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I. INTRODUCTION

Quantum chromodynamics (QCD) is most predictive in
the perturbative, short-distance regime. Yet our under-
standing of long distance, nonperturbative properties of
QCD keeps improving. Lattice QCD has been used to
compute the hadronic spectrum and matrix elements for
weak transitions, the Nc ! 1 limit and new variants
thereof have been widely applied, and heavy-quark sym-
metry has helped to elucidate heavy-heavyQ �Q and heavy-
light Q �q hadrons. The SUð2ÞL � SUð2ÞR global chiral
symmetry and the spontaneous breaking of this symmetry
to the vectorial, isospin SUð2ÞV , which are mandatory in
QCD [1–13], underlie isospin symmetry, the fact that the
pions are light almost Nambu-Goldstone bosons (NGB’s)
[14,15], and the usefulness of chiral perturbation theory.
Another specific advance was the resolution of the Uð1ÞA
problem by instantons [16], thus explaining why the �0 is
not light.

The remarkable success of the nonrelativistic (‘‘naive’’)
quark model (NQM) treating the u, d, and s quarks as
nonrelativistic, spin-1=2 fermions is of great interest [17–
19]. This model dictated the low-lying flavor SU(3) mul-
tiplets and many aspects of their electroweak interactions.
Spontaneous chiral symmetry breaking (S�SB) generates
dynamical, constituent masses of order the QCD scale
�QCD ’ 250 MeV for the light, almost massless u and d
quarks and increments, by this amount, the hard
Lagrangian mass of the s quark,ms ’ 120 MeV to produce
a constituent s quark mass. Our results are not sensitively
dependent upon the values of the constituent quark masses;
we use the values [20,21]

Mu ¼ Md � Mud ’ 340 MeV (1.1)

and

Ms ’ 470 MeV: (1.2)

The dynamical mass generation of the constituent quark
masses in QCD can, for example, be shown via analysis of
the Dyson-Schwinger equation for the quark [22]. One
may roughly characterize the range of the QCD interac-
tions responsible for the h �qqi condensate as r0. The effec-

tive size of a constituent quark, consisting of the bare
valence quark and its entourage of gluons and q �q pairs,
is expected to be of order r0. A small r0, less than 0.2 fm,
say, then yields constituent quarks of that size moving
inside a hadron of size approximately 1 fm under the
influence of a smooth confining potential, making the
NQM plausibly justified.
Some of the mechanisms suggested for generating spon-

taneous chiral symmetry breaking—in particular, Nambu-
Jona Lasino-type (NJL) models [14,23], and those involv-
ing instantons [16,24,25]—can have relatively short range.
However, in the approach of Casher [1] and Banks and
Casher [2], S�SB results from confinement. In this ap-
proach there is no separation of scales between the con-
stituent quark size and hadron sizes.
The almost massless Nambu-Goldstone pion—the other

consequence of spontaneous chiral symmetry breaking—
generates arguably the single most serious difficulty for the
NQM, namely, what has been called the ‘‘�-� puzzle’’
(e.g., [26]) This is the challenge of simultaneously explain-
ing the pion as a q �q bound state and an approximate NGB,
and relating it to the �. There is an analogous, although less
severe, problem for the K and K�. Although this difficulty
is most clearly manifest within the NQM, it transcends
this nonrelativistic model. Thus, also the original
Massachusetts Institute of Technology (MIT) bag model
with relativistic quarks confined in a spherical cavity re-
quires large hyperfine interactions to try to split the masses
of the � and � and, like the NQM, fails to explain the
almost massless pions [27]. To get a sufficiently light pion
in the MIT bag model, it is necessary to argue that sub-
stantial contributions due to the fluctuations in the center-
of-mass should be subtracted [28] (see also [29,30]).
In this paper we shall revisit the problem of understand-

ing the dual nature of the pion (and kaon) as q �q bound
states and as collective, almost massless Nambu-Goldstone
bosons. We suggest that this can be understood because the
strong chromomagnetic hyperfine interaction that splits the
mass of the � and � keeps the valence q and �q in the pion
rather close to each other. The dynamics of this close q �q
pair can be modeled by random walk methods, and we
show that these can reproduce the successful relation that
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m2
� / mq and can explain relations that have been chal-

lenging to understand, such as the dependence of the pion
wave function at the origin on the pion mass. The organi-
zation of the paper is as follows. In Sec. II we elaborate on
the �-� puzzle in the context of the nonrelativistic quark
model. In Sec. III we present a heuristic picture that gives
some new insight into this puzzle by helping to explain the
� as both a q �q bound state and an approximate Nambu-
Goldstone boson. In Sec. IV we consider the K � � tran-
sition form factor, fþðq2Þ. Its deviation from unity at
vanishing momentum transfer is governed by the
Ademollo-Gatto theorem [31], and analogous deviations
from heavy-quark universality are derived in a general
context. In Sec. V we comment on the systematics of quark
mass differences inferred from (Q�s) and (Q �q) mesons,
where q ¼ u or d. This has been elaborated independently
by Karliner and Lipkin [32]. Still, we feel that it is of
sufficient interest to present it here from our point of view.

II. THE �-� PUZZLE

In this section we briefly review the �-� puzzle. The
reader who is already familiar with this may wish to skim
this section or skip it and proceed immediately to Sec. III
where we present our new physical picture of the pion.

Several pieces of data suggest that the pion, which is
lighter than the � by approximately 640 MeV, is otherwise
rather similar to the �, as expected in the nonrelativistic
quark model for the 1S0 pseudoscalar partner of the 3S1
vector meson. These data can be summarized as follows:

(i) One measure of the size of a hadron is provided by
the magnitude of the charge radius. The charge radii
of the �þ and Kþ are given by [20]

ðhr2i�þÞ1=2 ¼ 0:672� 0:008 fm (2.1)

and

ðhr2iKþÞ1=2 ¼ 0:560� 0:031 fm: (2.2)

These are rather similar and, indeed, are not very
different from the charge radius of the proton,

ðhr2ipÞ1=2 ¼ 0:875� 0:007 fm: (2.3)

(ii) Similar � and � sizes and a somewhat smaller kaon
are suggested by the total cross sections on protons
at a typical laboratory energy above the resonance
region. Averaged over meson charges, at a lab en-
ergy Elab ¼ 10 GeV, these are [20]

��N ’ 26:5 mb (2.4)

and

�KN ’ 21 mb: (2.5)

Although one obviously does not have beams of �
mesons available experimentally, owing to the very

short lifetime of the �, it is possible to estimate what
the cross section for �� N scattering would be if
one did have such beams. Diffractive � production
data and vector meson dominance yield the estimate
[33]

��N ’ 27� 2 mb: (2.6)

This cross section is essentially the same, to within
the experimental and theoretical uncertainties, as
��N at the same energy [and these are approxi-
mately equal to ð2=3Þ�NN at this energy].

(iii) The nonrelativistic quark model was able to fit the
measured values of the proton and neutron mag-
netic moments �p ¼ 2:793�N and �n ¼
�1:913�N [where �N ¼ e=ð2mpÞ] and the ratio

�p=�n ’ �3=2, as well as the values of the hy-

peron magnetic moments, in terms of Dirac mag-
netic moments of constituent quarks. It also
explained decays such as ! ! �0 þ � and � !
�� as quark spin flip 3S1 ! 1S0 electromagnetic

transitions. The optimal overlap of the � and �
wave functions implied by this confirms the simi-
larity of the vector and pseudoscalar meson ground-
state wave functions.

(iv) The amplitudes for semileptonic K‘3 decays in-
volve the vector part of the weak j�Sj ¼ 1 current
and contain the product of Vus with the fþðq2Þ
transition form factor. In the limit of SU(3) flavor
symmetry mu ¼ md ¼ ms, so that mK ¼ m�, the
conserved vector current (CVC) property implies
that fþð0Þ ¼ 1. Experimentally, fþðq2 ¼ 0Þ is very
close to unity. The success of these fits implies
almost optimal overlap between the wave functions
of the pion and kaon.

In the nonrelativistic quark model, one can rewrite the
two-body quark-antiquark Hamiltonian as an effective
one-body problem with the usual reduced mass

�i �j ¼
MiMj

Mi þMj

(2.7)

for the qi �qj pseudoscalar meson. (The context will make

clear where the notation � refers to a magnetic moment
and where it refers to a reduced mass.) The corresponding
bound-state wave function is denoted c �ðrÞ, c KðrÞ, etc.,
where r ¼ rqi � r �qj is the relative coordinate in the bound

state. With the above-mentioned typical values Mud ¼
340 MeV and Ms ¼ 470 MeV, one has

�� ¼ Mud

2
¼ 170 MeV (2.8)

and

�K ¼ MudMs

Mud þMs

¼ 200 MeV; (2.9)

where it is understood that the choices for the input values
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of the constituent quark masses in these formulas depend
somewhat on the method that one uses to infer their values
[21]. In the nonrelativistic quark model, since a bound state
involving a larger effective reduced mass is expected to be
smaller, one has some understanding of the fact thatffiffiffiffiffiffiffiffiffiffiffiffiffihr2iKþ
p ’ 0:83

ffiffiffiffiffiffiffiffiffiffiffiffiffihr2i�þ
p

. The deviation of fþð0Þ from unity
is also in accord with this difference of reduced masses.

For heavy Q �Q quarkonium systems one can use the
nonrelativistic Schrödinger equation to describe a number
of properties of the bound states [18,19]. This use is
justified by the fact that in the c �c and b �b systems the
respective heavy-quark masses mc ’ 1:3 GeV and mb ’
4:3 GeV are large compared with �QCD, and the asymp-

totic freedom of QCD means that �s gets small for such
mass scales. The hyperfine splitting in these �QQ systems,
being proportional to �s=mQ, is small.

For light �qq systems, however, the situation is different.
Let us denote

h0jJj	j�kðpÞi ¼ if�

jkp	; (2.10)

where j, k are isospin indices and J	 is the weak charged
current, so that h0jJ1�i2

	 j�þðpÞi ¼ if�p	. Similarly,
h0jJ4�i5

	 jKþðpÞi ¼ ifKp	. Experimentally [20],

f� ¼ 92:4 MeV; fK ¼ 113 MeV: (2.11)

Analogous constants enter in the leptonic decays of the
vector mesons. The rate for the decay Mþ

i �j
! ‘þ�‘, where

‘ ¼ � or e, is

�ðMþ
i �j
! ‘þ�‘Þ ¼

jVijj2G2
Ff

2
Mi �j

mMi �j
m2

‘

4�

�
1� m2

‘

m2
Mi �j

�
2
;

(2.12)

where here Vij ¼ Vud for Mþ
u �d

¼ �þ and Vus for Mþ
u�s ¼

Kþ. Since Mi �j is a qi �qj bound state, this rate is propor-

tional to jc ð0Þj2. With the normalization of c ðrÞ in the
nonrelativistic quark model determined by the conditionR
d3rjc ðrÞj2 ¼ 1, it follows that for a given 1S0 or

3S1 qi �qj
meson M,

fM / jcMð0Þj
m1=2

M

: (2.13)

Hence,

jc Kð0Þj
jc �ð0Þj

¼ fK
f�

�
mK

m�

�
1=2 ¼ 2:3: (2.14)

The difficulty of deriving this ratio from the NQM was
noted early on as the van Royen–Weisskopf ‘‘paradox’’
[34].

Conventionally, in the context of the quark model, the
�-� mass difference was explained by means of a very
strong chromomagnetic, i.e., color hyperfine (chf) splitting
between these particles. The similar, although smaller,
mass difference between the K� and K was also explained

by this color hyperfine interaction. Taking account of color,
the Hamiltonian for the color hyperfine (chromomagnetic)
interaction has the form

Hchf ¼ vchfðrÞ
MiMj

ð ~	i � ~	jÞð ~�i � ~�jÞ; (2.15)

where the function vchfðrÞ involves the overlap of the
interacting constituent (anti)quarks. Recall that the product
~�i � ~�j is equal to 1 and �3 times the identity matrix I2�2

when the qi and �qj spins are coupled to S ¼ 1 and S ¼ 0,

respectively. Similarly, the product of SUð3Þc color matri-

ces ~	i � ~	j is equal to �16=3 and �8=3 times I3�3 if the

colors are coupled as 3� �3 ! 1 (meson) and 3� 3 ! �3
(baryon), respectively. The resultant 1:ð�3Þ ratio of mass
shifts in S ¼ 1 and S ¼ 0 q �q mesons or quark pairs in
baryons and the 1:ð1=2Þ ratio of the color factor for q �q
mesons versus qq interactions in baryons yield good fits to
meson and baryon masses. The dependence of Hchf on
1=ðMiMjÞ is also important for this successful fit. In the

NQM as applied here, vchfðrÞ / 
3ðrÞ, so that the color
hyperfine shifts evaluated to first order in Hchf are propor-
tional to jc ð0Þj2 (where the subscriptM on c is suppressed
in the notation) [17]. This is analogous to the hyperfine
splitting in hydrogen, which is also proportional to the
square jc ð0Þj2 of the hydrogenic wave function at the
origin. We focus here on the 1S0 and

3S1 isovector mesons,

i.e., the � and �, absorb the color factor into the prefactor
and thus write, for the energy due to Hchf ,

Ehcf ¼
Ah ~�i � ~�jijc ð0Þj2

MiMj

: (2.16)

The meson mass to zeroth order in Hchf is denoted m0.
Then the physical masses are

m� ¼ m0 þ Ajc ð0Þj2
M2

ud

(2.17)

and

m� ¼ m0 � 3Ajc ð0Þj2
M2

ud

: (2.18)

Equivalently,

m0 ¼
3m� þm�

4
(2.19)

and

A ¼ ðm� �m�ÞM2
ud

4jc ð0Þj2 : (2.20)

Numerically,m0 ¼ 620 MeV and the color hyperfine split-
ting is

ð�EÞchf ¼ m� �m� ¼ 4Ajc ð0Þj2
M2

ud

¼ 640 MeV: (2.21)
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The color hyperfine interaction also plays an important
role in splitting the K and �, since their mass difference,
mK �m� ’ 360 MeV, exceeds, by about a factor of 3, the
difference in current-quark masses, ms �md ’ 120 MeV.
In the NQM, this is attributed to the fact that the color
hyperfine interaction energy �a=M2

ud for the � (with a >
0) is negative and larger in magnitude than the correspond-
ing energy �a=ðMudMsÞ for the K, since Ms >Mud.

The large size of the splitting (2.21) shows that the color
hyperfine interaction is not a small perturbation on the
zeroth-order Hamiltonian value, m0. Furthermore, the
strongly attractive, short-range color hyperfine interaction
has the effect of contracting the pion to a size substantially
smaller than the size indicated by experimental data on the
charge radius and ��N scattering cross section. Moreover,
since vchfðrÞ / 
3ðrÞ, which is clearly sensitive to short-
distance interactions between quarks, there is a problem of
internal consistency when one uses a color hyperfine in-
teraction in the context of the nonrelativistic quark model,
since at short distances, because of asymptotic freedom,
the light quarks behave in a relativistic quasifree manner
with their small, current-quark masses, not as nonrelativ-
istic, massive, constituent quarks.

The fact that Mud=Ms ’ 0:7 has two countervailing
effects on the relative charge radii of the �þ and Kþ.
First, since the reduced mass �K is slightly greater than
�� [cf. Eqs. (2.8) and (2.9)], it is plausible that the corre-
sponding meson could be somewhat smaller. Yet the very
important attractive color hyperfine interaction should

make
ffiffiffiffiffiffiffiffiffiffiffiffiffihr2iKþ

p
larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffihr2i�þ
p

.
We proceed to discuss some properties of the color

hyperfine interaction further. Since an attractive interaction
involving a 
3ðrÞ function potential is inconsistent in the
nonrelativistic constituent quark model, we model vchfðrÞ
as a spherical square well of depth V0 and radius r0. The
dimensionless quantity fixing the number of bound states is
the ratio of the strength V0 of a potential to the kinetic
energy of a particle bound by this potential in a region of
size r0, namely Ekin ’ p2=ð2�Þ ¼ �2=ð2�r20Þ (Ekin ¼
p ¼ �=r0, relativistically). The ratio V0=Ekin ¼
2�V0r

2
0=�

2. Since � is determined by Eq. (2.7), we thus

fix the product V0r
2
0. One knows from general QCD theory

that at distances r � 1=�QCD, the static quark potential

has the Coulombic form

Vq �q ¼
C2f�s

r
for r � 1

�QCD

; (2.22)

where C2f ¼ 4=3 is the quadratic Casimir invariant for the

fundamental representation of SUð3Þc and the logarithmic
dependence of the running �s on r is left implicit. At
distances of order 1=�QCD, Vq �q has a linear form resulting

from the chromoelectric flux tube joining the q and �q,

Vq �q ¼ �r for r� 1

�QCD

; (2.23)

where � ¼ 1=ð2��0Þ ’ ð400 MeVÞ2 is the string tension
with �0 the Regge slope. To illustrate the nature of the �-�
puzzle, let us consider an infinite square-well potential,
which provides a simple model of confinement. The (unit-
normalized) ground-state wave function is

c ðrÞ ¼
�
�

2r30

�
1=2

�
sinpr

pr

�
; (2.24)

where p ¼ �=r0. With this potential, one has

hr2i ¼
Z

r2jc ðrÞj2d3r ¼
�
1

3
� 1

2�2

�
r20; (2.25)

so that
ffiffiffiffiffiffiffiffihr2ip ¼ 0:532r0. The measured value of hr2i� then

determines r0 ¼ 1:26 fm. Denoting hr2i � d2, one can
write jc ð0Þj2 ¼ c=d3 with c a constant. In this model,

c ¼ �

2

�
1

3
� 1

2�2

�
3=2 ¼ 0:236: (2.26)

Substituting the value of jc ð0Þj2 into Eq. (2.21), we find

ð�EÞchf ¼ 2�A

M2
udr

3
0

(2.27)

so that

A ¼ ðm� �m�ÞM2
udr

3
0

2�
¼ 3:1: (2.28)

Thus, both the large shift in Eq. (2.21) and the rather large
value of the coefficient A show that the NQM treatment of
the very strong, short-range hyperfine interaction as a
perturbation is not really justified. As could be expected
on general grounds, such a strong short-range interaction
has the effect of producing a pion wave function that is
smaller in spatial extent than is experimentally observed.
In effect, the pion—which, by definition, is the ground
state in the attractive 1S0 pseudoscalar channel—is ‘‘swal-

lowed.’’ i.e., squeezed into a contracted state of radius
much smaller than that of the �. The wave function for
the � itself slightly expands relative the original common
unperturbed � and � wave functions, due to the repulsive
color hyperfine interaction in the 3S1 vector channel (which
is 1=3 as strong as the attraction in the 1S0 channel). The
NQM puzzle of a very light pion thus extends also to its
expected much smaller size. In general, any extra, attrac-
tive, potential that binds the pion more strongly than the �
yields a � that is smaller than the �. The only way to
maintain a common shape for the � and � wave functions
in a nonrelativistic potential model framework is to have
vchfðrÞ constant as a function of r, which is very different
from the NQM’s form vchf / 
3ðrÞ.

III. A PHYSICAL PICTURE OFAPPROXIMATE
NAMBU-GOLDSTONE BOSONS

NJL-type models do succeed in producing a massless or
nearly massless pion in a bound-state picture, as was
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shown first via a solution of the Bethe-Salpeter equation in
the 1S0 channel in the original work by Nambu and Jona-

Lasinio [14] (with an appropriate reinterpretation of the
four-fermion operator as involving quarks rather than nu-
cleons in a modern context [23]). However, the coupling of
the four-fermion operator is not calculated directly from
the underlying QCD theory. Furthermore, this four-
fermion operator posits that the spontaneous chiral sym-
metry breaking is a contact interaction, and thus does not
directly include the physically appealing mechanism for
S�SB as being a consequence of helicity reversal due to
confinement [1].

An important insight for understanding the pion as a q �q
bound state and also an approximate Nambu-Goldstone
boson has been the argument by Brodsky and Lepage
that the physical pion state contains not just the valence
jq �qi state, but large contributions from higher Fock states
such as jq �qþ ngi, jq �qq �qi, jq �qq �qþ ngi (g ¼ gluon), etc.
[35]. These higher Fock space states can account for much
of the size of the physical pion. This view is in accord with
the Goldstone phenomenon in condensed matter physics,
where a Goldstone excitation is a collective state (e.g., a
quantized spin wave or magnon in the case of a ferromag-
net). This insight has been deepened with further work
using the light front formalism [36]. Recently, Brodsky
and de Téramond have used AdS/QCD methods to calcu-
late hadron masses including m�, and also f�, hr2i�þ , and
the pion electromagnetic form factor F�þðq2Þ in the space-
like and timelike regions [37].

Another approach is provided by approximate solutions
to Dyson-Schwinger and Bethe-Salpeter equations. In ad-
dition to phenomenological four-fermion NJL-type kernels
for the Bethe-Salpeter equation [14,23], these have in-
volved quark-gluon interactions in an effort to model
QCD [22,38]. These equations capture some of the relevant
physics, although they do not directly include effects of
confinement or nonperturbative effects due to instantons.
Confinement means that both quarks and gluons have
maximum wavelengths, i.e., minimum bound-state mo-
menta, which affect chiral symmetry breaking [39].
(Solutions of Dyson-Schwinger and Bethe-Salpeter equa-
tions have also been used to investigate the dependence of
the hadron mass spectrum on the number of light flavors in
a general asymptotically free, vectorial non-Abelian gauge
theory [40].)

Thus, there has been continual progress in understanding
the pion (and kaon) as both a q �q bound state and an
approximate Nambu-Goldstone boson. Here we would
like to present a rather simple heuristic picture of this
physics which, we believe, contributes further to this
progress. For technical simplicity, we restrict ourselves to
the large-Nc limit, in which quark loops have a negligibly
small effect. In this limit a simple proof that spontaneous
chiral symmetry breaking occurs was constructed by show-
ing that the ’t Hooft anomaly matching conditions [3] for

massless u and d quarks must be realized in the physical
spectrum via a massless Nambu-Goldstone pion rather
than massless nucleons [4]. To motivate our picture, we
note several elements that were missing in the nonrelativ-
istic quark model approach to the �-� puzzle:
(i) We need a natural mechanism for producing a suffi-

ciently strong q �q interaction in the 1S0 channel to

reduce the mass of the bound state so that, up to
electroweak corrections, it vanishes in the limit of
zero current-quark masses.

(ii) We would like the same physical picture to explain
how the pion is both a q �q bound state and an
approximate Nambu-Goldstone boson whose mass-
lessness follows from the spontaneous breaking of
the SUð2ÞL � SUð2ÞR global chiral symmetry down
to the diagonal, vectorial SUð2ÞV and whose inter-
actions involve derivative couplings, which vanish
as q� ! 0. As part of this, it is desirable that the

picture should yield the Gell-Mann-Oakes-Renner
(GMOR) formula for the pion (and kaon) mass
[41,42].

(iii) We would like to resolve the van Royen–Weisskopf
paradox [34] and explain how the quark wave

function of the pion at the origin, c �ð0Þ, can be /
m1=2

� and thus be consistent with a finite value of f�
in the chiral limit where m� ! 0.

(iv) Finally, we would like to understand how an ap-
proximate Nambu-Goldstone boson such as the
pion, which appears quite different from other had-
rons, can have, as indicated by experiment, roughly
the same size as these other hadrons.

We next present our new picture and show how it
addresses these questions. As is well known, if a quark
has zero current-quark mass, the covariant derivative �q 6Dq
in the QCD Lagrangian, preserves chirality. A dynamical,
constituent quark mass can be generated via an approxi-
mate solution of the Dyson-Schwinger equation for the
quark propagator. In the one-gluon exchange approxima-
tion, one finds a nonzero solution for the effective quark
mass M if C2f�s ¼ ð4=3Þ�s * Oð1Þ. In this framework,

the dynamical quark mass M is thus the consequence of a
sufficiently strong quark-gluon coupling at the relevant
scale, �sð�Þ at ���QCD. This dynamical quark mass

can also be seen to result from the helicity reversal due
to confinement [1]. These two approaches can also be seen
to connect with the NJL-type analysis, with M ’ Gh �qqi ’
h �qqi=ð2�f2�Þ, where G denotes the NJL four-fermion cou-
pling. If one restricts oneself to a quenched approximation
in which there are no quark loops, then the presence of
higher Fock space states with q �q pairs inside a meson with
its valence constituent quarks can be regarded as being due
to a kind of zitterbewegungmotion of these valence quarks.
Light-quark mesons which are not approximate NGB’s,
such as the �, can be modeled satisfactorily as being
composed simply of a constituent quark and constituent
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antiquark. The effective size of this constituent q �q bound
state is of order 1=Mud. The application of the nonrelativ-
istic constituent quark model to such mesons is reasonable,
with the constituent quarks moving in an approximately
nonrelativistic fashion under the assumed confining poten-
tial, with a weakly repulsive hyperfine interaction for the �
meson.

In the pion, however, the interaction at all scales is
(strongly) attractive. This is manifested in the Euclidean
pseudoscalar correlator. We recall that several general
properties of hadrons have been understood on the basis
of Euclidean correlation function inequalities [8–12]. Let
us consider the Euclidean correlation function for a pseu-
doscalar q �q bound state,

Pðx; yÞ ¼ h½ �uðxÞ�5dðxÞ	½ �dðyÞ�5uðyÞ	i: (3.1)

Performing the Gaussian fermionic (Grassmann) integra-
tion in the path integral yields

Pðx; yÞ ¼
Z

d�ðA�ðxÞÞSðAÞyðx; yÞSðAÞðx; yÞ; (3.2)

where d�ðA�ðxÞÞ is the positive measure of the Euclidean
path integral, including the e�SG factor from the gauge part
of the action, where

SG ¼ 1
4G��G

��; (3.3)

and the fermionic determinant is absent in the quenched
approximation used here. In Eq. (3.2), SðAÞðx; yÞ is the
propagator of the quark (a light u or d quark) moving
from the initial position y to the final position x, in the
presence of the background gauge field A�ðxÞ �P

aTaA
a
�ðxÞ. SðAÞyðx; yÞ denotes the Hermitian adjoint of

SðAÞðx; yÞ in color and Dirac space. We use the relation

�5SðAÞðy; xÞ�5 ¼ SðAÞyðx; yÞ: (3.4)

This property is unique to �5 and is not shared by any of the
other 16 Dirac matrices. It ensures that the path integrand is
positive for all field configurations, making Pðx; yÞ larger
than all other Euclidean (scalar, vector, axial-vector, and
tensor) correlators. Asymptotically, when jx� yj ! 1,
any correlatorCðx; yÞ behaves, up to a power-law prefactor,
as

Cðx; yÞ ’ expð�m0jx� yjÞ; (3.5)

where m0 is the mass of the lightest physical state with the
quantum numbers of the correlator considered. This, to-
gether with the inequality

Pðx; yÞ � expð�m�jx� yjÞ 
 any Cðx; yÞ; (3.6)

guarantees that the pion is, indeed, the lightest meson.
Furthermore, the positivity of Pðx; yÞ for any jx� yj and
the fact that Sðx; yÞ is a monotonically decreasing function
of jx� yj implies that the effective quark-antiquark poten-
tial in the pion (to the extent that this nonrelativistic

language is appropriate) is attractive at all relative
distances.
As we noted in the previous section, in the nonrelativ-

istic quark model a very strong hyperfine interaction be-
tween the quark and antiquark in the pion is needed in
order to reduce its mass nearly to zero, and such an
interaction tends to produce a wave function for the va-
lence q �q in the pion that is restricted to a very small spatial
extent (almost collapsed). Following this lead, we suggest
that , while the spacetime (or Euclidean) picture of a �qq
vector meson is two wool-ball-like single strands of va-
lence quark and antiquark lines, the pion is a double strand,
namely, closer valence �q and q world lines whose motion
forms a single wool-ball-like configuration. According to
this picture, in the pion, but not in the � etc., the valence �q
and q lines with collinear momenta track each other at a
distance that is shorter than 1 fm. This is similar to NJL-
type models, in which, by construction, the important
interaction is of short range. Thus, in our picture the pion
qualitatively differs from the � as a nearly Nambu-
Goldstone particle should and, at the same time, can be
consistently considered as a �qiqj state. Here and below,

analogous comments, with obvious changes for the heavier
ms, apply for the K and its comparison with the K�.
It is well known from discussions of the chiral anomaly

[4–9] that a massless collinear quark and antiquark of
opposite helicity, corresponding to the bilinear operator
product �c�5c , can mimic the pole of a massless pseudo-
scalar particle and replace the latter in the calculation of
the anomaly. Here we suggest that such a configuration,
including the effect of spontaneous chiral symmetry break-
ing, can represent the massless pion, explain the puzzling
strong color hyperfine interaction between the qi and �qj,

and can account for its behavior as a light, approximate
Nambu-Goldstone boson. In general, one would expect
from the basic quantum mechanical relation ð�piÞð�riÞ *
@ that restricting the q and �q to a small interval along some
axis x̂i would entail large momenta along this axis.
However, in the presence of an appropriate gluonic field
configuration, the gauge-covariant momentum p�I�
gTaAa

� can vanish.

We address the questions posed above, starting with (i).
There are two sources of explicit chiral symmetry break-
ing, namely, finite quark masses and the presence of non-
zero electroweak interactions. For our present discussion
we shall imagine that, unless otherwise indicated, electro-
weak interactions are turned off. Then a nonzero pion mass
is induced via the explicit chiral symmetry breaking term
mu

�ddþmu �uu in the QCD Lagrangian. To see this in our
picture, we consider the spacetime evolution of the qi and
�qj in a pion, after a Euclidean Wick rotation. In the QCD

context, the qi and �qj are connected by a chromoelectric

flux tube, and their positions fluctuate within length scales
of order 1=�QCD ’ 1 fm. We consider a model in which in

the pion, but not in the � or other vector mesons, the
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valence q and �q track each other at a distance h shorter than
1=�QCD, at all times. The constituent quark masses are

then less relevant to the dynamics, being gradually re-
placed, as h gets smaller, by their current-quark masses.
The point here is that constituent quark masses are con-
sequences of spontaneous chiral symmetry breaking,
which disappears at short distances (large momenta). In
QCD, the scale-dependent dynamically generated constitu-
ent quark mass decays, as a function of Euclidean mo-
menta p, like

Mq � h �qqi
p2

(3.7)

up to logs [22], where

h �qqi � 4�f3� ��3
QCD: (3.8)

More generally,

Mq ��QCD

�
�QCD

p

�
2��

; (3.9)

where � denotes the anomalous dimension of the �qq
operator; here we use the property that � is a power series
in the running coupling �s, and�s approaches zero at short
distances because of the asymptotic freedom of QCD. In
our picture it is this ‘‘melting away’’ of the constituent
quark masses at short distance which provides, in the NQM
language, the very strong hyperfine interactions in the pion.

Next, as an answer to question (ii), we would like to
show how the GMOR relation for the pion and other
pseudoscalar meson masses (aside from the �0), which
embodies the Nambu-Goldstone nature of these pseudo-
scalar mesons, is naturally expected in our picture. Let the

total Euclidean length R ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ r2

p
, where � ¼ it,

be the net Euclidean distance traveled by the q �q double
line describing the valence quark-antiquark in the pion.
The double line describes a random walk with n straight
sections of total length L. When probed at distances that
are short compared with 1=�QCD, the quark masses are the

hard, current-quark masses, mu ’ 4 MeV and md ’
8 MeV. When ðmu þmdÞjxj * 1, the quark propagation

involves the suppression factor e�ðmuþmdÞjxj. Hence, a char-
acteristic length describing this propagation is

L / 1

mu þmd

: (3.10)

Now the end-to-end distance R for a randomwalk with step
sizes d (in any dimension) is given by [43]

R2 � d2n: (3.11)

On average, if the total length of the n-step walk is L and
the step length is d, then

d ’ L

n
: (3.12)

Hence,

R2 ’ Ld: (3.13)

Then the basic correlation function relation, Eq. (3.5),
implies that

m� ’ 1

R
(3.14)

and hence that

m2
� ’ mu þmd

d
: (3.15)

Since the step size d is connected, via the helicity reversal
process, to the underlying confinement and dynamical
breaking of chiral symmetry, it is natural to equate

1

d
¼ �h �qqi

f2�
(3.16)

(where we follow the usual phase convention for the quark
fields so that, with mq taken as positive, the condensate

h �qqi< 0). Combining these with Eq. (3.15), we see that
this heuristic analysis yields the GMOR mass relation,

m2
� ¼ �ðmu þmdÞ

f2�
h �qqi; (3.17)

where hqqi � hPNc

a¼1 �qaq
ai with q ¼ u or q ¼ d (these

condensates being essentially equal in QCD). A similar
argument, with appropriate replacement of light-quark
mass mu or md by ms, yields the analogous GMOR-type
mass relations for the Kþ and K0,

m2
Kþ ¼ � ðmu þmsÞ

f2K
h �qqi (3.18)

and

m2
K0 ¼ �ðmd þmsÞ

f2K
h �qqi; (3.19)

where h �qqi ’ h �ssi for q ¼ u, d.
The nearby q and �q paths in our picture generate q� �q

color interactions that depend on the difference of these
paths. This suggests the possibility of using this picture to
infer the derivatively coupled form of pion interactions
appropriate for a Nambu-Goldstone particle. This deriva-
tive coupling means that in the static limit, these Nambu-
Goldstone bosons become noninteracting.
We next address point (iii) above, concerning the rela-

tion f� � jc ð0Þj= ffiffiffiffiffiffiffi
m�

p
. Since the matrix element (2.10) as

it enters in the �þ ! ‘þ�‘ decay amplitude obviously
involves the annihilation of the u and �d quarks in the �þ
to produce the virtual timelike Wþ that, in turn, produces
the ‘þ�‘ pair, it clearly depends on the u �dwave function in
the pion evaluated at the origin of the relative coordinate,
jc �ð0Þj. The question here concerns what happens in the
chiral limit, where m� ! 0. For this discussion we again
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imagine that electroweak interactions are turned off, except
that we take into account the couplings leading to the �þ

‘2

decay. Now the pion wave function at a given time involves
the intersection of the worldlines of its constituent q and �q
with the t ¼ 0 hyperplane in the full R4 Wick-rotated
spacetime. This wave function has many Fock space com-
ponents. The matrix element (2.10) involves the annihila-
tion of the valence qi �qj component by the axial-vector

current. Higher Fock space components in the pion wave
function correspond to additional crossings of the t ¼ 0
hyperplane. A measure of the contributions of these addi-
tional components can be obtained from our random walk
representation. We note that for the present purpose it is
essentially a one-dimensional random walk that is relevant,
since we are inquiring about passages across a hyperplane,
namely, that defined by the condition t ¼ 0, of codimen-
sion 1 in the full EuclideanR4. Now in general, the number
of times that a one-dimensional random walk with n steps
returns to the origin is asymptotically / ffiffiffi

n
p

for large n.
The contribution of the valence q �q component of the full
pion wave function to the annihilation probability jc �ð0Þj2
is thus reduced by the factor 1=

ffiffiffi
n

p
. By Eq. (3.11), n�1=2 /

R�1 and by Eq. (3.14), R�1 ’ m�, so jc �ð0Þj2 is reduced
by the factor m�. This means that jc �ð0Þj / ffiffiffiffiffiffiffi

m�
p

in the

chiral limit, thereby canceling the
ffiffiffiffiffiffiffi
m�

p
in the denominator

of Eq. (2.13), and yielding a finite value of f�. Similar
remarks apply for fK in the hypothetical limit ofms ! 0 as
well as mu;d ! 0. Thus, our picture provides a plausible

resolution of the van Royen and Weisskopf paradox
[Eq. (2.13)] [34].

Finally, we address issue (iv) concerning the similar size
of the � and �. We should emphasize from the very outset
that this is challenging. The qualitatively different physical
pictures involved give an indication of the complexity in
the calculation of charge radii. On the one hand, if the size
is controlled by the relatively small separation h in our
picture with double qi �qj lines, then the pion should be

much smaller than the �. On the other hand, since the
distance R ’ 1=m� controls the overall pion size, it follows
this size can become, at least formally, unbounded in the
chiral limit m� ! 0. (In practice, pion wave functions
centered within a distance R of each other would overlap
and become entangled.) This divergence in R asm� ! 0 is
not an artifact of our picture; the range of the residual
strong force mediated, at long distance, by pion exchange,
formally diverges in this chiral limit. The property that the
pion charge radius also diverges in the chiral limit is a
natural concomitant of this divergence in the pion size. Let
us elaborate on this.

The charge radius (squared) of a hadron is

hr2i ¼
Z

�ðrÞr2d3r; (3.20)

where �ðrÞ denotes the charge density. The quantity ffiffiffiffiffiffiffiffiffiffiffijhr2ijp
gives one measure of the size of a composite particle [44].

This is especially clear for a meson such as the �þ or Kþ,
where the u and, respectively, �d or �s both contribute
positively to the integrand in Eq. (3.20) [44,45].
The charge radius squared is proportional to the slope of

the electromagnetic form factor Fðq2Þ at q2 ¼ 0 [46]:

hr2i ¼ 6
dFðq2Þ
dq2

��������q2¼0
: (3.21)

The latter form factor satisfies a t-channel dispersion
relation (t � q2)

FðtÞ ¼
Z

dt
Im½Fðt0Þ	
t� t0

: (3.22)

In particular, for the case under consideration, FðtÞ ¼
F�þðtÞ, the integration is from t0 ¼ ð2m�Þ2 to t0 ¼ 1. In
the vector meson dominance approximation for FðtÞ, one
commonly replaces the Im½Fðt0Þ	 by a delta function cor-
responding to the approximation of zero width for the
relevant vector meson. Here, using � dominance for
F�þðtÞ, one replaces Im½F�þðt0Þ	 by a delta function
/ 
ðt0 �m2

�Þ. This narrow-width approximation, together

with the known value F�þð0Þ ¼ 1, yields

F�þðq2Þ ¼ m2
�

m2
� � q2

; (3.23)

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2i�þ

q
¼

ffiffiffi
6

p
m�

¼ 0:62 fm: (3.24)

This is close to the experimentally measured value, given
above in Eq. (2.1) [33,37]; quantitatively, it is smaller than
this experimental value by only 7%. (One can also include
the effects of the �width, but this will not be necessary for
our discussion here.) An analogous vector meson domi-
nance prediction for the Kþ charge radius works very well
also [33]. A priori, one might worry that an additional
threshold contribution from t0 ’ ð2m�Þ2 might dominate
and lead to hr2i�þ ’ 1=m�. However, this does not happen
here because of the derivative coupling of soft pions, as
Nambu-Goldstone bosons. In the particular case here, an-
other reason why this does not happen is that there is affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 � 4m2

�

p
factor in ImðFðt0ÞÞ that arises from the P-wave

nature of the �� amplitude. Nevertheless, hr2i�þ does
diverge as hr2i�þ � lnð1=m�Þ in the chiral limit where
m� ! 0 [47].
We next sketch an estimate of the pion charge radius in

our picture. As in the previous section, the higher Fock
space states play a key role in this estimate. Consider the
t ¼ 0 slice of the Wick-rotated Minkowski space. The
quantity hr2i�þ can be computed as a sum of the contribu-
tions of the various Fock space components of the pion
wave function. In our picture these are generated by cross-
ings of the t ¼ 0 hyperplane by the qi �qj random-walking

double worldline of the pion. Let the kth such crossing be
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at rk. The first crossing corresponds to a �þ, say, moving
forward in time. Hence, we have a charge þ1 at this
location. At the second crossing, the pion line is reversed,
and we have a �1 charge at r2, etc. The definition
Eq. (3.20) above then yields hr2i�þ ’ P1

k¼1ð�1Þkr2k, where
here rk � jrkj. Recalling that the kth visit to the t ¼ 0
plane happens typically after n ’ k2 steps of the random-
walking double line, with individual step size d, we deduce
that, on average, r2k ’ k2d2. By itself, this would yield, for

hr2i�þ , the sum
P1

k¼1ð�1Þkk2d2. The terms in the above

oscillating sum diverge as k ! 1. However, to get the
actual sum, we must take into account the fact that the
contributions are regularized by the exponential
exp½�ðmu þmdÞL	 ’ exp½�ðmu þmdÞk2d	 controlling
the total length of the random-walking double line. Using
mu þmd ¼ dm2

� from Eq. (3.15) above and defining

b � m�d; (3.25)

we can rewrite the charge radius as

hr2i�þ ’ X1
k¼1

ð�1Þkk2d2e�k2b2 : (3.26)

Since k gets very large in the chiral limit, there are strong
cancellations between successive terms, rendering an ac-
curate estimate difficult. We can at least investigate the
nature of the leading divergence in hr2i�þ . To do this, we
replace the above sum, after subtracting and adding an r0
term and symmetrizing, by an integral over the variable
 ¼ kb ¼ km�d:

IðbÞ ¼ 1

m2
�

Z 1

�1
d2 exp

�
i�

b
� 2

�

¼
ffiffiffiffi
�

p
2m2

�

�
1�

ffiffiffiffi
�

p
2ðm�dÞ2

�
exp

�
�
�

�

2m�d

�
2
�
: (3.27)

The key observation here is that, while we have, as ex-
pected, an explicit 1=m2

� factor in front, the integral IðbÞ
and any finite derivative thereof, contain the factor
exp½��2=ð2m�dÞ2	, which vanishes with an essential
zero in the chiral limit m� ! 0. This can be seen as a
consequence of the strong cancellations between different
terms contributing to the sum, which we approximated as
an integral. Thus, our calculation shows the absence of a
divergence of the power-law form 1=m2

�þ in hr2i�þ and is

consistent with the chiral perturbation theory result that
hr2i�þ diverges like lnð1=m�Þ in this limit. For the real
world with nonzero current-quark masses for u and d, our
analysis above naturally yields a value of hr2i�þ � d2,
since this was the r0 term in the sum. A similar conclusion,
with appropriate replacement of the d with the s quark,
applies to hr2iKþ in the SU(3) chiral limitmu, md, ms ! 0.

Our picture can also give a plausible explanation of why
the pion-nucleon cross section ��N at energies above the
resonance region can be comparable to the inferred value
of ��N at the same energies [cf. Eqs. (2.4) and (2.6)].

Relevant to the�N cross section is the fact that the valence
quarks in the pion propagate in an extended double-line
manner covering an area of order R2 � 1=m2

�. However,
because of the strong color hyperfine interaction, the sepa-
ration h of the valence qi and �qj in the pion is rather small

in our model. Hence, while in a crossing of two qi �qj pairs

at an ordinary hadronic distance �d, the probability of an
interaction is Oð1Þ, here, in contrast, it will be Oððh=dÞ2Þ.
In the context of a hadronic string picture, the small pion
mass is related to the separation h viam� / �h, where� is
the hadronic string tension. Hence, one may roughly esti-
mate that the �N cross section ��N contains the factors
ð�R2Þðh=dÞ2 / �=ð�dÞ2. Note that the factor of m2

� can-
cels out between numerator and denominator, leaving ��N

proportional to an expression involving the string tension
and a typical hadronic distance scale, which are the same
for the� and the �. In the preceding we have presented our
efforts to show how our picture of a rather tightly bound
qi �qj pair undergoing a random walk inside a pion can

explain how this particle can exhibit the properties of an
approximate Nambu-Goldstone boson while also being
understandable as a �qq bound state. Ultimately, one should
be able to find the differences predicted by our picture as
compared with other approaches to this physics. One theo-
retical tool that is relevant here is lattice gauge theory.
However, one faces not only the technical difficulty of
simulating very light quark masses and light pions. An
additional challenge is that in (Euclidean) lattice simula-
tions one first integrates over the fermionic degrees of
freedom. Having the two (say u and �d) quark propagators
in the same background color field may not allow one to
verify that at all intermediate steps the quark and antiquark
are really close to each other. One may need to go back to
the sum over fermionic paths in order to actually detect the
propagators of the nearby qi �qj pair.

One implication of our model with the nearby qi �qj lines

separated by a relatively small distance h is that the purely
gluonic exchange amplitude for �� scattering should be
rather small. A recent lattice calculation of the I ¼ 2��
S-wave scattering length obtained the result a2 ’
�0:043=m� [48], in agreement with the Weinberg-
Tomozawa soft-pion current algebra result a2 ¼
�m�=ð16�f2�Þ ¼ �0:044=m� [49,50]. In a hypothetical
��0 scattering, where the �0 is comprised of �d0 and u0
quarks that are degenerate with the ordinary u and d but do
not mix with them, the scattering amplitude involves only
gluon exchanges, but not quark interchanges. In this case a
preliminary lattice calculation has obtained a ��0 scatter-
ing length considerably smaller than a2, in qualitative
agreement with our discussion above [51].

IV. SOME COMMENTS ON THE K ! � AND
HEAVY-QUARK TRANSITION FORM FACTORS

TheKmesons undergo semileptonicK‘3 decays, such as
Kþ ! �0‘þ�‘, K

0
L ! �þ‘� ��‘, and K0

L ! ��‘þ�‘, me-
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diated by the vector part of the weak charged current. The
almost conserved vector current (CVC) [conserved apart
from SU(3) flavor-breaking effects] helps to fix the corre-
sponding hadronic matrix elements and the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix element
jVusj [52] and tests of three-generation CKM unitarity
[53]. Denoting the 4-momenta p ¼ pK þ p� and q ¼
pK � p�, one has

h�0jðV�Þ	jKþi ¼ h��jðV�Þ	jK0
Li

¼ 1ffiffiffi
2

p ðfþðq2Þp	 þ f�ðq2Þq	Þ; (4.1)

where ðV�Þ	 is the weak charged current. The contribution
from the f�ðq2Þ term is proportional to the final lepton
mass squared and is negligible for semileptonic decays to
final electrons. The t � q2 variation of fþðtÞ over the range
m2

e � t � ðmK �m�Þ2 can be approximated by a linear
function of t:

fþðtÞ ¼ fþð0Þ
�
1þ 	þ

t

m2
�

�
; (4.2)

where 	þ ¼ 0:0288 [20], in agreement with chiral pertur-
bation theory calculations [47,54] and also with the expec-
tation from simple K� vector meson dominance. CVC
implies that fþðq ¼ 0Þ ¼ 1 in the hypothetical limit of
exact SUð3ÞV symmetry, mu ¼ md ¼ ms and hence mK ¼
m�. A general result which wewill elaborate on later is that
the corrections to this symmetry-limit value are always
second order in SUð3ÞV breaking. This is the well-known
Ademollo-Gatto theorem [31]. This feature is evident in
the explicit estimate [55,56]

fþð0Þ ¼ 1� 5ðm2
K �m2

�Þ2
384�2f2�ð2m2

K þm2
�Þ

¼ 0:985: (4.3)

The correction term in Eq. (4.3) arises from multiparticle
contributions to the sum-rule corresponding to the commu-

tator ½Q4þi5; Q4�i5	 ¼ Q3 þ
ffiffiffi
3

p
Q8, where the subscripts

refer to SU(3) flavor generators. Formally, this sum rule
underlies the Ademollo-Gatto theorem; the multiparticle
contributions are squares of matrix elements of the diver-
gence @�J

�
4þi5 of the strangeness-changing weak vector

current, making the deviation from universality quadratic
in the SUð3ÞV symmetry breaking. However, as is also
evident in (4.3), in the limit of SUð3ÞL � SUð3ÞR chiral
symmetry, with m� ! 0 and mK ! 0, the correction term
is actually of first order [55]. This is a consequence of the
fact that in this chiral limit the contributions to the sum rule
that involve the exchange and propagation of massless �’s
and K’s lead to a deviation from universality that is linear
inm2

K. The correction in Eq. (4.3) is small partly because of
the numerical coefficient arising from the loop diagram
involved in the calculation.

It is instructive to see how the Ademollo-Gatto theorem
is realized in the NQM, where the form factor fþðq2Þ can

be expressed as an overlap of the Kþ and �þ wave
functions, which we shall denote FK!�ðq2Þ. In the NQM,
the�þ andKþ consist of nonrelativistic constituent quarks
qi �qj and for L ¼ 0,

FK!�ðq ¼ 0Þ ¼
Z

d3rc �ðrÞ�c KðrÞ: (4.4)

In this model the K and � wave functions (which are real)
depend on just an overall flavor-independent potential VðrÞ
and on the reduced masses �K and ��. We recall our
notation Mq for the constituent mass of a quark q, and

the valuesMu ¼ Md � Mud ’ 330 MeV,Ms ’ 470 MeV.
For simplicity we use the single-term form for the

potential:

Vq �qðrÞ ¼ V0

�
r

r0

�
�
; (4.5)

where � is an exponent. Special cases include (i) � ¼ �1,
i.e., Coulombic, (ii) � ¼ 0, with VðrÞ / lnr; (iii) � ¼ 1,
linear; (iv) � ¼ 2, harmonic oscillator; and (v) � ¼ 1,
equivalent to an infinite square-well potential. As was
noted above, a realistic quark-quark potential has different
forms at short distances and at distances of order
1=�QCD � 1 fm, so it is more complicated than a single-

term form. However, the simplification will suffice for our
purposes here. The scaling properties of the Schrödinger
equation imply that the spatial extent r characterizing the
falloff of the wave function scales with the reduced mass�
as [18,57]

r / ��ð1=ð2þ�ÞÞ: (4.6)

For the range of � considered here, the dependence of this
characteristic distance on � is thus maximal for the
Coulombic, � ¼ �1, case and minimal for � ¼ 1, where
the spatial extent of c is determined completely by the
width of the infinite square well and is independent of �.
For � ¼ 2, i.e., the harmonic oscillator potential, which

we write as V ¼ kr2=2, the wave function is proportional
to a Hermite polynomial, and, for the ground state, it is

c ¼ ð�kÞ3=8
�3=2

exp

� ffiffiffiffiffiffiffi
�k

p
r2

2

�
: (4.7)

Substituting this into Eq. (4.4), we calculate

FK!�ð0Þ ¼ 23=2ð�K��Þ3=8
ð ffiffiffiffiffiffiffi

�K
p þ ffiffiffiffiffiffiffi

��
p Þ3=2 : (4.8)

Let us define the following measure of flavor SU(3) sym-
metry breaking:

� ¼ Ms �Mud

Mud

: (4.9)

The expression for FK!�ð0Þ in Eq. (4.8) has the following
Taylor series expansion in �:
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FK!�ð0Þ ¼ 1� 3

256
�2 þOð�3Þ for � ¼ 2: (4.10)

With the values of �� and �K given above,

FK!�ð0Þ ¼ 0:999 for � ¼ 2: (4.11)

For comparison, consider the Coulomb potential with
ground state

c ¼ e�r=a

�1=2a3=2
; (4.12)

where

aB ¼ 1

C2f�s�
(4.13)

is the Bohr radius and C2f ¼ 4=3. Substituting this into

Eq. (4.4) for the wave function overlap, we find

FK!�ð0Þ ¼
�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
aKa�

p
aK þ a�

�
3 ¼

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K��

p
�K þ��

�
3 ¼ 0:992:

(4.14)

This again has a Taylor series expansion of the form
FK!�ð0Þ ¼ 1�Oð�2Þ, as expected from the Ademollo-
Gatto theorem. Since the r dependences of the logarithmic
(� ¼ 0) and linear (� ¼ 1) potentials are intermediate
between the harmonic oscillator (� ¼ 2) and Coulomb
(� ¼ �1) potentials, one expects Fðq ¼ 0Þ to be very
close to unity for these potentials as well.

These results do not imply such small deviations from
unity for the form factor fþð0Þ in Ke3 decay. The mass
difference mK �m� � 360 MeV far exceeds the value of
ms �mu expected in a model with a flavor-independent
confining potential. Such considerations would apply bet-
ter to semileptonic s ! u decays of mesons with heavy c
or b spectator quarks. Indeed mDs

�mDu
¼ 104 MeV and

mBs
�mBu

¼ 89 MeV, consistent with the current-quark

mass difference ms �mu. Unfortunately, these small mass
differences imply tiny branching for these decays Ds !
Du‘

þ�‘ and Bs ! Bu‘
þ�‘.

The generic form factor is a Lorentz-invariant function
of q2. However, for elastic scattering, one can go to a frame
where q0 ¼ 0 so that q2 ¼ �jqj2 and write

Fðq2Þ ¼
Z

d3reiq�rc �ðrÞ�c KðrÞ; (4.15)

where q ¼ ðq0;qÞ is the momentum imparted to the lep-
tons in the decay process, r ¼ rq � r �q, and c K and c � are

the initial and final meson wave functions. In the flavor
SU(3) symmetry limit, c K ¼ c �. For q ¼ 0, the normal-
izations of the wave functions imply the conserved vector
current (CVC) value Fð0Þ ¼ 1.
The last result is quite general; if the mesons contain, in

addition to the valence quarks qi and �qj, any number of

gluons at the position Rs and/or q �q quark pairs at the
positions r‘, r‘0 , we would have, instead of (4.15),

FK!�ðq2Þ ¼
Z

d3reiq�r
�Y
‘;‘0;s

d3r‘d
3r �‘0d

3Rs

� c �ðr; r‘; r �‘0 ;RsÞ�c Kðr; r‘; r �‘0 ;RsÞ
�
;

(4.16)

so that again in the flavor SU(3) symmetry limit, for equal
wave functions and q ¼ 0, we have Fð0Þ ¼ 1. Here, c K

and c � are the Fock space wave functions with any
number of gluons and quark-antiquark pairs. Both quarks
and gluons carry spin and color, so that c could be a
superposition of many color and spin couplings which
yield overall color singlets. For notational simplicity we
have omitted these above. The general arguments pre-
sented below do not depend on the slightly simpler form of
(4.16).
As is evident in Eqs. (4.15) and (4.16), deviations from

Fð0Þ ¼ 1 can be caused in two ways. First, even for elastic
transitions with c initial ¼ c final, the momentum transfer
factor eiq�r modulates the positive integrand and decreases
F. Second, flavor SU(3) breaking, namely, the difference
betweenms andmq, q ¼ u, d, causes the �þ and Kþ wave

functions to be different and hence reduces fþð0Þ from
unity. To analyze this, we shall use the Cauchy-Schwarz
inequality, that for any vector spaceV with vectors c and
� and an inner product hc ; �i, the property

jhc ; �ij � kc kk�k (4.17)

holds, where kc k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffihc ; c ip
. We apply this to the L2

Hilbert space of square-integrable functions
c ðr; r‘; r �‘0 ;RsÞ with the inner product

hc ; �i ¼
Z

d3r

�Y
‘;‘0;s

d3r‘d
3r �‘0d

3Rsc ðr; r‘; r �‘0 ;RsÞ��ðr; r‘; r �‘0 ;RsÞ
�
: (4.18)

Thus,

FK!�ðq ¼ 0Þ ¼ hc �; c Ki: (4.19)

Using this, we have
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jFK!�ðq ¼ 0Þj2 ¼
��������
Z

d3r

�Y
‘;‘0;s

d3r‘d
3r‘0d

3Rsc �ðr; r‘; r �‘0 ;RsÞ�c Kðr; r‘; r �‘0 ;RsÞ
���������

2

�
�Z

d3r

�Y
‘;‘0;s

d3r‘d
3r‘0d

3Rsjc �ðr; r‘; r �‘0 ;RsÞj2
���Z

d3r½Y
‘;‘0;s

d3r‘d
3r‘0d

3Rsjc Kðr; r‘; r �‘0 ;RsÞj2
��

; (4.20)

where we write these for the general case of Eq. (4.16)
above.

Universal form factors at the no-recoil point for semi-
leptonic decays of mesons containing heavy quarks, e.g.,
Bd ! D�‘þ�‘, follow from the fact that for mb >mc �
�QCD, the heavy quark is a static source of color [trans-

forming as a color SU(3) triplet] with common wave
functions for all of the light degrees of freedom in either
the B or D mesons [58]. With flavor-independent primary
QCD interactions, the difference between c K and c � is
due to the different u and smasses only. From the Cauchy-
Schwarz inequality, one sees that Fðq ¼ 0Þ, as a function
of ms and ms �mu, is extremal (maximal) at ms �mu ¼
0. Hence, the deviation from unity is of order Oððms �
muÞ2Þ, which is the Ademollo-Gatto theorem [31]. The
analogous theorem for heavy quarks is derived by the
same type of reasoning [59,60]. Let us rewrite (4.20) as

FB!Dðq ¼ 0Þ½mið“light”Þ; v ¼ mi=MQ	; (4.21)

where mið“light”Þ refers to the masses of the degrees of
freedom that are light relative to mQ, namely �QCD, ms,

etc. and MQ denotes the mass of the lighter among the

heavy quarks, namely mc in the present case. Again, F is
extremal for v ¼ 0, and the deviations from universality at
the no-recoil point are of order Oðv2Þ ¼ Oð1=m2

QÞ, i.e.,
Oð1=m2

cÞ in b ! c transitions. Indeed, if the current-quark
masses mu ¼ md ¼ 0, then, when ms ! 0, the chiral sym-
metry group is enlarged from SUð2ÞL � SUð2ÞR to
SUð3ÞL � SUð3ÞR [and the QCD condensates would then
break these to the respective diagonal subgroups SUð2ÞV
and SUð3ÞV].

The generalized Ademollo-Gatto theorem can be for-
mulated in Hamiltonian lattice QCD. The � and K wave
functions are replaced by wave functionals with arbitrary
patterns of excited links, corresponding to gluonic excita-
tions, and/or extra q �q pairs. Now consider the matrix
element of the strangeness-changing vectorial weak
charge, Qu;�s ¼

R
d3xV0, where V� denotes the associated

current. This converts flavors s ! u for the valence quarks.
Since ½Q;H	 � 0, this changes the energy of the state
operated on by mK �m�. However, since Q is an integral
over all space, it does not change the 3-momentum of the
state on which it operates. Hence, if it operates on a K at
rest, it should produce a � at rest also. The matrix element
of interest is the overlap of two wave functionals computed
for valence quark mass mq ¼ ms and for mq ¼ mu. By the

Cauchy-Schwarz inequality, which holds for these wave
functionals, the overlap is smaller than unity, achieving its

maximum value when � ¼ ms �mu ¼ 0. Hence, repeat-
ing the same arguments as above, we find that

Fðq ¼ 0Þ ¼ 1�Oð�2Þ: (4.22)

V. MASS COMPARISONS INVOLVING HEAVIER
HADRONS

We proceed to discuss the systematics of mass differ-
ences mðQ�sÞ �mðQ �uÞ for various JPC mesons. Some
related work is in Refs. [32,61]. In this context, we recall
that modern lattice estimates have yielded a somewhat
smaller value of the current-quark mass ms � 120 MeV
than some older current algebra estimates, which tended to
be centered around 180 MeV [47]. In the nonrelativistic
quark model [with a flavor-independent nonrelativistic
quark-(anti)quark interaction potential], the mass differ-
ence between analogous hadrons differing only by having
an s quark replaced by a u or d quark should, up to small
binding changes due to the different reduced constituent
masses, differ by ms �mud. The real world is more com-
plicated, for several reasons. First, the concept of quark
masses and differences needs to be carefully defined. The
masses run with the distance or momentum scale at which
they are probed. The constituent quarks can be considered
to be extended quasiparticles, confined to hadrons with
sizes of order 1=�QCD. As the MIT-SLAC deep inelastic

scattering experiments showed dramatically, as one in-
creases the momentum scale at which one probes such a
quark beyond�QCD, it acts quasifree, without the attendant

strong coupling to gluons to which it is subject for mo-
menta less than �QCD. As this momentum scale increases

considerably beyond �QCD, the quark mass then goes over

to approximately the current-quark mass, since the QCD
gauge coupling becomes small. Since different hadrons
have somewhat different effective scales, this modifies
the extracted mass difference.
Second, while at the fundamental Lagrangian level the

only breaking of flavor symmetry is due to the differences
between the current quark masses, this is not the case for
the effective potential between the constituent quarks in the
naive quark model because of the short-range color hyper-
fine interactions, though not in the asymptotic, confining
part of the potential. This suggests that the mass differ-
ences of Q�s and Q �q mesons with Q a heavy-quark better
estimate the current-quark mass difference ms �mq mass

difference, with q ¼ u or d, since both the magnitude of
the color hyperfine splittings and the effective sizes of the
system are smaller there (the latter is a reduced mass
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effect). Some measured mass differences, averaged
over isospin multiplets, are mðK�Þ �mð�Þ ’ 120 MeV,
mð�Þ �mðK�Þ ’ 125 MeV, mðDsÞ �mðDuÞ ’ mðD�

sÞ�
mðD�

uÞ ’ 100 MeV, and mðBsÞ �mðBuÞ ’ 90 MeV. We
observe a substantial and fairly systematic tendency of
these mass differences to decrease as mðQÞ increases.
This is in agreement with the lattice gauge theory estimates
mentioned above. The pattern in the baryonic spectrum is
more complicated, but does not disagree with this general
decreasing behavior. As is well known, the large splittings
in the JP ¼ 1=2þ baryon octet, viz., mð�Þ �mðNÞ ’
180 MeV, mð�Þ �mðNÞ ’ 255 MeV, mð�Þ �mð�Þ ’
200 MeV, and mð�Þ �mð�Þ ’ 125 MeV, can be ex-
plained by a color hyperfine interaction, similar to that
for the mesons. The equal-spacing mass difference rule
in the J ¼ 3=2 baryon decuplet with the interval of
�146 MeV can also be explained by the color hyperfine
interaction. The relatively large mass difference between
ðcsu; 1=2þÞ � �c and ðcud; 1=2þÞ � �c of mð�cÞ �
mð�cÞ ’ 181 MeV is again in agreement with the expec-
tation based on the large difference in the s� u and d� u
color hyperfine interaction, which is evidently not reduced
by the presence of the nearby heavy c quark in these
baryons. Only the difference of masses of �c ¼
ðcss; 1=2þÞ and �c ¼ ðcsu; 1=2þÞ of 230 MeV appears
to be somewhat high. On the basis of this discussion, one
expects small mass splittings mðQQ0sÞ �mðQQ0uÞ be-

tween baryons containing two heavy quarks, but this ex-
pectation cannot yet be checked.

VI. CONCLUSIONS

In conclusion, we have revisited the �-� puzzle, namely,
the problem of describing the � meson as a qi �qj bound

state and as an approximate Nambu-Goldstone boson and
relating its mass and size to those of the �meson. We have
presented a simple heuristic picture that, we believe, gives
insight into this problem. In this picture, the valence qi and
�qj quarks in the � are rather tightly bound by the strong

color hyperfine interaction that splits the � and � masses.
We show that this picture can resolve another old puzzle
concerning the pion wave function at the origin (van
Royen–Weisskopf paradox) and is consistent with the
Gell-Mann-Oakes-Renner relation, With appropriate re-
placement of the u or d quark by the s quark, our picture
also applies to the K and its relation to the K�. Using our
model, we present an estimate for the charge radius hr2i�þ .
Our approach gives further insight into the charged-current
Kþ � �þ transition relevant in K‘3 decays.
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Study Institutes, Ser. B, Vol. 59 (Plenum, New York,

1980), p. 135.
[4] S. Coleman and E. Witten, Phys. Rev. Lett. 45, 100 (1980).
[5] Y. Frishman, A. Schwimmer, T. Banks, and S.

Yankielowicz, Nucl. Phys. B177, 157 (1981).
[6] V. A. Novikov, M.A. Shifman, A. I. Vainshtein, and V. I.

Zakharov, Nucl. Phys. B191, 301 (1981).
[7] C. Vafa and E. Witten, Nucl. Phys. B234, 173 (1984).
[8] D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983).
[9] S. R. Coleman and B. Grossman, Nucl. Phys. B203, 205

(1982).
[10] E. Witten, Phys. Rev. Lett. 51, 2351 (1983).
[11] S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983); 52, 966

(1984).
[12] M. Lampert and S. Nussinov, Phys. Rep. 362, 193 (2002).
[13] Some early studies of spontaneous chiral symmetry break-

ing in the lattice gauge formulation of QCD and non-

Abelian vectorial gauge theories are H. Hamber and G.

Parisi, Phys. Rev. Lett. 47, 1792 (1981); H. Hamber, E.

Marinari, G. Parisi, and C. Rebbi, Phys. Lett. 124B, 99
(1983); J. Kogut, H.W. Wyld, S. H. Shenker, J.

Shigemitsu, and D.K. Sinclair, Phys. Rev. Lett. 48, 1140

(1982); Nucl. Phys. B225, 326 (1983). Some analytic

studies include B. Svetitsky, S. D. Drell, H. R. Quinn,

and M. Weinstein, Phys. Rev. D 22, 490 (1980); H.

Kluberg-Stern, A. Morel, and B. Petersson, Nucl. Phys.

B215, 527 (1983); H. Kluberg-Stern, A. Morel, O. Napoly,

and B. Petersson, Nucl. Phys. B220, 447 (1983); I-H. Lee

and R. Shrock, Phys. Rev. Lett. 59, 14 (1987); Phys. Lett.

B 201, 497 (1988). Early reviews include M. Creutz,

Quarks, Gluons, and Lattices (Cambridge University

Press, Cambridge, 1983); J. Kogut, Rev. Mod. Phys. 55,
775 (1983). Numerically, h �qqi ’ �ð240 MeVÞ3.

[14] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345

(1961); 124, 246 (1961).
[15] J. Goldstone, Nuovo Cimento 19, 154 (1961); J.

Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

[16] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14,
3432 (1976).

[17] After the original works suggesting quarks by Gell-Mann,

Zweig, and Neeman, and studies by Dalitz, Morpurgo, and

others, an early review of the NQM was J. J. J. Kokkedee,
The Quark Model (Benjamin, New York, 1969). Some

studies of this model after the advent of QCD include A.

DeRujula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12,
147 (1975); M. B. Voloshin and L. B. Okun, JETP Lett. 23,

� AND K AS q �q BOUND STATES AND . . . PHYSICAL REVIEW D 79, 016005 (2009)

016005-13



333 (1976); A. Le Yaouanc, L. Oliver, O. Pène, and J.-C.

Raynal, Phys. Rev. D 15, 844 (1977); 18, 1591 (1978); I.

Herbst and S. Nussinov, Phys. Rev. D 17, 1362 (1978); N.

Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978); 19, 2653
(1979); 20, 1191 (1979); 21, 3175 (1980); S. Gasiorowicz

and J. L. Rosner, Am. J. Phys. 49, 954 (1981); I. Cohen

and H. Lipkin, Phys. Lett. 106B, 119 (1981); A. Manohar

and H. Georgi, Nucl. Phys. B234, 189 (1984); H. J. Lipkin,
Phys. Lett. B 233, 446 (1989); J.M. Richard, Phys. Rep.

212, 1 (1992); arXiv:nucl-th/0410007, and Refs. [18,19].
[18] C. Quigg and J. Rosner, Phys. Rep. 56, 167 (1979).
[19] H. Grosse and A. Martin, Particle Physics and the

Schrödinger Equation (Cambridge University Press,

Cambridge, 1997).
[20] See, e.g., http://pdg.lbl.gov, and references therein.
[21] For the light quarks u and d, the constituent quark mass

Mu ’ Md to within a few MeV, so we shall denote it as

Mud. The value of this mass can be estimated roughly

as Mud ¼ mN=Nc ¼ 310 MeV or mud ¼ m�=2 ¼
380 MeV; we shall essentially average these and use the

value Mud ¼ 340 MeV here, as in Eq. (1.1). Mud and Ms

can be obtained by a fit to hadron masses and baryon

magnetic moments in the NQM. The current-quark

masses, i.e., the masses that quarks would have in the

hypothetical absence of strong interactions, are denoted

mi; typical values for these are mu ’ 4 MeV, md ’
8 MeV, and ms ’ 120 MeV [20]. These are often called

hard quark masses, although, if they are dynamically

generated, they themselves are soft at mass scales typi-

cally of order 102 to 103 TeV [62].
[22] Some of the early papers include K. Lane, Phys. Rev. D

10, 2605 (1974); H. D. Politzer, Nucl. Phys. B117, 397
(1976); J. Ball and T.-W. Chiu, Phys. Rev. D 22, 2550
(1980); J. Cornwall, Phys. Rev. D 26, 1453 (1982); K.

Higashijima, Phys. Rev. D 29, 1228 (1984).
[23] V. Bernard, R. Brockmann, M. Schaden, W. Weise, and E.

Werner, Nucl. Phys. A412, 349 (1984); W. Weise, Nucl.

Phys. A434, 685 (1985); V. Bernard, R. Brockmann, and

W. Weise, Nucl. Phys. A440, 605 (1985); V. Bernard and

U.-G. Meissner, Nucl. Phys. A489, 647 (1988); U. Vogl

and W. Weise, Prog. Nucl. Part. Phys. 27, 195 (1991); S.

Klevansky, Rev. Mod. Phys. 64, 649 (1992); V. Miransky,

Dynamical Symmetry Breaking in Quantum Field Theories

(World Scientific, Singapore, 1993); T. Hatsuda and T.

Kunihiro, Phys. Rep. 247, 221 (1994); J. Bijnens, Phys.

Rep. 265, 370 (1996).
[24] C. Callan, R. Dashen, and D. Gross, Phys. Rev. D 16, 2526

(1977); 17, 2717 (1978); D. Caldi, Phys. Rev. Lett. 39, 121
(1977).

[25] M.A. Nowak, J. J.M. Verbaarschot, and I. Zahed, Phys.

Lett. B 228, 251 (1989); T. A. Appelquist and S. Selipsky,

Phys. Lett. B 400, 364 (1997); M. Velkovsky and E. V.

Shuryak, Phys. Lett. B 437, 398 (1998).
[26] D. G. Caldi and H. Pagels, Phys. Rev. D 14, 809 (1976); H.

Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979); P.

Langacker and H. Pagels, Phys. Rev. D 19, 2070 (1979).
[27] A. Chodos, R. Jaffe, K. Johnson, C. Thorn, and V.

Weisskopf, Phys. Rev. D 9, 3471 (1974); T. DeGrand, R.

Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D 12, 2060
(1975).

[28] J. Donoghue and K. Johnson, Phys. Rev. D 21, 1975
(1980); K. Johnson, Nucl. Phys. A374, 51 (1982).

[29] T. J. Goldman and R.W. Haymaker, Phys. Rev. D 24, 724
(1981); Phys. Lett. 100B, 276 (1981).

[30] A. Chodos and C. B. Thorn, Phys. Rev. D 12, 2733 (1975);
G. E. Brown, M. Rho, and V. Vento, Phys. Lett. 84B, 383
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