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We present a coherent theoretical framework for computing gravitational lensing effects and redshift-

space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point

statistics. Adopting the linearized Friedmann-Lemaı̂tre-Robertson-Walker metric, we derive the gravita-

tional lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magni-

fication, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-

Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source

fluctuations, separating them as two physically distinct origins: the volume effect that involves the change

of volume and is always present in galaxy two-point statistics, and the source effect that depends on the

intrinsic properties of source populations. Then we identify several terms that are ignored in the standard

method, and we compute the observed galaxy two-point statistics, an ensemble average of all the

combinations of the intrinsic source fluctuations and the additional contributions from the gravitational

lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics

clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric

perturbations and the underlying matter fluctuations. For near-future dark energy surveys, we compute

additional contributions to the observed galaxy two-point statistics and analyze their impact on the

anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only

necessary to analyze precision measurements from upcoming dark energy surveys, but also provide

further discriminatory power in understanding the underlying physical mechanisms.
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I. INTRODUCTION

The standard inflationary models with a single inflaton
potential predict a nearly perfect Gaussian spectrum of
primordial fluctuations [1–5]. Two-point statistics, corre-
lation function in real space and power spectrum in Fourier
space, constitutes a complete description of Gaussian ran-
dom fields, and it has been widely used to understand the
physics of the early Universe from measurements of the
cosmic microwave background and large-scale structure.
The recent discovery [6,7] of the late time acceleration of
the Universe has spurred extensive investigations of a
mysterious energy component with negative pressure,
dubbed dark energy. Observationally, upcoming dark en-
ergy surveys will measure galaxy two-point statistics with
unprecedented precision from millions of galaxies, con-
straining the expansion history and the spatial curvature of
the Universe. Consequently, accurate theoretical modeling
of galaxy two-point statistics would be crucial to take full
advantage of the promise that these future surveys will
deliver.

In achieving this goal, complications arise notably from
the nonlinear evolution of matter and scale dependence of
galaxy bias. In this paper, we limit ourselves to the linear
bias model [8] and study the linear theory predictions and
its corrections, considering that recent attention has been

paid to measuring galaxy two-point statistics in the linear
regime (e.g., [9–12]). However, measurement precision is
often highest on nonlinear scales, and proper modeling of
galaxy bias on nonlinear scales can substantially increase
the leverage to constrain the underlying physics (see, e.g.,
[13–19]).
Further complication arises from the distortion of

redshift-space structure by peculiar velocities, which re-
sults in anisotropy from otherwise isotropic two-point
statistics [20,21]. The standard practice is to analyze the
angle-averaged correlation function or power spectrum, or
to construct a linear combination of their multipole com-
ponents, suppressing the angular dependence of two-point
statistics. However, analyzing the full anisotropic struc-
ture, though observationally challenging, can utilize addi-
tional information that is lost to some degree in the
standard practice [22–25].
Gravitational lensing, often assumed to be negligible in

galaxy two-point statistics, deflects the propagation of light
rays, displacing the position of observed galaxies, and it
alters the unit area on the sky and magnifies the observed
flux, changing the observed number density of galaxies.
The former effect on two-point statistics is to convolve it
with the power spectrum of the lensing potential, smooth-
ing out the features in galaxy two-point statistics [26]. The
latter effect, known as the magnification bias [27], is often
used to measure the galaxy-matter cross correlation func-
tion from two source populations separated by large line-*jyoo@cfa.harvard.edu
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of-sight distance [28,29]. Recent work [30–32] showed
that these effects on galaxy two-point statistics are non-
negligible at the level of accuracy adequate for upcoming
dark energy surveys.

However, it is unclear whether this list of additional
contributions on galaxy two-point statistics is exhaustive,
and what are the contribution terms that are ignored in the
standard method but need to be considered if higher accu-
racy is dictated by observations. Here we present a coher-
ent theoretical framework for computing gravitational
lensing effects and redshift-space distortions, and investi-
gate their impacts on galaxy two-point statistics in an
inhomogeneous universe. Our treatment generalizes the
early work [30] and complements the recent work
[31,32], providing a unified description of galaxy two-
point statistics. However, we emphasize that these effects
naturally arise from metric perturbations in our approach,
comprising a complete and exhaustive set of additional
(linear order) contributions to galaxy two-point statistics.

The rest of this paper is organized as follows. In Sec. II,
we describe our notation for the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric and derive the gravita-
tional lensing and the generalized Sachs-Wolfe effects. In
Sec. III, we study their impacts on source galaxy fluctua-
tions and discuss their correspondence to the standard
redshift-space distortion and gravitational lensing effect.
In Sec. IVA, we derive the observed galaxy two-point
statistics in real space and in Fourier space, and we com-
pare the effects of each contribution term on the observed
galaxy two-point statistics in Sec. IVB. We conclude in
Sec. V with a discussion of the further improvement of our
approach.

II. FORMALISM

Here we describe our notation for a background metric
in an inhomogeneous universe and derive governing equa-
tions for nonrelativistic matter in Sec. II A. Combining
these with photon geodesic equations, we derive the gen-
eralized Sachs-Wolfe (Sec. II B) and the gravitational lens-
ing (Sec. II C) effects, developing a coherent framework
for describing how matter fluctuations affect observable
quantities.

A. Metric and perturbations

We assume that the homogeneous and isotropic back-
ground of the Universe is described by the FLRW metric
and its inhomogeneous part is represented by the perturba-
tions for the cosmological fluids and the spacetime geome-
try:

ds2 ¼ �a2ð�Þ½1þ 2c �d�2 þ a2ð�Þ½1þ 2��gð3Þ��dx
�dx�;

(1)

with the metric tensor for a three space of constant spatial
curvature K ¼ �H2

0ð1��0Þ,

gð3Þ��dx
�dx� ¼ d�2 þ r2ð�Þd�2; (2)

where að�Þ is the scale factor for the expansion of the
background as a function of the conformal time �, and the

comoving angular diameter distance is rð�Þ ¼
K�1=2 sinð ffiffiffiffi

K
p

�Þ for a closed universe K > 0 and

ð�KÞ�1=2 sinhð ffiffiffiffiffiffiffiffi�K
p

�Þ for an open universe K < 0, where
� is the comoving line-of-sight distance. The flat limit can
be obtained as K ! 0. We will denote the covariant de-

rivative of a three tensor with respect to gð3Þ�� as a vertical

bar and the covariant derivative in the spacetime metric as
a semicolon in the following. Here Latin indices represent
4D spacetime components, and Greek indices run from 1 to
3, representing the spatial part of the metric. Throughout
the paper, we set the speed of light c � 1.
We express the perturbations in the conformal

Newtonian gauge, where c and � correspond to the in-
tuitive physical quantities, i.e., Newtonian potential and
Newtonian curvature. This choice of gauge condition
leaves no residual degree of freedom up to the first order
in perturbations. Here we only consider scalar perturba-
tions, as primordial vector perturbations decay quickly in a
universe with ordinary components and the current upper
limit on tensor perturbations is order of magnitude smaller
than the amplitude of scalar perturbations (e.g., [33–35]).
Given the stress energy tensor Tab of cosmological

components, the evolution of the matter and metric pertur-
bations is governed by the Einstein equations Gab ¼
8�GTab, and the Bianchi identities Tab

;b ¼ 0 guarantee

the conservation of energy and momentum (e.g., [5,36–
39]). Current cosmological observations favor a universe
dominated by dark energy, but with nonrelativistic matter
as the major source of metric perturbations. In this uni-
verse, the scalar Einstein equations are

ðk2 � 3KÞ� ¼ 3H2
0

2
�m

�
�

a
þ 3H

v

k

�
; (3)

c ¼ ��; (4)

where � is the density perturbation in nonrelativistic mat-
ter. The Hubble parameter is H ¼ _a=a, where the overdot
is the derivative with respect to time, dt ¼ ad�. The
matter density and the Hubble parameters at the present
day a0 are denoted as �m and H0, respectively. The
Newtonian curvature is identical to the Newtonian poten-
tial with the opposite sign (c ¼ ��) in the matter-
dominated era, where there is vanishing anisotropic stress.
The conservation of energy momentum provides the con-
tinuity and Euler equations,

_�þ k

a
v ¼ �3 _�; (5)

_vþHv ¼ k

a
c ; (6)
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where v is the velocity of nonrelativistic matter in units of
c. In the conformal Newtonian gauge, the relativistic equa-
tions on subhorizon scales correspond to the usual
Newtonian equations,

r2c ¼ 3H2
0

2
�m

�

a
; (7)

v ¼ � 2

3

a2Hf

�mH
2
0

rc ; (8)

where f ¼ d lnD=d lna and D is a growth factor of the
matter density perturbation. The evolution of the density
perturbation is related to the Newtonian potential by

€�þ 2H _� ¼ r2c ; (9)

and the growth factor D is a growing solution of this
differential equation, normalized to a unity at a0. Full
relativistic consideration results in additional multiple
terms in the right-hand side of the equation (e.g., [5]),
but they are suppressed at least by the ratio of a character-
istic scale 1=k to the Hubble distance 1=H. Note that we
have interchangeably expressed equations in Fourier
space and configuration space, which is valid to the linear
order in perturbations and significantly simplifies the
manipulations.

B. Geodesic equations and Sachs-Wolfe effects

The propagation of light rays is described by a photon
geodesic xað�Þ with an affine parameter �, and a null
vector ka ¼ dxa=d� tangent to xa is determined by the
null equation (ds2 ¼ kaka ¼ 0) and the geodesic equations
(ka;bk

b ¼ 0). In a perturbed FLRW universe, the null vec-

tor can be expressed as

k0 ¼ 	

a
ð1þ �	Þ; k� ¼ �	

a
ðe� þ �e�Þ; (10)

where 	 and e� are the photon frequency and its (time-
reversed) propagation direction from the observer, and the
dimensionless quantities �	 and �e� represent their per-
turbations. In a homogeneous expanding universe, the null
vector follows the usual relations 	 / 1=a, e�e� ¼ 1, and
de�=d� ¼ e�e�j�, and indeed Eq. (10) may be derived

from the null and the geodesic equations. For a comoving
observer whose rest frame has vanishing energy flux, the
four velocity is ua ¼ ð1=a; 0Þ and the observed frequency
	obs of a photon source is related to the frequency 	e at the
emission by a redshift parameter,

1þ z ¼ ðkauaÞe
ðkauaÞobs ¼

	e

	obs

¼ 1

ae
; (11)

where we assumed aobs ¼ a0 ¼ 1.
In an inhomogeneous universe, the observed redshift

zobs deviates from the true redshift z. The perturbation in
the null equation is

e��e� ¼ �	þ c ��; (12)

and perturbations in the geodesic equations for the tempo-
ral and spatial components are

d

dy
ð�	þ c Þ ¼ c ;�e

� � d�

d�
; (13)

d

dy
ð�e� þ 2�e�Þ ¼ �e�e�j� � �	

de�

d�
þ c j� ��j�;

(14)

where we used the zeroth order null geodesic d=dy �
@� � e�@� ¼ ða=	Þðd=d�Þ and kept the terms to the first

order in perturbations.
The four velocity of a comoving observer is now ua ¼

ðð1� c Þ=a; v�=aÞ and the observed redshift is

1þ zobs ¼ ðkauaÞe
ðkauaÞobs ¼ ð1þ zÞ½1þ ð�	þ c þ v�e

�Þeo�:
(15)

This can be further simplified by using Eq. (13) as

1þ zobs ¼ ð1þ zÞ �
�
1þ VðzÞ � Vð0Þ � c ðzÞ þ c ð0Þ

þ
Z y

0
dy

@

@�
ð�� c Þ

�
; (16)

where V ¼ v�e
� is the line-of-sight velocity [30,40,41].

The additional terms in the square bracket alter the simple
redshift-distance relation in Eq. (11), giving rise to the
standard redshift-space distortion by peculiar velocities,
the Sachs-Wolfe effect by gravitational redshift, and the
integrated Sachs-Wolfe effect by the time evolution of
gravitational potential across which photons propagate.
Hereafter we will collectively refer to these effects as the
generalized Sachs-Wolfe effect.

C. Gravitational lensing

In a homogeneous universe, the gravitational lensing
effects vanish and light rays propagate with the direction
unchanged. For a photon source at ẑ-axis in an inhomoge-
neous universe, the propagation direction from the ob-
server is n̂ ¼ e� ¼ ð0; 0; 1Þ and the null vector is
kx;y ¼ �ð	=aÞ�ex;y. The null vector is further related to
the photon position rð�Þn̂ ¼ ðx; yÞ on the sky at any time
by

kx;y ¼ d

d�
ðrn̂Þ ¼ 	

a

d

dy
ðrn̂Þ; (17)

where we replace the derivative with respect to the affine
parameter by using the zeroth order null geodesic, consis-
tent to the first order in perturbations. The spatial compo-
nent of the geodesic equation [Eq. (14)] is then
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d

dy
ð�ex;yÞ ¼ � d2

dy2
ðrn̂Þ ¼ c j� ��j� ¼ 2c j�: (18)

Since gravitational lensing conserves the surface bright-
ness, the observed surface brightness Iobsðn̂Þ on the sky is
simply the intrinsic surface brightness at the source posi-
tion ŝ: Iobsðn̂Þ ¼ IðŝÞ, and the source position ŝ can be
obtained by integrating Eq. (18) along the photon geodesic

ŝ ¼ n̂þ r̂�ðn̂Þ; (19)

with the projected lensing potential

�ðn̂Þ ¼ �2
Z ys

0
dy0

Z y0

0
dy

c ðyÞ
rð�sÞrð�Þ

¼ �2
Z ys

0
dyc ðyÞ rð�s � �Þ

rð�sÞrð�Þ ; (20)

where r̂ is the derivative with respect to n̂, and �s ¼Rzs
0 dz=HðzÞ is the comoving line-of-sight distance to the

source redshift zs. The integration along the unperturbed
photon geodesic dy is often called the Born approximation.
Following the literature, we take the geodesic as the photon
radial direction d�, but note that d=d� ¼ @� � @�.

The convergence 
ðn̂Þ is defined as r̂2�ðn̂Þ ¼ �2
ðn̂Þ
and it is further related to density fluctuations along the
geodesic by Poisson’s equation [Eq. (7)]


ðn̂Þ ¼
Z �s

0
d�ðr2 �r2

�Þc ½rð�Þn̂; �� rð�s � �Þrð�Þ
rð�sÞ

¼ 3H2
0

2
�m

Z �s

0
d�

�½rð�Þn̂; ��
að�Þ

rð�s � �Þrð�Þ
rð�sÞ : (21)

The contribution from the radial derivatives r2
� is propor-

tional to the potential difference between the source and
observer, and this boundary term is negligible compared to
the first term [42,43]. Numerical ray tracing experiments
through N-body simulations show that the weak lensing
approximation to the first order in perturbations is accurate
even in nonlinear regime when nonlinear matter power
spectrum is used in place of linear matter power spectrum
[42]. Also note that all the prior results for a single source
redshift can be readily generalized to a source population
with a redshift distributionWð�sÞ by integrating the results
over �s with Wð�sÞ in the integrand.

While conservation of surface brightness guarantees that
photons are neither destroyed nor created, gravitational
deflection distorts the cross section of a bundle of light
rays, magnifying (or demagnifying) observed fluxes.
Gravitational lensing magnification �ðn̂Þ is related to the
Jacobian of a mapping from the image plane to the source
plane by

�ðn̂Þ�1 ¼
��������
d2ŝ

d2n̂

��������¼ jIþ r̂ r̂�ðn̂Þj

¼ j½1� 
ðn̂Þ�2 � �2ðn̂Þj; (22)

where I is a unit 2� 2 matrix and �ðn̂Þ is the tangential
shear. In the weak lensing regime, �ðn̂Þ ¼ 1þ 2
ðn̂Þ.
Gravitational lensing also modifies the propagation time

of light rays in two ways, compared to the light travel time
in the absence of the gravitational lensing effects: it distorts
the photon geodesic, increasing the path length that pho-
tons travel, and the gravitational potential retards the light
travel time. The former is referred to as the geometric time
delay [44]

geoðn̂Þ ¼ 1

2

rð�lÞrð�sÞ
rð�s � �lÞ r̂�ðn̂Þ � r̂�ðn̂Þ; (23)

and the latter is the potential or Shapiro time delay [45]

potðn̂Þ ¼ rð�lÞrð�sÞ
rð�s � �lÞ�ðn̂Þ: (24)

These effects can be derived by using the small angle
approximation in deflection and the relation d� ¼ ð1�
c þ�Þd� from the metric in Eq. (1). Note that the proper
time delay can be obtained by multiplying the lens redshift
1þ zl in the limit of a single lens case, and this derivation
in a cosmological context recovers the standard relation for
time delay.

III. SOURCE FLUCTUATIONS

Inhomogeneous matter fluctuations in the Universe de-
flect the propagation of light rays, giving rise to the gravi-
tational lensing effects. The generalized Sachs-Wolfe
effect also arises from the same matter fluctuations respon-
sible for the gravitational lensing effects. Having discussed
the basic mechanism of the gravitational lensing and the
generalized Sachs-Wolfe effects that complicate the simple
interpretation of observable quantities, we now investigate
their impact on an observed overdensity field �obsðn̂; zÞ of
source galaxies. Contributions to �obsðn̂; zÞ come from
matter fluctuations in addition to the intrinsic overdensity
�ðn̂; zÞ of source galaxies. Noting that the contributions
can be linearized and added to the first order in perturba-
tions, we separate these contributions as two physically
distinct parts: one that involves the change of volume, and
one that involves the intrinsic properties of source galaxies.
The impact on galaxy two-point statistics will be discussed
in the following section.

A. Volume effect

Consider a unit comoving volume dV ¼
r2ð�Þd�dz=HðzÞ and a unit flux interval df, and let
nðn̂; z; fÞ be the comoving number density of source gal-
axies. The generalized Sachs-Wolfe effect alters the unit
comoving volume dV. Note, however, that it not only
changes the unit redshift interval dz, but also changes
both the angular diameter distance rð�Þ and the Hubble
parameterHðzÞ. By imposing the number conservation, the
observed number density of the source galaxies can be
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obtained by

nobsðzobsÞ ¼ nðzÞ½1þ �V� r2ð�Þ
r2ð�obsÞ

HðzobsÞ
HðzÞ

dz

dzobs
; (25)

where �V ¼ ð2�þ "Þeo represents the distortion of vol-
ume element, when it is transformed from the conformal
Newtonian gauge to the local Lorentz frame, where the
velocity of nonrelativistic matter vanishes. We give a more
rigorous derivation in Appendix B. The solid angle d�
remains unaffected by the generalized Sachs-Wolfe effect.

If the mean comoving number density evolves slowly
compared to the redshift change due to the generalized
Sachs-Wolfe effect �nðzÞ ¼ �nðzobsÞ, contributions to
�obsðzobsÞ arise solely from the change in volume element
dV,

�obsðzobsÞ ¼ �ðzÞ � 2
1þ z

H�
"� ð1þ zÞH d

dz

�
"

H

�

� "þ �V; (26)

where we rewrote Eq. (16) as 1þ zobs ¼ ð1þ zÞð1þ "Þ
and the contribution " from the generalized Sachs-Wolfe
effect is

"ðzÞ ¼ VðzÞ � Vð0Þ � c ðzÞ þ c ð0Þ � 2
Z �

0
d�

@c

@�
:

(27)

In the Einstein-de Sitter universe, the Newtonian potential
is constant and hence the integrated Sachs-Wolfe effect
vanishes. In general, as we show in the next section, the
peculiar velocity effect is dominant over the Sachs-Wolfe
and the integrated Sachs-Wolfe effects, and "ðzÞ ’ VðzÞ �
Vð0Þ. Note that while our derivation so far is valid for
nonflat universes, in deriving Eq. (26) we assumed that
the spatial curvature K is close to zero. The second term in

Eq. (26) has a multiplicative factor
ffiffiffiffi
K

p
�= tanð ffiffiffiffi

K
p

�Þ for a
closed universe K > 0 and

ffiffiffiffiffiffiffiffi�K
p

�= tanhð ffiffiffiffiffiffiffiffi�K
p

�Þ for an
open universe K < 0, which becomes a unity as K ! 0.

With a proper line-of-sight distance rp ¼ �ðzÞ=ð1þ zÞ
and a normalized peculiar velocity u ¼ VðzÞ=HðzÞ,
Eq. (26) can be rearranged as

�obsðzobsÞ ¼ �ðzÞ � 2u

rp
� du

drp
; (28)

if we ignore the Sachs-Wolfe and the integrated Sachs-
Wolfe effects in Eq. (27). This recovers the standard rela-
tion for redshift-space distortions [20,46,47]. Note that the
standard method ignores the contributions in Eq. (26) from
the Sachs-Wolfe and the integrated Sachs-Wolfe effects.
We discuss their impact in Sec. IV.

Gravitational lensing magnification increases the flux
interval df and the solid angle d� by a factor of �,
respectively. With the number conservation in dV and
df, the observed number density is therefore

nobsðfobsÞ ¼ nðfÞ df

dfobs

d�

d�obs

¼ 1

�2
nðfÞ: (29)

Similarly, if the mean comoving number density is the
same over the flux change due to lensing magnification
(i.e., the source luminosity function is flat), the observed
overdensity is then

�obsðn̂Þ ¼ �ðn̂Þ � 4
ðn̂Þ; (30)

reflecting the change in volume and flux.
Gravitational lensing displaces the source position on

the sky according to Eq. (19), and the observed number

density is nobsðn̂Þ ¼ n½n̂þ r̂�ðn̂Þ�. By Taylor expanding
nobsðn̂Þ to the first order in �ðn̂Þ, the observed overdensity
can be written as

�obsðn̂Þ ¼ �ðn̂Þ þ r̂�ðn̂Þ � r̂�ðn̂Þ: (31)

Note that the additional contribution is already in the
second order in perturbations and furthermore it vanishes

on average, because the deflection angle r̂�ðn̂Þ has no
preferred direction. The first nonvanishing effect from
gravitational lensing displacement comes in the second
order in �ðn̂Þ [31], and we therefore ignore this effect.
Finally the gravitational time delay decreases the arrival

time of photons in an overdense region, compared to that in
the absence of lensing. The net effect is therefore that we
sample sources at farther distance in the fixed time interval
[48]. However, for discrete sources the effect vanishes as
long as the lifetime of the sources is longer than the time
delay.

B. Source effect

The generalized Sachs-Wolfe and the gravitational lens-
ing effects modify a unit volume and a unit flux interval,
leading to the contributions to �obsðn̂; z; fÞ. Furthermore,
the changes in observed redshift and flux can result in
different mean number densities, if the redshift distribution
of the source galaxy population varies in the redshift
interval or the luminosity function is nontrivial over the
flux change. These additional contributions from the
change in mean number densities are related to the intrinsic
properties of source galaxies, and we collectively refer to
these effects as the source effect. However, note that while
the source effect may be absent for some galaxy popula-
tions, the volume effect is always present. Therefore, we
keep together the contributions from the volume effect in
considering the source effect.
We first consider the effect of gravitational lensing

magnification. Lensing magnification not only increases
d� and df in Eq. (29), but also changes the number count
of source galaxies, if the luminosity function is nonflat, i.e.,
�nobsðfobsÞ � �nðfÞ. Assuming �nðfÞdf / f�sdf with a con-
stant slope s over a narrow flux range df, the observed
number density can be expressed as
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�n obsðfobsÞ ¼ �nðfobs=�Þ
�2

¼ �nðfobsÞ�s�2; (32)

and the observed overdensity is now

�obsðn̂Þ ¼ �ðn̂Þ þ ð2s� 4Þ
ðn̂Þ
¼ �ðn̂Þ þ 5ðp� 0:4Þ
ðn̂Þ; (33)

where we used the logarithmic slope p ¼
d log �nðmÞ=dm ¼ 0:4ðs� 1Þ in a sample with limiting
magnitude m. In the literature, these contributions from
both the volume and the source effects are referred to as the
magnification bias [27,49–52]. Note that this bias can be
either positive or negative, depending on the slope p, and
the volume effect can be canceled by the source effect with
p ¼ 0:4 (see [28] for the recent detection from the Sloan
Digital Sky Survey).

The redshift distribution of source galaxies also affects
the mean number counts due to the generalized Sachs-
Wolfe effect. For a redshift distribution �nðzÞdz /
z� exp½�ðz=z0Þ��dz, the observed overdensity can be ob-
tained by substituting �nðzÞ with �n½zobs � ð1þ zobsÞ"�,

�obsðzÞ ¼ �ðzÞ � 1þ z

z

�
�� �

�
z

z0

�
�
�
"� 2

1þ z

H�
"

� ð1þ zÞH d

dz

�
"

H

�
� "þ �V; (34)

where the second term in the right-hand side is the addi-
tional contribution related to the evolution of source gal-
axies, and the rest of the additional terms come from the
volume effect in Eq. (26).

C. Summary

We have investigated the effects of inhomogeneous
matter fluctuations on observed overdensity fields. Here
we summarize their contributions and clarify the functional
dependence. We then compare their impact on galaxy two-
point statistics in Sec. IV.

For a sample of galaxies at redshift z selected with a
limiting flux f and narrow intervals of dz and df, the
observed overdensity �obsðn̂; z; fÞ is the sum of the intrin-
sic overdensity field �ðn̂; z; fÞ and the contributions from
the gravitational lensing and the generalized Sachs-Wolfe
effects:

�obsðn̂; z; fÞ ¼ �þ �mb þ �z þ �evo: (35)

From Eq. (33), the magnification bias is defined as

�mbðn̂; z; fÞ ¼ 5½pðfÞ � 0:4�
ðn̂; zÞ; (36)

with redshift z being the source redshift of the convergence

ðn̂Þ in Eq. (21). Considering "ðzÞ ’ VðzÞ � Vð0Þ, we call
the volume effect in Eq. (26) as the redshift-space distor-
tion bias,

�zðn̂; zÞ ¼ �2
1þ z

H�
"� ð1þ zÞH d

dz

�
"

H

�
� "þ �V

¼ �2
1þ z

H�
"þ 1þ z

H
"
dH

dz
� 1þ z

H

@"

@�

� "þ �V: (37)

Note that the generalized Sachs-Wolfe effect "ðzÞ implic-
itly depends on the direction n̂ via the line-of-sight velocity
VðzÞ ¼ v�e

� ¼ n̂ � vðn̂; zÞ, but it is independent of the
limiting flux f, provided that galaxies have no velocity
bias (i.e., galaxies and matter follow the same velocity
field). Finally, the evolution bias is defined from Eq. (34) as

�evoðn̂; z; fÞ ¼ � 1þ z

z

�
�� �

�
z

z0

�
�
�
"; (38)

where the directional dependence comes from " and the
evolution coefficients ð�;�; z0Þ depend on the galaxy sam-
ple selected with the limiting flux f. While the evolution
bias arising from the difference between �nðzÞ and �nðzobsÞ
was recognized [20,22,47], it has been ignored in the
literature. However, we show in Sec. IV that the evolution
bias can be significantly enhanced. Last, we want to em-
phasize that Eq. (35) is gauge invariant as is written in the
conformal Newtonian gauge.

IV. GALAXY TWO-POINT STATISTICS

We have derived additional contributions of the gravita-
tional lensing and the generalized Sachs-Wolfe effects to
the intrinsic density fluctuations in Sec. III, fully consistent
up to the first order in perturbations. Given two samples of
galaxies with limiting fluxes f1 and f2, the observed
galaxy correlation function is then �obsðn̂1; z1; n̂2; z2Þ ¼
h�obsðn̂1; z1Þ�obsðn̂2; z2Þi and the observed power spectrum
is h�obsðk1; z1Þ��

obsðk2; z2Þi ¼ ð2�Þ3�Dðk1 � k2ÞPobsðk1Þ.
In Sec. IVA, we derive this ensemble average of all the
combinations of each component in �obs in Eq. (35), after
we simplify the equation. We then discuss their impact on
the observed galaxy two-point statistics by analyzing spe-
cific examples in Sec. IVB.

A. Correlation function and power spectrum

Here we compute the observed galaxy correlation func-
tion �obs and power spectrum Pobs. However, as some
components in �obs are smaller than other components,
their combinations are even smaller by an order of magni-
tude. We therefore start by estimating the autocorrelation
functions of each component and simplify the equation
before we compute all the cross correlation functions and
power spectra.
We first consider the correlation of the redshift-space

distortion bias �zz ¼ h�zðn̂1; z1Þ�zðn̂2; z2Þi. The redshift-
space distortion bias �z in Eq. (37) has five components
that depend on either "ðzÞ or its partial derivative with
respect to z or �, and the contribution "ðzÞ from the
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generalized Sachs-Wolfe effect in Eq. (27) has also three
different components that depend on the peculiar velocity,
the Newtonian potential, and its time derivative. The
Newtonian potential and the peculiar velocity in Eqs. (7)
and (8) take the simple form in Fourier space

c k ¼ � 3H2
0

2

�m

a

�k

k2
; (39)

v k ¼ iHfa�k

k

k2
: (40)

On a typical correlation scale 1=k, they scale as H2�k=k
2

and H�k=k with f ’ 1 at z * 1: c k is smaller than vk by
the ratio of the correlation scale 1=k to the Hubble distance
1=H. Similarly, the integrated Sachs-Wolfe effect is of the
same order as the Newtonian potential and it vanishes in
the limit of zero cosmological constant, i.e., Einstein-
de Sitter universe, because it is proportional to the time
derivative of the ratio of the growth factor to the expansion
scale factor DðzÞ=a. Therefore, we can safely ignore the
Sachs-Wolfe and the integrated Sachs-Wolfe effects and
we assume "ðzÞ ’ VðzÞ. Note that given a particular real-
ization of the observer’s rest frame, its peculiar velocity
Vð0Þ is uncorrelated and the unobservable potential c ð0Þ in
Eq. (27) can be absorbed by a gauge transformation.

With the assumption "ðzÞ ’ VðzÞ, we further simplify
Eq. (37) by comparing the five components in the redshift-
space distortion bias, and similar justification was made in
[30]. Respectively, each component scales as �k=k�,
H�k=k, @�k=k@�, H�k=k, and H�k=k, and hence they
are smaller than �k by the ratio of correlation scale 1=k
to the Hubble distance 1=H or the line-of-sight distance �
(roughly of order 1=H), except the third component: the
partial derivative with respect to � cancels the correlation
scale 1=k and hence the amplitude of the third component
is of order �k, larger than the other components in the
redshift-space distortion bias. Therefore, we only keep the
dominant component in the redshift-space distortion bias
[30],

�zðn̂; zÞ ’ � 1þ z

H

@V

@�
; (41)

consistent with the standard relation for the redshift-space
distortion, justifying its nomenclature. However, note that
all these ignored components are proportional to ". At low
redshift, they contribute to galaxy two-point statistics at the
subpercent level, while we show in Sec. IVB that at higher
redshift their contribution is somewhat larger.

Having substantially reduced the number of combina-
tions for an ensemble average, we are now well positioned
to compute correlation functions and their power spectra.
For two galaxy positions x1 ¼ ½rð�1Þn̂1; �1� and x2 ¼
½rð�2Þn̂2; �2�, the autocorrelation of the redshift-space dis-
tortion bias is

�zz ¼ h�zðn̂1; z1Þ�zðn̂2; z2Þi

¼ f1f2
Z d3k

ð2�Þ3 e
ik�ðx1�x2ÞPmðk; z1; z2Þ k

4
z

k4

¼ f1f2
Z 1

0

dk

k

k3

2�2
Pmðk; z1; z2Þ

�
1

5
j0ðkr3ÞP0ð�Þ

� 4

7
j2ðkr3ÞP2ð�Þ þ 8

35
j4ðkr3ÞP4ð�Þ

�
; (42)

where the 3D comoving separation is r3 ¼ ½rð ��Þ2��2 þ
ð�2 � �1Þ2�1=2 with �� ¼ jn̂1 � n̂2j and �� ¼ ð�1 þ
�2Þ=2, and the angle subtended by the comoving separa-
tion is � ¼ cos�� ¼ ð�2 � �1Þ=r3.PnðxÞ and jnðxÞ are the
n-th order Legendre polynomial and spherical Bessel func-
tion, respectively. We assumed the distant observer ap-
proximation such that kz is the line-of-sight component
of the wave number k, but it can be relaxed by replacing k4z
by ½ðn̂1 � kÞðn̂2 � kÞ�2. The linear matter power spectrum is
computed by Pmðk; z1; z2Þ ¼ Dðz1ÞDðz2ÞPmðkÞ, while we
use Pmðk; z1; z2Þ ¼ Pmðk; �zÞ with �z ¼ ðz1 þ z2Þ=2 when
we compute the effect of the nonlinear matter power
spectrum using the Smith et al. [53] approximation. The
power spectrum of the redshift-space distortion bias can be
readily read off from Eq. (42) and its power is boosted
along the line-of-sight by f1f2�

4
k with �k ¼ kz=k.

Next we consider the correlation of the evolution bias.
The observed redshift zobs is different from the true redshift
z due to the generalized Sachs-Wolfe effect and the redshift
distribution of the source mean number density gives rise
to the evolution bias. The evolution bias �evo is propor-
tional to "ðzÞ ’ VðzÞ and it is typically smaller than �z by
the ratio of a correlation scale 1=k to the Hubble distance
1=H. However, beyond the mean redshift of source pop-
ulations, the mean number density changes exponentially
and the evolution bias can be substantially boosted by the
prefactor

Eðz; fÞ ¼ � 1þ z

z

�
�� �

�
z

z0

�
�
�
; (43)

defined such that Eq. (38) becomes �evo ¼ EðzÞ"ðzÞ. While
the exact functional form of EðzÞ depends on the assumed
redshift distribution, it captures the general trend of the
enhancement in �evo beyond the mean redshift. The corre-
lation of the evolution bias is therefore

�evo ¼ h�evoðn̂1; z1Þ�evoðn̂2; z2Þi

¼ ðHfaEÞ1ðHfaEÞ2
Z d3k

ð2�Þ3 e
ik�ðx1�x2ÞPmðk;z1; z2Þk

2
z

k4

¼ ðHfaEÞ1ðHfaEÞ2
Z 1

0

dk

k

k

2�2
Pmðk;z1; z2Þ

�
�
1

3
j0ðkr3ÞP0ð�Þ� 2

3
j2ðkr3ÞP2ð�Þ

�
; (44)

where the subscripts in the round brackets represent that
the products (HfaE) are computed at z1 and z2. Its power
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spectrum is also anisotropic and has structure similar to the
redshift-space distortion bias.

Finally, the inhomogeneous matter fluctuations along
the two lines-of-sight result in the correlation of the mag-
nification bias

�mb ¼ h�mbðn̂1; z1Þ�mbðn̂2; z2Þi

¼ ð5p1 � 2Þð5p2 � 2Þ
�
3H2

0

2
�m

�
2 Z �1

0
d�

�
rð�Þ
að�Þ

�
2

� rð�1 � �Þ
r1

rð�2 � �Þ
r2

wp½rð�Þ��; z�; (45)

where we used the Limber approximation [54] (see
Appendix A). Without loss of generality, we assumed z1 �
z2. The projected correlation functionwpðRÞ is obtained by
integrating the 3D matter correlation function �mðxÞ along
the line-of-sight at a fixed redshift zð�Þ and 2D transverse
separation R,

wp½R; z� ¼
Z 1

�1
drk�m½r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2k

q
; z�

¼
Z 1

0

kdk

2�
Pmðk; zÞJ0ðkRÞ; (46)

where JnðxÞ is the n-th order Bessel function of the first
kind. Assuming that the source redshifts are sufficiently
high and hence �mb is independent of z1 and z2, the power
spectrum of the magnification bias is Pmb ¼ ð2�Þ�DðkzÞ�
ð5p1 � 2Þð5p2 � 2Þr2ð ��ÞC



l¼k?rð ��Þ, where the angular

power spectrum of the convergence is

C


l ¼

�
3H2

0

2
�m

�
2 Z ��

0
d�

�
rð ��� �Þ
að�Þrð ��Þ

�
2
Pm

�
k ¼ l

rð�Þ ; z
�
:

(47)

The Dirac delta function results from our assumption that
�mb is a function of transverse direction only, but it can be
somewhat relaxed by replacing ð2�Þ�DðkzÞ by a survey
window function [55]. Note that while we are interested in
how the magnification bias affects the 3D correlation of the
intrinsic source fluctuations, the magnification bias arises
from the matter fluctuations along the line-of-sight (not at a
single redshift plane) and thereby angular correlation func-
tion and its angular power spectrum are better suited for
quantifying its statistics. Indeed, the correlation function of
the magnification bias is identical to the angular correlation
function, �mbðn̂1; z1; n̂2; z2Þ ¼ wmbð��; z1; z2Þ, and we re-
late 2D angular power spectrum to 3D power spectrum by
PðkÞ ¼ ð2�Þ�DðkzÞr2ð ��ÞCl¼k?rð ��Þ (see Appendix A).

With all the additional contributions of the gravitational
lensing and the generalized Sachs-Wolfe effects in hand,
the correlation of the intrinsic fluctuation of sources is
modeled using the linear bias model,

�int ¼ h�ðn̂1; z1Þ�ðn̂2; z2Þi

¼ b1b2
Z d3k

ð2�Þ3 e
ik�ðx1�x2ÞPmðk; z1; z2Þ

¼ b1b2
Z 1

0

dk

k

k3

2�2
Pmðk; z1; z2Þj0ðkr3Þ; (48)

where the constant linear bias factors b1 and b2 are the
ratio of the intrinsic source fluctuation to the underlying
matter fluctuation at z1 and z2.
To complete our calculations of �obs, we now compute

the cross correlation functions and power spectra between
the intrinsic source fluctuation and the fluctuations from
the gravitational lensing and the generalized Sachs-Wolfe
effects. First, the redshift-space distortion bias and the
intrinsic source fluctuation provide two cross correlation
functions

��z ¼ h�ðn̂1; z1Þ�zðn̂2; z2Þi

¼ b1f2
Z d3k

ð2�Þ3 e
ik�ðx1�x2ÞPmðk; z1; z2Þ k

2
z

k2

¼ b1f2
Z 1

0

dk

k

k3

2�2
Pmðk; z1; z2Þ

�
�
1

3
j0ðkr3ÞP0ð�Þ � 2

3
j2ðkr3ÞP2ð�Þ

�
; (49)

and similarly for �z� ¼ h�zðn̂1; z1Þ�ðn̂2; z2Þi with the two
indices exchanged in Eq. (49). Combined with �zz in
Eq. (42), these two cross correlation functions constitute
the standard redshift-space correlation function

�z�dist ¼ �int þ �zz þ �z� þ ��z ¼
X

l¼0;2;4

Plð�Þ�lðr3Þ;

(50)

which is often expressed in terms of the multipole compo-
nents [21,47,56]

�l ¼ clð�1; �2Þb1b2il
Z 1

0

dk

k

k3

2�2
Pmðk; z1; z2Þjlðkr3Þ;

(51)

with its coefficients

c0
c2
c4

0
@

1
A ¼

1þ �1þ�2

3 þ �1�2

5
2
3 ð�1 þ �2Þ þ 4

7�1�2
8
35�1�2

0
B@

1
CA; (52)

where � ¼ f=b. Analogously, the redshift-space power
spectrum is

Pz�dist ¼ Pint þ Pz� þ P�z þ Pzz

¼ ½1þ ð�1 þ �2Þ�2
k þ �1�2�

4
k�PintðkÞ

¼ X
l¼0;2;4

Plð�kÞPz
l ðkÞ; (53)
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with the intrinsic source power spectrum PintðkÞ ¼
b1b2Pmðk; z1; z2Þ, and its multipole components Pz

l ðkÞ in
Fourier space are related to the multipole components
�lðr3Þ in real space as

Pz
l ðkÞ ¼ 4�il

Z 1

0
dxx2�lðxÞjlðkxÞ: (54)

Since the magnification bias arises from the matter
fluctuations along the line-of-sight, it correlates with the
intrinsic source fluctuation at lower redshift (z1 < z2),

��mb ¼ h�ðn̂1; z1Þ�mbðn̂2; z2Þi

¼ b1ð5p2 � 2Þ
�
3H2

0

2
�m

�

� rð�2 � �1Þr1
a1r2

wp½r1��; z1�; (55)

but the correlation vanishes when the source is at higher
redshift, i.e., �mb� ¼ 0. The power spectrum is also related
to the angular power spectrum of the cross term

C�mb
l ¼ b1ð5p2 � 2Þ

�
3H2

0

2
�m

�
rð�2 � �1Þ
a1r1r2

� Pm

�
k? ¼ l

r1
; z1

�
; (56)

as P�mb ¼ ð2�Þ�DðkzÞr21C�mb
l¼k?r1 . Finally, all the cross cor-

relations that involve �evo are zero, since �evo is odd in the
line-of-sight component V of peculiar velocities and the
Universe has no preferred direction. Two remaining cross
terms �zmb and �mbz also vanish, since �z is proportional to
k2z and the line-of-sight fluctuations are smoothed out in the
Limber approximation.

B. Comparison

To compare the additional contributions to the observed
correlation function �obs and power spectrum Pobs, we
consider near-future dark energy surveys that will target
galaxies and quasars to measure their correlation function
and power spectrum at high redshifts. For example, the
baryonic oscillation spectroscopic survey (BOSS) will
measure 1:5� 106 luminous red galaxies to determine
the angular diameter distances at z ¼ 0:35 and 0.6, and
use 160 000 quasars to measure the clustering of Lyman-�
forests at z ¼ 2:5 [57,58]. For the purpose of illustration,
we show our calculations of galaxy two-point statistics at
these redshifts. Here we adopt a flat �CDM universe: the
cosmological parameters are the matter density �mh

2 ¼
0:137, the baryon density �bh

2 ¼ 0:0227, the Hubble
constant h ¼ 0:70, the spectral index ns ¼ 0:96, the opti-
cal depth to the last scattering surface  ¼ 0:084, and the
primordial curvature perturbation amplitude �2

� ¼
2:457� 10�9 at k ¼ 0:002 Mpc�1 (corresponding to the
matter power spectrum normalization �8 ¼ 0:817), con-

sistent with the recent results (e.g., [33–35]). The matter
transfer function is computed by using CMBFAST [59].
Figure 1 examines the separate contributions of the

gravitational lensing and the generalized Sachs-Wolfe ef-
fects to the observed two-point correlation function of
galaxies. We show the correlation functions of the intrinsic
galaxy fluctuations (�int=b

2; solid line) and the redshift-
space distortion bias (�zz; dotted line), and their cross
correlation function (��z=b ¼ �z�=b; long dashed line).
The correlation functions are computed by using the linear
(thin line) and the nonlinear (thick line) matter power
spectrum. Note that they only differ on small scales and
the nonlinear effect decreases at high redshift as shown in
Fig. 1(a) to Fig. 1(c), going from z ¼ 0:35 to z ¼ 2:5. The
source galaxies are assumed to be at the same redshift ðz ¼
z1 ¼ z2Þ shown in the figure legend, and thus 3D separa-
tion r3 is equal to 2D projected separation R ¼ rð ��Þ��.
However, two galaxy populations are separately placed at
z1 ¼ 0:35 and z2 ¼ 0:6 in Fig. 1(d), and the x axis repre-
sents projected separation R, rather than 3D separation r3.
The solid lines �int=b

2 are identical to the matter corre-
lation function �m and the linear bias factor b is constant.
However, the nonlinear evolution and galaxy formation
process complicate the relation between galaxies and
underlying matter fluctuations, and galaxy bias becomes
scale dependent on small scales, even when the nonlinear
matter power spectrum is used (e.g., [60,61]). While we
plot the correlation functions at r3 ’ 0:5� 200h�1 Mpc
for completeness, the validity of our calculation is limited
to the linear regime. The solid lines at r3 ¼ 151 Mpc
( ¼ 106h�1 Mpc) show prominent enhancement in the
clustering amplitude, known as the baryonic acoustic
peak [62,63]. The baryon-photon plasma in the early
Universe propagates as sound waves and these periodic
oscillations in Fourier space translate into one peak in real
space with its width deviating from a sharp delta function
due to the termination of the harmonic series, determined
by the horizon size at the cosmological recombination
epoch. Note that the correlation function becomes negative
at r3 ’ 128h�1 Mpc, beyond which we plot its absolute
value.
The correlation functions (�zz, ��z, and �z�) of the

redshift-space distortion bias have the overall shape similar
to �int. However, since �zz, ��z, and �z� in Eqs. (42) and
(49) have additional functional dependence on spherical
Bessel functions j2ðxÞ and j4ðxÞ compared to �int in
Eq. (48), it puts more weight on higher k and hence the
nonlinear effects persist up to r3 ’ 10h�1 Mpc in Fig. 1(a),
larger than 3h�1 Mpc for �int. However, the incoherent
superposition of the additional Bessel functions washes
out the acoustic peak in the correlation functions of the
redshift-space distortion bias, leaving little structure in �zz,
��z, and �z� at the acoustic scale. Since the observed
correlation function �obs is the sum of all the contributions
and it is hard in practice to separate each contribution from
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one another, it may look as if �int is swamped by �zz, ��z,
and �z� at the acoustic scale, but note that we plot �int=b

2

and ��z=b: the linear bias factor of luminous red galaxies is
b0 ’ 1:5–2:0 [9,10,12,64]. Assuming that galaxies have no
velocity bias vg ¼ v, the linear bias factor at high redshift

is bðzÞ � 1 ¼ ðb0 � 1Þ=DðzÞ, sufficient for �int to show its
structure, when combined with �zz, ��z, and �z�, yet the
plot without b captures the main structure of the correlation
functions, since the linear bias factor is still of order unity.

Note that since the source galaxies are at the same
redshift in Fig. 1(a) to Fig. 1(c), the cosine angle of the
comoving separation is � ¼ ð�2 � �1Þ=r3 ¼ 0, i.e., the
redshift-space correlation function (the sum of the solid,

dotted, and dashed lines) is �z�dist ¼ �int þ �zz þ �z� þ
��z ¼ �0 � ð1=2Þ�2 þ ð3=8Þ�4, different from the angle-
averaged (monopole) correlation �0 often used in the lit-
erature [65,66]. Figure 2 illustrates the multipole compo-
nents of the redshift-space correlation function at z ¼ 0:35.
The monopole (solid line) is identical to �int in shape but
differs in normalization by �0 ¼ �int � c0 with the multi-
pole coefficient c0 in Eq. (52). The quadrupole �2 (dotted
line) is negative by the sign convention and the hexadeca-
pole �4 (dashed line) is positive in the figure, while the
monopole �0 changes its sign as �int changes at r3 *
128h�1 Mpc (see the inset). As noted before, the spherical
Bessel functions j2ðkr3Þ and j4ðkr3Þ in �2 and �4 peak at

FIG. 1. Dissection of the observed two-point correlation function of galaxies. Solid, dotted, and long dashed lines represent
correlation functions of the intrinsic source fluctuations �int=b

2 and the redshift-space distortion bias �zz, and their cross correlation
function ��z=b ¼ �z�=b, respectively. Correlation functions of the magnification bias �mb=ð5p� 2Þ2 and the evolution bias �evo=E

2

are shown as short dashed and short dot-dashed lines. Note that while the galaxy bias factor b and magnification bias factor ð5p� 2Þ
are of order unity, the evolution boost factor E can be an order of magnitude larger (see Fig. 3). The correlation functions are computed
by using the linear (thin line) and the nonlinear (thick line) matter power spectra, and source galaxies are assumed to be at the same
redshift indicated in the legend. The correlation functions of the intrinsic source fluctuations become negative at r3 * 128h�1 Mpc,
where its absolute value is plotted. Panel (d) plots the cross correlation function ��mb=b1ð5p2 � 2Þ of the intrinsic fluctuation of source
galaxies at z1 ¼ 0:35 and the magnification bias from source galaxies at z2 ¼ 0:6 as long dot-dashed lines. With large line-of-sight
separation 600h�1 Mpc, only �mb and ��mb that depend on projected separation R rather than 3D separation r3 itself are appreciable,
i.e., �int ’ ��z ’ �z� ’ �zz ’ �evo ’ 0.
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scales different from the typical scale k� 1=r3 for �0, and
thus the acoustic structure seen in �0 is smoothed out in �2

and �4.
In practice, galaxy redshift surveys have a narrow but

nonzero radial window function and galaxy pairs in the
same redshift bin often have the line-of-sight separation
comparable to the transverse separation, i.e., � � 0. The
angular dependence of the redshift-space correlation func-
tion, therefore, complicates the interpretation of its mea-
surements, which are further plagued by low signal-to-
noise ratios in estimates of �2 and �4. While the monopole
�0 can be used to ease the theoretical and/or observational
challenge, full analysis of the anisotropic structure of
�z�dist could in principle bring more information than �0

measurements (see [24,25] for recent analysis). We ana-
lyze the full anisotropic structure of the observed correla-
tion function �obs below. On small scales, virial motions of
galaxies result in additional anisotropic structure in �z�dist,
known as the Finger-of-God (FoG) effect. Note that since
this effect involves galaxy motions in nonlinear objects, it
is not considered in our calculation and linear theory
provides an inaccurate description of the FoG effect: while
a simple dispersion model [67] is often adopted to extract
additional information contained in the anisotropic struc-
ture, it is demonstrated [68] that this model leads to an

unphysical distribution of pairwise velocities. However,
this difficulty could be tackled by recent approach
based on modeling nonlinear galaxy bias in redshift-space
[69–71].
The short dashed and short dot-dashed lines in Fig. 1

show the correlation functions of the magnification bias
�mb=ð5p� 2Þ2 and the evolution bias �evo=E

2, respec-
tively. The magnification bias �mb is typically smaller
than �int by the ratio of the transverse correlation scale
1=k? to the Hubble distance 1=H, and the magnification
bias factor is of order unity, ð5p� 2Þ ¼ �1:0� 2:0 [28]
for galaxies and quasars, while it can be further suppressed
by the source effect canceling the volume effect ð5p�
2Þ ’ 0. Since �mb in Eq. (45) is proportional to the pro-
jected correlation function wp, its overall shape is similar

to �int but �mb is positive due to projection of �int. As the
source population is located at higher redshift, longer line-
of-sight distance increases the gravitational lensing effect
and �mb increases in redshift, as opposed to �int / D2 /
1=ð1þ zÞ2 decreasing in redshift. For example, �mb at z ¼
2:5 in Fig. 1(c) can grow up to a few percent of �int at the
acoustic scale [31,32].
The evolution bias �evo is often ignored in the literature

compared to the redshift-space distortion bias �z, since
�evo / " ’ V and V 	 �z. However, the evolution bias
can be significantly enhanced when the mean number
density of sources changes rapidly in redshift. To estimate
the evolution boost factor EðzÞ in Eq. (43), we assume the
standard functional form of a redshift distribution �nðzÞdz /
z� exp½�ðz=z0Þ��dz and take two source populations as
illustrative examples: galaxies and quasars characterized
by ð�;�; z0Þ ¼ ð4; 4; 0:4Þ and (3, 13, 2), respectively
[12,28,72]. While the bright samples of luminous red
galaxies in the BOSS will have a redshift distribution
flatter than the assumed here, the faint samples with larger
number density and volume will have a nonflat redshift
distribution [73,74]. The clustering of Lyman-� forests at
z ¼ 2:5will be measured by the spectrum of quasars at z >
2:5, not by quasars themselves at z ¼ 2:5. However, we
simply assume that �obs is measured from the galaxy
samples at z ¼ 0:35 and z ¼ 0:6, and from the quasar
samples at z ¼ 2:5.
The upper panel of Fig. 3 illustrates the redshift distri-

bution of the galaxy (dashed line) and quasar (solid line)
samples, with its peak at z ¼ 0:4 and 1.8, and the bottom
panel shows the evolution boost factorEðzÞ of each sample.
For the assumed redshift distribution, the evolution boost
factor is typically a factor�10, and it vanishes at the peak
redshift. However, a sharp decline in the mean number
density of source populations beyond the mean redshift
makes the evolution bias �evo sensitive to the change in
observed redshift zobs due the generalized Sachs-Wolfe
effect, and EðzÞ can be further enhanced by another factor
of 10. With significant boost of E2ðzÞ ’ 100–10000, the
correlation �evo of the evolution bias should be given a

FIG. 2. Multipole components of the redshift-space correlation
function �z�dist and the evolution bias �evo at z ¼ 0:35. We
define multipole components of �evo as �evo ¼ �0

evoðr3ÞP0ð�Þ þ
�2
evoðr3ÞP2ð�Þ, in the same way multipole components of �z�dist

are defined in Eq. (50). We assume that the galaxy bias factor is
b ¼ 2 and the evolution boost factor is E ¼ 100 for a proper
comparison. The correlation functions are computed by using the
linear matter power spectrum only. �0ðr3Þ becomes negative at
r3 * 128h�1 Mpc, where its absolute value is plotted. The inset
shows the correlation �int of the intrinsic source fluctuations
around the acoustic scale and it is related to the monopole by
�0 ¼ �int � c0 in Eq. (51), where c0 ¼ 1:24 in our fiducial model.
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proper consideration, especially when the mean number of
the source population changes rapidly. Note that the evo-
lution bias �evo=E

2 (short dot-dashed line) in Fig. 1(a) is
comparable to the magnification bias �mb=ð5p� 2Þ2 (short
dashed line) and is larger at the acoustic peak scale, and the
evolution boost factor EðzÞ can be significantly larger than
the magnification bias factor (5p� 2). Therefore, it is of
particular importance to select samples of source popula-
tions that have relatively flat redshift distribution in num-
ber density (E ’ 10), and to limit the redshift range of
measurements below the peak redshift. The short and the
long dot-dashed lines in Fig. 2 show the multipole compo-
nents �l

evo of the evolution bias, defined as �evo ¼P
l¼0;2�

l
evoðr3ÞPlð�Þ. Both components are smooth and

change little over r3 ¼ 1� 200h�1 Mpc. With �evo /
H2a2D2 / 1=ð1þ zÞ, it decreases slowly in redshift, and
the nonlinear effect is relatively small compared to �int,
since less weight is given to short wavelength modes.

Now recall that there are four terms of �z in Eq. (37) that
are ignored in our calculation, and they are comparable to
" ’ V, albeit smaller than the dominant term in �z ’
� 1þz

H
@V
@� . While there is no additional boost factor like

EðzÞ in �evo, their contributions to �obs are typically of
order �evo=E

2 and are as large as �mb at z ¼ 0:35 in

Fig. 1(a). Though �mb is larger at higher redshift, their
impact on �obs also increases in redshift: approximately at
the subpercent level for each contribution at z ¼ 2:5. This
level of accuracy would be appropriate given the statistical
errors present in current samples, but further calculations
of the ignored terms may be needed in future surveys.
In Fig. 1(a), we consider the correlation functions of two

source populations, separately located at z1 ¼ 0:35 and
z2 ¼ 0:6 as a function of 2D projected separation R ¼
rð ��Þ��. Note that given a large line-of-sight separation
�600h�1 Mpc between z1 and z2, all the correlation func-
tions that depend on 3D comoving separation r3 are nearly
zero, i.e., �int ’ ��z ’ �z� ’ �zz ’ �evo ’ 0. The two non-
vanishing contributions in Fig. 1(d) are the autocorrelation
of the magnification bias �mb=ð5p1 � 2Þð5p2 � 2Þ (short
dashed line) and the cross correlation of the intrinsic
source fluctuation and the magnification bias
��mb=b1ð5p2 � 2Þ (long dot-dashed line) that depend on
the projected separation, rather than 3D separation itself.
Note that the cross correlation in Fig. 1(a) to Fig. 1(c) is
identically zero: ��mb ¼ 0 at z1 ¼ z2 with the Limber
approximation we adopted here, but it is in general smaller
than �mb unless z1 � z2 (see [31] for a somewhat different
derivation). Note that while both �mb and ��mb in Eqs. (45)
and (55) depend on the projected separation via wp, ��mb

has additional linear dependence on the comoving line-of-
sight separation �2 � �1 ¼ ��, and it increases with ��,
as opposed to �mb with little dependence on ��. With the
large ��� 600h�1 Mpc in Fig. 1(d), ��mb is substantially
larger than �mb.
Figure 4 examines the anisotropic structure of the ob-

served correlation function �obs, evaluated at �z ¼ 0:35. The
x axis represents the transverse separation R ¼ rð ��Þ��
and the y axis represents the line-of-sight separation�� ¼
�2 � �1 with fixed �z ¼ ðz1 þ z2Þ=2 ¼ 0:35, �� ¼
ð�1 þ �2Þ=2 ¼ 980h�1 Mpc, and �ðz1Þ � �ðz2Þ. The
color maps are linearly proportional to the value of the
correlation function � plotted in each panel below the
adopted threshold � ¼ 4� 10�4, and they are logarithmi-
cally proportional to � above the threshold. The solid
contours are also logarithmically spaced with increasing
thickness at � 
 1:5� 10�3 to emphasize the structure
shown as the color maps, and their contour values are
labeled in the color bar. The thickest solid contours sepa-
rate the regions with � > 0 from those with � < 0, and the
dot-dashed and dotted curves represent the contours with
� ¼ �4:5� 10�4 and �9:0� 10�4, respectively. For ref-
erence, we also plot the acoustic scale in �int (r3 ¼
106h�1 Mpc) as dashed lines in each panel. In Fig. 4(a),
we plot the correlation function �int of the intrinsic source
fluctuations, assuming the galaxy bias factor b ¼ 2. As the
rings of the concentric contours show, �int is spherically
symmetric and depends only on 3D separation r3. The
acoustic peak shows its structure as a circular ring at r3 ¼
106h�1 Mpc (dashed line) and beyond r3 � 128h�1 Mpc

FIG. 3. Redshift distribution of source populations and boost
factor EðzÞ of the evolution bias. Assuming the standard func-
tional form �nðzÞdz / z� exp½�ðz=z0Þ��dz, the redshift distribu-
tion of galaxies (dashed line) and quasars (solid line) are shown
in the upper panel with ð�;�; z0Þ ¼ ð4; 4; 0:4Þ for galaxies and
(3, 13, 2) for quasars, respectively [12,28,86]. The bottom
panel shows the evolution bias boost factor computed by using
Eq. (43). The number density of sources changes exponentially
beyond the mean redshift and the evolution bias is substantially
enhanced in proportion to EðzÞ.
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�int becomes negative without further distinctive feature in
its structure.

The gravitational lensing effects, the magnification bias
�mb and its cross correlation ��mb, break the spherical
symmetry in �int, and its impact on the anisotropic struc-
ture is shown in Fig. 4(b), assuming the magnification bias
factor ð5p� 2Þ ¼ 2. �mb depends on the line-of-sight
separation �� only through �1 and �2 in Eq. (45), and
�� is small compared to the line-of-sight distance, i.e.,
�� 	 �1 ’ �2. Thus �mb is virtually independent of ��
and is just a function of transverse separation R, decreasing
with increasing R. As is seen in Fig. 1(a), �mb is in general
orders of magnitude smaller than �int at z ¼ 0:35, but �int

becomes negative at large r3 and smaller than �mb,
e.g., �int ¼ �8:4� 10�4 < �mb ¼ 4:8� 10�6 at R ¼
10:0h�1 Mpc and �� ¼ 140h�1 Mpc (r3 ¼

140:3h�1 Mpc). Since �mb changes slowly with R, the
demarcation curve between the regions with �mb > �int

and �mb < �int roughly corresponds to the �int ¼ 0 contour
(thickest solid line) in Fig. 4(a). However, since j�intj>
�mb in general except at a narrow strip around the �int ¼ 0
contour, the impact of �mb on the anisotropic structure is
negligible at �z ¼ 0:35. Note that the impact of �mb is
substantially enhanced at higher redshift, where longer
line-of-sight distance results in more fluctuations and the
clustering amplitude of �int is lower.
While both �mb and ��mb are proportional to wp, ��mb

depends on wp itself, rather than the integral of wp along

the line-of-sight, on which �mb depends: ��mb becomes
negative at large transverse separation R ’ 110h�1 Mpc as
�int becomes negative at large 3D separation r3. Note that
for an observable angular separation ��, the transverse

FIG. 4 (color online). Anisotropic structure of the observed correlation function �obs at z ¼ 0:35. We plot the correlation function
�int of the intrinsic source fluctuations in panel (a), and show the individual effects of the magnification bias �int þ �mb þ ��mb [panel
(b)], the evolution bias �int þ �evo [panel (c)], and the redshift-space distortion bias �z�dist ¼ �int þ �zz þ �z� þ ��z [panel (d)] on the
anisotropic structure. The observed correlation function �obs, the sum of all the correlation functions, is shown in panel (e). We assume
that the galaxy bias factor is b ¼ 2, the magnification bias factor is ð5p� 2Þ ¼ 2, and the evolution boost factor is E ¼ 100. The color
maps are linearly proportional to the value of correlation function � in each panel at � < 4� 10�4 and are logarithmically proportional
to � at � > 4� 10�4. The solid contours are logarithmically spaced at � 
 1:5� 10�3 and their thickness increases with the value of
� (contour values are labeled in the color bar), while the thickest solid curves represent the � ¼ 0 contour. The dot-dashed and dotted
curves represent the contours with � ¼ �4:5� 10�4 and �9:0� 10�4, respectively. The acoustic scale in �int (r3 ¼ 106h�1 Mpc) is
shown as dashed lines in each panel for reference. Note that two regions are underrepresented in the color maps, as the region with
� > 1:0 is highly concentrated at r3 	 20h�1 Mpc and there is no distinctive feature in the anisotropic structure around the region
with � < 0.
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separation R ¼ rð ��Þ�� in the figure is slightly different
from rð�1Þ�� for wp in Eq. (55), and this difference tilts

otherwise a vertical line with ��mb ¼ 0 at R ’
110h�1 Mpc toward larger R at large�� (��mb ¼ 0 at R ’
128h�1 Mpc and �� ¼ 140h�1 Mpc), because �� ¼
�2 � �1 and z1 � z2 with fixed �z ¼ ðz1 þ z2Þ=2 ¼ 0:35.
Furthermore, since ��mb linearly increases with �� (hence
it vanishes at �� ¼ 0), the absolute value of ��mb is larger
than �mb except at the regions at �� ¼ 0 and around the
nearly vertical strip with ��mb ¼ 0, and it is also compa-
rable to �int at large �� and small R, e.g., ��mb ¼ 4:3�
10�4 at R ¼ 10h�1 Mpc and �� ¼ 140h�1 Mpc.
Therefore, when �int is combined with �mb and ��mb as
shown in Fig. 4(b), �mb has little impact but ��mb distorts
the symmetric contours of �int at large �� and small R. At
higher redshift, the amplitude of ��mb decreases with that
of �int, and �mb becomes a more dominant contribution
than ��mb. Note that the amplitude at the acoustic scale
(dashed line) is not significantly altered by the gravita-
tional lensing effects, even along the line-of-sight direction
at �z ¼ 0:35.

The impact of the evolution bias �evo is shown in
Fig. 4(c), where we assume the evolution boost factor E ¼
100. While �0

evo and �2
evo change slowly with separation,

they have the opposite sign as shown in Fig. 2. Therefore,
they tend to cancel out along the line-of-sight direction
(� ¼ 1), reducing the amplitude of �evo, and the largest
contribution of �evo arises along the transverse direction
(� ¼ 0), where the absolute values of the monopole �0

evo

and the quadrupole �2
evo add up. For example, �evo ¼ 1:6�

10�3 > �int ¼ �8:4� 10�4 at R ¼ 140h�1 Mpc and
�� ¼ 10h�1 Mpc. As noted in Fig. 1(a), the amplitude
of �evo with E ¼ 100 is smaller than �int at r3 <
50h�1 Mpc and its impact is appreciable only at r3 

100h�1 Mpc along the transverse direction. As the angular
separation becomes small with fixed 3D separation, the
impact of �evo decreases, because the second order
Legendre polynomial is a monotonic function of angle.
Note that compared to �int, �evo changes slowly in redshift
and its impact is larger at higher redshift for a fixed E. The
overall shape of the acoustic scale (dashed line) also
remains unaffected by the evolution bias.

Figure 4(d) examines the redshift-space correlation
function �z�dist ¼ �int þ �zz þ ��z þ �z�. Though its an-
gular structure is similar to �evo, it differs in two aspects:
�z�dist has the additional hexadecapole �4, and the quad-
rupole �2 becomes dominant over the monopole �0 at r3 ’
50h�1 Mpc smaller than r3 ’ 200h�1 Mpc, where �0

evo ’
�2
evo, shown in Fig. 2. Therefore, the angular structure

changes more dramatically than that seen in Fig. 4(c).
Note that while the fourth order Legendre polynomial is
not a monotonic function of angle, the hexadecapole �4 is
generally smaller than �0 and �2, and its contribution is
minor. The contours exhibits the well-known Kaiser effect
[20] that coherent infall toward the overdense regions

squashes the clustering amplitude and the underdense re-
gions inflate along the line-of-sight. The large region with
negative values at �� ’ 50� 100h�1 Mpc and R �
60h�1 Mpc is the characteristic feature of this effect,
largely due to the negative quadrupole �2, and this struc-
ture has been recently measured with high signal-to-noise
ratio [24,25]. Even along the line-of-sight direction, the
monopole �0 briefly takes over the negative quadrupole
around the acoustic scale, because the clustering amplitude
is enhanced. Furthermore, while the clustering amplitude
increases with angle at the acoustic scale (dashed line), its
structure manifests itself as ridges [22].
Figure 4(e) puts together our discussion, plotting the

observed correlation function �obs at �z ¼ 0:35, the sum
of all the correlation functions shown in each panel. The
redshift-space distortion affects the anisotropic structure
by far the most among the other effects considered here.
The gravitational lensing effects, mostly from ��mb at low
redshift, become important only at a small transverse but
large line-of-sight separation. With the same dependence
on quadrupole, �evo follows the similar angular pattern of
�z�dist, boosting their contributions along the transverse
direction, but its sole impact shows up at R 
 110h�1 Mpc
due to the lower amplitude. The clustering amplitude of
�obs at the acoustic scale (dashed line) is no longer con-
stant, nor a monotonic function of angle. The peak loca-
tion, imprinted in �int with local enhancement in clustering
amplitude, remains largely unaffected as the gravitational
lensing and generalized Sachs-Wolfe effects distorts the
anisotropic structure. However, note that it is beyond our
scope of the current investigation to what accuracy the
acoustic peak remains unaffected by these effects (see,
e.g., [31,32,72,75–79] for recent work on the robustness
of the baryonic acoustic peak).
Figure 5 shows the equivalent dissection of the contri-

butions of the gravitational lensing and the generalized
Sachs-Wolfe effects to the observed galaxy power spec-
trum Pobs in Fourier space. The solid, dashed, and dotted
lines represent Pint=b

2, Pevo=E
2, and Pmb=ð5p� 2Þ2, re-

spectively. The power spectra are also computed by using
the linear (thin line) and the nonlinear (thick line) matter
power spectrum as in Fig. 1. In Fig. 5(a), the source
galaxies are assumed to be at the same redshift (z ¼ z1 ¼
z2), and the two sets of lines show the power spectra at z ¼
0:35 and z ¼ 2:5, which decrease in redshift except that
Pmb increases as we have seen �mb increase in redshift. The
power spectrum of the intrinsic source fluctuations Pint=b

2

(solid line) exhibits two characteristic scales in its struc-
ture: a series of the acoustic oscillations starting at k ’
0:085h Mpc�1, and the turnover in the overall shape at k ’
0:015h Mpc�1 imprinted by the horizon size at the matter-
radiation equality z ¼ 3300.
For simplicity, the wave number is set equal to the line-

of-sight direction k ¼ kz for plotting Pevo and to the trans-
verse direction k ¼ k? for plotting Pmb. The power spec-
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trum of the evolution bias Pevo=E
2 (dashed line) is typi-

cally many orders-of-magnitude smaller than Pint=b
2 at

k 
 0:03h Mpc�1 in Fourier space, but its contribution
can be at the few percent level of Pint at the acoustic scale
and comparable to Pint at the matter-radiation equality
scale, with the evolution boost factor E2 ’ 10000. Note
that the power spectra of the redshift-distortion bias Pzz,
P�z, and Pz� are omitted in the figure, because they have
the same shape as Pint up to numerical factors of order
unity when k ¼ kz.

To plot the power spectrum of the magnification bias
Pmb=ð5p� 2Þ2 (dotted line), we replace ð2�Þ�DðkzÞ by a
flat window function of width 200h�1 Mpc, typical value
in redshift surveys, hence the dotted line de facto delin-
eates the angular power spectrum of the magnification bias
ð5p� 2Þ2C



l¼k?rð ��Þ with a dimensional coefficient r2ð ��Þ �
ð200h�1 MpcÞ (see Appendix A). While the magnification
bias is negligible at z ¼ 0:35, its effect increases with
larger line-of-sight distance at higher redshift, amounting
to a few percent at the acoustic scale and larger at the
matter-radiation equality scale at z ¼ 2:5. However, note
that even with relatively large contributions to Pobs, the
shift in the peak positions can be at the subpercent level or
smaller [31,32].

Figure 5(b) plots the cross power spectra of two source
populations at z1 ¼ 0:35 and z2 ¼ 0:6. As opposed to the
correlation functions shown in Fig. 1(d), all the power
spectra that depend on 3D wave number remains virtually
unaffected by the large line-of-sight separation
�600h�1 Mpc, because it corresponds to very small
wave number kz ’ 0:002h Mpc�1 and k ’ k? � kz. The
dot-dashed lines show the cross power spectrum of the
intrinsic source fluctuation and the magnification bias
P�mb. Since it is proportional to the line-of-sight separa-
tion, its contribution is larger than Pmb in Fig. 5(b), but it is
absent in Fig. 5(a).
The anisotropic structure of the observed power spec-

trum Pobs has been well studied with main focus on the
effect of the redshift-space distortion bias [20], and the
redshift-space power spectrum Pz�dist in Eq. (53) has the
multipole components that are identical in shape but only
differ in normalization. The evolution bias results in the
similar angular pattern: two multipole components that
share its shape with Pint with different normalization.
However, note that since the magnification bias and its
cross term are intrinsically 2D quantities, their impact on
the anisotropic structure of Pobs is small, even with realistic
survey window functions [55].

FIG. 5. Dissection of the observed galaxy power spectrum Pobs. Solid and dashed lines represent power spectra of the intrinsic source
fluctuations Pint=b

2 and the evolution bias Pevo=E
2. Power spectrum of the magnification bias Pmb=ð5p� 2Þ2 is shown as dotted lines

for a survey window of width 200h�1 Mpc (see the text). Note that we omit power spectra of the redshift-space distortion bias Pzz, P�z,
and Pz�, since they have the same shape as Pint for the line-of-sight component of the wave number kz ¼ k up to numerical factors of
order unity. Thin and thick lines represent power spectra computed by using the linear and nonlinear matter power spectrum. Left
panel: power spectra are computed at two different redshifts, only the power spectrum of the magnification bias increases at higher z,
while Pint and Pevo decrease. Right panel: cross-power spectra are computed for two galaxy populations at z1 ¼ 0:35 and z2 ¼ 0:6, and
dot-dashed lines show the cross-power spectrum of the intrinsic source fluctuation at z1 and the magnification bias of source galaxies at
z2. Large line-of-sight separation �600h�1 Mpc corresponds to kz ’ 0:002h Mpc�1 and it has little impact on power spectrum (k ’
k? � kz).
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V. DISCUSSION

Galaxy two-point statistics, correlation function in real
space, and power spectrum in Fourier space, have been
extensively used in cosmology to characterize the under-
lying matter fluctuations. We have presented a coherent
theoretical framework based on the linearized FLRW met-
ric for computing the gravitational lensing and the gener-
alized Sachs-Wolfe effects. Within this framework, the
metric perturbations are sourced by the underlying matter
fluctuations, and they naturally give rise to perturbations in
the observable redshift of source galaxies and their angular
position on the sky. The time component of the photon
geodesic equations can be used to show the former, the
generalized Sachs-Wolfe effect [40] that generalizes the
standard redshift-space distortion by peculiar velocities in
a cosmological context, including the Sachs-Wolfe and the
integrated Sachs-Wolfe effects. The spatial components of
the photon geodesic equations can be used to derive the
latter, the gravitational lensing effect that includes the
weak lensing distortion, magnification, and time delay
effects. This unified treatment provides a complete descrip-
tion of the relation between these seemingly different
effects and the underlying matter fluctuations.

Furthermore, it becomes transparent in this treatment
how the gravitational lensing and the generalized Sachs-
Wolfe effects affect the observed fluctuation field of source
galaxies. To the linear order in perturbations, we have
computed all the additional contributions to the intrinsic
source fluctuation, arising from the gravitational lensing
and the generalized Sachs-Wolfe effects. We can gain more
insight on the impact of these effects by separating them as
two physically distinct origins: the volume and the source
effects. The former effect that involves the change of
volume is independent of source galaxy populations and
hence regardless thereof the volume effect is always
present in galaxy two-point statistics. By contraries, the
latter effect depends on the intrinsic properties of
source galaxy populations and may vanish for a certain
population. All of these contributions to the intrinsic
source fluctuations result in numerous additional auto
and cross terms in the observed galaxy two-point
statistics, and therefore proper account should be taken
into these additional terms in interpreting measurements
of galaxy two-point statistics from upcoming dark energy
surveys.

With the complete list of the contributions of the gravi-
tational lensing and the generalized Sachs-Wolfe
effects, separated as two physically distinct origins,
we have identified several contributions in the volume
effect and one contribution in the source effect, which
are ignored in the standard treatment: the evolution bias
in the source effect arises from the generalized Sachs-
Wolfe effect, when the mean number density of sources
changes rapidly in redshift, and its impact on the observed
galaxy two-point statistics can be substantially larger than

that of the gravitational lensing magnification bias. The
ignored contributions in the volume effect are typically of
order peculiar velocities and hence they are subdominant,
compared to the standard redshift-space distortion effect.
However, their impact is comparable to the magnification
bias at low redshift. While the cross term of the magnifi-
cation bias and the intrinsic source fluctuation is more
important at low redshift than the contribution of the
magnification bias itself in the gravitational lensing effect,
further calculations of the additional contributions associ-
ated with the volume effect may be needed, if higher
accuracy of theoretical modeling is required from
observation.
We have investigated the impact of the additional con-

tributions to the anisotropic structure of the observed gal-
axy two-point statistics, after simplifying some of the
contributions to the intrinsic source fluctuations. The
redshift-space distortion affects the observed galaxy two-
point statistics most, imprinting its well-known feature in
the anisotropic structure [20,46,47]. The gravitational lens-
ing effect is small but non-negligible at a percent level,
particularly along the line-of-sight separation and at high
redshift, since their contribution increases with longer line-
of-sight distance to the source galaxies and the clustering
amplitude of the intrinsic source fluctuations decreases in
redshift. The evolution bias has an angular pattern similar
to the redshift-space distortion, but its impact becomes
appreciable, only at fairly large transverse separation.
While it is challenging to analyze the observed anisotropic
structure of galaxy two-point statistics, its full analysis
from upcoming dark energy surveys can provide a great
opportunity to separately identify each contribution from
the gravitational lensing and the generalized Sachs-Wolfe
effects, increasing the leverage to understand the under-
lying physical mechanism.
However, we note that constraining the underlying

cosmological model will require not only accurate theo-
retical predictions, but also model fitting to measurements,
which results in further distortion in galaxy two-point
statistics, known as Alcock-Paczyński effect [80]. Fur-
thermore, our current investigation has focused on the
linear theory predictions and its additional contributions:
nonlinearity and scale-dependent galaxy bias can affect
our results, though its impact is expected to be less than
at the percent level around the acoustic scale (see, e.g.,
[75–77]). However, additional leverage can be gained
by modeling scale-dependent galaxy bias on nonlinear
scales [81].
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APPENDIX A: 2D AND 3D STATISTICS

Here we derive the relation between 2D and 3D fluctua-
tions and their two-point statistics. Consider a fluctuation
field �2Dðn̂; zsÞ on the sky from a source population at zs.
In general, it can be expressed in terms of the convolution
of a window function Wð�Þ and its 3D fluctuation �3DðxÞ

�2Dðn̂; zsÞ ¼
Z 1

0
d�Wð�s � �Þ�3D½rð�Þn̂; �; z�: (A1)

When the window function is appreciable only around zs
representing a narrow selection function in redshift sur-
veys, �2Dðn̂; zsÞ ’ �3Dðx; zsÞ with its functional depen-
dence x ¼ ½rð�sÞn̂; �s�. However, contributions to
�2Dðn̂; zsÞ can come from the fluctuations �3Dðx; zÞ at z <
zs and �2Dðn̂; zsÞ may be substantially different from
�3Dðx; zsÞ, when the window function is broad. For ex-
ample, the convergence field 
ðn̂; zsÞ in Eq. (21) has the
window function

W
ð�s � �Þ ¼
�
3H2

0

2
�m

�
rð�s � �Þrð�Þ
að�Þrð�sÞ ; (A2)

which peaks roughly at a half of rð�sÞ.
In a sufficiently small patch of the sky, the Fourier mode

of �2Dðn̂; zsÞ is

�2D
l ðzsÞ ¼

Z
d2n̂e�il�n̂�2Dðn̂; zsÞ

¼
Z 1

0
d�

Wð�s � �Þ
r2ð�Þ

Z dkz
2�

eikz��3D

�
�
kz;k? ¼ l

r
; z

�
; (A3)

and its (angular) power spectrum is

Clðz1; z2Þ ¼
Z d2l0

ð2�Þ2 h�
2D
l ðz1Þ�2D�

l0 ðz2Þi

¼
Z

d�a

Z
d�b

Wð�1 ��aÞWð�2 ��bÞ
rð�aÞ2

�
Z dkz

2�
eikzð�a��bÞP

�
kz; k? ¼ l

rð�aÞ ;za; zb
�

¼
Z

d�
Wð�1 ��ÞWð�2 ��Þ

r2ð�Þ P

�
k¼ l

rð�aÞ ;z
�
:

(A4)

The last equality is obtained by adopting the Limber
approximation, in which fluctuations along the line-of-
sight are smoothed out and only long wavelength modes
(kz ’ 0) can contribute to the integral [54,82]. With the
Limber approximation, the angular correlation function is

wð��; z1; z2Þ ¼ h�2Dðn̂1; z1Þ�2Dðn̂2; z2Þi
¼

Z 1

0
d�Wð�1 � �ÞWð�2 � �Þ

� wp½rð�Þ��; z�; (A5)

where the projected correlation function is

wp½R; z� ¼
Z 1

�1
drk�½r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2k

q
; z�

¼
Z 1

0

kdk

2�
Pðk; zÞJ0ðkRÞ: (A6)

The angular correlation function and power spectrum in
Eqs. (45) and (47) can be readily obtained by substituting
the window function W
ð�Þ for the convergence in
Eq. (A2) with Wð�Þ in Eqs. (A4) and (A5). The cross
correlation function and power spectrum in Eqs. (55) and
(56) can be computed in a similar manner, since Wð�s �
�Þ ¼ �Dð�s � �Þ gives �2Dðn̂; zsÞ ¼ �3Dðx; zsÞ.
In Sec. IV, we associated the angular power spectrum

C


l to a 3D power spectrum to compare its impact with

other 3D power spectra. A 3D fluctuation field can be
constructed from �2Dðn̂; zsÞ by

�ðk; zsÞ ¼
Z

d3xe�ik�x�2Dðn̂; zsÞ

¼
Z

d�sr
2ð�sÞe�ikz�s�2D

l¼k?rsðzsÞ
¼ ð2�Þ�DðkzÞr2ð�sÞ�2D

l¼k?rsðzsÞ: (A7)

We assumed �2D
l is independent of zs in the last equality.

For high redshift source populations, this approximation is
accurate, since the growth of the comoving angular diame-
ter distance flattens at high z and it becomes nearly con-
stant. Within this approximation rð�1Þ ¼ rð�2Þ ¼ rð ��Þ,
the 3D power spectrum is anisotropic and it is related to
the angular power spectrum by

Pðkz; k?; z1; z2Þ ¼
Z d3k0

ð2�Þ3 h�ðk; z1Þ�
�ðk0; z2Þi

¼ ð2�Þ�DðkzÞr2ð ��ÞCl¼k?rð ��Þð�zÞ: (A8)

In practice, �DðkzÞ need to be replaced by a survey window
function [55], but note that it is crucial to assume the
independence of source redshift, when computing the
power spectrum. We also note that the Limber approxima-
tion breaks down when the radial window function of a
survey is narrow compared to the correlation length scale
(see, e.g., [83,84]). However, the use of the Limber ap-
proximation is readily justified in galaxy surveys, in which
the radial window function has width of �z ’ 0:1–0:2,
corresponding to several hundred Mpc.

APPENDIX B: GAUGE-INVARIANT FORM OF
OBSERVED NUMBER DENSITY

Here we provide a rigorous derivation of the observed
number density in Sec. III A. For simplicity, we assume a
flat universe.
In the observer’s frame, local coordinates p� are used to

describe the observed positions of galaxies and their true
positions are related to the observed positions by the
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photon geodesic xað�Þ. The total number of observed
galaxies can be computed by considering a covariant vol-
ume integral [85]:

Ngal ¼
Z ffiffiffiffiffiffiffi�g

p
nphyu

ddSd; (B1)

where the (oriented) hypersurface element is

dSd ¼ �abcd
@xa

@p1

@xb

@p2

@xc

@p3
dp1dp2dp3; (B2)

g is the determinant of the spacetime metric, nphy is the

physical number density of galaxies, and �abcd ¼ �½abcd� is
the Levi-Civita tensor density. We take the Newtonian

gauge variables ð~z; ~�; ~�Þ as the observed local coordinates
p�. For notational simplicity, tilde is used to represent
observed quantities (e.g., ~z ¼ zobs). By imposing the num-
ber conservation, the observed number density is then
related to the total number of galaxies by

Ngal ¼
Z

~n
�2ð~zÞ
Hð~zÞ sin~�d~zd~�d ~�: (B3)

In a homogeneous universe, the local coordinates are

identical to the true coordinates ð~z; ~�; ~�Þ ¼ ðz; �; �Þ, and
the photon geodesic is simply xað�Þ ¼ ðy; ye�Þ, where we
choose the normalization of the affine parameter as � ¼
ða=	Þy. Noting that the four velocity of a comoving ob-
server is ua ¼ ð1=a; 0Þ, Eq. (B1) can be readily solved as

Ngal ¼
Z

a4
nphy
a

����0
@x�

@~z

@x�

@~�

@x�

@ ~�
d~zd~�d ~�

¼
Z

a3nphy
�2ðzÞ
HðzÞ sin�dzd�d�: (B4)

Therefore, we recover the standard relation for Ngal and

~n ¼ a3nphy ¼ nðz; �; �Þ.
In an inhomogeneous universe, the photon geodesic

deviates from the null path and the local coordinates are
different from the true coordinates. Perturbations to the
photon geodesic in an inhomogeneous universe can be
computed by integrating the null vector kað�Þ ¼ dxa=d�,

xað�Þ ¼ ðy; ye�Þ þ
Z y

0
dy0ð�	; �e�Þ: (B5)

Note that to the first order in perturbations the integration is
performed along the null path, ranging from the observer at
y ¼ 0 to the source galaxies at y.

With ua ¼ ðð1� c Þ=a; v�=aÞ, the integrand of Eq. (B1)
is

uddSd ¼ 1� c

a
����0

@x�

@~z

@x�

@~�

@x�

@ ~�

þ v�

a
�abc�

@xa

@~z

@xb

@~�

@xc

@ ~�
: (B6)

The last two terms, proportional to c and v�, contribute to
the first order in perturbations and the partial derivatives
need to be computed, only to the zeroth order. The first
term has two sources of perturbations from the partial
derivatives: perturbations in the photon geodesic and the
relation between the local and true coordinates. The former
is nonzero, only when the derivative is taken with respect
to ~z, i.e.,

1

a
����0

�
@x�

@�

@x�

@�

�
0

�e�

HðzÞ ; (B7)

and the latter is

1

a
����0

�
@x�

@z

@x�

@�

@x�

@�

�
0

�
@z

@~z
þ @�

@~�
þ @�

@ ~�

�
1
; (B8)

where the subscripts denote the order in perturbations, to
which quantities in the bracket need to be computed. When
combined together, Eq. (B6) is

uddSd ¼ 1

a

�2ðzÞ
HðzÞ sin��

�
1þ�e�e� þ

�
@z

@~z
þ@�

@~�
þ @�

@ ~�

�
1

� c þv�e�

�
: (B9)

Finally, the determinant in Eq. (B1) gives
ffiffiffiffiffiffiffi�g

p ¼
a4ð1þ c þ 3�Þ and the total number of observed galaxies
is

Ngal ¼
Z

a3nphy
�2ðzÞ
HðzÞ sin�d~zd~�d ~�

�
�
1þ 2�þ "þ

�
@z

@~z
þ @�

@~�
þ @�

@ ~�

�
1

�
: (B10)

From Eq. (B3), we obtain our final result,

~n ¼ n
�2ðzÞ
�2ð~zÞ

Hð~zÞ
HðzÞ

�
1þ 2�� ð1þ zÞd"

dz
� 2


�
; (B11)

which includes the distortion of volume element �V and
gravitational lensing magnification. This expression is
manifestly gauge invariant and valid on all scales. In
special relativity, the volume element of the local

Lorentz frame of matter is distorted by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
,

and hence is identical to an observer at rest, to the first
order in perturbations. However, in our case the volume
element can be measured, only by observing light rays of
photons, of which time component is related to the spatial
component, giving rise to the first order distortion in vol-
ume element.
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