
Dilatonic dark matter and its experimental detection

Y.M. Cho* and J. H. Kim†

Center for Theoretical Physics and School of Physics, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
(Received 9 October 2008; published 7 January 2009)

Assuming that the dilaton is the dark matter of the Universe, we propose an experiment to detect the

relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong

electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass

for which the dilaton becomes the dark matter of the Universe. With this we calculate the dilaton detection

power in the resonant cavity, and compare it with the axion detection power in a similar resonant cavity

experiment.
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I. INTRODUCTION

One of the important issues in cosmology is the search
for the dark matter. Popular candidates of dark matter
include axion, dilaton, and other weakly interacting mas-
sive particles known as WIMPs [1–3]. Although they differ
completely in their origins, they have a common feature.
All have very weak couplings to matter fields, which
makes them excellent candidates of dark matter. In fact
axion and dilaton could be viewed as different types of
WIMPs, whose couplings to matter fields are made weak
for different reasons. Nevertheless, the axion and dilaton
have a remarkable similarity in that their couplings to the
electromagnetic field and the fermionic matter fields are
almost identical [1,2].

The dilaton is a universal scalar field which appears in
all higher-dimensional unified theories (including the
Kaluza-Klein theory and the superstring theory) which
plays the role of the scalar graviton, and thus couples
directly to all matter fields [4–6]. On the other hand, the
axion is a pseudoscalar Goldstone boson generated by
spontaneous breakdown of the Peccei-Quinn (PQ) UPQð1Þ
symmetry which was introduced to solve the so-called
‘‘strong CP problem’’ in strong interaction [7,8]. But
they have almost identical electromagnetic coupling, ex-
cept that the dilation (being a scalar) couples to F2

�� while

the axion (being a pseudoscalar) couples toF��
~F��. In this

sense the dilaton and axion may be viewed as the scalar-
pseudoscalar partners of each other. This is particularly
true for the gravitational axion, the pseudoscalar graviton
which has been proposed by Ni independent of the strong
CP problem [9].

The axion has been believed to be one of the strong
candidates of dark matter by many physicists, and experi-
ments to detect it have been actively performed [1,10]. In
comparison, the detection of the dilaton has not so actively
been performed up to now, in spite of its theoretical im-
portance. It is well-known that the dilaton generates the

fifth force which can affect the Einstein’s gravity in a
fundamental way [11–13]. Moreover, as a massive scalar
graviton it can naturally be viewed as a gravitationally
interacting massive particle (GIMP), a WIMP whose inter-
action to matter fields is made very weak by the gravita-
tional coupling. This makes the dilaton an excellent
candidate of the dark matter in cosmology [2,14]. In this
paper we study the dilaton as a candidate of dark matter in
detail, and propose a dilaton detection experiment using an
electromagnetic resonant cavity. In particular, we refine the
existing estimate of the dilaton mass, calculate the dilaton
detection power in the resonant cavity, and compare this
with the axion detection power in similar experiments.
The paper is organized as follows. In Sec. II we briefly

review the dilaton physics and the dilatonic fifth force,
viewing the dilaton as a natural candidate of GIMPs. In
Sec. III we discuss the role of dilaton in cosmology, and
estimate the number density of the relic dilaton in the
present Universe based on the dilaton decay to two photons
and fermion-antifermion pairs. In Sec. IV we discuss the
condition for the dilaton to be a candidate of dark matter,
and refine the acceptable mass range of dilaton. In Sec. V
we propose the experiment to detect the dilaton using an
electromagnetic resonant cavity. We calculate the dilaton
detection power in the resonant cavity, and compare it with
the axion detection power in similar experiments. Finally
in Sec. VI we discuss the physical implications of our
analysis.

II. DILATONIC FIFTH FORCE

All known interactions are mediated by spin-one or spin-
two fields. However, the unification of all interactions
inevitably requires the existence of a fundamental spin-
zero field. In fact, all modern unified theories (Kaluza-
Klein theory, supergravity, and superstring) contain a fun-
damental scalar field called the dilaton, in particular, the
Kaluza-Klein dilaton [4,11] and the string dilaton [6].
What makes this scalar field unique is that unlike others
scalar fields such as the Higgs field, it couples directly to
the (trace of the) energy-momentum tensor of the matter
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fields. As such it plays the role of the scalar graviton, and
could generate the dilatonic fifth force which modifies
Einstein’s gravity in a fundamental way.

The dilaton has been proposed by many authors for
different reasons and called by various names. But we
emphasize that the dilaton as the scalar graviton has a
long history. Dirac was the first who proposed such a scalar
field, suggesting that the Newton’s constant should actually
be considered as a time-dependent parameter (and thus be
treated as a scalar field) [15]. Soon after, Jordan and
independently Brans and Dicke introduced the first dilaton
known as the Brans-Dicke dilaton [16]. Unfortunately the
Brans-Dicke dilaton was proposed as a massless scalar
graviton, so that it must create a long range fifth force
which is comparable to Newton’s gravitational force. This
contradicts the experiments which tell that such long range
fifth force does not exist in nature [17,18]. This rules out
the Brans-Dicke dilaton as unphysical. Subsequently the
Kaluza-Klein dilaton [4] and the string dilaton [6] have
been introduced, and later the dilaton was reinvented by
many authors in so-called ‘‘the nonminimally coupled
scalar models’’ and named graviscalar and/or graviexciton
[19]. Among these the Kaluza-Klein dilaton has remark-
able virtue. It appears as the internal graviton which rep-
resents the volume of the extra space, and acquires mass
when the extra space has a nonvanishing curvature [2,11].
Thus it can naturally become a GIMP, gravitationally
interacting massive particle, which can generate a short
range fifth force which does not contradict with the known
fifth-force experiments [4,11,14]. Moreover, as a GIMP
which interacts more weakly than the popular WIMPs it
can play the role of the dark matter in cosmology.
Furthermore, the Kaluza-Klein dilaton (renamed the ra-
dion) has been argued to play a crucial role in resolving the
hierarchy problem [20]. This is because it represents the
volume of the extra space which modifies the higher-
dimensional gravitational constant [2,11].

Similar scalar fields, for example, quintessence and
chameleon, have been proposed to resolve various prob-
lems in cosmology [21,22]. But what makes the Kaluza-
Klein dilaton unique is that it appears in all modern unified
theories including the superstring, which are based on
higher-dimensional physics. This justifies the theoretical
raison d’etre of the dilaton. As importantly, it has well-
defined features which can be tested by experiments. This
is why the experimental verification of dilaton is very
important.

As we have remarked an immediate consequence of the
dilaton is the presence of dilatonic fifth force which modi-
fies Einstein’s gravitation [12,13]. To see how the dilaton
affects the gravitation we have to know the mass of the
dilation and its coupling strength to matter fields. In
Kaluza-Klein theory the dilaton naturally acquires a mass
when the extra space has nonvanishing curvature [2]. As
for the dilatonic coupling to matter fields, the coupling may

depend on the types of matter field it couples to [11]. But in
practice only one type of coupling, the dilatonic coupling
to the baryonic matter, is important because this is what we
measure in experiments. So, only two parameters, the
baryonic coupling constant and the mass of the dilaton,
become important to describe the dilatonic fifth force. Let
Vg and V5 be the gravitational and fifth-force potentials and

Fg and F5 their forces between the two baryonic point

particles separated by a distance r. From the dimensional
argument, one may express the total potential and total
force in the Newtonian limit as

V ¼ Vg þ V5 ’ ��g

r
� �5

r
expð��rÞ;

F ¼ Fg þ F5 ’
�g

r2
þ �5

r2
ð1þ�rÞ expð��rÞ

¼ �g

r2
f1þ �ð1þ�rÞ expð��rÞg;

(1)

where �g, �5 are the fine-structure constants of the gravi-

tation and fifth force, and � ¼ �5=�g is the ratio between

them. In terms of Feynman diagrams the first term repre-
sents one graviton exchange but the second term represents
one dilaton exchange in the zero momentum transfer limit.
In the Kaluza-Klein unification we have � ¼ n=ðnþ 2Þ
[2,11], but in general one may assume � ’ 1 if one wants
to identify the dilaton as a GIMP. On the other hand, it is
important to keep in mind that in principle there is no a
priori reason why the dilaton interaction has to be gravi-
tational. So in principle it is good to leave �5 and thus � as
an arbitrary coupling constant, especially in the analysis of
experiments.
With this in mind one may try to measure the coupling

constant and the range of the fifth force experimentally. A
recent torsion-balance fifth-force experiment puts the
upper bound of the range of the fifth force to be around
56 �m with 95% confidence level (with � ’ 1) [17,18].
This tells that the dilaton mass has to be larger than
10�2 eV. But in the following we will simply treat the
dilaton mass an undetermined parameter, and find an in-
dependent estimate of the dilaton mass based on the as-
sumption that the dilaton is the dark matter of the Universe.

III. RELIC DILATON IN COSMOLOGY

In the early Universe the dilaton starts with the thermal
equilibrium at the beginning and decouples from other
sources very early near the Planck time. Moreover, since
its coupling to matter fields is very weak, it may easily
survive in the present Universe and become the dark matter
of the Universe [2,14]. In this section we discuss the relic
dilaton.
From the dimensional argument one may assume the

dilatonic coupling strength to matter fields to be gm=mp,

where g is the dimensionless coupling constant and m is
the mass of the relevant matter (e.g., quarks and gluons).
But at high temperature (at T � m), the coupling strength
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can be written as gT=mp. With this one can easily estimate

the dilaton creation (and annihilation) cross section as [14]

� ’ g2
�
T

mp

�
2 � 1

T2
; (2)

with the transition rates �

� ’ N�v ’ g2
�
T

mp

�
2 � T; (3)

where N and v are the density of the matter and the speed
of the dilaton. Similarly the dilaton scattering cross section
and the interaction rate are given by

� ’ g4
�
T

mp

�
4 � 1

T2
; � ’ N�v ’ g4

�
T

mp

�
4 � T: (4)

On the other hand, the Hubble expansion rate in the early
Universe is given byH ’ T2=mp. So, letting � ’ H we find

the dilaton decoupling temperature

TD ’ mp

g4=3
: (5)

This confirms that the dilaton is thermally produced at the
beginning, and decouplesfrom the other matters around the
Planck time when g ’ 1.

The dilaton becomes unstable and decays into ordinary
matter. A typical decay process is the two-photon process
and the fermion-antifermion pair production process which
may be described by the following interaction Lagrangian
[14],

L int ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p �
�g1

4
�F��F

�� � g2m� �c c

�
; (6)

where g1 and g2 are dimensionless coupling constants,m is
the mass of the fermion, and � is the dilaton field. We
could also include the following dilaton-fermion interac-
tion in (6)ffiffiffiffiffiffiffiffiffiffiffiffiffi

16�G
p fg3� �c��@�c þ g4@�� �c��c g: (7)

But we will concentrate on (6) in the following, since we
find that the inclusion of these interactions do not change
our main conclusions in this paper. Notice that the dilaton
interaction is (just like the gravity) governed by the overall

dimensional coupling constant
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
, which sets the

strength of the dilaton interaction. So, with g1 ’ g2 ’ 1,
the dilaton becomes a GIMP. But notice that we can always
change (if we like) the strength of dilaton interaction by
adjusting the dimensionless coupling constants g1 and g2.
This is good, because in principle there is no a priori
reason why the dilaton interaction has to be gravitational
as we have remarked. So we will leave the dimensionless
coupling constants arbitrary in the following.

The Lagrangian (6) should be compared to the following
axion interaction Lagrangian given by [1,9]

L int ’ ���aF��
~F�� � i�fa �c�5c ; (8)

where a is the axion field,�� and�f are the axion coupling

constants. This confirms that dilaton and axion behave as
the scalar-pseudoscalar counterparts of each other.
Consider the interaction between dilaton and photon

first. Let �1 ¼ g1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
=4 be the dimensional coupling

constant and denote the dilaton mass by�. The differential
dilaton decay rate to two photons at tree level is given by

d��!�� ¼ 1

2p0

X
�;�0¼�1

1

2!
ð2�Þ4	ð4Þðp� � k� � k0�ÞjMj2

� d3 ~k

ð2�Þ32k0
d3 ~k0

ð2�Þ32k00 ;
M ¼ �i�1ðk�
�ðk; �Þ � k�
�ðk; �ÞÞðk0�
0�ðk0; �0Þ

� k0�
0�ðk0; �0ÞÞ; (9)

where p� and k�, k0� are the 4-momenta of the incoming
dilaton and the outgoing photons, M is the reduced
Feynman matrix element, 
�ðk; �Þ and 
0�ðk0; �0Þ are the
transverse polarization vectors of photons. It is simple to
calculate the matrix element in the center of momentum

(COM) frame where ~k0 ¼ � ~k,

ðk�
�ðk; �Þ � k�
�ðk; �ÞÞðk0�
0�ðk0; �0Þ � k0�
0�ðk0; �0ÞÞ
¼ 2ðk�k0�Þð
�ðk; �Þ
0�ðk0; �0ÞÞ;

k�k
0� ¼ �2j ~kj2; X

�;�0
j
�ðk; �Þ
0�ðk0; �0Þj2 ¼ 2; (10)

and we get the following decay rate:

��!�� ¼ �2
1

2�2�

Z
d3 ~kd3 ~k0j ~kj2	ð4Þðk� þ k0� � p�Þ

¼ �2
1

2�2�

Z
d3 ~kd3 ~k0j ~kj2	ðk0 þ k00 ��Þ	ð3Þð ~kþ ~k0Þ

¼ �2
1

2�2�

Z
d3 ~kj ~kj2	ð2k0 ��ÞðCOM frameÞ

¼ �2
1

��

Z
dj ~kjj ~kj4	ðj ~kj ��=2Þ ¼ �2

1�
3

16�
: (11)

With this we get the following lifetime of the dilaton

��!�� ¼ 1

��!��

¼ 16m2
p

g21�
3
: (12)

Notice that when � ’ mp, the dilaton (with g1 ’ 1) has a

very short lifetime.
Now consider the dilaton-fermion interaction, and let

�2 ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
m be the dimensionless coupling constant.

The differential decay rate of dilaton to fermion and anti-
fermion pair at tree level is written as
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d��! �c c ¼ 1

2p0

X
s;s0¼�ð1=2Þ

ð2�Þ4	ð4Þðp� � k� � k0�Þ

� jMj2 d3 ~k

ð2�Þ32k0
d3 ~k0

ð2�Þ32k00 ;
M ¼ �i�2 �uðk; sÞvðk0; s0Þ; (13)

where p� and k�, k0� are the 4-momenta of the incoming

dilaton and the outgoing fermion-antifermion pair, and s, s0
are the fermion spin indices. Using the well-known sum
rule [23],

X
s;s0¼�ð1=2Þ

j �uðk; sÞvðk0; s0Þj2 ¼ 4ð�k�k
0� �m2Þ; (14)

we have the following decay rate:

��! �c c ¼ �2
2

8�2p0

Z d3 ~k

k0
d3 ~k0

k00
ð�k�k

0� �m2Þ	ð4Þðk� þ k0� � p�Þ

¼ �2
2

8�2p0
��2 � 4m2

2

Z d3 ~k

k0
d3 ~k0

k00
	ð3Þð ~kþ ~k0 � ~pÞ	ðk0 þ k00 � p0Þ

¼ �2
2

8�2�
��2 � 4m2

2

Z d3 ~k

ðk0Þ2 	ð2k
0 ��ÞðCOM frameÞ

¼ �2
2

2��
��2 � 4m2

2

Z
k0¼�=2

dj ~kj j
~kj4

ðk0Þ2 	ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j ~kj2

q
��Þ ¼ �2

2�

8�
�

�
1�

�
2m

�

�
2
�
3=2

: (15)

So we have the following lifetime of the dilaton:

��! �c c ¼ 1

��! �c c

¼ m2
p

2g22m
2�

�
1�

�
2m

�

�
2
��3=2

: (16)

Notice that this becomes comparable to (12) only when
m� 0:32��, so that the two-photon decay becomes the
dominant decay of a dilaton in general.

The dilaton number density n after the decoupling is
given by the well-known equation [3]

dðnR3Þ
dt

¼ � 1

�
ðnR3Þ; dn

dt
þ 3Hn ¼ � 1

�
n; (17)

where � is the total lifetime, R is the scale factor of the
Friedmann-Robertson-Walker metric, and H is the Hubble
parameter. From this we have the familiar expression

nðtÞ ¼ nD

�
RD

R

�
3
exp

��t

�

�
; (18)

where the subscript D denotes the decoupling time. Note
that the factor 1=R3 represents the dilution of the dilaton
due to Hubble expansion. To find the present dilaton num-
ber density notice that in the highly relativistic regime (i.e.,
when T � �), the particle number density is given by [3]

nb ¼ �ð3Þ
�2

gT3 ðfor a bosonÞ;

nf ¼ 3

4

�ð3Þ
�2

gT3 ðfor a fermionÞ;
(19)

where g is now the internal degrees of freedom (not the
coupling constant) of the relevant particle and �ðxÞ is the
Riemann’s zeta function. So, at the time of dilaton decou-
pling, the dilaton number density nD is given by

nD ¼ �ð3Þ
�2

T3
D ’ 1:202

�2
T3
D: (20)

On the other hand, the total entropy density s of the
Universe is given by [3]

s ¼ 2�2

45
g�T3; g� ¼

X
bosons

gi

�
Ti

T

�
3 þ 7

8

X
fermions

gi

�
Ti

T

�
3
;

(21)

where gi and Ti are the internal degrees of freedom and the
thermal equilibrium temperature of the i-th particle, and T
is the thermal temperature of the photon. At present we
have g�0 ’ 3:91 (with a photon and three types of light
neutrinos), but at the Planck time we have g� ’ 106:75
according to the standard model [3]. Now, the total entropy
conservation of the Universe in the comoving volume tells
that g�DT3

DR
3
D ¼ g�0T3

0R
3
0. From this we get (with T0 ’

2:73 K) the present dilaton number density nðt0Þ,

nðt0Þ ¼ nD

�
RD

R0

�
3
exp

��t0
�

�
¼ �ð3Þ

�2
T3
D

�
RD

R0

�
3
exp

��t0
�

�

¼ �ð3Þ
�2

g�0
g�D

T3
0 exp

��t0
�

�
’ 7:5 exp

��t0
�

�
cm�3:

(22)

Note that the coefficient 7:5 cm�3 would be the present
dilaton number density if the dilaton had not been decaying
at all, which is half the present number density of the
massless graviton.

IV. DILATON AS A DARK MATTER CANDIDATE

The above analysis implies that the dilaton with a proper
mass can easily survive to present time, and could become
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the dark matter of the Universe. Assuming this is the case,
we can estimate the mass of the dilaton. It has been argued
that there are two mass ranges of the relic dilaton, �1 ’
500 eV and �2 ’ 270 MeV, in which the relic dilaton
could be the dominant matter of the Universe [14]. This
is because the dilaton with mass larger than �2 does not
survive long enough to become the dominant matter of the
Universe, and the dilaton with mass smaller than �1 sur-
vives but fails to be dominant due to its low mass. The
dilaton with mass in between cannot be seriously consid-
ered because it would overclose the Universe. In this
section we refine the above result.

According to recent cosmological observations, the dark
matter occupies about 23% of the critical density 
c ¼
3H2

0=ð8�GÞ ’ 10:5h2 keV cm�3, where h is the dimen-

sionless Hubble parameter in units of
100 km sec�1 Mpc�1. On the other hand, the ‘‘dark en-
ergy’’ characterized by the cosmological constant is be-
lieved to occupy about 70% of the total energy of the
Universe [24]. So for the dilaton to be the dark matter of
the Universe we must have the following requirement [14]:


ð�Þ ¼ �� 7:5 exp

��t0
�ð�Þ

�
cm�3 ¼ 0:23� 3H2

0

8�G

’ 0:23� 10:5h2 ðkeV cmÞ�3; (23)

where 
ð�Þ is the dilaton mass density. At the same time,
the energy density ~
ð�Þ of the daughter particles (photons
and light fermions) coming from the dilaton decay should
be negligible compared to the critical density. This gives
the second requirement

~
ð�Þ � 
c: (24)

To find the dilaton mass which satisfies these constraints,
we have to know the coupling constants g1 and g2. In
Kaluza-Klein unification they are given by [11]

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

n

s
; g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
n

nþ 2

r
: (25)

But in the following we will leave them as free parameters,
although our favorite values are g1 ’ g2 ’ 1. Now, with
t0 ¼ 1:37� 1010 yr ¼ 4:33� 1017 sec and h ’ 0:7, we
obtain the numerical solutions of the first constraint (23)
shown in Table I. As we see in the table, it has two
solutions for the dilaton mass and lifetime for given cou-
pling constants. We denote the smaller one by �1 and �1
and the larger one by �2 and �2 in the table. In our
numerical calculations, the decay channels we considered
are ��, � ��, eþe�, �þ�� processes. So when g1 ’ g2 *
5� 10�2, our calculations are exact. But when g1 ’ g2 &
10�2, the dilaton has larger mass and can decay into other
heavier particles like �þ��. But even in the latter case, the
two-photon decay probability is far greater than the
fermion-antifermion decay probability except when m ’
0:32�� (in which case we have ��! �c c ’ 1:49�

��!��) as we have remarked, and the error in evaluating

the dilaton mass in the latter case is at most 20% or so.
Note that the smaller mass�1 is insensitive to the values

of the coupling constants, while the larger mass �2 in-
creases as the coupling constants decrease. On the other
hand, the lifetime �1 is sensitive to the values of the
coupling constants, while the lifetime �2 remains of the
same order for all values of the coupling constants.
With g1 ’ g2 ’ 1 we can plot the dilaton density 
ð�Þ

against its mass �, which is shown in Fig. 1. Note that

ð�Þ (denoted by 
d in the figure) starts from zero and
approaches to the maximum value of about 1:08� 105
c

at� ’ 103 MeV, and again decreases to zero when� goes
to infinity. More importantly, 
ð�Þ exceeds the dark matter
density in the range 160 eV<�< 276 MeV. This means
that when �< 160 eV or �> 276 MeV, the dilaton
undercloses the Universe, but when 160 eV<�<
276 MeV it overcloses the Universe. This immediately
rules out the dilaton with mass range 160 eV<�<
276 MeV. Moreover, we have two possible mass ranges
which are of particular interest, �1 ’ 160 eV with lifetime

TABLE I. The coupling constants versus dilaton mass and
lifetime, where we have assumed g1 ’ g2. Here the smaller
mass is denoted by �1 and larger mass is denoted by �2, and
�1 and �2 are the lifetime of �1 and �2.

g1 ’ g2 �1 �1 (sec) �2 �2 (sec)

10 160 eV 3:84� 1033 75.6 MeV 3:62� 1016

5 160 eV 1:53� 1034 121 MeV 3:49� 1016

1 160 eV 3:84� 1035 276 MeV 3:29� 1016

0.5 160 eV 1:53� 1036 445 MeV 3:19� 1016

0.1 160 eV 3:84� 1037 1.68 GeV 2:94� 1016

0.05 160 eV 1:53� 1038 2.76 GeV 2:85� 1016

10�2 160 eV 3:84� 1039 8.37 GeV 2:66� 1016

10�3 160 eV 3:84� 1041 40.0 GeV 2:45� 1016

10�4 160 eV 3:84� 1043 191 GeV 2:25� 1016

FIG. 1 (color online). The dilaton mass density 
ð�Þ denoted
by 
d (with respect to the critical density 
c) versus the dilaton
mass �, obtained with g1 ’ g2 ’ 1.
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�1 ’ 3:84� 1035 sec and �2 ’ 276 MeV with lifetime
�2 ’ 3:29� 1016 sec , which makes the dilaton the domi-
nant matter of the Universe.

So far we have assumed that the dilaton occupies all of
the dark matter, about 23% of the critical density 
c. But
even when we loosen this constraint, we get a similar
result. Varying the dilaton mass density, we obtain the
result shown in Table II with g1 ’ g2 ’ 1. The result shows
that �1 and �1 are sensitive to the change of dilaton mass
density, but �2 and �2 are not much affected by that.
Moreover, the generic feature of the dilaton physics re-
mains the same.

Now, we have to make sure that the dilaton mass should
also satisfy the second constraint (24). To check this, notice
that the 160 eV dilaton is almost stable because �1 ’ 8:1�
1017t0. So the energy density of the daughter particles must
be negligible compared to the energy density of the dilaton.
This means that this dilaton can easily satisfy the second
constraint (24). On the other hand, most of the 276 MeV
dilaton should have decayed by now, because �2 ’ 6:9�
10�2t0. Indeed only 0:5� 10�6 of the heavy dilaton which
survives now make up the present dark matter, so that the
energy density of the daughter particles becomes much
bigger than that of the surviving dilaton. This means that
the daughter particles from the heavy dilaton overclose the
Universe, and thus cannot satisfy the second constraint.
This effectively rules out the heavy dilaton. So only the
160 eV dilaton can be accepted as the dark matter
candidate.

The above discussion tells that there are two constraints
on the dilaton mass, the experimental constraint from the
fifth force and the theoretical constraint from cosmology.
Clearly these constraints restrict the allowed range of the
dilaton mass. Putting the two constraints together we ob-
tain Fig. 2, which shows the allowed range of the dilaton
mass versus the relative fine-structure constant� ¼ �5=�g

of the fifth force. Notice that the cosmological constraint
tells that the range of the fifth force can not be smaller than
10�9 m.

At this point one might object to our calculations, be-
cause our calculation neglected the time dilatation effect of
the dilaton motion. Indeed the dilaton lifetimes (12) and
(16) calculated in the COM frame do not accurately de-
scribe the lifetimes in the comoving frame. This is because

after decoupling the dilatons in general are not at rest in the
comoving frame, since they move with energy comparable
to Planck mass when they decouple. So in the early
Universe one must take into account the time dilatation
effect of the dilaton motion to find the correct dilaton
lifetimes (especially when the dilaton is light). Notice,
however, as the Universe expands the dilatons will slow
down quickly as their velocities redshift. This implies that
the time dilatation effect quickly becomes negligible. To
see this, notice that the time tNR when the dilaton becomes
nonrelativistic is given by [3]

tNR ’ 1:2� 107
�
keV

�

�
2
�
TNR

T�

�
2
sec

¼ 1:2� 107
�
keV

�

�
2
�
g�NR
g�D

�
2=3

sec;

tEQ
tNR

¼
�

�=eV

17ð�0h
2ÞðTNR=T�Þ

�
2
;

(26)

where TNR ’ �=3 ’ 53:3 eV is the temprature when the
dilaton becomes nonrelativistic, T� and g�NR are the tem-

perature of the photon and the total relativistic degrees of
freedom at tNR. So the dilaton in this case becomes non-
relativistic at tNR ’ 5:17� 107 sec , well before the
matter-radiation equilibrium era tEQ ’ 4:36�
1010ð�0h

2Þ�2 sec ’ 1:82� 1011 sec . This justifies the
above calculations which neglect the time dilatation effect.
The dark matter dilaton has the following character-

istics. With mass� ’ 160 eV, the possible decay channels
of the dilaton are the �� and three � �� processes. But with
lifetime � ’ 8:1� 1017t0 this dilaton is almost stable. To
see whether this can be hot or cold dark matter, we should
estimate the free-streaming distance �FS of the dilaton,
which is given by [3,14],

TABLE II. The dilaton mass and lifetime versus the ratio

d=
c. Here the coupling constants g1 and g2 are set to be 1.


d=
c �1 �1 (sec) �2 �2 (sec)

100% 686 eV 4:85� 1033 270 MeV 3:65� 1016

23% 160 eV 3:84� 1035 276 MeV 3:29� 1016

10% 68.6 eV 4:85� 1036 280 MeV 3:12� 1016

4% 27.4 eV 7:58� 1037 284 MeV 2:93� 1016

1% 6.86 eV 4:85� 1039 291 MeV 2:68� 1016

0.5% 3.43 eV 3:88� 1040 294 MeV 2:59� 1016

FIG. 2 (color online). The allowed mass � of dilaton (un-
shaded region), where we leave � ¼ �5=�g arbitrary. The

shaded region marked by (� ) is the excluded region, and the
dotted line represents the mass of the heavy dilaton whose
daughter particles overclose the Universe.
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�FS ’ 0:2 Mpc

�
keV

�

��
TNR

T�

��
ln

�
tEQ
tNR

�
þ 2

�

¼ 0:2 Mpc

�
keV

�

��
g�NR
g�D

�
1=3

�
ln

�
tEQ
tNR

�
þ 2

�
: (27)

Now, with g�D ’ 106:75 and g�NR ’ 3:91 we get �FS ’
4:2 Mpc. So the free-streaming distance of the dilaton
becomes less than the typical structure formation scale
�EQ ’ 13ð�0h

2Þ�1 ’ 18:6 Mpc. This qualifies the

160 keV dilaton as a cold dark matter.
One could easily find that the dilaton with mass � ’

276 MeV has a free-streaming distance �FS ’ 1:55�
10�5 Mpc, which is much shorter than that of the light
dilaton [14]. This would have made the heavy dilaton an
excellent cold dark matter. But of course, this dilaton is not
acceptable as a dark matter because the daughter particles
overclose the Universe.

V. DILATON DETECTION EXPERIMENT

So far, we have tried to estimate the dilaton mass based
on the conjecture that the dilaton is the dark matter of the
Universe. Now an important question is how to detect the
relic dilaton and confirm such conjecture. Clearly one
could try to establish the existence of the dilaton measuring
the dilatonic fifth force [12,17]. But the above analysis
implies that, if indeed the dilaton is the dark matter of the
Universe, its detection by the conventional fifth-force ex-
periments would be difficult because such dilaton gener-
ates an extremely short ranged fifth force. Fortunately new
types of fifth-force experiments known as the Casimir
regime experiments are under way at present [25]. It would
be very interesting to see whether these experiments can
detect such short range dilatonic fifth force.

In this section we propose a totally different type of
experiment based on two-photon decay of the relic dilaton.
Of course, one might try to detect the two-photon decay of
the relic dilaton directly, searching for the monoenergetic
x-ray signals from the sky [14]. Here we propose another
type of experiment, a Sikivie-type experiment which de-
tects the dilaton conversion to one photon in strong elec-
tromagnetic background. In this type of experiment the
dilaton conversion rate can be greatly enhanced by two
factors, first by the strong electromagnetic background and
secondly by the large dilaton density of halo. It is clear that
the conversion rate is enhanced by the strong background,
because the conversion amplitude is proportional to the
background field strength. Moreover, just as in the axion
detection experiment, we can assume that our Galaxy halo
is made of the relic dilaton if the dark matter is the dilaton.
In this case the conversion rate will be enhanced by a factor
105, because the average energy density of the relic dilaton
0:23� 10:5h2 keV cm�3 ’ 1:18 keV cm�3 in the present
Universe can be replaced by the Galaxy halo density

halo ’ 0:3 GeV cm�3 [10]. In the following we estimate
the power of dilaton conversion to one photon in strong

magnetic background, assuming that our Galaxy halo is
made of dilaton.
Consider a rectangular cavity with three edgesLx, Ly, Lz

and volume V ¼ LxLyLz made of a perfect conductor,

which has a strong magnetic background ~Bextð ~xÞ ¼
Bextð ~xÞẑ in the z direction inside, and consider the halo
dilaton conversion in the cavity described by the interac-
tion

L ��� ¼ ��1�̂F
2
�� ¼ 2�1�̂ð ~E2 � ~B2Þ;

�1 ¼ 1

4
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
:

(28)

In this case the induced photon is described by TE mode

(the magnetic wave) ~Bð ~xÞ ¼ Bð ~xÞẑ, and the differential
cross section d� of the dilaton conversion in the cavity is
given by

d�~k;� ¼ 2�	ðk0 � p0Þ 1

2p0v

d3 ~k

ð2�Þ32k0 jMj2;

M ¼ �i4�1
~Bð ~xÞ � ~Bextð ~qÞ

¼ �i4�1k
0ð
̂ð ~k; �Þ � k̂Þ � ~Bextð ~qÞ; (29)

where p� and k� are the 4-momenta of the dilaton and the
induced photon, M is the Feynman reduced matrix ele-

ment, 
̂ð ~k; � ¼ �1Þ and k̂ are the 3-dimensional photon
polarization vector and the unit vector in the direction of

the photon momentum ~k, ~q ¼ ~k� ~p is the spatial momen-

tum transfer, and ~Bextð ~qÞ is the Fourier transform of ~Bextð ~xÞ.
Note that in the classical background only energy is con-
served, and the 	ðk0 � p0Þ term represents this fact. Then
the total cross section � in the continuum limit is given as
follows:

� ¼ X
�¼�1

2�
Z

d3 ~k	ðk0 � p0Þ 1

2p0v

1

ð2�Þ32k0 jMj2

¼ �2
1

�2v

X
�¼�1

Z
d3 ~k	ðk0 � p0ÞjB̂ð ~k; �Þ � ~Bextð ~qÞj2; (30)

where B̂ðk; �Þ ¼ 
̂ð ~k; �Þ � k̂ is the unit vector in the direc-

tion of the induced magnetic field ~B.

Let the wave vector of the photon be ~k ¼
ðnx�=Lx; ny�=Ly; nz�=LzÞ, where ðnx; ny; nzÞ are arbi-

trary integers. For TE modes, the boundary condition

Bðz ¼ 0; LzÞ ¼ 0;
@B

@x
ðx ¼ 0; LxÞ ¼ 0;

@B

@y
ðy ¼ 0; LyÞ ¼ 0

(31)

requires the induced magnetic field to assume the form

B ¼ A cos

�
nx�x

Lx

�
cos

�
ny�y

Ly

�
sin

�
nz�z

Lz

�
; (32)
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where A is a normalization constant. Notice that nx and ny
cannot be zero simultaneously, and nz must be a nonzero
integer [26].

Now, we haveX
�¼�1

jB̂ð ~k; �Þ � ~Bextð ~qÞj2 ¼ jk̂� Bextð ~qÞẑj2

¼ k2x þ k2y

ðk0Þ2 jBextð ~qÞj2;

~Bextð ~qÞ ¼
Z
V
expði ~q � ~xÞ ~Bextð ~xÞd3 ~x

¼
Z
V
expði ~q � ~xÞBextð ~xÞẑd3 ~x ¼ Bextð ~qÞẑ;

(33)

so that, changing the integration into summation as fol-
lows,

d3 ~k ¼ dkxdkydkz ¼ �

Lx

�

Ly

�

Lz

dnxdnydnz ¼ �3

V
; (34)

we get the following cross section:

� ¼ X
~k

��2

Vv

ðk2x þ k2yÞ
ðk0Þ2 	ðk0 � p0ÞjBextð ~qÞj2: (35)

To proceed, we let

~B extð ~xÞ ¼ B0 cosðQxÞẑ (36)

and approximate ~q ¼ ð ~k� ~pÞ � ~k since the incoming halo
dilaton is highly nonrelativistic (with v� 10�3c) [10]. In
this case we have

jBextð ~qÞj2¼j
Z
V
d3 ~xexpði ~q � ~xÞB0 cosðQxÞj2

¼B2
0L

2
xL

2
yL

2
z

sin2ðkyLy

2 Þ
ðkyLy

2 Þ2
sin2ðkzLz

2 Þ
ðkzLz

2 Þ2
1

4

�
��

sinðkx�QÞLx

ðkx�QÞLx

þsinðkxþQÞLx

ðkxþQÞLx

�
2

þ
�
1�cosðkx�QÞLx

ðkx�QÞLx

þ1�cosðkxþQÞLx

ðkxþQÞLx

�
2
�
:

(37)

As we can see, jBextð ~qÞj2 has the maximum value

jBextð ~qÞj2max ¼
B2
0L

2
xL

2
yL

2
z

�2
; (38)

when

kx ¼ �Q; kzLz ¼ ��; kyLy ¼ 0: (39)

Note that jBextð ~qÞj2max would be highly suppressed without
the external sinusoidal background, which is why we
choose the sinusoidal external magnetic field (36).

We are interested in the dilaton with the mass range� *
0:1 keV whose Compton wavelength is of order smaller

than 2� 10�7 cm. Considering the typical detector length
scale Lx, Ly, Lz ’ 1 m, and ðk0Þ2 ¼ k2x þ k2y þ k2z ’ �2,

we have kx ’ k0 � maxðky; kzÞ since �Lx, �Ly � 1 in

the resonance case. Thus we can use the following ap-
proximation:

k0dk0 ¼ kxdkx þ kydky þ kzdkz ’ kxdkx ) dk0

¼ kx
k0

dkx ’ dkx: (40)

On the other hand, the number of additional modes due to
the differential spread dk0 around k0 ¼ p0 is

dnx ¼ Lx

�
dkx ’ Lx

�
dk0; 	ðk0 � p0Þdnx ¼ Lx

�
: (41)

Combining these relations, we finally obtain

� ¼ X
~k

��2
1

Vv

ðk2x þ k2yÞ
ðk0Þ2 	ðk0 � p0ÞjBextð ~qÞj2

’ 4��2
1

Vv

ðk0Þ2
ðk0Þ2 	ðk

0 � p0Þdnx � jBextð ~qÞj2max

¼ 16��2
1

Vv

Lx

�
� jBextð ~qÞj2max

¼ 4�2
1

�2Vv
B2
0L

2
xL

2
yL

2
zLx ¼ 4�2

1

�2v
B2
0VLx; (42)

and the following detection power P:

P ¼ �ndv� ¼
�
4�2

1

�2

�

dB

2
0LxV; (43)

where nd is the dilaton number density and 
d is the dilaton
energy density. Notice that the detection power depends on
the energy density, not the mass, of dilaton.
This agrees with that of the axion detection power ex-

cept for the numerical factor of order unity which comes
from the different axion-photon coupling constant. In the
case of the axion, the axion-photon interaction Lagrangian
and axion detection power are given as follows [1]:

L a�� ¼ ���aF��
~F�� ¼ 4��a ~E � ~B;

Pa ¼ 2�2
�
aB

2
0LxV:

(44)

As we have mentioned there are two types of axion, the
popular axion from strong interaction and the gravitational
axion proposed as a pseudoscalar graviton [7,9]. The dif-
ference is that for the popular axion the coupling constant
�� is given by g��=4�fa, where g� is a model-dependent

dimensionless coupling constant of order one, � is the
electromagnetic fine-structure constant, and fa is the
UPQð1Þ symmetry breaking scale. But for the gravitational

axion �� is similar to our �1 because this axion is the

pseudoscalar partner of the dilaton. Other than this they are
virtually identical.
We can compare the axion detection power with the

dilaton detection power. Consider the popular axion first.
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Since fa is related to the axion mass ma by ma ’ 6 eV�
106 GeV=fa, and the educated guess of the axion mass is
around 10�6 eV or so, we have fa ’ 6� 1012 GeV [1,10].
So we have (with g1=g� ’ 1)

P

Pa

’ 1:9� 106 �
�
g1
g�

�
2
�
fa
mp

�
2 ’ 4:7� 10�7: (45)

This is a small number. But the reason why this is so small
is because the dilaton-photon coupling �1 is much smaller
than the dilaton-axion coupling ��, due to the fact that fa
is much bigger than the Planck mass. Indeed, with 
d ’

halo ’ 0:5� 10�24 g=cm3 ’ 0:3 GeV=cm3 and B0 ¼
10 T, Lx ¼ Ly ¼ Lz ’ 1 m, we get the dilaton detection

power P ’ 1:42� 10�31 W with g1 ’ 1. This is 10�5

times smaller than the axion detection power in current
experiments [1,10]. But there are two things worth keeping
in mind here. First, for the gravitation axion, we expect
�1 ’ �� so that Pa becomes as small as P. So in this case

the axion detection power becomes smaller than the popu-
lar axion detection power, and becomes comparable to the
dilaton detection power. Secondly, a strong dilaton cou-
pling to matter fields (i.e., a large �1 or equivalently a large
g1) will certainly enhance the dilaton detection power. And
this possibility has not been ruled out by experiment yet.

Of course, a strong dilaton coupling in principle could
change the dilaton life-time (and the density of dilaton at
present Universe), and thus change the outcome of our
results. But our numerical calculation shown in Fig. 2
suggests that changing the coupling (� up to 106 in the
figure) does not change our results very much, unless of
course � becomes extremely large. This assures that our
results, in particular (43), remain valid for a large range of
�1.

Notice that, due to the pseudoscalar coupling, the axion
produces TM modes (the electric wave) rather than TE
modes. Another notable difference between the dilaton and
the axion is that for the dilaton the photon polarization is
perpendicular to the external magnetic field, whereas for
the axion the photon polarization is parallel to the external
magnetic field.

Now, a few remarks are in order. First, the above result
holds when we have the resonance Q ’ �. But it seems
very difficult to make static magnetic field of wavelength
of order ��1 & 10�7 cm with the current technology.
However we may be able to set up x-ray range electromag-
netic waves with !ext ¼ Q ’ �. In that case, the only
change needed is to replace 	ðk0 � p0Þ by 	ðk0 � p0 �
p0Þ in the above calculation, which will make the detection
power P twice as big. Second, the dilaton detection power
appears too small to be considered realistic at present. On
the other hand, we notice that the relevant technologies are
developing fast [10], so that it may be possible to detect the
halo dilaton in the near future. Third, we have used the
magnetic background in the above calculation. With an
electric background the detection power would have been

proportional to the electric field energy density. In terms of
the field energy density, 1 T corresponds to 300 MV=m
since E ¼ cB in the meter-kilogram-second unit system.
But the strongest magnetic field and electric fields cur-
rently available are around 50 T and 40 MV=m [27],
respectively. So at present a magnetic background can
give us larger detection power. Moreover, in the air the
electric breakdown happens when the electric field is about
3 MV=m. This is why we have used the magnetic back-
ground in our calculation. And this is why one hardly uses
an electric background in particle creation or annihilation
experiments in laboratories.

VI. DISCUSSION

An urgent issue in higher-dimensional unified theories is
to have experimental verification of the theories. In the
absence of any direct evidence of the extra space, it is very
important to find a clear way to test the idea of the higher-
dimensional unification. In this context the Kaluza-Klein
dilaton plays a crucial role. All higher-dimensional unified
theories, including the superstring, predict the existence of
the dilaton. Moreover, as the scalar graviton it has unique
and unmistakable features which can be tested experimen-
tally. Most importantly, in the absence of any direct evi-
dence of the extra dimension, it is perhaps the only way to
verify the idea of the higher-dimensional unification
[2,14]. This makes the experimental verifications of the
dilaton very important.
A conceptually simple and straightforward experiment

to detect the dilaton is the fifth-force experiment [12]. As
the scalar graviton the dilaton couples to all matters, so that
it creates the fifth force which modifies Einstein’s gravity.
So using the fifth-force experiments one may be able to
verify the dilaton. The problem with this is that it is very
difficult to detect the dilatonic fifth force, because the
dilaton coupling to matter fields is very weak. On the other
hand this weak coupling makes the dilaton lifetime very
large, so that the dilaton can easily survive to the present
Universe. This makes the dilaton an excellent candidate of
dark matter as a GIMP [14]. Our analysis tells that there is
practically only one mass range � ’ 160 eV for which the
dilaton can be the dark matter. This cosmological con-
straint of dilaton mass implies that detecting the dilaton
by the conventional fifth-force experiments would be very
difficult, because the dilatonic fifth force is too short
ranged. This implies that we must consider a new type of
experiments to detect the dilaton. As we have remarked,
the experiments based on the Casimir effect could be
useful to detect such short range fifth force [25].
In this paper we have discussed a totally different type of

experiment to detect the dilaton based on the dilaton-
photon conversion in strong magnetic background, and
calculated the dilaton detection power. The downside of
our result is that (if we treat the dilaton as a GIMP) the
dilaton detection power is a little too small to be detected at
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present. The reason again is that the dilaton coupling to
matter fields (in this case the electromagnetic field) is
assumed to be very weak (i.e., gravitational). But the up-
side of this result is that it is very difficult to exclude the
idea of the dilaton as the dark matter of the Universe by
experiments. It can compete very well with other candi-
dates of dark matter, axion and WIMPs. This makes the
experimental detection of the dilaton important.

The small dilaton detection power in (43) should not be
interpreted to discourage the cavity experiment we pro-
posed here. On the contrary it should make such experi-
ment more desirable. Of course when the dilaton is
identified as a GIMP, the dilaton detection power does
become very small. As we have pointed out, however, there
is always the possibility that the dilaton has a stronger
coupling to matter fields because there is no a priori reason
why the dilaton coupling must be gravitational. Obviously
a strong dilaton-matter coupling (i.e., a large g1) would
enhance the dilaton detection power in cavity experiments
very much, and could easily make it larger than the axion
detection power. And only experiments can tell how strong
the dilaton couples to matter fields. This provides a strong
motivation to do the above dilaton detection experiment.
We hope that our result in this paper could help us to detect
the dilaton.

It must be emphasized that our calculation of the dilaton
mass and lifetime is an order estimate based on the linear
and first-order approximation. First of all the dilaton in
general has an exponential interaction to matter fields, so
that (6) should be viewed only a linear approximation
[11,14]. Secondly there are many scalar gravitons in
higher-dimensional unified theory which can be identified
as a GIMP, and the dilaton is one of many possible GIMPs.

In general in ð4þ nÞ-dimensional unified space there are
nðnþ 1Þ=2 scalar gravitons in the zero mode approxima-
tion, the dilaton and the unimodular metric of the
n-dimensional extra space, which can be identified as
GIMPs [2,11]. (And in string theory, one has similar mod-
uli fields [6].) But here we have considered only the
dilaton. Moreover, in higher-dimensional unified theory
there are more particles (for example, the above mentioned
GIMPs of the extra-dimensional metric) than what we have
in the standard model, so that the numerical values of g� in
(22), (26), and (27) must be modified. For these reasons our
estimates of the dilaton lifetime and mass should be viewed
as an order estimate.
It has been argued that the dilaton (renamed the radion)

can play a crucial role in resolving the hierarchy problem
[20]. This is because the dilaton represents the volume of
the extra space which determines the higher-dimensional
gravitational constant in terms of the Newton’s constant
[2,11]. Now, we emphasize that our estimate of the dilaton
mass could be used to determine the size of the extra space.
The reason is because the dilaton mass is determined by the
curvature of the extra space, which depends on the volume
of the extra space [2,11]. This tells one that the dilaton as
the dark matter can also play a crucial role in determining
the size of the extra space. The details of this and related
subjects will be discussed elsewhere [28].
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