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Inflation is now an accepted paradigm in standard cosmology, with its predictions consistent with

observations of the cosmic microwave background. It lacks, however, a firm physical theory, with many

possible theoretical origins beyond the simplest, canonical, slow-roll inflation, including Dirac-Born-

Infeld inflation and k-inflation. We discuss how a hierarchy of Hubble flow parameters, extended to

include the evolution of the inflationary sound speed, can be applied to compare a general, single field

inflationary action with cosmological observational data. We show that it is important to calculate the

precise scalar and tensor primordial power spectra by integrating the full flow and perturbation equations,

since values of observables can deviate appreciably from those obtained using typical second-order Taylor

expanded approximations in flow parameters. As part of this, we find that a commonly applied

approximation for the tensor-to-scalar ratio, r � 16cs�, becomes poor (deviating by as much as 50%)

as cs deviates from 1 and hence the Taylor expansion including next-to-leading order contribution terms

involving cs is required. By integrating the full flow equations, we use a Monte-Carlo-Markov-Chain

approach to impose constraints on the parameter space of general single field inflation, and reconstruct the

properties of such an underlying theory in light of recent cosmic microwave background and large-scale

structure observations.
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I. INTRODUCTION

Even though inflation explains our observable universe
remarkably, we have very little understanding of the physi-
cal mechanism responsible for the acceleration during
inflation. Finding a physical basis for inflation is likely to
help in understanding particle physics at very high ener-
gies. Many models of inflation are motivated by supergrav-
ity, the string landscape and D-branes [1–5]. Therefore
understanding inflation may also be useful in testing string
theory [6–10].

Recent advances in precision cosmology provide valu-
able constraints on the cosmological density perturbation,
which is essential to understand the inflationary scenario.
Improved measurements of the temperature and polariza-
tion anisotropies of the cosmic microwave background
(CMB) [11–16] and data from large-scale structure surveys
[17–21] together characterize the primordial spectrum of
fluctuations to fine detail.

Using observations to constrain the primordial power
spectrum one can reconstruct properties of the underlying
theory guiding the physics of the inflationary era [22–49].
In order to consider what observations tell us, without any
theoretical bias, we need to reconstruct the entire inflaton
action, instead of just the inflaton potential or a specific
kinetic term, since theories of inflation, such as those
arising from the Dirac-Born-Infeld action [1] or from
k-inflation [50–53], allow the presence of nonminimal
kinetic terms. A hierarchy of derivatives of the Hubble
expansion factor, ‘‘flow parameters,’’ during inflation was
developed as a technique to reconstruct canonical inflation
[24,54–56]. This was recently extended to Dirac-Born-

Infeld (DBI) inflation by also considering derivatives of
the inflaton sound speed [10] and, through an additional
derivative of the Lagrangian, to a general single field action
in [45].
The paper is organized as follows. In Sec. II we review

the background evolution equations and the flow formal-
ism in general, single field inflation. In Sec. III we discuss
how we calculate the exact primordial scalar and tensor
perturbation spectra by integrating the flow equations, and
review the ability of approximate Taylor expansions about
a pivot point to describe physical observables such as the
tilt, running and tensor-to-scalar ratio in the general infla-
tionary scenario. In Sec. IV we present the main findings of
the paper, cosmological constraints on the general, single
field inflationary action in light of current CMB tempera-
ture and polarization power spectra and three point tem-
perature correlation, large-scale structure power spectrum
and supernovae luminosity distance constraints. We con-
sider constraints within the observed range of physical
scales 10�4 Mpc�1 & k & 1 Mpc�1 in Sec. IVB, as well
as general action reconstruction over the extended infla-
tionary history in Sec. IVC. In Sec. V we draw together our
findings and discuss implications for the future.

II. THE HUBBLE FLOW FORMALISM

Consider the general Lagrangian LðX;�Þ of a single
scalar field inflationary model. Here X ¼ 1

2@��@�� is the

canonical kinetic term. The pressure and energy density are
given by

pðX;�Þ � LðX;�Þ; (1)
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�ðX;�Þ � 2XLX �LðX;�Þ; (2)

where LX � @L=@X. We assume that the null energy
condition �þ p > 0, is satisfied, such that,

L X > 0: (3)

The adiabatic sound speed for the propagation of inho-
mogeneities, cs, is defined as

c2s � pX

�X

¼
�
1þ 2

XLXX

LX

��1
: (4)

We measure the extent of inflation using the variable Ne,
which denotes the number of e-folds before the end of
inflation. We chooseNe to increase backwards in time from
the end of inflation, i.e.,

dNe ¼ �Hdt; (5)

Ne � ln
aðtenÞ
aðtÞ ; (6)

where aðtÞ is the scale factor at any time t, and ten is the
time at the end of inflation.

We can define three physical slow-roll parameters to
describe time derivatives of the Hubble parameter and
sound speed,

� � � _H

H2
; � � _�

H�
; � � �

_ðc�1
s Þ

Hc�1
s

; (7)

where a dot represents a derivative with respect to time, t.
Note that these parameters are independent of a scalar field
definition. They depend upon L, and combinations of X
and derivatives of L with respect to X and � that are
invariant under a scalar field redefinition. The acceleration
equation can now be written as

€a

a
¼ ð1� �ÞH2; (8)

requiring � � 1 for inflation to occur.
The slow-roll approximation requires that

�; �; �; �N; �N; �N; . . . � 1; (9)

where �N � d�=dNe, etc.
In order to describe an action beyond the slow-roll

assumption, one can define an infinite hierarchy of ‘‘flow
parameters,’’ as used extensively for canonical inflation
[54–56] and extended to DBI inflation [10], and to a
general action in [45]. For a general action, with a general
scalar field definition, the evolution is described by three
hierarchies of the flow parameters, dealing with derivatives
with respect to the scalar field of the Hubble constant (H),
the speed of sound (cs), and LX. These parameters are in
general all dependent on the explicit choice of � and as
discussed in [45], actions reconstructed using this formal-
ism can map onto each other through a scalar field redefi-
nition. In this paper we impose a specific scalar field

choice, such that LX ¼ c�1
s , consistent with canonical

and DBI inflation, to alleviate this degeneracy. This leaves
us with only two distinct hierarchies of flow parameters,

� ¼ 2M2
pl

c�1
s

�
H0

H

�
2
; (10)

� ¼ 2M2
pl

c�1
s

�
H0

H

ðc�1
s Þ0
c�1
s

�
; (11)

and

l�ð�Þ ¼
�2M2

pl

c�1
s

�
l
�
H0

H

�
l�1 H½lþ1�

H
; (12)

l�ð�Þ ¼
�2M2

pl

c�1
s

�
l
�
H0

H

�
l�1 ðc�1

s Þ½lþ1�

c�1
s

; (13)

for l � 1. Here a prime denotes derivative with respect to

�, M2
pl ¼ 1=8	G, and H½lþ1� � dlþ1H=d�lþ1, etc. The

combination of parameters, 21�� � ¼ 2�� �, is invari-
ant under scalar field redefinition.
Using

d�

dNe

¼ 2M2
pl

LX

H0

H
; (14)

we can write the evolutionary paths of the flow parameters
as a set of coupled first-order differential equations with
respect to Ne,

�N ¼ ��ð2�� 21�þ �Þ ¼ ���; (15)

�N ¼ ��ð�� 1�þ 2�Þ þ �1�; (16)

and for l � 1,

l�N ¼ �l�½l�� ðl� 1Þ1�þ l�� þ lþ1�; (17)

l�N ¼ �l�½ðl� 1Þ�� ðl� 1Þ1�þ ðlþ 1Þ�� þ lþ1�:

(18)

In this paper we consider two scenarios in which infla-
tion is driven by the inflationary flow equations, one in
which the end of inflation arises from when � ¼ 1, and one
in which inflation does not end on its own (� � 1), but may
be brought on, for example, by the behavior of a second
scalar field.

III. PRIMORDIAL PERTURBATIONS

In this section we discuss the generation of primordial
power spectra in single field inflation: we summarize the
evolution equations for the scalar and tensor perturbations
in Sec. III A, the choice of initial conditions in Sec. III B,
and how the exact power spectra are calculated through
evolving the flow equations in Sec. III C. We also review
the approximate expressions for the power spectra in terms
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of the flow parameters in order to compare them with the
exact power spectra we use for the analysis in Sec. IV.

A. Calculating the power spectrum

The evolution of the scalar perturbations in the metric,

ds2 ¼ ð1þ 2�Þdt2 � ð1� 2�Þa2ðtÞ
ijdx
idxj; (19)

are typically described in terms of the Bardeen parameter,
� ,

� ¼ 5�þ 3p

3ð�þ pÞ�þ 2�

3ð�þ pÞ
_�

H
; (20)

and specifically its spectral density,

P � ¼ k3

2	2
�2; (21)

while the tensor perturbations can be characterized by a
metric with g00 ¼ �1, zero space-time components g0i ¼
0, and �gij ¼ hij. We can decompose these perturbations

into two independent polarization modes, denoted þ and
�, since gravitational waves are both transverse and trace-
less. Writing the Fourier modes as hk;þ and hk;�, the

spectral density of tensor fluctuations, P h can be written
as,

P h ¼ k3

2	2
ðhjhk;þj2i þ hjhk;�j2iÞ: (22)

The evolution of � and h	 can be calculated concisely
through considering two alternative Mukhanov variables,

uk � z�; (23)

vþ;� �
�
aMpl

2

�
hþ;�; (24)

where

z ¼ að�þ pÞ1=2
csH

¼
ffiffiffi
2

p
Mpla

ffiffiffi
�

p
cs

: (25)

To determine the full evolution of the power spectrum,
we need to numerically integrate the mode equations in uk
and vk. Written in terms of the number of e-foldings Ne,
these are

d2uk
dN2

e

� ð1� �Þ duk
dNe

þ
��

csk

aH

�
2 �W

�
uk ¼ 0; (26)

d2vk

dN2
e

� ð1� �Þ dvk

dNe

þ
��

k

aH

�
2 � ð2� �Þ

�
vk ¼ 0;

(27)

with

W ¼ 2

��
1þ �

2
� �

��
1� �

2
þ �

4
� �

2

��
þ �N

2
� �N:

(28)

Following [57,58], the scalar spectral density, P � is

given by

P � ¼ 22�3

��������
�ðÞ
�ð3=2Þ

��������
2ð1� ���Þ2�1

��������
H2

2	
ffiffiffiffiffiffi
2X

p
��������

2

csk¼aH
;

(29)

where

 ¼ 3

2
þ �þ �

2
þ �

2
: (30)

The tensor spectral density is

P h ¼ 22��3

��������
�ð�Þ
�ð3=2Þ

��������
2ð1� �Þ2��1

��������
ffiffiffi
2

p
H

	Mpl

��������
2

k¼aH
;

(31)

where

�2 ¼ 2� �

ð1� �Þ2 þ
1

4
: (32)

B. Scalar and tensor perturbation initial conditions

We assume the standard choice of initial conditions for
the mode functions uk and vk, the Bunch-Davies vacuum,

ukð�csk� ! 1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2csk

p e�icsk�; (33)

vkð�k� ! 1Þ ¼ 1ffiffiffiffiffi
2k

p e�ik�: (34)

As in [43] we note that we cannot use these conditions
directly in order to solve the mode equations numerically
since we cannot impose these conditions in the infinite
past. We need to initialize the mode functions at suffi-
ciently early times, which we choose as the number of e-
folds before the end of inflation at which ðcsk=aHÞ=ð1�
�� �Þ ¼ 50 for scalar perturbations, and ðk=aHÞ=ð1�
�Þ ¼ 50 for tensor perturbations. Note that the results are
insensitive to the precise condition chosen.
We define the ratio of the Hubble radius to the proper

wavelength of fluctuations for the scalar and tensor pertur-
bations, respectively, as

y� ðNeÞ � csk

aH
; (35)

yhðNeÞ � k

aH
: (36)

Then,
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dy�
d�

¼ �cskð1� �� �Þ; (37)

d�

dy�
¼ 1

y� ð1� �� �Þ
d�

dNe

; (38)

d�

dy�
¼ 1

y� ð1� �� �Þ
d�

dNe

; (39)

and

dyh
d�

¼ �kð1� �Þ; (40)

d�

dyh
¼ 1

yhð1� �Þ
d�

dNe

: (41)

The initial conditions for each mode need to be set at early
times that correspond to large y� and yh, when the scalar/

tensor mode is well within the horizon. We see from the
above equations that at large y� and yh, �ðy� Þ, �ðy� Þ, and
�ðyhÞ are approximately constant. Then we can integrate
the equations in y� and yh to get

y� ¼ �csk�ð1� �� �Þ; (42)

yh ¼ �k�ð1� �Þ: (43)

Using this in (33) and (34) we get the initial conditions,

ukðy�iÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2csk

p eiy�i=ð1��i��iÞ; (44)

duk
dNe

��������y�¼y�i

¼ iffiffiffiffiffiffiffiffiffiffi
2csk

p y�ie
iy�i=ð1��i��iÞ; (45)

and

vkðyhiÞ ¼ 1ffiffiffiffiffi
2k

p eiyhi=ð1��iÞ; (46)

dvk

dNe

��������yh¼yhi

¼ iffiffiffiffiffi
2k

p yhie
iyhi=ð1��iÞ: (47)

C. Calculating the primordial power spectrum

We set the initial conditions for each scalar k-mode at
the number of e-folds, Ne, for which y�i=ð1� �i � �iÞ ¼
50. We then integrate the mode Eq. (26) to find ukðNeÞ as
we go forward in time. At each instant we obtain the
value of z from (25). The flow parameters are simulta-
neously integrated using their first-order differential
Eqs. (15)–(18), as are the speed of sound and aH, using

dcs
dNe

¼ ��cs;
dðaHÞ
dNe

¼ �ð1� �ÞaH: (48)

We find the scalar power spectrum (for each value of k,

using � from Eq. (23) in (21)) as we evolve forward in time
until the power spectrum freezes out, the condition for
which we set as ½d lnP �=d lna�< 10�3. At this level the

accuracy of the power spectrum calculation is at least as
good as the accuracy of the other numerical calculations
required when obtaining the CMB and matter power spec-
tra predictions in CAMB, described in Sec. IV. This allows
efficient computational calculation of the primordial spec-
trum at a level of accuracy sufficient not to degrade the
overall accuracy of the cosmological predictions obtained
using the CAMB code, as described in Sec. IV. Similarly
for each tensor k-mode we set the initial conditions at Ne

for which yhi=ð1� �iÞ ¼ 50 and find the power spectrum
as we evolve forward in time until it freezes out at
½d lnP h=d lna�< 10�3. Note therefore that we do not sim-
ply evaluate the power spectrum at horizon crossing, de-
fined as csk ¼ aH, as we discuss below. Assuming such an
instantaneous freeze-out takes place at this time, and fur-
ther assuming that both tensor and scalar modes freeze out
nearly simultaneously can have notable effects on the
estimation of the power spectrum variables.
To first order in slow-roll parameters, the equation for

the scalar power spectrum (29) becomes [57,58],

P � ðkÞ ¼
�
1� 2�� 2�þ 2b

�
�þ �

2
þ �

2

��

� 1

8	2M2
pl

H2

cs�

��������csk¼aH
; (49)

where b ¼ 2� ln2� 
, and 
 ¼ 0:5772 is the Euler-
Mascheroni constant. A similar calculation for the tensor
power spectrum (31) is typically evaluated at tensor mode
horizon crossing (k ¼ aH), however recently an approxi-
mate expression at scalar horizon crossing (csk ¼ aH) was
also given [48,59],

P hðkÞ ¼ ½1� 2ð1� bÞ�� 2H2

	2M2
pl

��������k¼aH
(50)

� ½1� 2ð1� b� lncsÞ�� 2H2

	2M2
pl

��������csk¼aH
: (51)

We consider pivot scales, at which spectrum parameters are
calculated, for scalar and tensor modes as k
s ¼
0:01 Mpc�1 and k
t ¼ 0:01 Mpc�1, respectively.
Using the above expressions one can calculate the scalar

power spectrum normalization, As, tilt, ns, and running,
nrun, of the spectral index, and the tensor spectral index, nt,
at the pivot points, [58,59]

As � P � ðk
sÞ; (52)

ns � 1 � d lnP �

d lnk

��������k¼k
s
(53)
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� �ð2�þ �þ �Þð1þ �þ �Þ
� 2b

�
�N þ �N

2
þ �N

2

�
þ 2�N þ 2�N; (54)

nrun � dns
d lnk

��������k¼k
s
(55)

� ð2�þ �þ �Þð�N þ �NÞ þ ð2�N þ �N þ �NÞ
� ð1þ �þ �Þ2 þ 2b

�
�NN þ �NN

2
þ �NN

2

�

� 2�NN � 2�NN; (56)

nt � d lnP h

d lnk

��������k¼k
t
(57)

� ½�2�ð1þ �þ �Þ þ 2ð1� bÞ�N�k¼k
t (58)

� ½�2�ð1þ �þ �Þ þ 2ð1� b� lncsÞ�N þ 2���k¼k
s ;

(59)

where the approximate expressions in terms of the slow-
roll parameters are given to second order for ns and nt, and
third order for nrun. All parameters are calculated at sound
horizon crossing, unless stated otherwise.

The Taylor expanded expressions for the scalar and
tensor power spectrum, spectral indices and running reduce
to previous results for canonical inflation [37,55,60–62]
and for general inflation [45,51,58,59] to the orders quoted
in those papers.

We define the tensor-to-scalar ratio without Taylor ex-
pansion approximations as rexact,

rexact ¼ P hðk
tÞjfreeze-out
P � ðk
sÞjfreeze-out : (60)

A common approximation is to calculate r at sound hori-
zon crossing (csk ¼ aH), assuming that the tensor and
scalar modes freeze out at roughly the same time. To
second order, this expression is given by [58],

rapprox ¼ 16cs�½1þ 2�� bð�þ �Þ�: (61)

The approximation above, however, is only valid when
scalar and tensor modes cross the horizon at similar in-
stants [51]. Since we keep the speed of sound cs and its
dynamical evolution general, we do not assume this a priori
and instead calculate r directly using the ratio P h=P � ,

(60), by solving the mode equations for ukðk ¼ k
sÞ and
vkðk ¼ k
tÞ, and calculating P h and P � at freeze-out.

To first order we can write an expression for rexact as,

rexact � P hðk
tÞ
P � ðk
sÞ (62)

¼ ½1� 2�h þ 2b�h�
½1� 2�� þ 2bð�� þ ��

2 � �� Þ�
16cs��

�
Hh

H�

�
2
; (63)

where the approximation above means that we have as-
sumed instantaneous freeze-out of the scalar and tensor
power spectra at their respective horizon crossings. Here �h
and Hh are calculated at k
t ¼ aH, and cs, �� , �� and ��

are calculated at csk
s ¼ aH. Now for csðk
sÞ< 1, scalar
modes leave the horizon at an earlier time compared to the
tensor modes. So for csðk
sÞ � 1 we expect Hh < H� , and

since ðHh=H� Þ2 is a stronger effect than the single factor of
�� , we expect therefore rexact=rapprox < 1. Similarly for

csðk
sÞ � 1 we expect to get rexact=rapprox > 1. We verify

these results numerically in Sec. IVA, and find that the
approximate expression for r can give significant discrep-
ancies from the actual tensor-to-scalar ratio for models in
which cs � 1.
This behavior was recently shown to give a modified

expression for the tensor-to-scalar ratio [59],

r ¼ 16cs�½1þ 2�� bð�þ �Þ þ 2� lncs�; (64)

which we find is an excellent analytical approximation for
our rexact. The fact that rexact differs significantly from
rapprox tells us that, as cs deviates from 1, the next-to-

leading order contribution in the expression for r becomes
important, the Taylor expansion which is often used breaks
down, and next order terms, as given in (64), are required.

IV. OBSERVABLE PREDICTIONS OF INFLATION

We apply the formalism outlined in Secs. II and III to
generate evolutionary trajectories for a general inflationary
model. When constraining flow parameters with observa-
tional data typically two conditions can be considered:
Condition 1: Constraints on the flow parameters at hori-
zon crossing from the form of the observed primordial
power spectrum.Condition 2: The end of inflation arises
when � ¼ 1, when accelerated expansion as defined by (8)
ceases, and requires that observable scales crossed the
horizon a reasonable number of e-foldings, say, Ne �
50–80, before the end of inflation.
Monte Carlo Markov Chain analyses placing constraints

on the flow parameters often solely impose Condition 1,
e.g. [37,44,48,62], while other analyses additionally im-
pose the more restrictive, theoretically motivated, restric-
tion in Condition 2, e.g. [30,43,55,63,64].
In Sec. IVA we consider the properties of inflationary

evolutionary trajectories, and the resultant power spectra,
under Condition 2. In Sec. IVB we apply constraints on the
flow parameters from the current WMAP 5-year data,
Sloan Digital Sky Survey (SDSS) Luminous Red
Galaxies (LRG) galaxy power spectrum and ‘‘Union’’
Type 1a supernovae data sets using Condition 1, and addi-
tionally consider the permitted models under the more
restrictive Condition 2.
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A. Monte Carlo simulations of inflationary trajectories

We randomly select values at the end of inflation (when
� ¼ 1) of the flow parameters f�; l�; l�g, the scale factor
aðtenÞ and the sound speed, cs, within the following inter-
vals:

aðtenÞ 2 ½5� 10�29; 5� 10�26�;
cs 2 ½0; 2�;
� 2 ½�0:05; 0:05�;
l�;l �

�2 ½�0:05; 0:05� ðl � 5Þ;
¼ 0 ðl > 5Þ:

(65)

The Hubble constant at this instant is [9],

HðtenÞ ¼
�
3:17708� 10�30

aðtenÞ
�
2
Mpl: (66)

We also consider models of inflation that allow super-
luminal propagation of density perturbations, with the
speed of sound at the end of inflation, cs 2 ½0; 2�. Faster-
than-light propagation has been shown to arise in higher-
order QCD corrections, see for example [65–67], and in
many other theories, such as [68–70]. It has been shown
recently [71] that superluminal propagation in generic k-
essence theories does not lead to the appearance of closed
causal curves (hence they do not violate causality).

To obtain the scalar perturbation spectrum we evolve
the parameters back to the time, N�i when y�=ð1� ��
�ÞjN�i

¼ 50 and then evolve uk forward to freeze-out of the

power spectrum. The pivot mode crosses the horizon at
Ne ¼ N
, where k
s ¼ aH=csjN
 . IfN
 2 ½50; 80� then the
observable parameters fAs; ns; dns=d lnkg are calculated
and the trial is recorded. The tensor spectrum, and r, are
calculated in an analogous manner, by evolving back to
Nhi, when yh=ð1� �ÞjNhi

¼ 50, and evolving vk forward to

obtain P hðk
tÞ.
In Fig. 1 we contrast the properties of inflationary tra-

jectories satisfying Condition 2 in the case of canonical
inflation (cs ¼ 1, � ¼ l� ¼ 0), as discussed in [31,72],
and in models of general inflation. The introduction of an
evolving sound speed noticeably alters the distribution of
spectrum observables arising from the flow trajectories.
The asymptotic relation ns � 1 � �r=8 that holds for
canonical inflation is broadened to ns � 1 � �r=8cs,
and the introduction of a nonzero � gives rise to nearly
scale invariant models with nonzero running. Allowing
superluminal propagation, with cs > 1, can give scenarios
with larger tensor-to-scalar ratios [73].

For the main analysis in Sec. IV, we assume linear priors
on the flow parameters (most consistent with assuming
linear priors on the power spectrum observables at lowest
order). We note, for interest, however that Monte Carlo
sampling assuming log priors on the flow parameters can
alter the sampling of allowed models, as in the context of
canonical inflation [64,74]. The effect is more noticeable in

general inflationary models where introducing log priors
can allow larger tensor scenarios to be sampled more
efficiently.
In Fig. 2 we demonstrate the difference between the

exact tensor-to-scalar ratio coming from fully evolving
both P � and P h, (60), and well approximated by (64),

and the ratio derived by assuming both tensor and scalar
freeze-out concurrently at scalar horizon crossing (61). As
introduced in Sec. III C, for sound speeds different from 1,
and especially as cs ! 0, the discrepancy between the two
values becomes significant, as much as 50–60%. We can

FIG. 1 (color online). Monte Carlo sampling of canonical
(cs ¼ 1, � ¼ l� ¼ 0) [upper panels] and general [lower panels]
inflation models plotted in the ðr; nsÞ (left) and ðnrun; nsÞ (right)
planes, truncated at l ¼ 5 in the l� and l� flow hierarchies using
linear priors (black points) and log priors (blue points) on aðtenÞ,
cs, and flow parameters, in the ranges specified in (65). For
general inflation we plot models that have csðk
sÞ 2 ½0; 1�.

FIG. 2 (color online). The difference between rexact and rapprox
[left panel] and the dependence on csðk
sÞ [right panel] for
general inflation models with csðk
sÞ 2 ½0; 1� (blue points),
and csðk
sÞ 2 ½1; 2� (red points), for an order 5 Monte-Carlo
simulation with ranges as given in (65).
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understand these deviations by the fact that as cs deviates
from 1, tensor and scalar modes leave the horizon, and are
frozen, at increasingly disparate epochs.

Since the tilt ns and running nrun are calculated purely
from the scalar power spectrum (with no reference to the
tensor power spectrum), we expect that the values of
corresponding ns;exact and nrun;exact, found directly from

the power spectrum, will be similar to the values obtained
from the numerical expressions (54) and (56). We have
verified numerically that the approximate expression for ns
is as good as the exact calculation to within a few percent.
The fact that ns;exact and ns;approx are in good agreement also

implies that our approximate expression for ns to second
order is reasonable, and we do not need to calculate ns to
fourth or fifth order.

As shown in Fig. 3, at the epoch when observable modes
cross the horizon, � and cs may be increasing or decreas-
ing, csk=aH, however, always decreases monotonically.
Therefore once the modes have left the horizon (i.e.,
csk=aH < 1) they do not reenter and we do not have to
worry about the presence of multiple horizon crossings
(with the potential for unfreezing and refreezing of
fluctuations).

B. Constraints from cosmological observational data

We have included our general inflationary perturbation
code into the CAMB code [75] to evolve background

equations and first-order density perturbations for a flat
universe containing baryons, CDM, radiation, massless
neutrinos and use CosmoMC [76] to perform a Monte-
Carlo-Markov-Chain analysis of the model parameter
space in comparison to current cosmological data.
In Table I we summarize the priors on the flow parame-

ters for five inflationary scenarios we investigate. We use
linear priors on the flow parameters, f�; �; l�; l�g, up to
some lmax for l� and l�, cs and lnð1010AsÞ at horizon
crossing for k
s ¼ 0:01 Mpc�1. As is used to calculate
the value of HðN
Þ at horizon crossing using (49) and
(52), which then gives aðN
Þ ¼ csk
s=HjN
 . We choose

truncations at l ¼ 2 (C1) and l ¼ 5 (C2) to demonstrate
the effect of adding in extra degrees of freedom in recon-
structing the power spectrum.
Using the approach described in Sec. III we calculate the

scalar and tensor power spectra for 5� 10�6 Mpc�1 �
k � 5 Mpc�1. For the MCMC analysis, we purely con-
sider constraints within this range of observable scales, i.e.
Condition 1 of Sec. IV. We do not impose the stricter
requirement of Condition 2, that pertains to the full infla-
tionary history, however we do require that 0 � � < 1 (and
hence that inflation persists) during all times fromwhen the
initial conditions are set, up to when the power spectrum
has converged for all observable k-modes. We discuss the
effect that this additional condition has on the parameter
constraints below.

TABLE I. Summary of the parameter ranges investigated for each of the inflationary scenarios in the MCMC analysis in Sec. IVB.
All ranges are for values as the scalar mode k
s crosses the horizon. We also show the change in the effective minimum �2 ¼ �2 lnL,
where L is the likelihood, and number of extra degrees of freedom (d.o.f.) in comparison to the fiducial, canonical power law
primordial power spectrum with scale independent running.

Scenario Inflation type cs � l� � l� �ð�2 lnLÞ �ðd:o:f:Þ
C1 Canonical 1 [0,0.5] ½�0:1; 0:1�, lmax ¼ 2 0 0 1.14 0

C2 Canonical 1 [0,0.5] ½�0:5; 0:5�, lmax ¼ 5 0 0 1.18 3

G1 General [0,1] [0,0.5] ½�0:5; 0:5�, lmax ¼ 2 ½�0:5; 0:5� 0 1.16 2

G2 General [0,2] [0,0.5] ½�0:5; 0:5�, lmax ¼ 2 ½�0:5; 0:5� 0 0.96 2

G3 General [0,2] [0,0.5] ½�0:5; 0:5�, lmax ¼ 2 ½�0:5; 0:5� ½�1:0; 1:0�, lmax ¼ 1 1.28 3

FIG. 3 (color online). Evolution of cs [left panel], � [center panel] and csk=aH [right panel] for k ¼ 0:01 Mpc�1, for two example
trajectories with � > 0 (black) and � < 0 (red) at the epoch when current cosmological scales exit the horizon. We find that for all
viable trajectories csk=aH is monotonically decreasing over the course of inflation so that one does not need to be concerned about the
prospect of multiple horizon crossings, and freezing and thawing of scalar perturbations.
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We constrain the models using a combination of cosmo-
logical data sets, including measurements of the CMB
temperature and polarization power spectrum from the
WMAP 5-year data release [12,13], the ‘‘Union’’ set of
supernovae [77], and the matter power spectrum of LRGs
as measured by the SDSS [21,78]. We include the shift
parameter, ascl, to adjust the matter power spectrum as
discussed in [21].

The MCMC convergence diagnostic tests on each sce-
nario considered are performed on four or more chains
using the Gelman and Rubin ‘‘variance of chain mean’’/
‘‘mean of chain variances’’ R statistic for each parameter.
Our 1D and 2D constraints are obtained after marginaliza-
tion over the remaining ‘‘nuisance’’ parameters, again
using the programs included in the CosmoMC package.

In Figs. 4 and 5 we show the 1D and 2D marginalized
posterior probability distributions for the flow parameters
and power spectrum observables, ns, nrun, and r at k
s for

the canonical and general inflationary scenarios studied,
and for the ‘‘standard’’ power law inflationary model with
scale independent running. Comparing the constraints on
the canonical and general models, we see that inclusion of
higher-order flow parameters can noticeably change the
constraints on the power spectrum properties. Model C2
significantly opens up the accessible region as compared to
the standard power law model and C1, allowing larger
negative running models and large tensor amplitudes.
That one obtains constraints on all higher-order flow pa-
rameters 3�–5� separately in C2, can be attributed to our
truncation of the flow hierarchy at l ¼ 5. If one were to
further include more higher-order parameters in the analy-
sis, then this would further open up the parameter space for
lower-order parameters.
Note that since the data has only a finite amount of

information, adding extra degrees of freedom does not
necessarily lead to a statistically important improvement

FIG. 4 (color online). Comparison of the 1D marginalized posterior probability distributions for the flow parameters and
observables, for the cases of power law inflation with scale independent running (blue full line) and our models C1 (black dotted),
C2 (black dashed), G2 (red dot-dashed) and G3 (red triple dot-dashed). The constraints for model G1 are the same as those for G2, with
just cs cutting off at 1, so we do not show them here.
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in the fit. Table I shows a comparison of the fit obtained for
primordial power spectra based on the flow parameters for
different models, with that for the commonly assumed
canonical power law spectrum with scale independent
running of the scalar spectral index. The alternative pa-
rameterization of the primordial spectrum does not signifi-
cantly improve the fit with data, the improvement in �2

does not outweigh the additional degrees of freedom
added, but rather allows the primordial power spectrum
to be reconstructed with more freedom.

Increasing the magnitudes of the higher-order flow pa-
rameters increases the variation of the scalar spectral index
over the observed scales and significantly boosts or dimin-
ishes small- and large-scale power to levels inconsistent
with CMB and galaxy matter power spectrum observa-
tions, respectively. We show this in Fig. 6 where we plot
the 1D posterior probability distributions for the primordial
power spectrum for models C1, C2, and G2. Specifically,
C2 is better able to fit freedom in the power spectrum at
large and small scales arising from larger experimental and
cosmic variance errors on those scales. We also find that
notable degeneracies exist between the higher-order flow
parameters in C2, reflecting that the number of indepen-
dent degrees of freedom measured by the observed primor-

dial power spectrum is less than the number of higher-order
parameters employed. Future small-scale measurements of
the power spectrum, for example, using Lyman-� obser-
vations, will help to reduce this interdependency.
Allowing general inflation, with cs � 1, � � 0, as in

models G1–G3, predominantly alters the tensor amplitude
posterior distribution, consistent with the overlap of obser-
vational constraints and the Monte Carlo sampling using
linear priors on the flow parameters in general models
shown in Fig. 1. The scalar spectral index to first order is
dependent on 2ð�2�þ 1�� �Þ so that allowing an evolv-
ing sound speed (with � � 0) opens up the range of 1� that
is consistent with observations in comparison to canonical
models.
The bounds on the flow parameters that we obtain in our

analysis arise from two different sets of constraints:
(i) observations, and (ii) the � < 1 requirement. In canoni-
cal models, we find the constraint on � imposed by the � <
1 condition is very similar to that arising from the obser-
vational constraint therefore it does not play a major role.
This is not true for general models, however. We see from
(61) that the bound on r alone places a rough upper bound
on the product cs�, but leaves � and cs individually un-
bounded, as, for example, in [48]. Insisting however, that,

FIG. 5 (color online). The 68% and 95% confidence regions of the ð1�; 2�Þ [left], ðr; nsÞ [center], and ðnrun; nsÞ [right] parameter
spaces. Constraints for a standard power law spectrum with constant running are shown in dark blue and light blue, as well as canonical
inflation models C1 (black dotted), C2 (black dashed) and general inflation model G2 (red dot-dashed).

FIG. 6 (color online). Comparison of the 1D marginalized posterior probability distributions, showing 68% (dark blue) and 95%
(pale blue) confidence limits, for the primordial scalar power spectrum for models C1 [left], C2 [center] and G2 [right], in comparison
to a ‘‘standard’’ power law spectrum with scale independent running (black dashed lines). Increasing the number of flow parameters
increases the freedom with which the spectrum is reconstructed. In particular we can get significantly greater or smaller power at small
and large scales, least well measured by the CMB and large-scale structure data, respectively. The bounds on the higher-order
parameters in model C2 directly arise from constraining this greater or lesser power at the extreme ends of the observed scales.
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for consistency, inflation should occur over the observable
scales in general inflationary models, i.e. � < 1 from when
the initial conditions for each observable mode are set up
until when the power spectrum for all observable modes
10�4 Mpc�1 & k & 5 Mpc�1 has converged, introduces a
constraint on �N over the observable range. This restricts
the value of �ðk
sÞ and �ðk
sÞ over and above the observa-
tional constraints arising from the power spectrum proper-
ties at the pivot point. In Fig. 7 we demonstrate this by
plotting csðk
sÞ vs �ðk
sÞ for a sampling of flow parameter
combinations for model G1 that are consistent with obser-
vations at the 95% confidence level. We find that requiring
� < 1 induces the constraint on �ðk
sÞ and constrains
�ðk
sÞ & 0:03 at the 95% confidence level. Note that, as
seen in Fig. 4, adding in an extra flow parameter, 1�, as in
model G2, does not significantly alter the observational
constraints on � in the presence of the � < 1 requirement.
Extending the truncation to include higher nonzero l�
might alter the constraints on �, however such additional
degrees of freedom are not statistically warranted by the
data so we do not consider such models here.

FIG. 7 (color online). While models with large � and small cs
are consistent with observational constraints from the bound on
r, imposing the condition that inflation persists while the ob-
servable scales exit the horizon places an additional restriction
on �ðk
sÞ. The left panel shows csðk
sÞ vs �ðk
sÞ for models
which satisfy observational constraints. Models which addition-
ally satisfy �ðkÞ< 1 (red crosses) have an upper limit on the
value of �ðk
sÞ, while for larger �ðk
sÞ (blue squares) the �ðkÞ<
1 condition is not met (these models are rejected in the MCMC
analysis). The right panel shows the evolution of �ðkÞ for
observable modes, for example models which give constraints
at the pivot point in agreement with the data, and which satisfy
(red, lower two lines) or break (blue, upper two curves that reach
� ¼ 1).

FIG. 8 (color online). Comparison of the 1D marginalized posterior probability distributions for Model C1 [top panels] and C2
[lower panels], showing 68% (dark blue) and 95% (pale blue) confidence limits, for the flow parameters and observables as each
observed comoving mode k exits the horizon, where kðNÞ is given by (70).
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In Figs. 8 and 9 we show the 1D 68% and 95% con-
fidence levels for the flow parameters and �, X, and XLX,
for the field choice LX ¼ c�1

s , as a function of the observ-
able comoving mode kðNÞ, that exits the horizon N e-folds
before the end of inflation (the slice at k
 ¼ 0:01 Mpc�1 is
directly analogous with the 1D constraints shown in

Fig. 4), where [45],

�ðNÞ ¼ �ðN
Þ exp
Z N

N

2�ðN0ÞdN0; (67)

XLXðNÞ ¼ 1

3
�ðNÞ�ðNÞ; (68)

FIG. 9 (color online). Comparison of the 1D marginalized posterior probability distributions for Model G1, showing 68% (dark blue)
and 95% (pale blue) confidence limits, for the flow parameters and observables as each observed comoving mode k exits the horizon.

FIG. 10. Reconstructed energy density � [upper panels] and kinetic term XLX [lower panels] for canonical models C1 [left panel],
C2 [center] and general inflationary model G1 [right] which satisfy both conditions 1 and 2 from Sec. IV. Each has As, ns, nrun at
k ¼ k
 and the tensor-to-scalar ratio consistent with observations at the 2� level, and � ¼ 1 at the end of inflation with N
 � 50–80.
The range of � represents 100 e-foldings of evolution, with � ¼ 0 at scalar horizon crossing for k
. (For canonical models with the
usual scalar field definition, LX ¼ c�1

s , XLX ¼ X.)
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XðNÞ ¼ 1

3
�ðNÞcsðNÞ�ðNÞ; (69)

lnkðNÞ ¼ lnk
s � ðN � N
Þ �
Z N

N

�ðN0ÞdN0; (70)

with

�ðN
Þ¼ 24	2csðN
Þ�ðN
ÞAs

1�2�ðN
Þþ2bð2�ðN
Þþ�ðN
Þ��ðN
Þ
2 Þ : (71)

As has been pointed out in previous analyses using power
law primordial power spectra [79], the best measured
modes are around k� 0:01 Mpc�1, with large-scale con-
straints being limited by cosmic variance. However even in
the scenarios with higher-order flow parameters allowed to
vary, the observations, in combination with the � < 1
condition, impose interesting constraints on the flow pa-
rameters across the full range of observable scales.

C. Reconstruction of viable inflationary trajectories

In this section we consider the viable trajectories that
satisfy both conditions 1 and 2, namely, the spectral prop-
erties are consistent with observational constraints in the k
range measurable by CMB and large-scale structure ex-
periments, and inflation ends with � ¼ 1 around 60 e-
foldings after observable modes have exited the horizon.

Figure 10 shows the results of �150 reconstructed en-
ergy density evolutions �ð�Þ, and kinetic term evolutions
XLXð�Þ, tracing back 100 e-foldings from the end of
inflation, for canonical and general models C1, C2, and
G1, in which the power spectrum properties, As, ns, nrun at
k
, and the tensor-to-scalar ratio, are consistent with ob-
servations at the 2� level and � ¼ 1 at the end of inflation.
We set � ¼ 0 at scalar horizon crossing for k
, and � at
other epochs is given by

�ðNÞ ¼ �
Z N

N


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2csðN0Þ�ðN0Þ

q
dN0: (72)

We see that introducing higher-order flow parameters
and/or the possibility of an evolving sound speed open up
the range of allowed trajectories. Equally, however, obser-
vational constraints within the single field inflationary
formalism are already starting to tie down the range of
allowed inflationary histories for both canonical and gen-
eral inflation.

V. CONCLUSIONS

The large amount of data available today from CMB and
large-scale structure surveys can be used to turn around the
problem of matching inflationary theory to observations, to
reconstructing the theory from the data itself. In this paper
we explore the parameter space of general single field
inflationary models by using a Monte-Carlo-Markov-
Chain approach in combination with the Hubble flow

formalism, and constrain the energy density and kinetic
energy in such a Lagrangian.
In order to accommodate models that allow the speed of

sound, cs, to vary during inflation, it is important to take
into account the fact that tensor and scalar modes cross the
horizon at different epochs. This directly affects the tensor-
to-scalar ratio, which may deviate by as much as 50% from
the value obtained by assuming that horizon crossing
epochs are effectively simultaneous.
We use the full flow parameter evolution equations to

solve for the scalar and tensor perturbations spectra, and
subsequently evolve each spectrum until it freezes out, as
opposed to evaluating it at horizon crossing, in order to get
precise predictions for the primordial power spectra over
the full range of observable scales. We study five different
classes of models of inflation, summarized in Table I, in
light of the latest CMB and large-scale structure data and
show the observational constraints on the flow parameters,
observed power spectrum, and typically considered
observables, ns, nrun, and r, at the pivot point k ¼
0:01 Mpc�1.
Including higher-order slow-roll parameters allows a

higher dimensional fit to the primordial power spectrum,
with increased power on large and small scales possible in
comparison to the commonly considered canonical power
spectrum with scale independent running of the spectral
index. In models of general inflation, where we allow cs to
vary, the condition that inflation should continue (i.e., � <
1) on observable scales imposes a natural bound on the
value of � and � at horizon crossing of the pivot mode, and
constrains the value of r.
In the absence of a sound theoretical explanation for

inflation, the method of action reconstruction holds a lot of
promise to give valuable directions for the search of such a
theory. We impose constraints on the energy density and
kinetic energy terms in the Lagrangian in light of current
observations. The next step could now be to either explic-
itly construct a general class of allowed Lagrangians, or
study different possible Lagrangians in light of these con-
straints. Once we have a general Lagrangian that could
consistently explain the observed inflationary properties,
the elucidation of its theoretical motivation should hope-
fully be that much closer.
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