
boundaries, connected to the code recollapse/escape into
inflation is shown. We select the initial condition set whose
projection on ð’;p’Þ is a square of characteristic length

R ’ 10�3, constructed about the point (a ¼ 0:15, pa ¼
3:114 327 925 239 397, ’ ¼ 0, p’ ¼ 0) close [22] to the

separatrix S reaching P1, containing N ¼ 160 000 initial
conditions. These points obviously satisfy the constraint
Eq. (29), with Edust ¼ Erad ¼ 10�3 and j�j ¼ 762, such
that j�jErad is slightly below Ecrit � Vmax. We note that
these sets correspond to initial conditions for expanding
universes that visit a neighborhood of the saddle-center P1

before either to recollapse or to escape into inflation. The
points of the square are color-coded according to their
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FIG. 11. Fractal basin boundaries, in the plane ð’;p’Þ, of
initial condition sets for initially expanding universes that visit
a small neighborhood of the saddle-center before either recol-
lapsing or escaping to inflation, in the case E0 ¼ E1 ¼ 10�3.
Black points correspond to orbits that recollapse to the domain
a ’ 0 and white points correspond to orbits that escape to
inflation, for a time � ¼ 4000, and m ¼ 6 (left) and m ¼ 18
(right).
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asymptotic behavior for a time � ¼ 4000—white corre-
sponding to escape into inflation and black corresponding
to recollapse to the neighborhood a ’ 0—resulting in the
plots of Fig. 11 for m ¼ 6 and m ¼ 18. We notice that as
we increase m, namely, as the system becomes more non-
integrable, the dominance of escape into inflation and
fractality of the boundaries increase, characterizing a cha-
otic exit to inflation. The dynamics involves no amplifica-
tion of the inflaton field (namely, ’ and/or p’), as opposed

to the metastable nonlinear resonance regime before es-
cape to inflation, described in Secs. V and VI.

The entanglement and infinite transversal crossings of
the stable with the unstable homoclinic cylinders engender
a further mechanism in the chaotic exit to inflation, which
we denote as draining of initial condition basins. Let us
remark on the fact that the surface of the cylinders con-
stitute a boundary for the general flow. If we start, for
instance, with a set of initial conditions corresponding to
initially expanding universes, two distinct flows will be
associated with these initial conditions depending on
whether they are contained inside or outside the stable
cylinder. The flow corresponding to initial conditions in-
side the stable cylinder will reach a neighborhood of the
saddle-center P1 (with Ea < 0) and will return toward the
neighborhood of a ’ 0 inside the unstable cylinder, while
the flow of orbits associated with initial conditions that are
outside the cylinder will reach the neighborhood of P1 and
escape toward the de Sitter attractor along the exterior of
the unstable cylinder of the second pair. Now consider the
first transversal intersection of the cylinders: a part of the
orbits inside the unstable cylinder will enter the interior of
the stable cylinder and the flow will proceed inside the
stable cylinder toward the neighborhood of P1, from where
it will reenter the unstable tube and proceeds toward the
region a ’ 0 and by a new intersection a part of these orbits
will again enter the stable tube and proceeds back toward
the neighborhood of P1 and so on. The portion of orbits
that in this subsequent intersection remained outside the
stable cylinder will also proceed along it toward P1 and
will escape to inflation. As the motion proceeds, the suc-
cessive infinite intersections of the cylinders drain the
basin of initial conditions from black to white as � in-
creases, as illustrated in Fig. 12, where we start from the
initial condition set of Fig. 11 for m ¼ 6, color coded at
� ¼ 4000 (in the present Figures we used N ¼ 40; 000
initial conditions only). The only orbits remaining in an
infinite recurrence of the motion are the homoclinic orbits,
which constitute the homoclinic intersection manifold, and
the infinite countable set of periodic orbits with arbitrarily
long periods in the neighborhood of each homoclinic orbit.
These orbits constitute a Cantor set that is a topological
characterization of chaos in the model [14].

Finally, in Fig. 13 we exhibit two initial condition sets
for m ¼ 6, color coded at � ¼ 4000, in the cases of pure
dust (left) and pure radiation (right), both with N ¼
160 000 points. For the radiation case the initial set was

constructed about the point (a0 ¼ 0:15, pa0 ¼
4:144 304 603 687 830, ’0 ¼ 0 ¼ p’0), sufficiently close

to the separatrix, with j�j¼1499 and Erad ¼ 10�3. For
dust the initial set was constructed about the point (a ¼
0:15, pa ¼ 1:460 426 592 928 701, ’¼0¼p’), also suffi-

ciently close [22] to the separatrix, with j�j¼1630 and
Edust¼10�3, both sets also with characteristic length R ’
10�3. Thus, the mechanism of chaotic exit to inflation is
enhanced in the case of dust plus radiation (see Fig. 11), in

FIG. 12. Illustration of the process of draining (in time) the
initial condition basin of trapped orbits (black) in favor of
escaping orbits (white), for m ¼ 6. The initial condition set
taken about the separatrix is the same as in Fig. 11. The figures
show the almost complete exit to inflation (up to a Cantor set of
orbits) in a long-time term.

FIG. 13. Fractal basin boundaries in the plane ð’; p’Þ for pure
dust (left) and pure radiation (right), for m ¼ 6 and color coded
at � ¼ 4000. The fractalization of the boundaries appears less
effective in both cases than in the case of radiation plus dust of
Fig. 11 (left).
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comparison with the case of pure dust or pure radiation
components.

The chaotic exit to inflation examined in the present
section is not a feature of bouncing inflationary cosmolo-
gies only. In fact, a similar pattern for fractal initial con-
ditions basin boundaries connected to the escape to
inflation was observed and discussed by Cornish and
Levin [23] in the context of singular closed FRW cosmol-
ogies sourced with several conformally and/or minimally
coupled scalar fields. An extensive analysis showed that
the pattern is typical for the nonintegrable cases of the
models, and a quantitative measure of the fractality was
made by evaluating the box-counting dimension of the
boundaries. The effect of draining of initial conditions
from recollapse to escape as time increases, observed in
our models, is not seen there due to the absence of bounces
that avoid the singularity and allow for a long-time recur-
rence. The Cantor set resulting from this effect as � ! 1
corresponds to the strange repeller structure already ap-
pearing in their dynamics.

IX. CONCLUSIONS AND FINAL DISCUSSIONS

In the present paper we construct nonsingular cosmo-
logical scenarios, in the realm of string inspired brane-
world models, which are past eternal, oscillating, and may
emerge into an inflationary phase due to nonlinear reso-
nance mechanisms. We consider a closed FRW metric on
the four-dimensional braneworld embedded in a five-
dimensional conformally flat bulk. Local bulk effects on
the four-dimensional FRW braneworld introduce correc-
tions in Friedmann’s equations that allow to implement
nonsingular bounces in the scale factor of the models. This
is the case of a timelike extra dimension, when the correc-
tions result in a repulsive force that avoids the singularity
and provide a concrete model for bounces in the early
phase of the universe. The matter content of the model,
confined to the FRW brane, consists of noninteracting
perfect fluids with equation of state �i ¼ �ipi, with
�1=3<�i � 1, plus a massive conformally coupled sca-
lar field. In the FRW brane the energy density of the fluids

are �i ¼ Ei=a
3ð1þ�iÞ, where the constant of motion Ei is

proportional to the total energy of the respective fluid. The
corrections in Friedmann’s equations resulting from the
bulk-brane interaction are quadratic in the energy-
momentum tensor of the matter fields on the brane. The
resulting dynamics is nonintegrable and chaotic if the mass
of the inflaton m � 0, allowing for metastable configura-
tions that realize inflation due to parametric nonlinear of
KAM tori present in the phase space of the model.

Our analysis is restricted to dynamical configurations in
which the dynamics of the scale factor is initially bounded
in a potential well arising in the gravitational sector ða; paÞ
due to the effective cosmological constant, the positive
spatial curvature of the brane, and the bulk-brane correc-

tions (connected with the perfect fluid components) that act
as infinite potential barrier and is responsible for the
avoidance of the singularity a ¼ 0. These configurations
have the theoretical advantage over one-single bounce
models in that they avoid the problem of initial conditions
for the Universe at past infinity. Furthermore, they are past
eternal, oscillating about a stable Einstein universe con-
figuration, that has no classical analogue and is favored by
maximum entropy considerations [15]. The skeleton of the
phase space dynamics is analyzed through its basic struc-
tures as critical points (stable and unstable Einstein uni-
verse), invariant plane, separatrices and de Sitter attractors
at infinity, as well as the foliation by KAM tori of the phase
space in the nonlinear neighborhood of the stable Einstein
universe. The stable Einstein universe is a critical point of
the dynamics when sourced by perfect fluids, or a limiting
one-dimensional torus (namely, the topological product of
a point times a minimal periodic orbit in the scalar field
sector) when sourced by a scalar field in pure scalar field
cosmologies.
For particular domains of the parameter space

ð�4; �; Ei; mÞ of the model, denoted windows of reso-
nance, these oscillatory bounded configurations turn meta-
stable due to nonlinear parametric resonance phenomena,
allowing the emergence of the Universe into an inflationary
phase. For numerical/analytical simplicity, we made an
extensive examination of parametric resonance phe-
nomena in braneworld models restricted to a dark energy
component and radiation (i ¼ dust, rad), plus the massive
inflaton field and a dark energy component described by
the effective cosmological constant in the brane. We con-
structed the resonant chart for the case of Edust ¼ Erad ¼
10�3, shown in Fig. 3, where the windows of resonance are
the gray sheets. The white regions correspond to stable
motion. When the system is driven toward a resonance
window, nonlinear resonance of KAM tori takes place
resulting in a complex dynamics. KAM tori that trapped
the orbits are disrupted, and the initially bounded, oscil-
latory orbits of the system may escape to the deSitter
attractor at infinity realizing inflation. We illustrated this
behavior by Poincaré maps in the plane ð’0; ’Þ, the origin
of which corresponds to a stable or unstable periodic orbit
whether, respectively, the system is in a stable region or a
resonance window of the resonance chart.
Each resonance window is characterized by an integer

n � 2, and its main feature is the bifurcation of the stable
periodic orbit at the origin (’ ¼ 0, p’ ¼ 0) into an un-

stable periodic orbit accompanied by one or two character-
istic stable periodic orbits whether respectively n is odd or
even. As the initial conditions of the expectation values ’
are assumed to be small, being taken near the invariant
plane ’ ¼ 0, p’ ¼ 0, it follows that the parametric do-

mains of resonance are the ones that allow for inflation in
the system. In this sense, since inflation is a sound para-
digm for cosmology strongly sustained by observations,
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and if our present Universe is actually a braneworld, then
the values of the cosmological parameters must be con-
strained to the resonance windows—with the braneworld
inflated from initial conditions connected to a particular
resonance. In particular, for fixed m and Ei, the brane
tension � that regulates the strength of the effective
Newton’s constant in the brane will be restricted to small
sheets depending on the integer n � 2 (cf. Figure 3).
Therefore, the larger the order of the resonance the
stronger the gravitational coupling strength in the in the
respective brane inflated due to a specific resonance. In this
instance, we observe a quantization of the brane tension
and consequently of the effective Newton’s constant.

The volume of the resonance windows are small as
compared to the whole volume of the parameter space.
The size of these four-dimensional volumes depends
strongly on the fluid content of the model. In Fig. 5 we
exhibited the windows corresponding to the n ¼ 3 reso-
nance for pure dust, pure radiation, and dust plus radiation
in equal amounts (Erad ¼ Edust). The case in which the
perfect fluid component is dust only presents resonance
windows with a reduced volume compared with pure ra-
diation windows, analogously to the substructure of dis-
ruptive resonances in each window. This suggests that if we
demand that our preinflationary models contain a compo-
nent of dark matter in the form of dust this amount should
be properly bounded in order that the model could realize
inflation.

Three distinct dynamical patterns are set up by the
resonance, according to substructures in the resonance
windows in models with Edust � Erad as observed by a
detailed numerical examination. If the initial conditions
correspond to configurations in the left border of the reso-
nance windows we have short time disruption of the ini-
tially bounded orbit with a rapid escape to inflation. On the
other hand, if the initial conditions correspond to configu-
rations in an intermediate threshold region of the window
the orbit undergoes a long-time diffusion in the stochastic
sea surrounding the two secondary KAM stability islands,
with posterior escape to inflation. Beyond the threshold
region, near the right border of the window, the orbit
undergoes diffusion through large regions of phase space
but remains bounded for times larger than � ¼ 100 000.
This latter region of the resonance window should then be
excluded as physically not admissible since they corre-
spond to configurations that do not realize inflation.

We also examined cosmological scenarios with a pure
scalar field. Because of the absence of any perfect fluid
component, the bulk-brane correction term that allows the
dynamics to avoid the singularity is crucially dependent on
the nonzero initial amplitude of inflaton through the con-
served energy �0 ¼ ð’0ð0Þ2 þ ’ð0Þ2Þ=2. Contrary to the
cases with a perfect fluid component, the stable Einstein
universe is not a critical point but a limiting one-
dimensional tori, sourced by a scalar field. For a fixed �

each energy surface contains just one torus generated by a
single orbit. The escape to inflation in the nonintegrable
case is not associated to a parametric resonance pattern and
occurs just for configurations of the scalar field with large
initial conditions, in the small stochastic sea on the border
of the main KAM island shown in Fig. 9. In this outer
border we observe a mechanism of dynamical partial con-
finement of orbits, leading to finite time oscillations before
escape to inflation. Also, contrary to models with a perfect
fluid component, the structure of the bouncing dynamics is
extremely sensitive to the initial amplitude and to the mass
of the scalar field, and the presence of dynamical potential
barriers allowing for bounces in the scale factor appears as
a new feature of the dynamics.
In Sec. VIII we examined the chaotic exit to inflation for

initial condition sets (corresponding to initially expanding
universes) taken in a small neighborhood about the stable
separatix S. These sets are shown to have fractal basin
boundaries connected to the code recollapse/escape to
inflation leading to a chaotic exit to inflation. The fractality
of the initial condition sets increases with m, namely, with
the nonintegrability and their escape to inflation takes
place smoothly involving no strong amplification of the
inflaton field, as opposed to the metastable nonlinear reso-
nance regime immediately before the exit to inflation, as
discussed in Secs. Vand VI. We also observe the phenome-
non of draining of these initial condition basins from
recollapse to escape behavior, as time increases. For � !
1 only the homoclinic intersection manifold remains in
recurrent oscillatory motion. The homoclinic chaotic exit
to inflation appears to be enhanced in the case of dust plus
radiation, relative to the cases with pure dust or pure
radiation components, contrary to what occurs in the para-
metric resonance escape to inflation. We have not exam-
ined the possibility of chaotic escape to inflation in pure
scalar field cosmologies.
Typically, variation of the parameters can shrink or

stretch the resonance zones. However, the underlying pat-
tern of resonance windows is maintained as we have
checked numerically. In this sense the pattern is said to
be structurally stable. Finally, if our actual Universe is a
brane inflated by a parametric resonance mechanism trig-
gered by the inflaton, some observable cosmological pa-
rameters (e.g. Newton’s gravitational constant on the brane
and the mass of the inflaton) should then have a signature
of the particular resonance from which the brane inflated
and consequently of the particular value of the parameters
ð�;m; Edust; EradÞ that were favored in the early dynamical
regime of the Universe.
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