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Consistency relations between growth of structure and expansion history observables exist for any

physical explanation of cosmic acceleration, be it a cosmological constant, scalar field quintessence, or a

general component of dark energy that is smooth relative to dark matter on small scales. The high-quality

supernova sample anticipated from an experiment like the SuperNova/Acceleration Probe and cosmic

microwave background data expected from Planck thus make strong predictions for growth and expansion

observables that additional observations can test and potentially falsify. We perform a Markov chain

Monte Carlo likelihood exploration of the strength of these consistency relations based on a complete

parametrization of dark energy behavior by principal components. For �CDM, future supernova and

cosmic microwave background data make percent level predictions for growth and expansion observables.

For quintessence, many of the predictions are still at a level of a few percent with most of the additional

freedom coming from curvature and early dark energy. While such freedom is limited for quintessence

where phantom equations of state are forbidden, it is larger in the smooth dark energy class. Nevertheless,

even in this general class predictions relating growth measurements at different redshifts remain robust,

although predictions for the instantaneous growth rate do not. Finally, if observations falsify the whole

smooth dark energy class, new paradigms for cosmic acceleration such as modified gravity or interacting

dark matter and dark energy would be required.
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I. INTRODUCTION

A decade after the first firm evidence for the accelerated
expansion of the Universe [1,2], the study of dark energy
remains one of the most important yet difficult endeavors
in theoretical cosmology (e.g., [3–5]). The quality of data
from a variety of cosmological probes has strengthened in
recent years [6–26], leading to multiple, independent lines
of evidence for the accelerating expansion. In the near
future, we can expect a battery of measurements with
unprecedented precision that will provide stringent tests
of any purported explanation of cosmic acceleration.

Despite the tremendous amount of raw information ex-
pected from upcoming type Ia supernova (SN) surveys,
baryon acoustic oscillations (BAO) from galaxy redshift
surveys, weak lensing, and cluster counting surveys, only a
handful of parameters associated with the dark energy
equation of state can be constrained [27,28]. This limita-
tion arises because most observables depend on cosmo-
logical distances and growth, which are integrals over the
expansion rate, which itself contains an integral over the
dark energy equation of state.

Although insensitivity to fine-scale features of the equa-
tion of state is a drawback for measuring dark energy

parameters, it is an advantage for testing the consistency
among acceleration observables required by dark energy
paradigms; since the individual probes of dark energy do
not depend strongly on the rapidly oscillating evolution of
the equation of state, neither do the consistency relations
between these observables. For example, it is well known
that under a cosmological constant explanation of accel-
eration or simple parametrizations of the equation of state,
distance measurements predict the growth of structure in a
spatially flat universe. Violation of this consistency relation
would falsify the standard flat �CDM model and its most
basic generalizations.
The goal of this study is to extend these ideas of pre-

diction and falsification from simple dark energy parame-
trizations to general classes of dark energy models with
time-dependent equations of state, specifically scalar field
quintessence and dark energy that is spatially smooth
compared with the dark matter on small scales. We start
with SN and cosmic microwave background (CMB) mea-
surements expected in the next decade and make predic-
tions for growth and expansion history measurements as a
function of redshift within dark energy model classes
parametrized by a complete basis of principal components.
Where predictions are tight, observations can falsify the
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model class. Where predictions are loose, observations can
better pin down the parameters of the class, in particular,
those controlling spatial curvature and dark energy that is
significant at early times.

Our study complements previous work [29–31] on the
observable predictions of classes of dark energy models,
and follows a long history of studies concerning the best
way to probe dark energy using cosmological observations
[32–70]. To our knowledge this is the first time that con-
sistency between growth, distance, and other expansion
observables has been studied in such a general and quanti-
tative way. In particular, while some previous studies have
considered predictions of dark energy described with a
small number of parameters (e.g., [29,31,62]), here we
consider �500 parameters of which about 10–15 are nec-
essary to completely describe to high accuracy the predic-
tions of current or future data. Although we compute
equations of state for dark energy as an intermediate step
between distance and growth, we emphasize that our goal
is not to reconstruct wðzÞ, unlike many previous studies
(e.g., [37,71–79]). Rather than addressing the quality of
constraints on the equation of state, here we are more
interested in using dark energy parameters only as a tool
to study how to falsify basic paradigms for cosmic
acceleration.

This paper is organized as follows. In Sec. II, we de-
scribe our methods for computing predictions for observ-
ables from future cosmological data under different dark
energy paradigms. These predictions can lead to falsifica-
tion and subsequent generalization of each model class as
shown in Sec. III. The main tests of each class are sum-
marized in Sec. IV. Appendices provide additional details
about the inclusion of various data in the construction of
principal components and in the likelihood analysis, our
methodology for computing the principal components, and
tests of the completeness of our parametrization in the
growth and expansion observables.

II. METHODOLOGY

A. Dark energy principal components

We parametrize the dark energy equation of state, wðzÞ,
with a basis of principal components (PCs) [80,81]. The
PC amplitudes are weighted redshift averages of wðzÞ
ordered by how well they are measured, and can be
straightforwardly computed for a given data set. As we
discuss in Secs. II D and II E, principal components based
on SN distance modulus data, in particular, provide a
nearly complete basis for other acceleration observables.
We therefore treat the PC amplitudes as simply a conve-
nient intermediate representation to capture the informa-
tion in the distance modulus and translate it into
predictions for other observables.

Principal components can also be defined for other
redshift-dependent quantities such as the dark energy
(DE) density �DEðzÞ (e.g., [81,82]) which is related to

wðzÞ by

�DEðzÞ ¼ �cr;0�DE exp

�
3
Z z

0
dz0

1þ wðz0Þ
1þ z0

�
; (1)

where �cr;0 is the critical density and�DE is the fraction of

dark energy, both at the present time. References [83,84]
discuss the advantages of using either wðzÞ or �DEðzÞ to
describe dark energy. Our choice to use wðzÞ is motivated
by the fact that the model classes we consider are separated
by the allowed values ofw: w ¼ �1 for�CDM and�1 �
w � 1 for quintessence. (Values ofw outside this range are
possible for quintessence models in which the dark energy
density becomes negative, but such models are inconsistent
with current data as we discuss in Sec. III B.)
Specifically, we compute the PCs based on distances to

type Ia supernovae with measurement errors modeled after
the proposed specifications for the SuperNova/
Acceleration Probe (SNAP [85]) experiment. We also as-
sume that 300 low-z SNe will be available for calibrating
the normalization of the high-z distance-redshift relation.
We supplement the SN observables with constraints on the
expansion history at earlier times from the CMB acoustic
peaks using the precision expected from the Planck mis-
sion. We take the CMB observables to be the matter
density scaled to the present, �mh

2, and the comoving
angular diameter distance to last scattering, D� � Dðz�Þ
where z� � 1090 [24]. Our assumptions about these fidu-
cial SN and CMB data sets and additional priors are de-
tailed in Appendix A. The fiducial cosmology we assume
for the PC construction (and for likelihood analysis) is flat
�CDM with present matter fraction �m ¼ 0:24 and
Hubble constant h ¼ 0:73, consistent with current data
[24,25].
The principal component functions eiðzjÞ are eigenvec-

tors of the covariance matrix for the equation of state in
redshift bins fzjg, and they form a basis in which an

arbitrary function wðzjÞ may be expressed as

wðzjÞ � wfidðzjÞ ¼
XNz;PC

i¼1

�ieiðzjÞ; (2)

where �i are the PC amplitudes, Nz;PC ¼ 1þ zmax=�z is

the number of bins in redshift, and zj ¼ ðj� 1Þ�z. We

adopt a maximum redshift for variations in wðzÞ of zmax ¼
1:7 to match the largest redshift for our fiducial supernova
data, and we use a fiducial model wfidðzÞ ¼ �1 since
�CDM is an excellent fit to current data. For these choices
of zmax and wfidðzÞ, Fig. 1 shows the 15 lowest-variance
PCs, which form the basis we use for likelihood analysis.
We comment on how the PCs depend on the choices of zmax

and the fiducial cosmology in Appendix B.
By normalizing the PCs as

XNz;PC

i¼1

½eiðzjÞ�2 ¼
XNz;PC

j¼1

½eiðzjÞ�2 ¼ Nz;PC; (3)
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the components approach a ‘‘continuum limit’’ as �z ! 0
in which the shapes of all but the worst-determined PCs
become smooth and independent of �z (or Nz;PC). A small

bin width �z & zSNmin also allows us to resolve changes in

wðzÞ at redshifts below that of the nearest supernova in the
sample, zSNmin ¼ 0:03, which can evade SN constraints as

discussed in Appendix B. We have chosen to use bins
spaced linearly in redshift, and the exact shapes of the
components depend somewhat on this choice; for example,
had we chosen bins with equal widths in a ¼ ð1þ zÞ�1 or
lnð1þ zÞ, the weights of the PCs would have shifted in
redshift [86]. However, the most important property of the
PCs for our purposes is that they form a complete basis for
observables such as distance and growth (Sec. II E), and
this completeness can be achieved for a variety of different
binning conventions.

Although we use a large number of redshift bins
(Nz;PC � 500) to approach the continuum limit of the PC

shapes, we generally truncate the sum in Eq. (2) to include
only the Nc < Nz;PC modes that are measured best by the

fiducial data. Predictions in Sec. III are based on a choice
of Nc ¼ 15, and we explain how this number of PCs
ensures completeness in various observables in Sec. II E.

For model classes that restrict wðzÞ to some range
wmin � w � wmax, we can place priors on the PC ampli-
tudes analogous to those introduced in Ref. [87] for reio-
nization principal components. These priors, which we
define in Appendix A, include top-hat bounds on each
PC amplitude and an upper limit on the sum of squares
of the amplitudes. Because of the truncation of the number
of principal components required for likelihood analysis,
we adopt conservative priors. A combination of PC ampli-

tudes is only excluded if the resulting equation of state at
some redshift exceeds the bounds on w regardless of the
amplitudes of the truncated components (f�ig with i >
Nc). Conversely, satisfying the PC priors does not guaran-
tee that a reasonable set of truncated components can bring
wðzÞ back within the bounds. The priors therefore include
all models within a class, but do not necessarily exclude all
models outside that class.
Our baseline dark energy model class is parametrized by

the PC amplitudes, �m, and �mh
2 in a flat universe:

� base ¼ f�1; . . . ; �Nc
;�m;�mh

2g: (4)

The Hubble constant, h ¼ H0=ð100 kms�1 Mpc�1Þ ¼
ð�mh

2=�mÞ1=2 is a derived parameter in this
representation.
In this baseline class we take the dark energy density to

be constant at z > zmax. The underlying assumption in this
class is that by z ¼ zmax the dark energy is already much
smaller than the matter density as in�CDM, and enforcing
constant dark energy density at z > zmax assures that it
becomes increasingly irrelevant at higher redshift. Note
that our baseline model class includes the standard
�CDMmodel of a cosmological constant in a flat universe,
corresponding to f�ig ¼ 0 for wfidðzÞ ¼ �1.

B. Early dark energy and curvature

If observations falsify the baseline model class, we can
generalize it by including both dark energy that remains a
substantial fraction of the energy density at z > zmax,
dubbed ‘‘early dark energy’’ [88,89], and spatial curvature.
To describe early dark energy, we adopt a simple pa-

rametrization by assuming a constant equation of state,
wðz > zmaxÞ ¼ w1 [86]. The dark energy density at z >
zmax can be extrapolated from its value at zmax as

�DEðzÞ ¼ �DEðzmaxÞ
�

1þ z

1þ zmax

�
3ð1þw1Þ

: (5)

This description notably accounts for, but is not limited to,
scalar field models that ‘‘track’’ at z > zmax [90–92] where
the equation of state is determined by that of the dominant
component, in this case matter (w ¼ 0). We examine the
limitations of this parametrization in Appendix C. Instead
of w1, we use expðw1Þ as the parameter for likelihood
analysis since models with w1 � �1 all have rapidly
vanishing dark energy density at z > zmax and are therefore
degenerate with each other in all observables. We allow the
early dark energy parameter to vary within the range 0 �
expðw1Þ � 1, where the upper limit eliminates w1 > 0
models with dark energy density that exceeds the matter
density at early times. We restrict the allowed range forw1
further in model classes where the low-redshift equation of
state is bounded (see Appendix A for details).
Note that components of dark matter that are smooth on

small scales, for example, very light neutrinos, are also
described by the early dark energy parametrization. We

FIG. 1. The first 15 PCs of wðzÞ (increasing variance from
bottom to top), with 500 redshift bins between z ¼ 0 and zmax ¼
1:7. The vertical dashed line shows the minimum redshift of the
data assumed for computing the PCs, zSNmin ¼ 0:03. The PCs are

offset vertically from each other for clarity with dotted lines
showing the zero point for each component.
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will not distinguish between these two possibilities here as
that would require measurements in a regime where either
the neutrinos or the dark energy were not smooth.

To complete our most general model class, we allow for
the possibility of spatial curvature, parametrized by �K �
1��m ��DE. The full parametrization for a dark energy
model class is therefore

� full ¼ f�1; . . . ; �Nc
;�m;�mh

2; expðw1Þ;�Kg: (6)

The present dark energy density �DE is derived from this
parameter set. Setting w1 ¼ �1 and �K ¼ 0 recovers the
baseline model class of Eq. (4).

C. Markov chain Monte Carlo

We use the Markov chain Monte Carlo (MCMC) algo-
rithm to estimate the joint posterior distribution of cosmo-
logical parameters and derived observables by sampling
the parameter space and evaluating the likelihood of each
proposed model compared with an assumed data set (e.g.,
see [93–95]). The posterior distribution is obtained using
Bayes’s theorem,

P ð�jxÞ ¼ Lðxj�ÞP ð�ÞR
d�Lðxj�ÞP ð�Þ ; (7)

where Lðxj�Þ is the likelihood of the data x given the
model parameters � and P ð�Þ is the prior probability
density. The MCMC algorithm generates random draws
from the posterior distribution that are fair samples of the
likelihood surface. From these samples, we can estimate
many properties of the posterior distribution including the
mean values, covariance, and confidence intervals of both
the basic set of parameters and derived parameters and
observables. Convergence of the set of random samples to
a stationary distribution that approximates the joint poste-
rior densityP ð�jxÞ requires a large number of independent
samples. We use a minimum of four chains per model and
determine when these chains have a sufficient number of
samples for convergence by applying a conservative
Gelman-Rubin criterion [96] of R� 1 & 0:01.

The full details of the simulated cosmological data and
priors used for the MCMC analysis and their likelihood
functions are given in Appendix A and summarized in
Sec. II D.

We assume that all of the fiducial data are consistent
with a flat �CDM model with �m ¼ 0:24 and h ¼ 0:73,
given that this model fits current constraints well. We
therefore do not consider here the potential for SN and
CMB data to test this fiducial cosmology. It is, however,
possible that these future measurements will falsify flat
�CDM by themselves, even before considering consis-
tency with additional observables such as growth. We
have checked that most of our qualitative conclusions do
not change with allowed alterations of the model under-
lying the SN and CMB data, and we note exceptions in
Appendix C.

Given a parametrization for a model class and the fidu-
cial data, the MCMC posterior distribution then provides
observable predictions for parameters and derived accel-
eration observables that can be used as consistency tests to
attempt to falsify the whole model class.

D. Acceleration observables

In this section, we define a set of redshift-dependent
observables that can be probed by future experiments. We
focus on acceleration observables that can be simply com-
puted from the expansion history, leaving for future study
the detailed relation of these quantities to what is actually
expected to be measured by specific planned experiments.
We divide the observables into two categories. In the

first are observables that we assume will be measured by a
SNAP-like sample of supernovae and the Planck satellite.
These measurements constitute the data for MCMC like-
lihood analysis, from which we make predictions for the
second category of observables in specific model classes.
Supernova observations constrain the distance modulus,

or relative luminosity distance, between objects of differ-
ent redshift in the sample. We take the SN data as a starting
point since of the known methods for constraining the
acceleration, it has the finest resolution in redshift and
hence its principal components form the most complete
set for providing testable predictions. Supernovae have an
additional advantage of being sensitive to low redshifts z &
0:5 where dark energy dominates the energy budget and
where other probes like BAO and weak lensing do not have
enough volume and distance, respectively, in order to
strongly constrain dark energy. We take the same Planck
CMB constraints on �mh

2 and angular diameter distance
D� as used in the PC construction.
The SN and CMB data make predictions within a model

class for the remaining observables, which include the
expansion rateHðzÞ, the absolute distanceDðzÞ, the growth
function GðzÞ, and the growth rate fðzÞ.
The expansion rate, allowing for a general dark energy

component and spatial curvature, is

HðzÞ ¼ H0

�
�mð1þ zÞ3 þ �DEðzÞ

�cr;0

þ�Kð1þ zÞ2
�
1=2

:

(8)

Except when dealing with CMB observables, we generally
ignore the contribution of radiation to the expansion rate
since it is a negligible fraction of the density at low z. The
absolute distance observable we use is the comoving (an-
gular diameter) distance

DðzÞ ¼ 1

ðj�KjH2
0Þ1=2

SK

�
ðj�KjH2

0Þ1=2
Z z

0

dz0

Hðz0Þ
�
; (9)

where the function SKðxÞ is equal to x in a flat universe
(�K ¼ 0), sinhx in an open universe (�K > 0), and sinx in
a closed universe (�K < 0). Luminosity distances, whose
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ratios are measured by SNe (see Appendix A), are simply
related to Eq. (9) by dLðzÞ ¼ ð1þ zÞDðzÞ.

We define the growth function as GðzÞ / ð1þ zÞD1ðzÞ,
whereD1ðzÞ � �ðzÞ=�ðzinitÞ describes growth of the matter
overdensity � normalized at an initial redshift zinit ¼ 1000
during matter domination. If �mðzÞ � �mð1þ zÞ3 	
½H0=HðzÞ�2 ¼ 1, then D1ðzÞ / ð1þ zÞ�1 and GðzÞ is con-
stant. The growth function obeys

G00 þ
�
4þH0

H

�
G0 þ

�
3þH0

H
� 3

2
�mðzÞ

�
G ¼ 0; (10)

where primes denote derivatives with respect to lna. We
normalizeG to its value at zinit, taking the initial conditions
to be

GðzinitÞ ¼ 1; G0ðzinitÞ ¼ � 3ð1� w1Þ
5–6w1

�DEðzinitÞ;
(11)

where G0 follows from solving Eq. (10) for a small power-
law perturbation to constant GðzÞ, assuming �DEðzinitÞ �
1, and neglecting curvature since it has little effect on the
expansion rate at early times. We do not include radiation
when solving Eq. (10), and we assume that the dark energy
component is smooth on scales below the horizon at z <
zinit.

Because growth measurements can be compared either
to low-redshift data sets to obtain the relative growth
G0ðzÞ � GðzÞ=Gðz ¼ 0Þ between a redshift z and the
present, or to recombination through the CMB acoustic
peaks to obtain GðzÞ, we show predictions for both in the
following sections. The latter will ultimately be limited by
the measurement of the optical depth to reionization from
CMB polarization due to the translation between the ob-
served acoustic peak amplitude and the intrinsic fluctua-
tions at recombination.

The logarithmic growth rate is defined as

fðzÞ � d lnD1

d lna
¼ 1þG0

G
; (12)

which is commonly approximated as fðzÞ ¼ ��
mðzÞ where

the growth index is � � 0:55 for flat �CDM [97,98].
Measurements of � have been proposed as a way to test
general relativity; we examine this idea in the context of
various classes of cosmological models in Sec. III D.

In this paper, we remain agnostic about the techniques
that best probe these observables and simply assess the
precision to which they can be predicted in certain model
classes. However, some caveats are useful to keep in mind.
Although we make predictions as a function of redshift that
can include fine-scale features, measurements will typi-
cally only constrain coarse-grained averages of the predic-
tions over wide bands in redshift. For example,
observations of the imprint of BAO on galaxy clustering
in directions transverse to the line of sight provide a
standard ruler to constrain absolute distances DðzÞ, and

BAO measurements along the line of sight can constrain
the expansion rate, HðzÞ. However, a volume of * 1 Gpc3

is required to obtain accurate measurements of either
quantity, resulting in smearing in redshift.
Likewise, weak lensing measures both the growth func-

tion and ratios of distances, but the broadness of the lensing
kernel and scatter in photometric redshifts again prevents a
purely local measurement. Growth rate measurements that
involve the redshift space distortion of galaxy surveys and
galaxy bias information from lensing suffer from broad-
ening from both data sets. Growth and growth rate mea-
surements from the cluster abundance or weak lensing in
the nonlinear regime also involve integrals over the past
history of growth and not merely the instantaneous linear
growth [99].
Finally, it is useful to place weak current priors on

parameters related to the observables. In the broadest
model classes that we consider, the SN and CMB measure-
ments alone are not sufficiently predictive to eliminate
even highly deviant models. To ensure that we only include
models that are not already ruled out by observations, we
include priors on the fraction of dark energy at recombi-
nation �DEðz�Þ from Wilkinson Microwave Anisotropy
Probe (WMAP) [100], the absolute distance Dðz ¼ 0:35Þ
from current BAO measurements from Sloan Digital Sky
Survey [13], and the Hubble constant H0 from the Hubble
Space Telescope Key Project [101]. The former represents
the impact of the change in the growth function near
recombination on the first few acoustic peaks of the
CMB. We conservatively do not include the expected
improvement on this measurement from Planck. The
BAO distance prior serves mainly to reduce the possible
deviations from a flat geometry for dynamical dark energy
models with spatial curvature. The role of the Hubble
constant prior in this analysis is to limit the variation in
wðzÞ at very low redshifts as we describe in Appendix B.
In summary, the observables that we predict are the

expansion rate HðzÞ, comoving absolute distances DðzÞ,
the growth history GðzÞ relative to recombination or G0 �
GðzÞ=Gðz ¼ 0Þ relative to the present, and the growth rate
fðzÞ. The redshift evolution of these quantities for the
fiducial flat �CDM model is plotted in Fig. 2.
Predictions from SN and CMB data are derived by con-
structing these observables from models in the MCMC
samples described in Sec. II C, and we explore the impli-
cations for various dark energy model classes in Sec. III.

E. Completeness

To make predictions that can reliably be used to falsify
paradigms for dark energy, our parametrization must de-
scribe any effects that models within the class might have
on observables. In particular, we must ensure that the set of
principal components that parametrize variation in wðzÞ
form a complete basis for representing changes in growth
and expansion observables relative to the fiducial cosmol-
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ogy due to changes in the dark energy equation of state. In
this section we summarize our criteria for completeness,
and refer the reader to more detailed discussions of these
issues in Appendices B and C.

When computing the PCs from the Fisher matrix for SN
and CMB distances, we have a choice of whether to fix or
marginalize over the parameters other than the binned
wðzÞ. These decisions affect PC shapes due to degeneracies
between wðzÞ and the other parameters. We choose to fix
�K andw1, thereby including degeneracies with curvature
and early dark energy among the well-measured PCs. We
marginalize �m in the PC construction, thus reducing the
completeness for representing sharp transitions in wðzÞ at
z < zSNmin as we describe in Appendix B. Since these tran-

sitions are largely indistinguishable and limited mainly by
the external Hubble constant prior, completeness is not
important here. We therefore choose in this instance to
sacrifice completeness for efficiency in representing the
well constrained redshift range.

Given the set of PCs, the next question is how many out
of the full set of Nz;PC components we need to keep as

parameters (see Sec. II A). Note that neglecting even the
high-variance PCs can have large effects on the equation of
state. However, since all of the observables contain inte-

grals over wðzÞ the effects of these rapidly oscillating PCs
(see Fig. 1) tend to cancel out for the redshift-dependent
quantities of interest, especially the distance and growth
observables. In general, the number of components neces-
sary for completeness, Nc, will be larger than the number
of dark energy parameters that can be measured to some
specified accuracy. We typically find that the predicted
range of observables changes fractionally by less than a
few percent between MCMC analyses with 10 and 15 PCs
(see Appendix C). The agreement is somewhat worse for
HðzÞ in some cases, but discrepancies occur mostly at z <
zmax where oscillations of HðzÞ about the fiducial model
would be averaged out in BAO measurements over wide
bins in redshift. We conclude that Nc � 10 is sufficient for
completeness, but we present results from the larger set of
15 PCs to further reduce any remaining artifacts due to
incompleteness.
The completeness of the parametrization could in prin-

ciple depend on the choice of fiducial model that we adopt
to represent the true cosmology for future observations. We
assume that the future SN and CMB data will be consistent
with wfid ¼ �1 as is true of current measurements, and we
examine an alternate choice of fiducial model in
Appendix C.
Completeness may also depend on the redshift range

over which the PCs are defined, 0 � z � zmax. The choice
of zmax influences the definition of early dark energy as
well, since we ascribe any deviations from w ¼ �1 be-
havior at z > zmax to early dark energy parametrized by
constant w ¼ w1. We find that choosing zmax ¼ 1:7 to
match the redshift coverage of the fiducial SN data nicely
balances between defining the PCs where cosmological
data have significant support (which argues for a lower
zmax) and having the PCs be a complete representation for
other observables (arguing for a higher zmax). Additionally,
our parameter w1 is not intended to be a complete descrip-
tion of early dark energy but rather a means of monitoring
its observable signatures. We present tests of both our
choice of zmax and the early dark energy parametrization
in Appendix C.

III. TESTING DARK ENERGY PARADIGMS

Distance measurements from SNe and constraints from
the CMBmake predictions for the acceleration observables
described in Sec. II D that can be tested by future experi-
ments. These predictions are made within the context of a
paradigm for acceleration, e.g., a cosmological constant.
Where the predictions are weak, the observables can be
used to estimate parameters within the class, and where
they are strong, precision measurements can potentially
falsify the whole dark energy paradigm.
In the following sections, we step through the predic-

tions for various dark energy model classes as depicted in a
Venn diagram in Fig. 3. Guided by Occam’s razor and
criteria for falsifiability, we begin with the innermost

FIG. 2 (color online). Redshift-dependent quantities for the
fiducial flat �CDM cosmology with �m ¼ 0:24 and h ¼ 0:73
as assumed for PC construction and for the default data sets for
MCMC, including the fractions of the total density in matter and
ark energy, �mðzÞ and �DEðzÞ (top: solid blue and dashed red
lines, respectively), comoving angular diameter distance DðzÞ
(middle: solid blue line), inverse of the expansion rate H�1ðzÞ
(middle: dashed red line), growth function relative to early times
(bottom: solid blue line), and growth rate f ¼ 1þ d lnG=d lna
(bottom: dashed red line). The vertical dotted line is plotted at
zmax ¼ 1:7, the maximum redshift for the PCs and for SNe in the
likelihood analysis.
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model: flat �CDM. Models of this type make the firmest
predictions and are therefore easiest to falsify. The next
simplest and most predictive model class is �CDM with
one additional parameter, spatial curvature. This more
general class is particularly interesting in that falsification
would rule out a cosmological constant.

Since �CDM corresponds to a constant dark energy
equation of state w ¼ �1, our next step in generalizing
the class of models is to allow w to vary with redshift. We
first consider a restricted range,�1 � w � 1, correspond-
ing to the allowed values of the equation of state in
quintessence models where a canonical scalar field is
responsible for cosmic acceleration at late times (e.g.,
[102]).1 Within the quintessence class, we study how the
predictions change when early dark energy and nonzero
curvature are added to the basic model.

For the final model class, we allow w to vary over a
much wider range than in the case of quintessence but
retain the requirement that dark energy is smooth com-
pared with dark matter on scales associated with the mea-
surements of growth. For example, noncanonical kinetic
terms can lead to equations of state with w<�1 [105]. If
such a field has a sound speed substantially below the
speed of light, then the growth predictions presented here
would only apply below its sound horizon [106].
We allow an arbitrary but large range of the equation of

state within �w ¼ 4 of the fiducial w ¼ �1, so �5 �
w � 3. We limit the range of w to enable the MCMC
sampling to converge to the joint posterior distribution of
the parameters more easily. This range is large enough to
include extreme departures from �CDM and quintessence
models, particularly considering the conservative nature of
our priors on PC amplitudes (see Appendix A). As with the
quintessence model class, for the more general class of
smooth dark energy models we also examine the effects of
early dark energy and curvature on predictions for
observables.
The plots we present in the following sections show the

range of fractional deviations in observables relative to the
fiducial flat �CDM model that is allowed by the assumed
SN and CMB data, based on the distribution of MCMC
samples. We plot these predictions for various growth and
expansion observables (Sec. II D) at redshifts 0 � z � 4.
Any future measurements that fall outside the predicted
range of values would falsify a model class.
Since it is impractical to show the whole posterior

distribution at a number of redshifts for several different
observables, we plot only the 68% and 95% limits of the
distributions and a single example model selected from the
MCMC samples. The confidence limits are defined so that
the probability (i.e. number of samples) is equal at the
upper and lower limits, with 68% (or 95%) of the samples
between those limits. This definition corresponds to the
‘‘minimum credible interval’’ of Ref. [107]. A useful prop-
erty of these minimum credible interval limits is that the
confidence region includes the mode of the samples even
when the distribution is strongly skewed.
The redshift range in our plots of observable predictions

extends beyond the coverage of the assumed SN sample so
that we can make predictions for observables at higher
redshift. Such high redshift observations are especially
important for limiting the effects of curvature and early
dark energy parameters that can change observables at
redshifts beyond the reach of the SN data set, although
the CMB distance prior can also play this role in simpler
classes of models.
A model class may still be falsified even if future growth

and expansion observations appear to be consistent with
the SN and CMB predictions for that class. Measurements
of multiple observables, including the same quantity at
different redshifts, could falsify a model class if they are

FIG. 3. Illustration of the model classes (large circles) and
subclasses (represented by points within different regions of
the circles) that we consider in this paper. Open points mark
the initial (simplest) type of model within each class, and arrows
indicate paths to the more complex models in the class. The four
quadrants separate flat and curved models and those with and
without early dark energy. The �CDM class does not contain
models with significant early dark energy by definition.

1Instead of going directly from a cosmological constant to
arbitrary equations of state, one could test several intermediate
models along the way such as constant w or the two-parameter
model wðaÞ ¼ w0 þ wað1� aÞ [103,104], and many authors
have used this approach in analyzing cosmological data. Here,
however, we take the view that unless the dark energy falls into a
well-defined physical classification such as a cosmological con-
stant or a canonical scalar field, there is no reason to define a
particular functional form of wðzÞ as a class and not another.
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inconsistent with the predicted correlations between those
observables. Since these types of inconsistencies between
predictions and observations can be difficult to see in the
types of plots shown here, we use the example models in
each figure to help point out some of the trends in redshift
and between observables.

A. Testing �CDM

The flat�CDMmodel has only two free parameters,�m

andH0, whose values are closely tied together by the CMB
prior on�mh

2. With this simple model, the fiducial SN and
CMB data, or even the CMB data alone, make strong
predictions for the other observables (see Fig. 4).

The uncertainty in the growth function GðzÞ at redshifts
approaching recombination is zero by definition, and only
increases to 0.5% by z ¼ 0 (quoting 68% C.L. here and

throughout this section). The expansion observables at
zmax, Dðz ¼ 1:7Þ, and Hðz ¼ 1:7Þ, are predicted with
0.4% and 0.2% accuracy, respectively. At low z, D and H
have equal fractional uncertainties (since limz!0DðzÞ ¼
z=H0), corresponding to an accuracy of 0.7% for H0

[108]. In comparison, current estimates of H0 have uncer-
tainties of 3.8% from WMAP alone and 1.9% from com-
bined WMAP, SN, and BAO measurements [24]. Note that
there is an extremely tight and potentially falsifiable pre-
diction for H at z� 1 of 0.09% in flat �CDM. This
prediction is driven mainly by the tight CMB distance prior
which effectively reduces the remaining freedom in
�CDM to one parameter. In a flat universe, D ¼R
dz=HðzÞ, so allowed variations in H2 / �mh

2ð1þ zÞ3
at high z must be compensated at low z by an opposing
variation in H0 to preserve D�.
Given these strong predictions, which are in large part

already available from current data, any future detection of
deviations in growth, absolute distance, or the expansion
rate at the percent level at any redshift would provide
evidence against flat �CDM. The predictions are driven
mainly by the CMB prior and hence the SN data them-
selves can be viewed as a stringent test of flat �CDM (see,
e.g. [109]). Conversely, testing the flat �CDM predictions
on other observables does not depend strongly on having
the SNAP SN data set in hand.
Future observations that rule out flat �CDM would

indicate a need for additional complexity in the model.
Although the predictions in Fig. 4 show what measure-
ments would falsify flat �CDM, they do not indicate what
kind of generalizations of the model would give such
alternate predictions. For example, tight predictions of
�D=D at z > 3 may not be so interesting if there are no
reasonable models that can generate deviations from the
flat �CDM predictions there. Even in the context of falsi-
fying flat �CDM it is important then to look at the pre-
dictions of an extended class of models. Of the possible
directions for generalizing the flat �CDM model outlined
in Fig. 3, we first examine the effects of including spatial
curvature. We then consider the alternate option of allow-
ing time variation of the equation of state in the following
sections.
For �CDM with curvature, growth and expansion pre-

dictions from the fiducial data are roughly a factor of 2
weaker than for flat �CDM but remain at the percent level
(see Fig. 4). The impact of the SN data is much greater
when we allow curvature to vary, since the CMB con-
straints alone are no longer sufficient to fix the observables
at low redshifts. The maximum uncertainty, at z ¼ 0, is
1.1% forG and 1.7% forH0 fromD andH. The pivot point
in H at z� 1 also disappears, leading to the largest frac-
tional change in the precision of predictions. In terms of
measuring or constraining curvature under the �CDM
paradigm, the redshifts with the weakest predictions and
the largest change from flat �CDM offer the most fruitful

FIG. 4 (color online). Forecasted predictions from SNAP SN
and Planck CMB data for growth and expansion observables,
showing the influence of curvature on predictions for �CDM
models. Shaded regions enclose 68% C.L. regions and curves
without shading are upper and lower 95% C.L. limits, plotted as
fractional differences from the fiducial flat �CDM cosmology.
The model classes are flat �CDM (light gray areas) and �CDM
with nonzero spatial curvature (dark blue areas). An example
model with nonzero curvature is also shown (dashed red curve).
Figures 5–11 and 14 all follow the same format.
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epochs for measurement. Conversely, the redshifts with the
strongest predictions offer the best opportunity to falsify
the cosmological constant altogether. As with flat �CDM,
with current constraints these predictions weaken only by a
factor of �2 [110].

In summary, under the assumption of �CDM, with or
without curvature, SN and CMB observations make firm
predictions �1% for growth and expansion observables at
all redshifts. Future measurements that rule out a cosmo-
logical constant as the source of cosmic acceleration would
represent a significant advance from a standpoint of fun-
damental physics. To proceed beyond this point and deter-
mine the best observables and redshifts to target in order to
distinguish among alternate models for acceleration, we
need to widen the model class again.

B. Testing quintessence

If measurements of growth or expansion observables
exclude �CDM as a viable model, the remaining dark
energy model classes are ones where the dark energy
equation of state at late times (z < zmax) is a free function
of redshift (see Fig. 3). We add this freedom to the models
by parametrizing wðz < zmaxÞ with PCs as described in
Sec. II A. We use the first 15 PCs of wðzÞ at z < zmax in
the MCMC likelihood analysis as this number suffices for
completeness in the observables to percent level precision
(see Sec. II E and Appendix C).

As long as the scalar field potential remains positive, the
equation of state for quintessence is bounded in the interval
�1 � w � 1. Negative potentials that violate this bound in
the past either would not produce the required acceleration
or would display easily falsifiable features. Our implemen-
tation of the canonical scalar field prior as described in
Appendix A is very conservative; all quintessence models
are allowed by the prior but not all models allowed by the
prior can be represented as a canonical scalar field.

We begin in Fig. 5 with the predictions for quintessence
in a flat universe with w1 ¼ �1 to eliminate early dark
energy. There are several notable features of quintessence
predictions when compared with those in the �CDM class
of models. The limits on growth are no longer monotonic
with redshift and, in particular, show that growth suppres-
sion at the 1%–2% level at z� 1, which would rule out
�CDM, is allowed in the more general quintessence con-
text. Distances are typically predicted at a level that is
about twice that of flat �CDM at z < zmax and comparable
to �CDM with curvature. The exception is at z ¼ 0 where
the quintessence class allows for sharp changes in the
equation of state at z < zSNmin as described in Appendix B.

The prior on the Hubble constant restricts the amplitude of
such changes. Conversely, with a prior on the quintessence
model class excluding these sharp transitions, precision
Hubble constant measurements would play the same role
as absolute distance DðzÞ or HðzÞ measurements at zSNmin <
z & 0:1 here and in all of the following cases.

Finally, the quintessence class allows a substantially
wider range of Hubble parameter predictions HðzÞ.
However, most of the allowed variation comes from rapid
oscillations in the dark energy density, demonstrated by the
example model in Fig. 5. As mentioned in Sec. II D, ob-
servations such as BAO that constrain H are spread over a
wide redshift bin, averaging out much of this oscillatory
behavior. Constant shifts in the average�H=H ���D=D
that would be allowed by the SN measurements are still
highly constrained in this model context by the CMB
distance measurement. Without curvature or early dark
energy, the absolute distance between zmax and recombi-
nation is nearly fixed and thus the Planck measurement
also fixes shifts in the distance scale below zmax (see
Appendix B).
The flat quintessence class of models with no early dark

energy on the whole remains highly predictive and falsifi-
able. We next examine what kind of observations might
falsify this class by requiring early dark energy or nonflat
geometries.
Figure 6 shows the predictions for quintessence in a flat

universe with w1 � �1, i.e. with early dark energy.

FIG. 5 (color online). Effects of generalization of flat �CDM
(light gray areas) to quintessence (dark blue areas) (example
model: dashed red lines). Quintessence is defined to have �1 �
w � 1 with wðzÞ parametrized by 15 PCs. Here w1 ¼ �1 and
�K ¼ 0 to eliminate early dark energy and curvature.
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Remarkably, the predictions for absolute distance observ-
ables remain nearly unchanged. In particular, there is no
substantial increase at z * zmax nor are compensating H
and D shifts at z < zmax allowed. The lack of additional
freedom in the observables is mainly due to restricting the
equation of state to�1 � w � 1. Early dark energy allows
increased H at z > zmax and hence decreased distance
between zmax and recombination. To remain consistent
with the CMB measurement of D�, these changes must
be compensated by a reduction in the average �H=H and
an increase in absolute distances below zmax. Given that the
fiducial model is�CDM with w ¼ �1, a roughly constant
negative shift in H requires dark energy to decrease with
redshift, i.e. a ‘‘phantom’’ equation of state with w<�1.
Since such values of w are not allowed in the quintessence
class, predictions for D and H remain tight even with early
dark energy.

On the other hand, although growth predictions are still
at the �1%–2% level they show an interesting feature that
is a signature of early dark energy. Growth suppression at
z * zmax is allowed at a larger level and results in a nearly

constant offset in growth at lower redshifts (see dashed
curve in Fig. 6). Positive �G=G is not allowed since the
amount of early dark energy can only increase from the
fiducial model, which has almost no early dark energy due
to the assumption of w1 ¼ �1. Growth relative to z ¼ 0,
�G0=G0, is largely unaffected by the extra freedom al-
lowed by early dark energy. The smoking gun of early dark
energy is therefore a component to the growth function
deviation that is nearly flat at z & zmax.
Figure 7 shows the predictions for quintessence in a

nonflat universe with w1 ¼ �1, i.e. with no early dark
energy. Here the first difference is the change in the relative
growth G0 between zmax and z ¼ 0 that is now allowed to
be several percent. While both early dark energy and
curvature can suppress growth relative to the early matter
dominated epoch, this shift in G0 is a unique signature of
nonzero curvature. A measurement that indicates
�G0=G0 � 2%–4% at z� zmax would falsify flat quintes-
sence models, with or without early dark energy. A mea-
surement beyond this level (or with the opposite sign)
would falsify nonflat cases as well.

FIG. 6 (color online). Effects of early dark energy (dark blue
areas) (example model: dashed red lines) on quintessence mod-
els (light gray areas). Quintessence models from Fig. 5 are
generalized to have w1 vary, with �K ¼ 0 to eliminate spatial
curvature.

FIG. 7 (color online). Effects of curvature (dark blue areas)
(example model: dashed red lines) on quintessence models (light
gray areas). Quintessence models from Fig. 5 are generalized to
have �K vary, with w1 ¼ �1 to eliminate early dark energy.
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The second main difference due to curvature is that high
redshift negative deviations in DðzÞ at z * zmax are now
allowed at the �4% level. A small curvature affects the
distance to recombination more than it does distances at
lower redshift. In an open universe,D� becomes larger and
therefore allows dark energy the freedom to compensate by
introducing a constant shift down in �D=D and up in
�H=H at z < zmax. The allowed amplitude of the shift is
limited by our BAO prior at z ¼ 0:35. Note that since the
shift is constant in redshift, any single absolute distance
measurement at z < zmax also suffices to constrain this
mode. An example of such a nearly constant shift is shown
by the dashed curve in Fig. 7.

In a closed universe, the required compensation at z <
zmax to preserveD� is in the opposite direction, and as with
early dark energy the w 
 �1 quintessence prior limits
this possibility. Thus one-sided deviations inD, averageH,
and growth relative to z ¼ 0 are signatures of curvature in
the quintessence model class.

Figure 8 shows the predictions for quintessence with
both curvature and early dark energy. Here a much greater
range of early dark energy densities is allowed since cur-

vature in an open universe can compensate for the de-
creased distance to recombination due to early dark
energy. The main difference is a large increase in the
allowed nearly constant offset in the growth G relative to
recombination at z & zmax which can now approach 20%.
The growth deviations are in fact limited by our early dark
energy prior from WMAP (see Appendix A); without this
prior the growth offset could have reached �40%. Large
suppression of the growth relative to recombination indi-
cates both early dark energy and curvature in the quintes-
sence context.
Note that the growth at z < zmax relative to z ¼ 0 re-

mains nearly as well predicted as in Fig. 7 with no early
dark energy and hence is equally falsifiable. Likewise,
predictions for D do not weaken further because constant
deviations in distance are limited by the BAO prior on
Dðz ¼ 0:35Þ in both cases. On the other hand, allowed
models with significant early dark energy do weaken pre-
dictions for H at z * zmax.
Even in the most general quintessence class, there are

still a few firm, percent level predictions. Neither the
growth G nor the distance D can be appreciably larger
than the �CDM prediction, although both can be smaller.
Lower average H than in the fiducial flat �CDM model is
not allowed at z < zmax due to the w 
 �1 bound and at
z > zmax due to the CMB prior on �mh

2. Suppression of
growth relative to high z at a level of * 5% at z ¼ zmax

must remain nearly constant at z & zmax. Observations that
violate these predictions would falsify the entire quintes-
sence model class.

C. Testing smooth dark energy

Falsification of quintessence would challenge many
theories of dark energy and motivate consideration of
more complicated models than single canonical scalar
fields. Our generalization to the smooth dark energy class
encompasses equations of state with �5 � w � 3 and
requires that the dark energy remain smooth compared
with the matter on scales associated with growth
measurements.
Figures 9–11 and 14 show the growth and expansion

predictions from SN and CMB data relative to the fiducial
model for the class of general smooth dark energy models.
As with quintessence, we present predictions for models
both with and without curvature and/or early dark energy.
Remarkably, Fig. 9 shows that for flat models without early
dark energy the effect of dropping the quintessence bounds
onwðzÞweakens predictions by less than a factor of 2. Thus
the more general class of smooth dark energy without
curvature or early dark energy is nearly as falsifiable as
flat quintessence.
Including early dark energy in smooth dark energy

models relaxes the predictions in ways qualitatively similar
to the quintessence case, but with allowed deviations that
are somewhat larger at 68% C.L. and noticeably larger at

FIG. 8 (color online). Effects of curvature and early dark
energy (dark blue areas) (example model: dashed red lines) on
quintessence models (light gray areas). Quintessence models
from Fig. 5 are generalized to have both �K and w1 vary.
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95% C.L. The additional freedom in growth and distances
comes mainly from dropping the lower bound on wðzÞ and
allowing phantom dark energy models with w<�1. This
change enables a reduction of the dark energy density at
z < zmax from the fiducial w ¼ �1 model, which can
compensate for and thereby allow a higher fraction of early
dark energy while maintaining consistency with the CMB
distance prior. Since dark energy is the dominant compo-
nent at late times, decreasing its density typically results in
lower total density at low z, which increases absolute
distances there. The extra early dark energy suppresses
the growth at z > zmax, and the reduced dark energy density
at low z raises growth back up toward the fiducial model
slightly by z ¼ 0. Comparing Figs. 8 and 10, we find that
these models with significantly lower Hðz < zmaxÞ are the
only flat smooth dark energy models that would not already
be excluded if observations had falsified all quintessence
models.

In contrast, allowing spatial curvature to vary in the
smooth dark energy model class produces models with

qualitatively new types of behavior not seen in the quin-
tessence models. These new observable deviations from
flat �CDM provide smoking-gun signatures of curvature
and an equation of state beyond quintessence.
Although some of the model classes examined so far

allow growth relative to early times to be suppressed by
�20% or more compared with the fiducial flat �CDM
model, none of the previous cases allow growth to be
enhanced by more than �2%. However, models with
weak bounds on wðzÞ and nonzero spatial curvature can
haveGðzÞ be as much as 10%–15% higher than the fiducial
model at z ¼ 0, as shown in Fig. 11. Likewise, the growth
G0 relative to z ¼ 0 can be lower than in the fiducial model
by 5%–10% or more at z * zmax, whereas it was previously
limited to deviations of at most a few percent in this
direction. Both effects correspond to an enhancement of
growth at z & zmax that occurs in closed models (�K < 0).
The reason why such models become viable when we

abandon the �1 � w � 1 prior is similar to the explana-
tion for the differences in the early dark energy predictions
of quintessence and smooth dark energy models. Closed

FIG. 9 (color online). Effects of generalizing �1 � w � 1
quintessence models (light gray areas) to smooth dark energy
with �5 � w � 3 (dark blue areas) (example model: dashed red
lines). The smooth dark energy model class generalizes the
quintessence models from Fig. 5 using the same 15 PCs for
wðz < zmaxÞ with w1 ¼ �1 and �K ¼ 0 to eliminate early dark
energy and spatial curvature.

FIG. 10 (color online). Effects of early dark energy (dark blue
areas) (example model: dashed red lines) on smooth dark energy
models (light gray areas). Smooth dark energy models from
Fig. 9 are generalized to havew1 vary, with�K ¼ 0 to eliminate
spatial curvature.
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universes have smaller distances to recombination, so
without some other means to increase the distance, the
models with �K < 0 are inconsistent with the CMB dis-
tance prior for the fiducial cosmology. Removing the quin-
tessence bounds on wðzÞ allows for lower dark energy
density (with w<�1) at low z, which increases the total
distance to last scattering and allows closed models to
match the CMB constraints. The lower dark energy density
at z < zmax and resulting enhancement of distances are also
reflected in the predictions for H and D in Fig. 11. Having
�K < 0 and �DEðz < zmaxÞ lower than the fiducial value
means that �mðz < zmaxÞ is higher than in the fiducial
model, which also contributes to the additional growth of
structure at low redshift.

Although the average HðzÞ at low redshift can be re-
duced considerably relative to flat �CDM, predictions for
HðzÞ at high redshift have a sharp lower limit. The CMB
constraint on �mh

2 places a strong lower bound on HðzÞ
corresponding to the expansion rate in an Einstein-de Sitter
universe. Closed models can exceed this bound slightly
since the curvature slows the expansion, but for allowed

values of �K this is a small effect. This lower limit is
present in all previous model classes as well but its impact
is less visible.
Like the nonflat quintessence predictions of Fig. 7, the

predictions for smooth dark energy models with curvature
are asymmetric about the fiducial model. In fact, as Fig. 11
shows, the confidence regions are so skewed toward the
closed models that the fiducial model lies on the edge of the
68% regions. This is in spite of the fact that the fiducial
model has the maximum likelihood by definition, and that
the definition of confidence limits we use is chosen to
include the peak probability. Moreover, the allowed re-
gions of the observables in Fig. 11 are skewed in the
opposite direction of the predictions for the corresponding
quintessence models in Fig. 7 and therefore appear incon-
sistent with those predictions, despite the fact that the
quintessence class is a subset of the more general smooth
dark energy class. The reason for these discrepancies is that
predictions in the nonflat cases with large variations inwðzÞ
both above and below w ¼ �1 are so weak that the shapes
of priors on the PC amplitudes become important in de-
termining the extent of the confidence regions.
The influence of priors on the predictions is illustrated in

Fig. 12, where we show distributions of �K for two differ-
ent choices of priors. With our usual top-hat prior on f�ig,
the posterior probability for�K is strongly skewed toward

FIG. 11 (color online). Effects of curvature (dark blue areas)
(example model: dashed red lines) on smooth dark energy
models (light gray areas). Smooth dark energy models from
Fig. 9 are generalized to have �K vary, with w1 ¼ �1 to
eliminate early dark energy.

FIG. 12 (color online). Effects of priors on the degeneracy
between curvature and wðzÞ PCs for the smooth dark energy
models with curvature (but not early dark energy) in Fig. 11.
Top: 1D marginalized posterior probability Pð�KÞ for the default
priors that are flat in PC amplitudes �i (solid, dark blue line), and
for alternate priors that are flat in the density of each PC at zmax

relative to z ¼ 0, �iðzmaxÞ=�ið0Þ as defined in Eq. (13) (dot-
dashed, red line). The dotted curve is the mean likelihood
distribution for flat �i priors. Bottom: Probability contours of
�K vs �2 at 68% and 95% C.L. for the same priors on PCs as in
the top panel. Dashed lines mark the fiducial values,�K ¼ 0 and
�2 ¼ 0.
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closed models. The distribution of the mean likelihood of
MCMC samples, on the other hand, is peaked at the
fiducial value of �K ¼ 0 as expected (dotted curve in
Fig. 12).

The discrepancy between posterior probability and
mean likelihood can be traced to a volume effect in the
parameter space (e.g., see [111]). Models with more nega-
tive�K have a wider range of values of �i that fit the data
well; this is demonstrated by the banana-shaped contours
for�K and �2 in the lower panel of Fig. 12, and other PCs
show similar widening of the parameter volume at more
negative �K. When other parameters are marginalized to
obtain the 1D posterior distribution for �K, or for one of
the growth and expansion observables at some redshift, the
result is a skewed distribution.

The basic reason for this volume effect is that the dark
energy density depends exponentially on wðzÞ, which is a
linear combination of the PCs, so changes in f�ig at small
�DE have less effect on observables than changes at large
�DE. To test how much the observable predictions are
affected by the priors, we use alternate priors that are flat
in the contribution of each principal component to the dark
energy density at zmax relative to z ¼ 0 (see Appendix A),

�iðzmaxÞ
�ið0Þ

� exp

�
3�i

Z zmax

0
dz

eiðzÞ
1þ z

�
; (13)

so that the total dark energy density at zmax is �DEðzmaxÞ ¼
�DEð0Þ

Q
i½�iðzmaxÞ=�ið0Þ�. Figure 13 shows that with this

new prior, the predictions become more symmetric around
the fiducial model and also allow models that are accept-
able under the quintessence subclass.

These �1� shifts indicate that the predictions from
cosmological data alone are so weak that the exact con-
fidence region depends on arbitrary theoretical priors on
the measure in dark energy model space. Therefore, any
measurement of these observables at a level of precision
comparable to the predictions is interesting in the context
of smooth dark energy with curvature regardless of the sign
of the deviation from flat �CDM. At the same time,
conclusive falsification of general smooth dark energy
models with curvature would require much larger devia-
tions where there are no models with good likelihood
values.

Note that the dependence on PC priors is only significant
for classes of models that allow w<�1 and have nonzero
curvature. For all of the previous cases—�CDM, quintes-
sence, and �K ¼ 0 smooth dark energy—the confidence
limits of observables shift by only & 1% when we switch
from one set of PC priors to the other (except for H, for
which the limits change by up to a few percent at some
redshifts near zmax). The volume effect is not a conse-
quence of our particular parametrization of wðzÞ; for ex-
ample, there is a similar shift toward �K < 0 for nonflat
dark energy models parametrized as wðaÞ ¼ w0 þ wað1�
aÞ when the priors are flat in w0 and wa [110].

Using the priors that are flat in the PC amplitudes, the
addition of early dark energy to smooth dark energy mod-
els with curvature (Fig. 14) appears to make little differ-
ence to the qualitative predictions, except in some of the
95% limits. However, much of the effect of early dark
energy on these models is masked by the flat-f�ig PC prior.
As Fig. 15 shows, changing the priors to be flat in
�iðzmaxÞ=�ið0Þ affects the observable predictions in ways
that are similar to the previous case without early dark
energy, e.g., making many of the distributions of allowed
models more symmetric around the fiducial model. With
this alternate prior we see that the additional freedom in
early dark energy combined with nonzero curvature ena-
bles models with significant growth suppression relative to
high z and increased Hðz * zmaxÞ to fit the assumed data
sets, as it does in the corresponding quintessence predic-
tions of Fig. 8.
The sensitivity to the priors and the weakness of the

predictions in general means that despite the great potential
of future observations for measuring spatial curvature and
early dark energy in models with general equation of state
variation at low redshift, statements about falsification of

FIG. 13 (color online). Effects of priors on smooth dark energy
models with nonzero curvature. Dark blue lines: flat top-hat
priors on �i as in Fig. 11. Light gray areas: flat priors on the
density of individual PCs, �iðzmaxÞ=�ið0Þ.
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the entire smooth dark energy model class must be made
with care.

D. Beyond smooth dark energy

One lesson from the analysis in the previous section is
that the combination of general variation in the dark energy
equation of state with early dark energy and nonzero
spatial curvature allow a wide variety of cosmological
models to fit future SN and CMB data. Falsification of
the most general smooth dark energy model class therefore
appears to be quite difficult, especially given the depen-
dence of the growth and expansion observable predictions
on priors that must be set arbitrarily in the absence of an
underlying theory for dark energy. However, even these
very general models make some firm predictions about the
relations between observables that could potentially be
falsified by future measurements.

One example of a robust prediction for the observables is
the following: given the flat�CDMmodel that matches the
SN and CMB data and assuming that the dark energy

always contributes positively to energy density, HðzÞ at
z * 2 can be no more than �5% lower than in �CDM.
This limit was noted in Sec. III C in the context of nonflat
smooth dark energy models with w1 ¼ �1, and it still
holds when we include early dark energy.
More interestingly, the predicted redshift evolution of

expansion and growth observables still exhibits certain
regularities. Notice in Fig. 10 that before we introduce
curvature, the growth history, absolute distances, and ex-
pansion rate are predicted at the few percent level by SN
and CMB data. Freedom in the spatial curvature greatly
reduces the precision of these predictions. However, the
curvature is set by a single parameter�K with well-defined
effects on each of the observables. By taking advantage of
our knowledge of the impact of curvature, we can effec-
tively regain much of the predictive power that exists for
flat models.
As an example, consider the growth function. In the

most general model class, the majority of the freedom in
growth comes from curvature and early dark energy. We
can distinguish between the two by noting that the devia-
tions in growth from the fiducial flat �CDM model have
different redshift dependence, as illustrated by the sample

FIG. 15 (color online). Effects of priors on smooth dark energy
models with curvature and early dark energy. Same as Fig. 13,
but comparing priors for the dark blue model in Fig. 14.

FIG. 14 (color online). Effects of curvature and early dark
energy (dark blue areas; example model: dashed red lines) on
smooth dark energy models (light gray areas). Smooth dark
energy models from Fig. 9 are generalized to have both w1
and �K vary.
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growth histories allowed by either curvature or early dark
energy plotted in Fig. 16. The main effect of early dark
energy is to suppress growth by a constant factor at early
times, so growth functions in a flat universe with varying
amounts of early dark energy have similar shapes but
different amplitudes at low z. On the other hand, curvature
tends to have a more gradual effect on growth continuing to
z ¼ 0, and also allows more enhanced growth relative to
the fiducial model than early dark energy.

An observed growth history that cannot be described by
some combination of the effects of curvature and early
dark energy would present a major challenge to the dark
energy paradigm. For example, growth at z < zmax relative
to today (G0) that is * 5% higher than expected in flat
�CDM would be difficult to explain with dark energy for
allowed values of the spatial curvature.

Moreover, deviations in G0ðzÞ are nearly a one parame-
ter family that is ordered by curvature�K. The top panel of
Fig. 17 shows the correlation between �K and a linear
combination of G0ðzmaxÞ and GðzmaxÞ in smooth dark en-
ergy models. The curvature �K mainly depends on
G0ðzmaxÞ, but the degeneracy in D� between �H=H at z <
zmax and early dark energy introduces a small correction

since such changes in the expansion rate affect the growth
rate at low z and therefore change G0. The GðzmaxÞ term
can correct for this degeneracy since the amplitude of G is
sensitive to the amount of early dark energy.
By comparing the combination of G0 and G correlated

with curvature at multiple redshifts, one can test the gen-
eral class of smooth dark energy models with early dark
energy and curvature. For example, the lower panel of
Fig. 17 shows these combinations of growth observables
at zmax ¼ 1:7 and at z ¼ 1; observations that give different
values for the linear combinations ofG0 andG at these two
redshifts would falsify this most general model class.
This regularity in the growth relative to today can be

viewed as a generalization of tests involving the linear
growth rate fðzÞ. In particular, the relationship fðzÞ ¼
��

mðzÞ with � � 0:55 has been proposed as a potential
test of all smooth dark energy models [98,112–116]. In
Figs. 18–20, we plot the predictions from the forecasted
SNAP supernovae and Planck CMB data for the growth
rate and growth index for selected model classes from the
previous sections, allowing a redshift-dependent growth
index

�ðzÞ ¼ ln½fðzÞ�
ln½�mðzÞ� : (14)

FIG. 16 (color online). Growth functions of MCMC samples in
the smooth dark energy model class (� 5 � w � 3) that include
either early dark energy (EDE) at z > zmax (w1 � �1: top
panels), curvature (�K � 0: middle panels), or both (bottom
panels). We plot growth relative to early times in the left column
of panels, and growth relative to the present on the right. Dashed
red curves show growth in the fiducial flat �CDM model.
Samples are selected randomly from those with likelihoods
satisfying ��2 � 4, but for visual clarity we plot samples that
are approximately evenly spaced in Gðz ¼ 0Þ (left panels) or
G0ðz ¼ 4Þ (right panels). The dotted vertical line in each panel
marks z ¼ zmax.

FIG. 17. Comparison of �K and linear combinations of the
growth function relative to flat �CDM, �G0ðzÞ, and �GðzÞ, at
z ¼ zmax and z ¼ 1 for randomly selected models (with ��2 �
4) in the smooth dark energy class with early dark energy and
curvature. The coefficients used here are K1ðz ¼ 1Þ ¼ 0:24,
K2ðz ¼ 1Þ ¼ 0:10, K1ðz ¼ zmaxÞ ¼ 0:17, and K2ðz ¼ zmaxÞ ¼
0:09. Note that these specific values may not produce accurate
estimates of �K for fiducial cosmologies other than the one
assumed here.
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Note that the growth index is somewhat different from our
other observables since measurement of � requires not
only the growth rate but also some method for determining
the fractional matter density �mðzÞ at the same redshift. A
measurement of HðzÞ combined with the CMB constraint
on �mh

2 could provide an estimate of the latter quantity,
since �mðzÞ / �mh

2ð1þ zÞ3H�2ðzÞ.

In the context of �CDM, Fig. 18 shows that both f and
� are precisely predicted by future SN and CMB data as
expected given the tight constraints on other observables
within this model class. The growth index is nearly con-
stant, with a small slope at low redshifts when the cosmo-
logical constant dominates, and deviations of �0:5% by
z ¼ 4 for models with nonzero curvature.
In the context of quintessence, both predictions weaken

substantially as shown in Fig. 19. The growth rate is not as
well predicted as the difference in growth between z ¼ 0
and zmax used in Fig. 17. LikeH, it effectively has only one
integral over the time-varying equation of state instead of
two as for distances and the integrated growth history. It is
therefore equally sensitive to features in wðzÞ.
In fact, the redshift dependence of the predictions for

fðzÞ in Fig. 19 closely mimic those for HðzÞ in Fig. 8, but
with opposite sign. Since �mðzÞ is tied to HðzÞ via the
CMB prior on�mh

2, the similarity between deviations in f
and in H suggests a strong connection between f and
�mðzÞ, consistent with a constant value of �. However,
the predicted values of � shown in the lower panel of
Fig. 19 cover a much wider range for quintessence than
for �CDM, with significant variation of � with redshift in
some models. For flat models without early dark energy,
the extra freedom in � only appears at z < zmax, but
including curvature and early dark energy allows 5% de-
viations in � above the fiducial value at z > zmax, only
slightly less than the uncertainty in f or H at these red-
shifts. These nearly constant deviations in � at high z are
well approximated by the expected dependence on early
dark energy given by Ref. [113], modified for nonzero
curvature,

�ðz > zmaxÞ � 3ð1� w1Þ
5–6w1

fDE þ 4

7
fK; (15)

FIG. 19 (color online). Effects of curvature and early dark
energy on the quintessence growth rate. Same as Fig. 18 but
for flat quintessence models with w1 ¼ �1, i.e. no early dark
energy (light gray areas), and quintessence with both nonzero
curvature and early dark energy (dark blue areas) (example
model: dashed red lines).

FIG. 18 (color online). Effects of curvature on the �CDM
growth rate. Predictions from future SN and CMB data for the
growth rate f, plotted relative to the fiducial model, and for the
growth index � ¼ lnf= ln½�mðzÞ�. The model classes here are
�CDM either assuming flat geometry (light gray areas) or
allowing nonzero curvature (dark blue areas) (example model:
dashed red lines). For flat �CDM the predictions for � are so
tight that the 68% region is obscured by the thickness of the 95%
line. The three example models plotted here and in Figs. 19 and
20 are the same as the ones in Figs. 4, 8, and 14, respectively.

FIG. 20 (color online). Effects of curvature and early dark
energy on the smooth dark energy growth rate. Same as
Fig. 19 but for smooth dark energy models (� 5 � w � 3).
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where fi ¼ �iðzÞ=½1��mðzÞ�. For �K ¼ 0 and w1 ¼
�1 we recover the usual growth index from this formula,
� ¼ 6=11 � 0:55.

One of the more interesting features of the predictions
for � in the quintessence class is the widening in the
uncertainty at z� 1. As Eq. (15) shows, deviation from
w ¼ �1 changes the value of � at high redshift. Likewise,
low-redshift variation in w can perturb the growth index
from its usual value of � � 0:55. At z & 0:5, SN distance
constraints ensure that while w may oscillate rapidly with
redshift, it never deviates far from w ¼ �1 on average.
However, as z approaches zmax the constraints from SNe
weaken, allowing w to vary significantly from �1 over
longer periods of time; this variation enables � to deviate
from the �CDM prediction. Furthermore, at z * 1 where
�mðzÞ is typically near unity, ln½�mðzÞ� is close to zero and
therefore the value of � derived from Eq. (14) is more
sensitive to small changes in the relation between fðzÞ and
�mðzÞ. For example, the model plotted in Figs. 8 and 19
has significant changes in H and f between z ¼ 1 and z ¼
1:5 relative to the fiducial flat �CDM cosmology, leading
to a bump in � for this model at z� 1.

Generalizing to smooth dark energy models with �5 �
w � 3 reveals another potential problem with using � to
test smooth dark energy. Recall from the previous section
that a closed universe is allowed for models in this class,
and is favored if priors are flat in the PC amplitudes. In
closed models where �K is sufficiently negative, �mðzÞ
can cross unity with�mðzÞ> 1 at high z and�mðzÞ< 1 at
low z, and the same is true of fðzÞ. Since these two
functions do not cross at exactly the same redshift due to
the slight lag between density and growth, the growth index
of Eq. (14) has a singularity when �mðzÞ ¼ 1. The dashed
curve in Fig. 20 is one example of such a model. As a
result, the predictions for �, particularly in the tails of the
distribution, blow up at z * 1 where these singularities
occur. This effect is an artifact of the � parametrization
since � can take any value when f � 1 and�mðzÞ � 1, but
it makes it difficult to interpret limits on � beyond z� 1 for
the most general class of smooth dark energy models.

Although constant � remains a good approximation for
many dark energy models, large variations in the dark
energy density or spatial curvature with �K < 0 can
weaken the link between fðzÞ and �mðzÞ [or HðzÞ]. An
observed deviation from the expected value and near con-
stancy of � would certainly falsify �CDM and some
simple dark energy models, but using the growth index
as a test of smooth dark energy in general may require
refinement of the standard parametrization of Eq. (14) to
account for significant wðzÞ variation and crossing of
�mðzÞ ¼ 1. Alternatively, one can adopt the more general
approach of examining the integrated growth function at
various redshifts as discussed above.

There are also other, more fundamental but more quali-
tative means of testing smooth dark energy. By definition,

on scales where the dark energy remains smooth there is no
particular scale for growth in the linear regime. Models of
acceleration that involve coupling of dark energy to dark
matter or modifications of gravity that introduce new scales
in addition to the Hubble scale generically imply scale
dependent linear growth (e.g., [117]). Such models can
also feature differences in dynamical and lensing mass
measurements. Generically, modified gravity models that
satisfy local constraints on gravity also break the relation-
ship between the linear and nonlinear growth of structure
again by the introduction of a new scale to the problem
[118–120].
Another way in which the standard cosmological para-

digm might be falsified is through observed violations of
the relation dLðzÞ ¼ ð1þ zÞDðzÞ between luminosity dis-
tances and comoving angular diameter distances.
Examples of mechanisms for violating this relation include
photon-axion mixing, photon decay, and nonzero torsion in
the gravity theory (e.g., [121–123]). Therefore, the ‘‘dual-
ity relation’’ between the two distances is an interesting
test of exotic new physics possibly related to acceleration.
There also exists a more general (but related) consistency
relation between the comoving distance DðzÞ and the
Hubble parameter HðzÞ that holds in any homogeneous
and isotropic Friedmann-Robertson-Walker model [124]
and can be tested using accurate cosmological observations
of the two functions at any redshift. Our standard assump-
tions could also be falsified through observed violations of
homogeneity or isotropy signaling a breakdown in the
validity of the Friedmann-Robertson-Walker metric, or
by observing time variation in fundamental constants.
We have shown that dark energy degrees of freedom and

spatial curvature permit the basic distance, expansion, and
growth observables to vary greatly. Nevertheless, there are
still many ways in which the dark energy paradigm for
acceleration could be falsified.

IV. CONCLUSIONS

Using a combination of quantitative tools including
principal components of the dark energy equation of state
and MCMC analysis with simulated future data, we dem-
onstrate that combined constraints on dark energy from the
measurement of distances, growth, and the expansion rate
provide many ways to test not only specific dark energy
models, but also general classes of models. In particular, a
high-quality supernova sample such as that anticipated
from SNAP and the CMB data expected from Planck
make strong predictions for other observables in the con-
text of a wide variety of models. Follow-up observations of
the predicted observables offer the exciting possibility of
falsifying model classes and demonstrating the need for a
new paradigm for acceleration.
Figure 21 summarizes the basic dark energy model

classes and their generalizations, arranged by the allowed
values of w and the total number of MCMC parameters
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[Eq. (6)]. In general, observations that falsify classes to-
ward the upper left corner of this ‘‘tree’’ of model classes
require adding more freedom to the models by moving
down and/or to the right in the tree. This diagram serves as
an index to the figures in Sec. III; each line between a pair
of model classes is labeled by the number of the figure in
which a comparison of observable predictions for those
two classes may be found.

In the context of the current standard model, flat�CDM,
predictions for acceleration observables come mainly from
the CMB. The SNAP SN data themselves provide one
stringent test of flat �CDM predictions from Planck.
Other types of observations are also well suited for testing
flat �CDM. In particular, constraints from future SN and
CMB data have a narrow pivot point in the expansion rate
where Hðz ¼ 1Þ is predicted to �0:1% (at 68% C.L.),
making such a measurement an especially interesting tar-
get for future BAO experiments and other probes of H.
Likewise, growth observables are predicted to better than
0.5% at all redshifts.

Even if we drop the assumption of flatness, �CDM
remains highly predictive. The pivot point in HðzÞ predic-
tions disappears when nonzero spatial curvature is allowed,
but the�CDMmodel class can still be falsified with* 1%
deviations in any of the acceleration observables at any
redshift.

Remarkably, allowing general time variation of the dark
energy equation of state wðzÞ within the class of quintes-
sence models (� 1 � w � 1) does not significantly
weaken predictions if we assume flatness. For these mod-
els, SN and CMB data predict growth and absolute distance
to �1%–2% precision.
Including the possibility of early dark energy, e.g., a

scalar field that tracks the matter density at high redshift,
does not weaken these predictions substantially as long as
the SN and CMB observations remain consistent with a
cosmological constant as current data suggest. An in-
creased fraction of early dark energy reduces the distance
to recombination, D�, and must be compensated by either
allowing nonzero curvature or reducing the dark energy
density at late times. The latter option requires w<�1
which is forbidden for quintessence models with positive
potentials, so a large fraction of early dark energy is not
allowed for quintessence in a flat universe.
The same w ¼ �1 barrier for quintessence leads to

predictions of one-sided deviations from flat �CDM ob-
servables when spatial curvature is allowed to vary. Closed
universes reduce D�, so matching CMB constraints re-
quires the ability to lower the dark energy density withw<
�1. Therefore, quintessence predictions from SN and
CMB data consistent with w ¼ �1 favor open universes.
Curvature in open universes causes additional growth sup-
pression, particularly at z & 2.
Open quintessence models can also have significant

early dark energy that suppresses growth by a constant
factor at low redshift. Even with the additional freedom
in curvature and early dark energy, SN and CMB data still
provide general predictions for quintessence. For example,
neither the growth relative to recombination nor absolute
distances at low redshift can be significantly larger than in
flat �CDM. Growth relative to the present out to z� 2
cannot differ from its standard behavior by more than
�2%–4%.
Allowing the low-redshift dark energy equation of state

to vary beyond the range of quintessence enables new types
of models since the absence of the w 
 �1 bound permits
deviations in dark energy density both above and below the
constant density of flat�CDM. These general smooth dark
energy models are therefore able to have significant early
dark energy in a flat universe, and closed universes con-
sistent with the SN and CMB data are also possible. As a
result, smooth dark energy models can have both larger and
smaller growth and absolute distances relative to flat
�CDM, unlike the one-sided predictions of quintessence.
Even the most general model class including large dark

energy variations at low redshift, early dark energy, and
nonzero curvature makes some generic predictions given
future SN and CMB data. Growth at z & 2 normalized to
its present value can be no more than �5% larger and the
expansion rate at z * 2 no more than �5% smaller than
their values in a flat �CDM cosmology. The growth index

FIG. 21 (color online). Index for dark energy model classes
compared in figures in Sec. III. The number of parameters varied
in the MCMC likelihood analysis increases from left to right. For
extensions to the baseline model within each class, the additional
parameters (�K, w1, or both) are listed. Red numbers along
lines connecting two models indicate the number of the figure in
this paper in which we plot growth and expansion predictions for
that pair of models.
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� as it is typically defined is tightly constrained by SN and
CMB data in�CDM, but not for more general dark energy
models since both time variation of the dark energy equa-
tion of state and the possibility of crossing �mðzÞ ¼ 1 in
closed universes weaken the relation between growth rate
and matter fraction. Fortunately, growth measurements at
different redshifts still give tight predictions since the
growth evolution at low redshift depends mainly on curva-
ture. Additional tests outside the scope of this work, such
as searching for scale dependence of linear growth, could
also falsify all smooth dark energy models. Falsification of
the most general smooth dark energy predictions would
require new paradigms for cosmic acceleration and possi-
bly even gravity itself.
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APPENDIX A: FISHER MATRICES AND
LIKELIHOOD FUNCTIONS

In this appendix, we describe the (future) cosmological
data and priors that we assume for this study. We give
expressions for the Fisher matrices for these data, which
we use to compute the principal components of the dark
energy equation of state, and for the likelihood functions
that we use in MCMC analysis.

The Fisher matrix for supernovae is [32]

FSN
ij ¼ X

�

��2
�

dmðz�Þ
d�i

dmðz�Þ
d�j

; (A1)

where mðz�Þ ¼ 5 log½H0dLðz�Þ� þM is the average mag-
nitude of the SNe in the redshift bin denoted by z�, �� is
the error in the average magnitude, and M ¼ M�
5 logðH0=Mpc�1Þ þ 25 is a constant related to the un-
known absolute magnitude of the SNe.

For the fiducial supernova data, we take the expected
redshift distribution for SNAP [125] plus a low-z sample of
300 SNe at 0:03< z < 0:1. The SNAP magnitude errors
include both statistical and systematic components:

�2
� ¼

�
�z

�zsub

��
0:152

N�

þ 0:022
�
1þ z�
2:7

�
2
�
; (A2)

where N� is the number of SNe in each bin of width �z
(�z ¼ 0:1 except for the statistical uncertainties in the
low-z SN bin, for which �z ¼ 0:1� zSNmin ¼ 0:07), and
�zsub is the width of the sub-bins used to smooth the
distribution of SNe in redshift. We use 500 sub-bins up

to zmax ¼ 1:7. The second term on the right-hand side of
Eq. (A2) models a systematic floor that increases linearly
with z up to a maximum at zmax of 0.02 magnitudes per
�z ¼ 0:1 bin [126].
For the Planck CMB constraint, we start with the 2	 2

covariance matrix ~CCMB for the parameters

~� ¼ flnðD�=MpcÞ;�mh
2g: (A3)

Here D� is the comoving angular diameter distance to
recombination. We ignore additional CMB information
about dark energy from the integrated Sachs-Wolfe effect
except in the current prior on early dark energy described

below. The elements of the covariance matrix are ~CCMB
11 ¼

ð0:0018Þ2 and ~CCMB
22 ¼ ð0:0011Þ2 and ~CCMB

12 ¼
�ð0:0014Þ2. Rotating to the space of MCMC parameters,

e.g., �full [Eq. (6)] gives FCMB ¼ D½ ~CCMB��1DT, where

Dij ¼ d~�j=d�i. As we shall see, for the likelihood evalu-

ation it is more convenient to project the MCMC parame-
ters onto the original basis of Eq. (A3). For a similar
treatment of CMB priors on dark energy models, see
Refs. [82,108].
Priors on additional parameters can be included by add-

ing the assumed inverse covariance to the appropriate entry
of the Fisher matrix. The Fisher matrix for the full set of
parameters is

Ftot
ij ¼ FSN

ij þ FCMB
ij þ Fprior

ij : (A4)

The priors and the parameters in the Fisher matrix depend
on the particular application and differ between the PC
construction and the likelihood analysis. The procedure for
computing PCs from the Fisher matrices and the assumed
priors are described in Appendix B.
For the MCMC analysis described in Sec. II C we as-

sume a Gaussian likelihood, L / expð��2=2Þ, described
by

�2 ¼ �2
SN þ �2

CMB þ �2
prior (A5)

which includes contributions from the SNAP SN data,
Planck CMB data, and our external priors.
We model the SN �2 term as

�2
SN ¼ A� B2

C
; A ¼ 5

X
�

½� logðH0dLðz�ÞÞ�2
�2

�

;

B ¼ 5
X
�

� logðH0dLðz�ÞÞ
�2

�

; C ¼ X
�

1

�2
�

;

(A6)

where � logðH0dLÞ refers to the difference between a
model H0dL derived from MCMC parameters and the
fiducial value. The variance �2

� is modeled as in Eq.
(A2).
The B2=C term in �2

SN comes from the marginalization

over M. Because of this marginalization, the SN data are
insensitive to redshift-independent shifts in the magnitudes
mðz�Þ caused by changes in combinations of other cosmo-

MICHAEL J. MORTONSON, WAYNE HU, AND DRAGAN HUTERER PHYSICAL REVIEW D 79, 023004 (2009)

023004-20



logical parameters, e.g., �m and the PC amplitudes for
wðzÞ. This shift in magnitudes corresponds to multiplying
the distances by a constant factor: H0dLðzÞ ! ð1þ
�ÞH0dLðzÞ.

The CMB contribution to �2 is

�2
CMB ¼ X2

i;j¼1

�~�i½CCMB
ij ��1�~�j; (A7)

where ~�i is the same as in Eq. (A3) and �~�i ¼ ~�i � ~�ijfid is
the difference in lnD� and �mh

2 from the fiducial model
with D� derived from the MCMC parameters.

When computing �2 we set the SN magnitudes, D�, and
�mh

2 to have the exact values predicted for the fiducial
cosmology without any scatter in the simulated measure-
ments. The resulting constraints from the data are therefore
expected to be centered on the fiducial parameter values
rather than shifted away from them by �1�. We do this
because we are mainly interested in the width of predic-
tions for observables and not their central values for a
particular realization of the measurement errors.

In the MCMC likelihood analysis we employ three
external priors based on current data to limit our study to
reasonable cosmologies, and one internal theoretical prior:

�2
prior ¼ �2

H þ �2
BAO þ �2

EDE þ �2
w; (A8)

where the terms on the right-hand side, respectively, refer
to an HST Key Project prior on the Hubble constant of
width �ðhÞ ¼ 0:08 [101], a BAO prior on the angular
diameter distance to z ¼ 0:35 with �ðlnDðz ¼ 0:35ÞÞ ¼
0:037, roughly corresponding to the constraint from the
Sloan Digital Sky Survey luminous red galaxy sample [13],
and a WMAP prior on the fraction of early dark energy
with �ð�DEðz�ÞÞ ¼ 0:025, based on the constraints on
early dark energy models in Ref. [100].

In addition to constraints from current data, the last term
in Eq. (A8) includes theoretical limits on the dark energy
equation of state, wmin � w � wmax. These limits are typi-
cally implemented as an infinite barrier in �2

w correspond-
ing to some range allowed by the model class, i.e. a top-hat
prior on the MCMC parameters. To compute these priors,
we start with the projection of wðzÞ onto PC amplitudes,

�i ¼ 1

Nz;PC

XNz;PC

j¼1

½wðzjÞ � wfid�eiðzjÞ; (A9)

where wfid ¼ �1 unless otherwise specified. By finding
the values of wðzjÞ within the allowed range ½wmin; wmax�
that maximize or minimize �i, we obtain limits on the

amplitude of each PC, �ð�Þ
i � �i � �ðþÞ

i , where

�ð�Þ
i � 1

2Nz;PC

XNz;PC

j¼1

½ðwmin þ wmax � 2wfidÞeiðzjÞ

� ðwmax � wminÞjeiðzjÞj�: (A10)

The width of this prior, �ðþÞ
i � �ð�Þ

i , depends on the width
of the allowed range of w but not the value of wfid.
We find a second prior on f�ig using the fact that

restricting the range of wðzÞ places an upper limit onP
i½wðziÞ � wfid�2. From Eqs. (2) and (3),

XNz;PC

i¼1

½wðziÞ � wfid�2 ¼ Nz;PC

XNz;PC

i¼1

�2
i : (A11)

The bounds on wðzÞ impose an upper limit on this sum,

½wðziÞ � wfid�2 � Vmax;

Vmax � max½ðwmax � wfidÞ2; ðwmin � wfidÞ2�:
(A12)

Combining Eqs. (A11) and (A12) we find that the PC
amplitudes must lie within a sphere in the parameter space:

XNc

i¼1

�2
i �

XNz;PC

i¼1

�2
i � Vmax; (A13)

where Nc < Nz;PC is the number of components in the

truncated set of PCs used for likelihood analysis (see
Sec. II A). For a given allowed range of w, the constraint
on PC amplitudes from this inequality is strongest when
the fiducial model lies in the center of that range, wfid ¼
ðwmin þ wmaxÞ=2, but in general the limits in Eq. (A10) are
the stronger of the two PC priors.
Figure 22 shows examples of wðzÞ parametrized by

15 PCs that satisfy the bounds in Eqs. (A10) and (A13)
corresponding to the quintessence model class, with
wmin ¼ �1 and wmax ¼ 1, and the smooth dark energy
class, with wmin ¼ �5 and wmax ¼ 3. In each case, the
sum of the 15 components is allowed to violate the bounds
on w at some redshifts. For some models, the addition of

FIG. 22 (color online). Examples of equations of state con-
structed from the 15 PCs in Fig. 1, where the PC amplitudes
satisfy the priors given by Eqs. (A10) and (A13) for �1 � w �
1 (solid black lines) and �5 � w � 3 (dashed red lines).
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higher-variance PCs can correct for these deviations from
the allowed range so that wmin � w � wmax everywhere.
However, this is not necessarily true for all models that
satisfy the PC priors; the most important property of these
priors is that they retain anymodel that does obey the limits
on w while excluding a large number of unacceptable
models. For more details on the derivation of these priors,
see Ref. [87] where similar bounds are used in the context
of reionization models to constrain the ionized fraction of
hydrogen to the range 0 � xe � 1.

When switching to alternate priors to test volume effects
related to curvature as described in Sec. III C, we transform
the PC priors either by adding an additional term to the
likelihood in the MCMC analysis or by modifying the
weights of samples in the chain as a post-processing step.
In either case we convert the usual top-hat PC priors to
ones that are flat in the density of each PC at zmax relative to
z ¼ 0 [Eq. (13)] by multiplyingL or the sample weight by
expð��2

PC=2Þ, where

�2
PC ¼ �2

X
i

�
3�i

Z zmax

0
dz

eiðzÞ
1þ z

�
: (A14)

In addition to priors on the low-z equation of state, we
place a top-hat prior on the early dark energy at z > zmax

corresponding to wmin � w1 � minð0; wmaxÞ. Since the
early dark energy MCMC parameter is actually ew1 , in
practice the prior we use for MCMC is e�1 � ew1 � 1 for
quintessence and e�5 � ew1 � 1 for smooth dark energy.

APPENDIX B: PRINCIPAL COMPONENT
METHODOLOGY

To compute the principal components of wðzÞ from the

Fisher matrices of Appendix A (with F
prior
ij specified be-

low), we first take the Nz;PC 	 Nz;PC submatrix of ðFtot
ij Þ�1

corresponding to the redshift binned dark energy equation
of state, wðziÞ. We then invert the Nz;PC 	 Nz;PC matrix to

get Fw
ij, which is the original Fisher matrix marginalized

over everything except fwðziÞg. Finally, we compute the
eigenvectors of Fw

ij, which are the PC functions and nor-

malized as in Eq. (3), and the eigenvalues, which are the
inverse variances of the PC amplitudes.

We evaluate Ftot
ij at the same fiducial model as for the

MCMC likelihood, i.e. flat �CDM with �m ¼ 0:24 and
h ¼ 0:73. This model is consistent with current data,
which should minimize the number of principal compo-
nents needed to accurately parametrize viable dark energy
models. The exact choice of fiducial cosmology is unim-
portant as principal component shapes do not vary greatly
with changes in the fiducial model that are consistent with
current data.

Our default binning scheme isNz;PC ¼ 500 bins between
z ¼ 0 and zmax. These bins are fine enough to obtain
reasonably continuous PC shapes and to allow varying

wðzÞ at z < zSNmin, which has important consequences as

we describe later.
We choose zmax ¼ 1:7 to match the assumed maximum

redshift of the SN sample. A smaller choice of zmax would
not significantly change the PC shapes at lower z but would
result in a less complete set of PCs due to neglecting some
of the SN data. Increasing zmax would require additional
support from SNe or other data at z > 1:7 for the PCs to
have any weight at higher redshift; the CMB distance
constraint helps somewhat but is still only a single data
point for constraining the additional wðziÞ. Furthermore, if
the expansion history at low z is near the fiducial flat
�CDM model then the lack of weight in the PCs at high
z is mainly a consequence of dark energy becoming less
significant as redshift increases [80].
Unlike the MCMC likelihood analysis, we do not in-

clude external priors from current data or priors on PC

amplitudes in the F
prior
ij term. However, we do use priors

that correspond to fixing certain parameters besides
fwðziÞg, i.e. �m, �K, and w1. In the rest of this section
we explain our choices of which of the other parameters
are fixed and which are marginalized over. Note that we do
not consider �mh

2 here because it is nearly fixed auto-
matically due to the constraint in FCMB

ij .

The question of fixing or marginalizing parameters is
essentially a question of whether or not we wish to include
degeneracies between those parameters and wðzÞ in the
low-variance PCs that we retain for MCMC analysis.
Marginalizing these other parameters eliminates from the
low-variance PCs the modes in wðzÞ that have a degenerate
effect in the SN distances and CMB data but are not
necessarily degenerate in other acceleration observables.
Since this marginalization generally results in an incom-
plete PC basis, the better choice is typically to fix the

non-wðzÞ parameters with Fprior
ij so that the modes of wðzÞ

degenerate with them are assumed to be well measured and
therefore are included in the low-variance PCs. Fixing
these additional parameters ensures that the PCs we use
are as complete as possible in the acceleration observables,
and so we fix �K and w1 when computing the PCs.
However, �m is an exception to this rule where having a
fully complete basis for wðzÞ is not desirable.
There are two types of degeneracy that can in principle

exist between �m and wðzÞ in the assumed SN and CMB
data. First, the dark energy can mimic some fraction of the
matter density [leaving H0dLðzÞ unchanged] by approach-
ing w ¼ 0 at high z (e.g., [127]). In the context of a
spatially flat geometry with no early dark energy, this
degeneracy is eliminated by the CMB constraints on D�
and �mh

2. The impact of these constraints weakens if we
allow for the freedom to adjust either curvature or early
dark energy. By constructing PCs with curvature and early
dark energy fixed, we assume that the matter-mimicking
mode of wðzÞ can be measured by the SN distances and
CMB constraints. This assumption ensures that the PCs are
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complete with respect to this mode, regardless of whether
we marginalize or fix�m in the PC construction. This type
of degeneracy between �m and wðzÞ is therefore properly
included in the MCMC predictions for model classes with
curvature and early dark energy.

A second type of degeneracy is introduced by the mini-
mum redshift for which SNe can be measured in the
Hubble flow. The ability to determine H0dLðzÞ from SN
observations depends on how well we can anchor the
relative distances to z ¼ 0. As noted in Appendix A, mar-
ginalization over the nuisance parameterM causes the SN
observations to be insensitive to constant shifts in relative
distances of the form

H0dLðzÞ ! ð1þ �ÞH0dLðzÞ;
M ! M� 5 logð1þ �Þ: (B1)

We are not free to change H0dLðzÞ at all redshifts since
H0dLðzÞ ¼ z at low z independent of the cosmology.
However, it is possible (if unlikely) that a large variation
in wðzÞ near z ¼ 0 changes the SN distances by a nearly
constant factor at all redshifts except at z & zSNmin, where

zSNmin is the minimum SN redshift. When including the CMB

data this effect creates a degeneracy between wðzÞ and�m

since the shift in Eq. (B1) requires changes in �m and H0

to satisfy CMB constraints on D� and �mh
2.

If we fix �m when computing the PCs, then we assume
that the behavior ofwðzÞ at z < zSNmin is well constrained and

therefore large variations in the equation of state at low
redshift are included in the low-variance PCs. Instead, we
choose to reduce the impact of this degenerate mode of
wðzÞ by marginalizing �m in the PC construction. Our
basis for wðzÞ is therefore incomplete with respect to this
mode, but there are several reasons for neglecting large
variations in wðzÞ at z < zSNmin. One benefit of this approach

is that by reducing the degeneracy between�m and the PC
amplitudes we improve convergence of MCMC samples;
in the presence of the full degeneracy, it is difficult to
obtain well-converged chains even for the simplest class
of models with PC-parametrized wðzÞ. Furthermore, apart
from the Hubble constant itself and the interpretation of SN
data as measuring H0dLðzÞ as opposed to dLðzÞ=dLðzSNminÞ,
acceleration observables are not significantly affected by
this degeneracy. Finally, despite marginalizing �m when
computing PCs we still retain enough of this degeneracy
that predictions for the z ! 0 behavior of DðzÞ and HðzÞ is
appropriately uncertain and limited by our prior on H0, as
shown in Fig. 5, for example.

Improving measurements ofH0 beyond the current level
would further limit the possibility of these ultra-low red-
shift changes in w. Conversely, in the absence of such
variation in wðzÞ, precision H0 measurements play the
same role as low redshift D and H measurements in all
cases considered in the main paper.

In summary, when constructing the PCs we take priors
that fix�K ¼ 0 and w1 ¼ �1 but marginalize�m. We do

not employ the additional current priors from BAO dis-
tance to z ¼ 0:35, HST Key Project measurement ofH0, or
WMAP limits on early dark energy that are added to the
likelihood analysis.

APPENDIX C: COMPLETENESS TESTS

When making predictions for general classes of models,
we need to make sure that the parametrization we use has
sufficient freedom to explore all types of effects that mod-
els can have on the acceleration observables. In this ap-
pendix we present several tests of the completeness of our
parametrization. We begin by justifying the number of
principal components of wðzÞ used in the MCMC like-
lihood analysis. We then examine the sensitivity of our
results to the choices of fiducial model and maximum
redshift for principal components. Finally, we discuss the
limitations of our early dark energy parametrization.
The PCs form a complete basis for wðzÞ ordered by how

well they can be measured by the fiducial SN and CMB
data. This ordering allows us to truncate the set of PCs to
some small number that have the greatest impact on the
fiducial data. Retaining a limited number of PCs is a
practical necessity to make parameter estimation feasible,
but we must make sure that the higher-variance PCs that
we ignore do not make significant contributions to the
expansion or growth observables predicted in the main
paper.
It is important to emphasize that we do not expect or

demand completeness in unobservable quantities like wðzÞ
itself; the high-variance PCs that we neglect can have large
effects on the equation of state, but since all of the observ-
ables contain integrals overwðzÞ the effects of these rapidly
oscillating PCs (see Fig. 1) tend to cancel out for the
redshift-dependent quantities of interest. This is especially
true for distances and integrated growth, each of which
involves essentially two integrals of wðzÞ over redshift.
Completeness is more difficult to attain for observables
with a single redshift integral such as the expansion rate
and growth rate, but the practical requirement of a large
volume for such observations makes any rapid evolution
with redshift unobservable in practice.
Our basic strategy for determining the number of PCs

required for completeness, Nc, is to repeat the MCMC
analysis for each class of models using varying numbers
of PCs. As we increase the number of components of wðzÞ,
we expect the resulting predictions for observables to
eventually converge once we have reached the necessary
number of PCs. This approach makes the value of Nc to
some extent dependent on what we assume about the data
and the allowed models. For example, it may be that the
Nc þ 1 component can have a significant effect on certain
observables if its amplitude �Ncþ1 is unconstrained, but

limits on this amplitude from the data and/or priors keep
the impact of this eigenmode on the observables small.
Similarly, it is possible that the value of Nc changes as we
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add the additional freedom of spatial curvature and early
dark energy to the baseline model.

Since our definition of completeness is based on the
precision of predictions for a variety of acceleration ob-
servables,Nc will generally differ from (and be larger than)
the number of dark energy parameters that can be mea-
sured to some specified accuracy [27,28,128] or the num-
ber of parameters required by the data in a Bayesian model
selection sense, e.g., [21,61].

Figure 23 shows a comparison of observable predictions
for the baseline quintessence class (�K ¼ 0, w1 ¼ �1),
using either 10 or 15 PCs. There is little difference between
the two sets of predictions, suggesting that Nc � 10 is
sufficient for this model class. In contrast, predictions in
this class using only 5 PCs are significantly tighter than
those with 10 PCs.

Including both curvature and early dark energy in the
quintessence model class does not alter the agreement
between the predictions for 10 and 15 PCs, as shown in
Fig. 24. There is slightly more variation in the limits on
observables at z > zmax, but we do not expect perfect

completeness at high redshift anyway due to our simplistic
early dark energy parametrization (see below). Even in our
most general model class where we weaken the quintes-
sence prior to �5 � w � 3 while continuing to include
curvature and early dark energy, as in Fig. 25, the predic-
tions remain robust to increasing the number of PCs from
10 to 15.
These comparisons indicate that Nc � 10 is sufficient

for completeness in all model classes that we study here. In
the main sections of this paper we present results from the
larger, ‘‘overcomplete’’ set of 15 PCs.
In our predictions throughout this paper, we have as-

sumed a particular flat �CDM model both for PC con-
struction and for creating the fiducial SN and CMB data for
MCMC likelihoods. Since the true cosmology could be
somewhat different, we can ask how the predictions for
observables would change had we assumed a different
fiducial model. To test this dependence, we have redone
the MCMC analysis using fiducial cosmologies with vari-
ous values of constant wfid � �1. For simulated SN and
CMB data based on wfid ¼ �0:93 (approximately the 68%
upper limit of combined constraints on constant w from
WMAP and current BAO and SN data [24]), the predic-

FIG. 23 (color online). Test of PC completeness for quintes-
sence models. Predictions for growth and expansion observables
from MCMC with 10 (light gray lines) and 15 (dark blue lines)
PCs for flat quintessence models (� 1 � w � 1) with w1 ¼ �1
(no early dark energy).

FIG. 24 (color online). Same as Fig. 23 for nonflat quintes-
sence models with early dark energy.
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tions for growth and expansion observables in the context
of quintessence models with either curvature or early dark
energy have similar uncertainties to those with a fiducial
�CDM cosmology (Figs. 6 and 7). The main effect of
increasing wfid is that it slightly weakens the impact of
the quintessence w ¼ �1 barrier; moving wfid away from
this barrier makes it possible to slightly reduce the dark
energy density at z < zmax from its fiducial level, and
therefore the predictions for quintessence models include
some features that were previously only allowed in the
more general smooth dark energy class. For example,
compared with the flat �CDM growth history, flat quin-
tessence models with early dark energy are allowed to have
�G=G��5% at 68% C.L. instead of �2%, and curved
quintessence models with no early dark energy can have
�G=G� 3% at z ¼ 0 (68% C.L.) where previously only
downward variations in Gðz ¼ 0Þ were possible in this
class of models. The ability to falsify certain model classes
therefore depends on how consistent future SN and CMB
data sets are with the standard flat �CDM cosmology; any
significant variation would be interesting in its own right
and would make some changes to the model testing results

presented here but not the methodology or the logic of the
results themselves.
Another technical issue related to completeness is

whether our choice of zmax ¼ 1:7 affects the predictions
for observables. This choice enters into both the definition
of wðzÞ principal components as discussed in Appendix B
and the likelihood for MCMC as the maximum redshift of
the fiducial SN sample. To distinguish between the two, let
us call the maximum redshift for PCs zPCmax and for the

MCMC likelihood zLmax. Note that the choice of zPCmax also
influences our definition of ‘‘early dark energy’’ by setting
the minimum redshift at which w ¼ w1.
If we keep zLmax ¼ 1:7 but extend the PCs to zPCmax ¼ 2:5

(assuming a flat SN distribution at 1:7 � z � 2:5 with the
number per bin equal to the number at z ¼ 1:7 in the
original distribution), the resulting predictions for observ-
ables in the flat, no early dark energy quintessence class are
similar to those in Fig. 5. The predictions are slightly
weaker, particularly at 95% C.L., due to the extra freedom
in wðzÞ at 1:7< z < 2:5. The fact that width and redshift
dependence of constraints on observables change little with
increased zPCmax indicates that our results are not strongly
influenced by the choice of zPCmax ¼ 1:7. For example, the
tightening of constraints on G, D, and H at high z in Fig. 5
is more a consequence of the transition from accelerated
expansion to deceleration at z� 1 than it is of setting
zPCmax ¼ 1:7.
As another test of sensitivity to zmax, we set z

PC
max ¼ 2:5

as before and also extend the SN distribution for the

MCMC analysis to zLmax ¼ 2:5 (with constant number per
bin at z > 1:7 as for the PCs). The resulting predictions for
flat quintessence without early dark energy are nearly
identical at z * 2 to the ones in Fig. 5. At lower redshifts,
observables are slightly better constrained due to the addi-
tional SN data; the largest changes are at z ¼ 1, with new
68% limits of �G=G * �1% and �D=D & 1%
(68% C.L.). Predictions for growth and expansion observ-
ables are relatively insensitive to increasing both zPCmax and

zLmax.
At redshifts above our default choice of zmax ¼ 1:7, we

make predictions for observables by specifying wðz >
zmaxÞ through an early dark energy ansatz with a constant
equation of state, w ¼ w1. While w1 is not a complete
parametrization of early dark energy, it does provide guid-
ance for predictions. For example, even though a constant
equation of state at z > 1:7 is a poor fit to the Albrecht-
Skordis model in which a quintessence scalar field has an
exponential potential modified by a quadratic polynomial
[129], w1 as an effective parameter can nevertheless si-
multaneously fit the CMB distance to the required Planck
precision and the growth function at zmax to�2% accuracy.
The early dark energy parametrization acts as a diagnostic
for whether the dark energy can ever become a substantial
fraction of the energy density at z * zmax given CMB
constraints on the distance and energy densities at z� z�.

FIG. 25 (color online). Same as Fig. 23 for smooth dark energy
models (� 5 � w � 3) including curvature and early dark en-
ergy.
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Our philosophy is to use an incomplete but representative
parametrization that can be used to monitor the need for
early dark energy. If a substantial fraction of early dark

energy is required by observations under this parametriza-
tion, then more complete descriptions and more detailed
observations will be required.
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