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We investigate B3 minimal supergravity models, where the lightest stau ~�1 is the lightest super-

symmetric particle. B3 models allow for lepton number and R-parity violation; the lightest supersym-

metric particle can thus decay. We assume one nonzero B3 coupling �
0
ijk atMGUT, which generates further

B3 couplings atMZ. We study the renormalization group equations and give numerical examples. The new

couplings lead to additional ~�1 decays, providing distinct collider signatures. We classify the ~�1 decays

and describe their dependence on the minimal supergravity parameters. We exploit our results for single

slepton production at the LHC. As an explicit numerical example, we investigate single-smuon produc-

tion, focussing on like-sign dimuons in the final state. Also considered are final states with three or four

muons.
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I. INTRODUCTION

Supersymmetry [1–4] (SUSY) is one of the most prom-
ising extensions of the standard model (SM) of particle
physics [5,6]. In its simplest form, we obtain the super-
symmetric standard model (SSM), with a doubling of the
SM particle content and one extra Higgs doublet. The SSM
solves the hierarchy problem of the SM if SUSY is broken
at a mass scale& Oð10 TeVÞ. Therefore, SUSY should be
testable at the LHC [7,8], which will start taking data this
year.

If they exist, supersymmetric particles are typically
much heavier than their SM partners and at colliders will
mostly decay rapidly. This leads to cascade decay chains in
the detector to the lightest supersymmetric particle (LSP).
The nature of the LSP and its possible decay modes is thus
an essential feature for all supersymmetric signatures. It is
the purpose of this paper to study a novel supersymmetric
phenomenology, namely, with the lightest scalar tau (stau)
~�1 as the LSP [9,10]. In particular we analyze in detail the
potential ~�1 decays in baryon-triality B3 models [11–15].
We then study the discovery potential of a specific signa-
ture in this framework, namely, resonant single slepton
production at the LHC, resulting in multiple muons in
the final state.

A. The B3 framework

The most general renormalizable superpotential of the
SSM is [16,17]

WSSM ¼ WP6 þWP6 6
; (1.1)
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Here, we use the standard notation of Ref. [18].
The superpotential (1.1) consists of two different parts.

WP6 , involves the leptonYE, down-quarkYD, and up-quark

YU Yukawa matrices, which give mass to the leptons and
quarks after electroweak symmetry breaking.
WP6 6 , consists of lepton and baryon number violating

operators, which together can lead to rapid proton decay
[19–22]. The SSM thus requires an additional symmetry
[11,12,14] to stabilize the proton. The most widely as-
sumed symmetry is R-parity, which prohibits WP6 6 , leading
to the MSSM. But R-parity allows dangerous dimension-
five proton decay operators such as QQQL [23], thus
proton-hexality P6 is preferred [14]. Here, we consider a
third possibility, baryon-triality B3. B3 is a discrete Z3

symmetry that prohibits only the �U �D �D operators in
Eq. (1.3) but also the dangerous dimension-five operators.
See, for example, Refs. [24–26] for B3 models that provide
a dark matter candidate.
The B3 SSM has some distinguishing features compared

to the MSSM [21,27], which can have a strong impact on
(hadron) collider phenomenology [28,29]:
(1) Lepton flavor and lepton number are violated.
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(2) The renormalization group equations (RGEs) get
additional contributions [10,30,31].

(3) Neutrino masses can be generated as experimentally
observed [32–37].

(4) The LSP is not stable.
(5) Supersymmetric particles can be produced singly,

possibly on resonance.
Since the LSP is not stable, we are not restricted to the

lightest neutralino ~�0
1 as the LSP [38]. The most general B3

SSM has more than 200 parameters and in principle any
SUSY particle can be the LSP. Within the MSSM, the most
widely studied constrained model is minimal supergravity
(mSUGRA) with conserved P6 and radiative electroweak
symmetry breaking [39–43]. The 124 free parameters of
the MSSM are reduced to only five

M0; M1=2; A0; tan�; sgnð�Þ; (1.4)

which are fixed at the grand unification (GUT) scale,
MGUT. We have a universal scalar mass M0, a universal
gaugino massM1=2, a universal trilinear scalar coupling A0,

the ratio of the Higgs vacuum expectation values tan�, and
the sign of the Higgs mixing parameter sgnð�Þ. For a wide
range of these parameters a ~�0

1 LSP is in fact obtained at
the weak scale MZ [44]. There are also wide ranges of
parameter space with a ~�1 LSP, but these are cosmologi-
cally excluded in the MSSM or mSUGRA [38].

In the B3 mSUGRA model we consider here [9,10], we
have six parameters at the GUT scale

M0; M1=2; A0; tan�; sgnð�Þ; and �0;

(1.5)

where�0 stands for one nonvanishing coupling �0
ijk. A first

investigation of the parameter space has shown, that there
are extensive regions with a neutralino, a stau or a sneu-
trino LSP [9,10]. We shall focus here on a ~�1 LSP. ~�1 LSP
scenarios have been studied in the literature [9,10,37,45–
51]. As we now discuss, we go beyond this work in several
aspects.

B. New phenomenology and outline

The ~�1 LSP might decay via the dominant LiQj
�Dk

operator, Eq. (1.3); for example, via a 4-body decay in
the presence of a nonvanishing �0

211

~��
1 !�

0
211
����u �d: (1.6)

An important feature of B3 mSUGRA models is that addi-
tional B3 couplings are generated via the RGE running.
These new couplings can lead to 2-body decays of the ~�1
LSP. For example, �0

211 will generate �233, which allows
for the decay

~��
1 !�233

����: (1.7)

Even though �233 � �0
211, this might be the dominant

decay mode. The decay (1.6) is suppressed by phase space
and heavy propagators.

We analyze in detail the conditions for a dominance of
the 2-body decay over the 4-body decay. We provide for
the first time an extensive study of B3 ~�1 LSP decays and
extend and specify thus the results of [51], where a first
estimate has been performed. This is useful when studying
both pair produced and singly produced SUSY particles
within the B3 mSUGRAmodel. Typically, all heavy SUSY
particle decay to the (~�1) LSP.
In the second half of our paper, we consider the B3

mSUGRA model with a ~�1 LSP and focus on resonant

single (left-handed) charged slepton ~‘Li and sneutrino ~�i

production at hadron colliders, which proceeds via a domi-
nant LiQj

�Dk operator

�ujdk!
�0
ijk ~‘�Li; (1.8)

�djdk!
�0
ijk

~�i: (1.9)

Here, uj ðdkÞ is an up-type (down-type) quark of generation
j ðkÞ.
Single slepton production allows us also to study two B3

couplings at a time, depending on the scenario. The slepton
is always produced via a �0, whereas the decay of the ~�1
LSP in the decay chain of the slepton might proceed via a
generated �, cf. Eq. (1.7).
Single slepton production within a ~�0

1 LSP scenario

leads to like-sign dileptons in the final state and has thus
a very promising signature for experimental studies, see
Refs. [52–56]. Here, we show that for a ~�1 LSP, we also
obtain like-sign dilepton events and additionally events
with three or four leptons in the final state. We give event
rates for the LHC for two representative sets of B3

mSUGRA parameters. We also discuss the background,
although a detailed signal over background analysis is
beyond the scope of this paper. This is the first study of
single slepton production in ~�1 LSP scenarios.
We assume in the following that only one nonvanishing

�0
ijk is present at MGUT, similar to the dominant top

Yukawa in the SM. Allowing for more than one coupling
leads to stricter bounds [18,21,27,57–59]. The bounds for a
single �0

ijk lie betweenOð1Þ andOð10�4Þ depending on the
flavor indices and sparticle masses. These bounds can be
up to 4 orders of magnitude stronger at MGUT if one
includes the generation of neutrino masses [10,18]. We
therefore assume below that �0

ijk & Oð10�2Þ and require

it to be consistent with the observed neutrino masses.
Resonant slepton production at hadron colliders via the

LiQj
�Dk operator was first investigated in [60,61], using

tree-level production cross sections. Three-lepton final
states and like-sign dilepton events were investigated in
Refs. [52–56]. Ref. [62] considered scenarios with a grav-
itino LSP. Experimental studies by the D0 collaboration at
the Tevatron were performed in Refs. [63,64] assuming a
~�0
1 LSP and a nonvanishing �0

211. The next-to-leading order
(NLO) QCD corrections to the cross section were com-
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puted in [65–68]. The SUSY-QCD corrections were in-
cluded by [67]. The latter can modify the NLO QCD
prediction by up to 35%. In Refs. [50,69–71] single slepton
production in association with a single top quark was
considered.

The outline of our paper is as follows: In Sec. II, we
review the B3 mSUGRA model and approximate formulæ
for sparticle masses. We define twoB3 mSUGRA scenarios
with a ~�1 LSP, as a reference for phenomenological studies.
We then derive approximate equations for the RGE gen-
eration of � from �0. In Sec. III, we classify the different
decay modes of the ~�1 LSP and investigate the conditions
for a dominance of the 2-body decay over the 4-body decay
and vice versa. In Sec. IV, we classify all possible signa-
tures for resonant single slepton production in B3

mSUGRA models with a ~�1 LSP. In Sec. V, we calculate
event rates for like-sign dimuon events as well as for three-
and four-muon events, at the LHC. We also discuss back-
grounds and cuts for like-sign dimuon events. We conclude
in Sec. VI.

II. THE LOW ENERGY SPECTRUM OF THE B3

MSUGRA MODELWITH A ~�1 LSP

We have defined the B3 mSUGRAmodel in Eq. (1.5) via
six input parameters at the GUT scale [9,10]. We now
discuss the low energy spectrum. Sparticle masses and
couplings are obtained by running the respective RGEs
down to the weak scale. Because of the mixing of different
quark flavors, described by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, the RGEs of the B3 couplings
are not independent, but highly coupled. Therefore, a
single nonzero �0

ijk at the GUT scale generates a set of

other nonzero B3 couplings at lower scales. Assuming a
diagonal charged lepton Yukawa matrix YE, only those
couplings can be generated that violate the same lepton
number as �0

ijk, i.e. �
0
imn and �ill. No additional source of

lepton number violation is introduced. Phenomenologi-
cally particularly relevant is the generation of �i33, which
we discuss in detail in Sec. II D.

A. Sparticle spectra

The low energy SUSY particle masses depend strongly
on the universal mSUGRA parameters (1.4) and only
weakly on �0 & Oð10�2Þ [9]. For later use, we cite here
approximate expressions for the relevant SUSY particle
masses in terms of the mSUGRA parameters as given in
[72], cf. also the original work in Ref. [44]. The masses of
the sleptons of the first and second generation are

m2
~‘R
¼ M2

0 þ 0:15M2
1=2 � sin2	WM

2
Z cos2�;

m2
~‘L
¼ M2

0 þ 0:52M2
1=2 � ð0:5� sin2	WÞM2

Z cos2�;

m2
~� ¼ M2

0 þ 0:52M2
1=2 þ 0:5M2

Z cos2�; (2.1)

where m~‘R;L
denotes the mass of a right-/left-handed selec-

tron or smuon, respectively, m~� the mass of a left-handed
electron or muon sneutrino, and 	W the electroweak mix-
ing angle. MZ is the mass of the Z boson.
For sfermions of the third generation, the mixing be-

tween left- and right-handed gauge-current eigenstates has
to be taken into account. The stau mass matrix squaredM2

~�

is given by [73]

M 2
~� ¼ m2

� þ ALL m�BLR

m�BLR m2
� þ CRR

� �
; (2.2)

with m� denoting the tau lepton mass and, expressed in
terms of left- and right-handed third-generation softbreak-
ing parameters m ~L3

and m ~E3
, respectively,

ALL ¼ m2
~L3
� ð0:5� sin2	WÞM2

Z cos2�;

BLR ¼ A� �� tan�;

CRR ¼ m2
~E3
� sin2	WM

2
Z cos2�;

(2.3)

where A� is the trilinear coupling of the left- and right-
handed stau to the Higgs. In mSUGRA, A� ¼ A0 at the
GUT scale. The softbreaking parameters depend on the
mSUGRA parameters as follows [72]:

m2
~E3
¼ M2

0 þ 0:15M2
1=2 �

2

3
X�;

m2
~L3
¼ M2

0 þ 0:52M2
1=2 �

1

3
X�;

X� � 10�4ð1þ tan2�ÞðM2
0 þ 0:15M2

1=2 þ 0:33A2
0Þ;

(2.4)

where X� parameterizes the influence of the tau Yukawa
coupling. Note, that X� can have a strong impact on the
stau masses due to its tan2� dependence, even though X� is
suppressed by a factor 10�4. We will investigate this effect
on the ~�1 decay branching ratios in the next section.
The stau mass eigenstates ~�1;2 are obtained from the

gauge eigenstates by a unitary rotation U such that U
diagonalizes the mass matrix, UM2

~�U
y ¼ diagðm2

~�1
; m2

~�2
Þ,

yielding for the masses m~�1;2

m2
~�1;2

¼ m2
� þ 1

2
ðALL þ CRRÞ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðALL � CRRÞ2 þ 4m2

�B
2
LR

q
: (2.5)

The gaugino masses can be approximated in terms of the
universal gaugino mass M1=2 [72],

m~�0
1
’ M1 ¼ 0:41M1=2; m~�0

2
’ M2 ¼ 0:84M1=2:

(2.6)

Here, it has been used that the lightest neutralino ~�0
1 is

binolike in many mSUGRA models and that its mass can
be approximated by the bino mass parameter M1 at the
weak scale. Accordingly, the second lightest neutralino ~�0

2

is mainly winolike, and its mass governed by the wino
mass parameter M2.
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B. Reference scenarios with a ~�1 LSP

For the purpose of numerical studies and as future
reference points, we define two specific sets of B3

mSUGRA scenarios with a ~�1 LSP

Set A: M0 ¼ 0 GeV; M1=2 ¼ 500 GeV;

A0 ¼ 600 GeV; tan� ¼ 13;

sgnð�Þ ¼ þ1; a single�0
ijk � 0jGUT;

Set B: M0 ¼ 0 GeV; M1=2 ¼ 700 GeV;

A0 ¼ 1150 GeV; tan� ¼ 26;

sgnð�Þ ¼ þ1; a single�0
ijk � 0jGUT:

(2.7)

They are chosen in accordance with the following
bounds [106]:

(i) BRðBs ! �þ��Þ< 5:8� 10�8 at the 95% C.L.
obtained by the CDF Collaboration [74].

(ii) 2:76� 10�4 < BRðb ! s
Þ< 4:34� 10�4, which
is the central theoretical value at 2� [9] using the
experimental value of [75].

(iii) The discrepancy between experiment and the SM
prediction of the anomalous magnetic moment of
the muon is �a� ¼ a

exp
� � aSM� ¼ ð29:5� 8:8Þ �

10�10, i.e. 3:4� [76–78]. The sets (2.7) are chosen
such that �aSUSY� ¼ aMSSM

� � aSM� agrees with �a�
within 2�.

(iv) Higgs mass mh0 � 112:4 GeV. This value corre-
sponds to the LEPII bound of mh0 � 114:4 GeV at
95% C.L. [79] assuming a numerical error of 2 GeV
for the mass prediction.

(v) A nonvanishing coupling �0
ijk at the GUT scale will

generate a tree-level neutrino mass [10,32,80–82].
All couplings �0

ijk in the following are chosen such

that the tree-level neutrino mass is smaller than the
cosmological bound on the sum of neutrino masses
from the Wilkinson Microwave Anistropy Probe
[83] combined with 2dGRFS data [84]:

P
im�i

<

0:71 eV. A corresponding comprehensive set of
bounds for the mSUGRA parameter set SPS1a
[85] with one nonvanishing coupling �0

ijk is given

in Ref. [10]. Note, that the generated tree-level
neutrino mass depends on all mSUGRA parameters
(1.5). The neutrino mass bounds on �0

ijk for Set A

and Set B are weaker compared to those for SPS1a.

We use the computer programs provided by [86–88] to
calculate BRðBs ! �þ��Þ, BRðb ! s
Þ, and �aSUSY� .

These programs do not include the B3 couplings. But the
corresponding effects are negligible for �0

ijk & Oð10�2Þ
[9].

We show in Table I the supersymmetric mass spectra of
the parameter Sets A and B (2.7). We have neglected the
mass dependence on the different nonzero B3 couplings,

which is valid if �0
ijk & Oð10�2Þ [9]. The main B3 effect on

the spectrum is that we allow for a ~�1 LSP.
One naturally obtains a ~�1 LSP spectrum for M1=2 	

M0. The largeM1=2 raises the lightest neutralino mass (2.6)

faster than the right-handed slepton masses (2.1). It also
drives the gluino and indirectly via the RGEs the squark
masses up. We thus see in Table I squark and gluino masses
* 1 TeV, while the slepton masses are below 500 GeV.
Another general feature of a ~�1 LSP scenario is that the
second lightest neutralino and the lightest chargino are also
heavier than the sleptons. Therefore, the only conventional
supersymmetric decays of the left-handed sleptons are via
the lightest neutralino. Depending on the dominant B3

coupling and its size, the left-handed sleptons can also
decay into two jets.
Nearly all sparticles in Set B (M1=2 ¼ 700 GeV) are

heavier than in Set A (M1=2 ¼ 500 GeV). The most im-

portant difference for the phenomenology at colliders
arises from the different values of tan� ( tan� ¼ 13 in
Set A, tan� ¼ 26 in Set B). According to Eq. (2.4), the
soft breaking parameters of the stau decrease for increasing
tan� and thus both stau mass eigenstates are reduced for
large values of tan�. Furthermore, the mass of the lighter
stau is reduced due to the larger L–R mixing, cf. Eq. (2.2).
This effect can be seen in Table I, where the mass of the ~�1
LSP is 179 GeV in Set A but only 146 GeV in Set B. The ~�1
mass and tan� strongly influence the possible 2- and
4-body ~�1 LSP branching ratios. We will investigate this
topic in detail in Sec. III.

C. Fermion mixing

Since the B3 RGEs are coupled, given one nonzero B3

coupling at MGUT, we will generate many nonzero cou-

TABLE I. Sparticle masses for the B3 mSUGRA Sets A and B
as defined in Eq. (2.7), evaluated for a renormalization scale

Qsusy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~t1 ðQsusyÞm~t2 ðQsusyÞ

q
using SOFTSUSY 2.0.10 [89]. The

variation due to different �0
ijk � 0jGUT and quark mixing (see

Sec. II C) is below the percent level. The masses in the second
generation coincide with those in the first generation.

Masses [GeV] Masses [GeV]

Set A Set B Set A Set B

~�1 179 146 ~�0
1 203 290

~eR 193 266 ~�0
2 380 544

~�2 340 453 ~�0
3 571 754

~eL 340 471 ~�0
4 587 765

~�� 326 437 ~��
1 383 549

~�e 329 461 ~��
2 583 761

~t1 841 1160 h0 113 115
~b1 970 1300 H0 643 795

~uR 1010 1370 A0 642 795
~t2 1010 1340 Hþ 648 799
~b2 995 1340

~uL 1040 1410 ~g 1150 1560
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plings at the weak scale MZ. As we will see in the next
section, the size of the dynamically generated B3 couplings
depends sensitively on the composition of the quark
Yukawa matrices. For this reason we prepend here a short
discussion of quark mixing in B3 models.

Initially at MGUT, all parameters are given in the weak-
current eigenstate basis. This includes the quark and lepton
Yukawa coupling matrices YU, YD, YE, and the corre-
sponding mass matrices mu, md, me. Since, in general,
these matrices are not diagonal, we need to rotate the
(charged) lepton and quark fields from the weak into the
mass eigenstate basis

fmass
L;R ¼ VfL;Rf

weak
L;R ; (2.8)

with fL;R denoting the left- and right-handed fermion

fields, respectively, and VfL;R denoting the corresponding

rotation matrices. The mass matrices in the mass eigenstate
basis are then given by

VuLmuV
þ
uR ¼ diagðmu;mc;mtÞ;

VdLmdV
þ
dR ¼ diagðmd;ms;mbÞ;

VeLmeV
þ
eR ¼ diagðme;m�;m�Þ;

(2.9)

defined at the weak scale MZ. The rotation matrices VfL;R

are not directly experimentally accessible but only the
CKM matrix VCKM,

V CKM ¼ VuLV
þ
dL: (2.10)

In general, the rotation matrices for the left-handed
fields differ from those for the right-handed fields. In the
following, however, for simplicity and definiteness, we
assume real and symmetric Yukawa coupling matrices,
thus VfL ¼ VfR. Furthermore, we neglect neutrino masses
in this context and assume that YE is diagonal in the weak-
current basis. Correspondingly, VeL;R ¼ 13�3.

To further constrain the quark Yukawa couplings, we
restrict ourselves to the extreme cases of quark mixing
taking place completely in the up- or the down-quark
sector, respectively. Wewill refer to it as ‘‘up-type mixing’’
if

V uL;R ¼ VCKM; VdL;R ¼ 13�3 (2.11)

at the weak scale MZ and as ‘‘down-type mixing’’ if

V uL;R ¼ 13�3; VdL;R ¼ Vþ
CKM (2.12)

at the weak scale. Therefore, in up-type mixing scenarios,
the Yukawa matrices are

YUðMZÞ � vu ¼ Vþ
CKM 
 diagðmu;mc;mtÞ 
 VCKM;

YDðMZÞ � vd ¼ diagðmd;ms;mbÞ; (2.13)

and in down-type mixing scenarios, the Yukawa matrices
are

YUðMZÞ � vu ¼ diagðmu;mc;mtÞ;
YDðMZÞ � vd ¼ VCKM 
 diagðmd;ms;mbÞ 
 Vþ

CKM; (2.14)

respectively. In the following, we will consider these two
extreme cases. vu ðvdÞ is the vacuum expectation value of
the up-type (down-type) neutral CP-even Higgs with

vu ¼ v sin�; vd ¼ v cos�; (2.15)

where v ¼ 174 GeV is the SM vacuum expectation value
[90].
As a consequence of the nontrivial quark rotation ma-

trices, the �0
ijk coupling in Eq. (1.5) also has to be rotated

from the weak basis into the quark mass basis for a com-
parison with experimental data. In the case of up-type
mixing, the LiQj

�Dk interactions of the superpotential

(1.1) in the quark mass basis are in terms of SU(2) com-
ponent superfields

�0
ijk½NiD

m
j � EiðVþ

CKMÞjlUm
l � �Dm

k : (2.16)

In the case of down-mixing they are

�0
ijk½NiðVCKMÞjlDm

l � EiU
m
j �ðVþ

CKMÞnk �Dm
n : (2.17)

See also Ref. [59]. However, for slepton production cross
sections, we do not take into account these CKM effects. If
needed, the corresponding rescaling of the �0 coupling can
be done easily. Furthermore, the subdominant interactions,
which include nondiagonal matrix elements of VCKM, do
not allow for large production cross sections since �0 enters
only quadratically.

D. Renormalization group equations

One of the most important consequences of including B3

effects in SUSY models is that the LSP is no longer stable.
This is of special interest for phenomological studies if the
LSP couples directly to the dominant B3 operator. This
leads to large LSP decay widths and to distinctive final
state signatures.
In the scenarios considered in this work, cf. Eq. (1.5), the

dominant coupling is a �0
ijk; for i � 3 it does not couple to

the ~�1 LSP. However, the RGEs of the B3 couplings are
coupled via nondiagonal entries of Higgs-Yukawa matri-
ces, and a �0

ijk generates dynamically other B3 couplings.

Among those, we want to focus on the �i33, which do
couple directly to the ~�1 LSP.
The aim of the next two sections is to study the RGEs of

the dominant �0
ijk and to quantitatively determine the gen-

erated �i33. We then use these results to predict the low
energy spectrum of B3 mSUGRA scenarios given by
Eq. (1.5). We will also derive approximate formulæ that
allow for a numerical implementation of the running of the
couplings.
The full renormalization group equations for the B3

couplings �0
ijk and �i33 are [10,30,31]
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162 d

dt
�0
ijk ¼ �0

ijl

Dk

Dl
þ �0

ilk

Qj

Ql
þ �0

ljk

Li

Ll
� ðYDÞjk
Li

H1
;

(2.18)

162 d

dt
�i33 ¼ �i3l


E3

El
þ �il3


L3

Ll
þ �l33


Li
Ll
� ðYEÞ33
Li

H1

þ ðYEÞi3
L3

H1
; (2.19)

with t ¼ lnQ, Q being the renormalization scale. The
anomalous dimensions 
 are listed in [10] at one-loop
level and in [31] at two-loop level. The RGEs simplify
considerably under the assumption of the single B3 cou-
pling dominance hypothesis [60,91]. Products of two or
more B3 couplings including quadratic contributions of the
dominant coupling can be neglected for �0 & Oð10�2Þ. In
this limit, the one-loop anomalous dimensions read


Qi

Qj
¼ ðYDY

þ
DÞij þ ðYUY

þ
U Þij � �i

j

�
1

30
g21 þ

3

2
g22 þ

8

3
g23

�
;


Di

Dj
¼ 2ðYþ

DYDÞji � �i
j

�
2

15
g21 þ

8

3
g23

�
;


Li

Lj
¼ ðYEY

þ
E Þij � �i

j

�
3

10
g21 þ

3

2
g22

�
;


Ei

Ej
¼ 2ðYþ

EYEÞji � �i
j

�
6

5
g21

�
;


Li

H1
¼ �3�0

iaqðYDÞaq � �ibqðYEÞbq;

(2.20)

where g1, g2, g3 are the three gauge couplings.
From Eqs. (2.19) and (2.20), we see that the terms

related to 
Li

H1
allow for the dynamical generation of �i33

by a nonzero �0
iaq coupling [and vice versa for Eq. (2.18)].

All other terms in Eq. (2.19) only alter the running of �i33

once it is generated. The RGEs can be further simplified.
At one-loop level, all B3 couplings but the dominant �0

ijk

and the generated �i33 can be neglected in the RGEs, since
they must be generated first by �0 and thus contribute at
two-loop level only.

Since we work in a diagonal charged lepton Yukawa
basis, the last term in Eq. (2.19), proportional to ðYEÞi3
does not contribute to the running of �i33. It is only nonzero
if i ¼ 3, but owing to the ij-antisymmetry of �ijk, no

coupling is generated in this case (�333 ¼ 0).
Next, a general ordering of the parameters in the anoma-

lous dimensions is [92]

g23 > ðYUÞ233 > g22 > g21 > ðYDÞ233 > ðYEÞ233; (2.21)

and all other entries of the Y matrices are smaller by at
least 1 order of magnitude [93]. The contributions to the
RGEs are thus largest for diagonal anomalous dimensions.

As a result, the RGEs for a nonzero �0
ijk at the GUT scale

and a generated �i33 reduce to

162 d

dt
�0
ijk ¼ �0

ijk

�
� 7

15
g21 � 3g22 �

16

3
g23

þ ðYDÞ233ð2�k3 þ �j3 þ 3�j3�k3Þ
þ ðYUÞ233�j3 þ ðYEÞ233�i3

�
; (2.22)

162 d

dt
�i33 ¼ �i33

�
� 9

5
g21 � 3g22 þ 4ðYEÞ233

�

þ 3�0
ijkðYEÞ33ðYDÞjk: (2.23)

A similar analytical approximation for the generation of �
is derived in [51]. But the effect of the gauge couplings is
neglected there. See also Ref. [81].
The last term in Eq. (2.23) induces the dynamical gen-

eration of �i33. Diagrammatically, this process can be
understood as shown in Fig. 1. We see that at one loop
the lepton-doublet superfield mixes with the Higgs doublet
superfield Hd via the B3 coupling �0

ijk and the standard

down-quark Yukawa coupling. Hd then couples via the tau
Yukawa coupling ðYEÞ33 purely leptonically. The resulting
effective interaction is of the �i33 type.
It is important to notice that the generation is related to

ðYDÞjk. Whether a given �0
ijk can generate �i33 or not

depends on whether ðYDÞjk � 0. For j � k it thus depends

crucially on the origin of the CKMmixing: is it dominantly
down-type or up-type mixing? In case of down-type mix-
ing, all entries of the YD matrix are nonzero, and all �0

ijk

can therefore generate a �i33. In contrast, if the quark
mixing takes place in the up sector, only the diagonal
entries of YD are nonzero and j ¼ k is required. The flavor
and size of the generated coupling depends on tan� and on
the precise j, k configuration. A strong ordering is expected
that goes along with the ordering of the entries of the YD

matrix.
In order to study the running of the B3 couplings, the

RGEs for the Yukawa matrix elements ðYDÞjk, ðYUÞ33, and
ðYEÞ33 and the gauge couplings are also needed. The full
RGEs for the Yukawa couplings are given in [10,30].
Applying the single coupling dominance hypothesis, ne-
glecting quadratic terms in �0

ijk, and considering only the

dominant terms in Eq. (2.21), they read

162 d

dt
ðYUÞ33 ¼ ðYUÞ33

�
� 13

15
g21 � 3g22 �

16

3
g23

þ 6ðYUÞ233 þ ðYDÞ233
�
; (2.24)

FIG. 1. Superfield diagram for the dynamical generation of
�i33 by �0

ijk at one-loop order, see Eq. (2.23).
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162 d

dt
ðYEÞ33 ¼ ðYEÞ33

�
� 9

5
g21 � 3g22 þ 4ðYEÞ233

þ 3ðYDÞ233
�
; (2.25)

162 d

dt
ðYDÞjk ¼ ðYDÞjk

�
� 7

15
g21 � 3g22 �

16

3
g23

þ ðYDÞ233ð3þ �j3 þ 2�k3Þ
þ ðYUÞ233�j3 þ ðYEÞ233

�
: (2.26)

The one-loop order RGEs for the three gauge couplings
within the MSSM are given by [30]

162 d

dt
gi ¼ big

3
i ; (2.27)

with bi ¼ f33=5; 1;�3g for i ¼ 1, 2, 3. Thus, in total, a set
of nine coupled differential equations, Eqs. (2.22), (2.23),
(2.24), (2.25), (2.26), and (2.27), has to be solved [94].

E. Numerical results

For the numerical implementation of the RGEs we start
from the framework provided by SOFTSUSY2.0.10[89]. First,
SOFTSUSY evaluates all necessary parameters at the SUSY

scale

Qsusy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~t1ðQsusyÞm~t2ðQsusyÞ

q
: (2.28)

In a second step, we apply the (R-parity conserving) RGEs
(2.24), (2.25), (2.26), and (2.27) to run the Yukawa cou-
plings and gauge couplings up to the GUT scale. Here, we
add the B3 couplings �0

ijk � 0jGUT and �i33 ¼ 0jGUT and

evolve these couplings down to the scaleQ using the above
given B3 RGEs (2.22) and (2.23). We have implemented
the RGEs using a standard Runge Kutta formalism [95].
In Figs. 2 and 3, we show the running of different �0

2jk

couplings, starting with �0
ijk ¼ 0:01jGUT, for the case of

down-type and up-type mixing, respectively. In the corre-
sponding lower panel, we show the scale dependence of the
generated �323 ¼ ��233 coupling. Here, we use the
mSUGRA parameters of Set A ( tan� ¼ 13).
We see that the dominant �0

ijk coupling grows by about a

factor of 3, running from the GUT scale to the weak scale.
This effect is mainly due to the gauge couplings, see
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FIG. 3 (color online). Same as Fig. 2, but for quark mixing in
the up-sector.
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FIG. 2 (color online). Running of B3 couplings assuming a
single nonzero �0 ¼ 0:01 coupling at the GUT scale (upper
panel) leading to a nonzero �233 coupling (lower panel) at lower
scales within the B3 mSUGRA scenario Set A for down-type
mixing.
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Ref. [81], where the Yukawa couplings were omitted.
Including the Yukawa couplings reduces this effect, maxi-
mally for j ¼ k ¼ 3. The generated �233 coupling is at
least 2 orders of magnitude smaller than the original �0
coupling. Furthermore, it depends sensitively on the flavor
structure ðijkÞ of the original �0 coupling. This reflects the
dependence on the Yukawa matrix ðYDÞjk. In case of down-
type mixing, the ordering of the corresponding entries is

ðYDÞ33 > ðYDÞ23;32 > ðYDÞ22 > ðYDÞ12;21
> ðYDÞ13;31 > ðYDÞ11; (2.29)

reflecting precisely the ordering of the generated couplings
in Fig. 2. Small differences between the couplings gener-
ated by �0

i23 ð�0
i13Þ or �0

i32 ð�0
i31Þ are related to the different

running of the respective �0 and ðYDÞjk coupling, depend-
ing in turn on whether j or k equals 3.

In the case of up-type mixing, Fig. 3, not all �0 couplings
can generate a �. Since the down Yukawa coupling is
diagonal, j ¼ k is required. Other couplings can generate
�i33 at higher loop levels only and are not included in our
approximations.

Our results can easily be translated to other scenarios:
The running of the dominant coupling �0 is mainly driven
by gauge interactions, Eq. (2.22), and thus depends only
weakly on the specific SUSY parameters. The dependence
of the generated coupling � on SUSY parameters is more
involved but we expect tan� to have the largest impact. In
general, the generated � coupling scales with tan2�,

�i33 / tan2�; (2.30)

if tan2� 	 1. This is because the down-quark Yukawa
couplings ðYDÞjk [and the tau Yukawa coupling ðYEÞ33]
are proportional to 1= cos� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2�
p

, which directly
follows from Eqs. (2.13), (2.14), and (2.15). Therefore, the
magnitude of the generated � coupling for other scenarios
can be estimated by rescaling � of Fig. 2 and Fig. 3
according to Eq. (2.30).

F. Comparison with the program SOFTSUSY

In this section, we compare our results for �0
ijk and the

generated coupling �i33 at the SUSY scale, Eq. (2.28), with
an unpublished version of SOFTSUSY [96]. This version of
SOFTSUSY contains the complete one-loop RGEs for �0

ijk

(2.18) and �i33 (2.19), without our approximations.
We show in Table II our results and the results of

SOFTSUSY for the case of down-type mixing and up-type

mixing assuming different couplings �0
ijk ¼ 0:01 at the

GUT scale. For the other parameters, we consider the
Set A of Eq. (2.7).
At the SUSY scale, the differences between our results

and SOFTSUSY for the case of down-type mixing, are less
than 2% for all �0

ijk couplings and less than 4% for the �i33,

respectively. In the case of up-type mixing, we find the
same for the couplings �0

ijk with j ¼ k. However, for j � k

and up-type mixing, we observe a discrepancy between our
results and SOFTSUSY for the coupling �233 generated by
�0
223 � 0jGUT and �0

231 � 0jGUT, respectively. This behav-
ior can easily be understood.
The off-diagonal Yukawa matrix elements ðYDÞjk are

equal to zero at the weak scale for up-type mixing.
Running from the weak scale to the GUT scale generates
Yukawa couplings ðYDÞjk; j � k, at the one-loop level

[10,30]. The generation of �233 via Eq. (2.23) occurs there-
fore formally at two-loop level and has been neglected in
our approximation. In SOFTSUSY this two-loop effect is
taken into account and small couplings are generated also
for j � k and up-type mixing. Compared to the case of
down-type mixing, see Table II, the �233 couplings are
suppressed by 5 (with �0

231 ¼ 0:01jGUT) and 3 (with �0
223 ¼

0:01jGUT) orders of magnitude. Note that the generation of
ðYDÞjk is not the only two-loop effect that enters the full

RGEs [10,30,31].
Therefore, our approximation for the generation of �i33

by a nonzero �0
ijk at the GUT scale (2.23) breaks down in

the case of up-type mixing and j � k. But concerning ~�1
LSP decays, the corresponding 2-body decay branching
ratio for �i33 is negligible compared to the 4-body decay

TABLE II. Comparison between our results, Eqs. (2.22) and (2.23), and the results of an unpublished version of SOFTSUSY [96] for
�0
ijk and the generated coupling �i33 at the SUSY scale, Eq. (2.28). We choose different couplings �0

ijk ¼ 0:01 at the GUT scale as

given in the first column of the table. The running of �0
ijk is the same for down- and up-type quark mixing. The generation of �i33

depends on the quark mixing assumptions and the values at the SUSY scale are given separately. The remaining mSUGRA parameters
are these of Set A (2.7).

Set A �0
ijk �i33 (down-type mixing) �i33 (up-type mixing)

Equation (2.22) SOFTSUSY Equation (2.23) SOFTSUSY Equation (2.23) SOFTSUSY

�0
211 2:82� 10�2 2:85� 10�2 �3:96� 10�7 �3:89� 10�7 �2:17� 10�7 �2:13� 10�7

�0
231 2:58� 10�2 2:61� 10�2 �4:65� 10�7 �4:80� 10�7 0 þ2:06� 10�12

�0
223 2:81� 10�2 2:83� 10�2 �5:55� 10�6 �5:73� 10�6 0 �8:45� 10�9

�0
233 2:55� 10�2 2:58� 10�2 �1:41� 10�4 �1:42� 10�4 �1:42� 10�4 �1:43� 10�4

�0
311 2:81� 10�2 2:84� 10�2 0 0 0 0
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branching ratio via �0
ijk, and our approximations are appli-

cable for such phenomenological studies. For example, the
2-body decay branching ratio for up-type mixing and
�0
231 ¼ 0:01jGUT or �0

223 ¼ 0:01jGUT is less than 10�4 in

Set A.
We conclude that our approximations are valid for the

signal and decay rates that we study in this work. We also
note that we have provided an independent check of the
yet-to-be published version of SOFTSUSY [96]. Using a
different set of mSUGRA parameters leads to a similar
level of agreement.

III. ~�1 LSP DECAYS IN B3 MSUGRA

A. General LSP decay modes

As we showed in Sec. II, a nonvanishing coupling �0
ijk at

the GUT scale generates an additional coupling �i33 at the
weak scale, which is roughly at least 2 orders of magnitude
smaller than �0

ijk, cf. Figs. 2 and 3. In this section, we

compare the possible decay modes of the LSP via these
two couplings for different B3 scenarios.

First, let us discuss ~�0
1 LSP scenarios. The leading order

decay modes of the ~�0
1 LSP via the dominant �0

ijk and the

generated �i33 couplings are all three body decays

~� 0
1!
�0
ijk

�
‘þi �ujdk;

‘�i uj �dk;
~�0
1!
�0
ijk

�
��i
�djdk;

�idj �dk;
(3.1)

and

~� 0
1!
�i33

�
‘þi ����

�;
‘�i ���

þ; ~�0
1!
�i33

�
��i�

þ��;
�i�

��þ: (3.2)

The corresponding partial widths depend quadratically on
�0
ijk and �i33, respectively [97–100]. Therefore, the ~�0

1

decay via �i33 is heavily suppressed and a ~�0
1 LSP decays

predominantly via �0
ijk into SM particles.

The situation changes if one considers B3 mSUGRA
scenarios with a ~�1 LSP, where the ~�1 couples not directly
to the LiQj

�Dk operator, i.e. i ¼ 1, 2. In this case, the ~�1
must first couple to a virtual gaugino. The gaugino then
couples to a virtual sfermion, which then decays via �0

ijk,

resulting in a 4-body decay of the ~�1 LSP. The possible

decay modes via a virtual neutralino are

~��
1 !
�0
ijk

8>>>><
>>>>:

��‘þi �ujdk;

��‘�i uj �dk;
�� ��i

�djdk;

���idj �dk:

(3.3)

Four-body decays via a virtual chargino are also possible,
but they are suppressed due to the higher chargino mass in
comparison to the lightest neutralino mass mð~��

1 Þ>
mð~�0

1Þ. Furthermore, the (mainly right-handed) ~�1 LSP

couples stronger to the (binolike) lightest neutralino than
to the (winolike) lightest chargino.
On the other hand, the ~�1 can directly decay via �i33 into

only two SM particles

~��
1 !�i33

8<
:
�� ��i;
���i;
‘�i ��:

(3.4)

We show in Fig. 4 (Fig. 5), example diagrams for the 4-
body (2-body) decay of a ~�1 LSP via �0

2jk ð�233Þ. Although
the 2-body decay suffers from the small coupling, the 4-
body decay is phase-space suppressed as well as by heavy
propagators. Which decay mode dominates depends
strongly on the parameters at the GUT scale. We will
discuss in detail this topic in the next section.
As a third type of B3 mSUGRA scenarios we want to

mention ~�1 LSP scenarios with a dominant �0
3jk coupling.

Here, the dominant B3 operator couples directly to the ~�1
LSP and allows for a 2-body decay of the ~�1 into two jets,

~��
1 !�

0
3jk

�ujdk: (3.5)

�0
3jk cannot generate �333 via the RGEs, because �ijk has to

be antisymmetric in the indices i, j. �3nn with n � 3will be
generated by the muon (n ¼ 2) or electron (n ¼ 1) Higgs-
Yukawa coupling, cf. Eq. (2.23). But since these Yukawa
couplings are so small, the decay via �3nn is too small to be
seen.
For j ¼ 3, the up-type quark in Eq. (3.5) is a top quark

and hence the decay Eq. (3.5) is kinematically forbidden
for m~�1 <mt. The ~�1 LSP then decays in a 3-body decay

FIG. 4. Feynman diagrams contributing to the 4-body decay ~��1 ! ����uj �dk of the ~�1 LSP via �0
2jk. In this example the ~�1 decays

via a virtual neutralino ~�0
l (l ¼ 1, 2, 3, 4) into a tau ��, a muon ��, an up-type quark uj of generation j and a down-type antiquark �dk

of generation k.
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mode via a virtual top quark into a W boson and two jets,
where at least one jet is a b jet

~��
1 !�

0
33k
W� �bdk: (3.6)

We present the squared matrix element and the partial
width of this process in Appendix B, which to our knowl-
edge has not been given in the literature so far.

B. Dependence of ~�1 decays on mSUGRA parameters

In this section, we investigate the conditions at the GUT
scale that lead to 2-body decays of the ~�1 LSP.We assume a
nonvanishing �0

2jk coupling at the GUT scale. This can

easily be generalized to �0
1jk. We point out that the branch-

ing ratios of the ~�1 LSP do not depend on the magnitude of
�0
ijk, since they cancel in the ratio. The following discus-

sion is therefore also applicable to scenarios where the
couplings are too small to produce a significant number
of single slepton events at the LHC but where the ~�1 LSP is
produced in cascade decays of pair produced SUSY
particles.

For the numerical implementation we use
SOFTSUSY2.0.10 [89] to calculate the mass spectrum at the

SUSY scale, Eq. (2.28). In addition, we use our own
program to calculate �0

ijk and �i33 at the SUSY scale as

described in Sec. II E. We then pipe the mass spectrum and
the couplings through ISAWIG1.200, which is linked to
ISAJET7.75 [101]. ISAJET calculates the 2-body partial width

of the SUSY particles and produces an output for HERWIG

[102–104]. We use a special version of HERWIG6.510, which
also calculates the 4-body decays of the ~�1 LSP [105]. As
an output, we consider the total 2-body decay branching
ratio of the ~�1 LSP, BR2. It is defined as

BR 2 ¼ 1

1þ �4=�2

; (3.7)

where �2 and �4 denote the sums of the partial widths for
the 2- and 4-body decays, respectively.

We first show in Fig. 6 (Fig. 7) the tan� dependence of
the 2-body decay branching ratio. We give values for

different nonvanishing couplings �0
2jk at the GUT scale,

and we assume quark mixing in the down (up) sector.
Nearly all ~�1 LSPs will decay via a 2-body decay for

large values of tan�, i.e. tan� * 30, and down-type mix-
ing. In the case of up-type mixing this is also true for �0

211,
�0
222 and �0

233. This behavior can be easily explained with

the help of Eq. (3.7). The partial widths �2, �4 can be
approximated by [10]

�2 / �2
233m~�1 ; (3.8)

�4 / �02
2jk

m7
~�1

m2
~�m

4
~f

: (3.9)

m~� denotes the mass of the relevant gaugino and m~f

denotes the mass of the virtual sfermion, which couples
directly to L2Qj

�Dk, cf. Fig. 4.

As we argued in Sec. II E, the generated coupling �233

scales roughly with tan2�, cf. Eq. (2.30). Therefore, �2

scales with tan4�. At the same time, �0
211 is hardly affected

by tan�. This is the main effect that enhances BR2 for large
tan�.
Furthermore, increasing tan� increases the contribution

from the tau Yukawa couplings to the various RGEs. This
is encoded in the function X�, Eq. (2.4), which is propor-
tional to ð1þ tan2�Þ. As can be seen in Eq. (2.4), increas-
ing tan� and X� reduces the mass of the right- and left-
handed stau and therefore, with Eq. (2.5), the mass of the

FIG. 5. Feynman diagrams leading to the 2-body decays of the
~�1 LSP via the generated coupling �233. The ~�1 decays either
into a muon �� and a neutrino or into a �� and a neutrino.

FIG. 6 (color online). 2-body decay branching ratio as a func-
tion of tan� for different dominating �0

2jk couplings at the GUT

scale. The quark mixing is in the down sector, and the mSUGRA
parameters areM0 ¼ 0 GeV,M1=2 ¼ 500 GeV, A0 ¼ 600 GeV,

sgnð�Þ ¼ þ1.

H. K. DREINER, S. GRAB, AND M.K. TRENKEL PHYSICAL REVIEW D 79, 016002 (2009)

016002-10



~�1 LSP, m~�1 . Furthermore, the off-diagonal matrix ele-

ments of the stau mass matrix Eq. (2.2) also increase
with tan�. This leads to a stronger mixing between the
right- and left-handed stau and lowers the mass of the ~�1,
cf. Eq. (2.5).

Note that �4=�2 is proportional to m6
~�1
. According to

Eq. (3.7), the 2-body decay branching ratio therefore
strongly increases for decreasing m~�1 .

We observe in Fig. 6 also a large hierarchy between the
different couplings �0

2jk. For example, a dominant �0
233

coupling leads to BR2 � 100% for any value of tan�,
whereas for �0

211 this is only the case for tan� * 25. This
hierarchy reflects the hierarchy of the down-quark Yukawa
matrix elements, Eq. (2.29), which enter as the dominant
term in the RGE of �233, Eq. (2.23).

For up-type quark mixing, Fig. 7, and j � k the down-
quark Yukawa matrix elements and therefore BR2 are
nearly vanishing.

We investigate the dependence of BR2 on A0 in Fig. 8,
for a dominant coupling �0

211 and down-type mixing. We

see a minimum at A0 � 250 GeV. Here, BR2 is reduced by
up to 70% compared to A0 ¼ �1 TeV. The minimum and
the position of the minimum is dominated by the following
two effects.

The right-handed stau couples to a left-handed stau (tau
sneutrino) and a neutral Higgs (charged Higgs) via a tri-

linear scalar interaction ðhEÞ33 [10]. The coupling ðhEÞ33
has dimension one, and in mSUGRA models it is equal to
A0 � ðYEÞ33 at the GUT scale. The RGE of the right-
handed scalar tau mass, m~�R , depends in the following

way on ðhEÞ233 [10]
dm~�2R

dt
¼ þ4ðhEÞ233 þ . . . : (3.10)

This term decreases m~�R when we go from the GUT scale

to the SUSY scale (2.28) due to the plus sign. The (nega-
tive) contribution of this term to m2

~�R
is proportional to the

integral of ðhEÞ233 from tmin ¼ lnðMGUTÞ to tmax ¼ lnðMZÞ.
For the mSUGRA parameters given in Fig. 8, M0 ¼
0 GeV, M1=2 ¼ 500 GeV, sgnð�Þ ¼ þ1, the integral of

ðhEÞ233 is minimal at A0 � 180 GeV and, therefore, m~�R

is maximal. For m~�1 ¼ m~�R this also leads to a maximum

of �4=�2 �m6
~�1
and hence to a minimum of BR2.

But the lightest stau is an admixture of the right- and
left-handed stau. The off-diagonal mass matrix elements
BLR, Eq. (2.2), depend also on the value of ðhEÞ33 at the
SUSY scale, Eq. (2.28), through A� ¼ ðhEÞ33=ðYEÞ33. For
A0 ¼ 180 GeV we find A� � �110 GeV. A negative
value of A� enhances the effect of L–R mixing, which
decreases m~�1 . Therefore, the maximum of m~�1 as a func-

tion of A0 is shifted to A0 � 250 GeV compared to m~�R .

Note however that the A� dependence of stau L–R mixing
is subdominant around the minimum because of� tan� 	
A�.

FIG. 7 (color online). 2-body decay branching ratio as a func-
tion of tan� for different dominating �0

2jk couplings at the GUT

scale. The quark mixing is in the up sector, and the mSUGRA
parameters areM0 ¼ 0 GeV,M1=2 ¼ 500 GeV, A0 ¼ 600 GeV,

sgnð�Þ ¼ þ1. Couplings �0
2jk for which the 2-body decay

branching ratio nearly vanishes are not shown.

FIG. 8 (color online). 2-body decay branching ratio as a func-
tion of A0 for nonvanishing �0

211 at the GUT scale and different

tan�. We assume down-type quark mixing. The other mSUGRA
parameters are M0 ¼ 0 GeV, M1=2 ¼ 500 GeV, sgnð�Þ ¼ þ1.

The solid red curve (bottom) corresponds to tan� ¼ 7.
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Next, we study the dependence of BR2 on the universal
gaugino massM1=2. We show this behavior in Fig. 9, again

for a dominant �0
211 and down-type mixing. The 2-body

decay branching ratios approach a constant value for in-
creasing M1=2. Both, the squared mass of the gauginos,

cf. Eq. (2.6), and the squared masses of the sfermions,
cf. Eq. (2.1), depend linearly on M2

1=2. Therefore,

lim
M1=2!1�4=�2 /

m6
~�1

m2
~�m

4
~f

¼ constant: (3.11)

The dependence of BR2 on M1=2 for M1=2 & 1 TeV is

more involved, because the ratio �4=�2 depends also on the
other mSUGRA parameters, mainly through the running
sfermion masses, cf. Eq. (2.1). For example, we observe in
Fig. 9 that the slope of BR2 for M1=2 & 1 TeV strongly

depends on tan�. For tan� ¼ 10, the slope is small and
positive whereas for tan� * 13 the slope is negative. The
magnitude of the slope also increases when we consider
larger values of tan�. This behavior is again related to the
tau Yukawa coupling ðYEÞ33 and its effects on the ~�1 mass
described by the function X�, Eq. (2.4). For large values of
M1=2, the influence of X� on the ~�1 mass nearly vanishes.

But as we go to smaller values of M1=2 the (negative)

contributions due to ðYEÞ33 become more and more im-
portant. For example, for tan� ¼ 22 and M1=2 ¼ 1 TeV
(M1=2 ¼ 400 GeV) the X� term reduces the mass of the

right-handed stau by 3% (10%) compared to vanishing ðYEÞ33. This reduction of m~�1 will also reduce �4=�2

resulting in an increase of BR2. This effect is more pro-
nounced for large tan� because X� is proportional to (1þ
tan2�). If we neglect the effect of ðYEÞ33, the BR2 curves in
Fig. 9 all get a small positive slope.
Finally, we show in Fig. 10 the dependence of BR2 on

the universal softbreaking scalar mass M0. Here, we have
chosen a rather large value of M1=2, M1=2 ¼ 1400 GeV,
because otherwise a ~�1 LSP would exist only in a small
interval of M0.
The behavior of BR2 can easily be understood.

Increasing M0 increases the mass of the sfermions,
Eq. (2.1), but not the mass of the gauginos. Therefore,
the nominator of �4=�2 / m6

~�1
=ðm2

~�m
4
~f
Þ is a polynomial

of order OðM6
0Þ, whereas the denominator is only a poly-

nomial of order OðM4
0Þ. Therefore, the 2-body decay

branching ratios fall off for increasing M0 as shown in
Fig. 10. The lines in the figure terminate at values of M0

above which the ~�1 is no longer the LSP.

IV. RESONANT SINGLE SLEPTON PRODUCTION
IN ~�1 LSP SCENARIOS

We now apply the previous discussion to resonant single
slepton production in B3 mSUGRA scenarios with a ~�1
LSP. Charged sleptons ~‘Li and sneutrinos ~�i can be pro-
duced singly on resonance at the LHC via qk �qj annihilation

processes. The production cross section is proportional to

FIG. 9 (color online). 2-body decay branching ratio as a func-
tion ofM1=2 for nonvanishing �

0
211 at the GUT scale and different

tan�. We assume quark mixing in the down sector. The other
mSUGRA parameters are M0 ¼ 0 GeV, A0 ¼ 600 GeV,
sgnð�Þ ¼ þ1. The solid red curve (bottom) corresponds to
tan� ¼ 7.

FIG. 10 (color online). 2-body decay branching ratio as a
function of M0 for nonvanishing �0

211 at the GUT scale and

different tan�. We assume quark mixing in the down-sector. The
other mSUGRA parameters are M1=2 ¼ 1400 GeV, A0 ¼
600 GeV, sgnð�Þ ¼ þ1.
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j�0
ijkj2 and therefore large slepton production rates are

expected in scenarios with a dominant �0
ijk coupling. The

RGE generation of �i33 is important for the subsequent
slepton decay in ~�1 LSP scenarios. As discussed in the
previous section, a nonvanishing �i33 introduces new 2-
body decay channels for the ~�1 LSP. The interplay of these
2-body decays and the 4-body decays via �0

ijk determines

the final state signatures. In Figs. 11 and 12, example
Feynman graphs for single slepton production, and the
subsequent decay in ~�1 LSP scenarios are shown.

It is the aim of this section to first give a general over-
view of the possible final states for these reactions and
second to discuss the special cases �0

2jk � 0jGUT and

�0
3jk � 0jGUT in more detail (Secs. IVB and IVC).

A. General signatures

In the last section, the ratio of 2- to 4-body ~�1 LSP decay
rates and its dependence on various SUSY parameters has
been studied. Now, we focus on single slepton production
in ~�1 LSP scenarios and are interested in the general decay
patterns, independent of the precise SUSY parameters. We
first give an overview over all possible final states and
signatures that could be used as the starting point for an
experimental analysis.

A (left-handed) charged slepton or sneutrino can be
produced directly via �0

ijk and has several decay modes

�u jdk ! ~‘�Li !
( �ujdk;

‘�i ~�0
m;

�i ~�
�
n ;

(4.1)

�d jdk ! ~�i !
( �djdk;

�i ~�
0
m;

‘�i ~�þ
n :

(4.2)

Both can decay via the B3 coupling, which is the inverse
production process. It is however suppressed by j�0

ijkj2. If
�0
ijk  Oð10�2Þ, it contributes typically at the percent

level. The dominant decay channels are 2-body decays
into a lepton-gaugino pair. Further 3- and more-body de-
cays are expected to be negligible, due to phase-space
suppression.
In the case of j ¼ 3, the hadronic production of a

charged slepton cannot proceed via two quarks as given
in Eq. (4.1), due to the vanishing top-quark parton density
inside a proton. Instead, the slepton can, for example, be
produced via a g �dk initiated Compton process in associa-
tion with a single top quark. Furthermore, the decay into
t �dk may be kinematically forbidden. In this case, the
slepton decays via a virtual top. The corresponding decay
width is given in Appendix B. Sneutrino production for
j ¼ 3 is possible, Eq. (4.2), but due to the low bottom-
quark density small cross sections are expected. We do not
consider j ¼ 3 any further here and refer the reader to
[50,69–71] for a detailed investigation of this topic.
For the following discussion, we assume that the pro-

duced slepton predominantly decays into a lepton and the
lightest neutralino. This assumption is motivated by the
fact that we consider ~�1 LSP scenarios. In these scenarios,
sleptons are light compared to gauginos and decays into
heavier neutralinos or charginos will be kinematically ex-
cluded or strongly suppressed. See also the computed
branching ratios in explicit SUSY models in [9].
The produced ~�0

1 is not the lightest SUSY particle and

will decay further into the ~�1 LSP,

~� 0
1 ! ��~��1 : (4.3)

Since the neutralino is a Majorana fermion, both charge
conjugated decays are possible. In most ~�1 LSP scenarios
this is the only possible decay mode of the neutralino.
However, in some scenarios, the right-handed sleptons
~�R and ~eR are lighter than the ~�0

1 and the additional

channels ~�0
1 ! ~‘�R ‘� are open (for ‘ ¼ �, e). The ~‘R

subsequently decays into the ~�1 LSP, a �, and a lepton
via a virtual neutralino

~� 0
1 ! ‘�~‘�R ; ~‘�R !

�
‘���~��1 ;
‘���~��1 :

(4.4)

These decay chains have smaller branching ratios (BRs)
than the decays in Eq. (4.3). However, they lead to an
additional lepton pair in the final state and could be, there-
fore, of special interest for experimental analyses.

B. �0
2jk � 0jGUT, �233 � �0

2jk

Let us now study more detailed the final state signatures
in a scenario with �0

2jk � 0jGUT and a generated �233

FIG. 11. Example Feynman graph for single slepton produc-
tion in ~�1 LSP scenarios where the slepton decay proceeds via
the generated �233 coupling (2-body decay mode).

FIG. 12. Example Feynman graph for single slepton produc-
tion in ~�1 LSP scenarios, where the slepton decay proceeds via
the dominant �0

2jk coupling (4-body decay mode).
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coupling, which is small but nonzero at lower scales. In
these scenarios, resonant single ~�L production and reso-
nant single ~�� production at hadron colliders is possible,

�ujdk ! ~��
L ! �ujdk=�

� ~�0
1;

�djdk ! ~�� ! �djdk=�� ~�0
1:

(4.5)

As explained above, a small fraction of the sleptons decay
via the inverse production process. Predominantly they
decay into a lepton and the lightest neutralino, ~�0

1. The

decays involving heavier neutralinos or charginos are typi-
cally not accessible.

The difference between ~�L and ~�� production concerns

the flavor of the initial quarks involved (which is related to
different parton density functions and is thus important for
the hadronic cross sections), and the nature of the lepton
resulting from the slepton decay. In both processes a
neutralino is produced in the predominant decay, which
in turn decays into the ~�1 LSP, as given in Eq. (4.3) and
(4.4). Finally, the ~�1 decays either via the dominant �0

2jk

coupling (4-body decay) or via the generated �233 coupling
(2-body decay). For the 4-body decays, only the decays via
virtual neutralinos have to be considered. Decay modes via
virtual charginos are suppressed due to the larger mass and
their weaker couplings to the predominantly right-handed
~�1 LSP. The complete cascade decay chains are listed in
Table III.

A classification of all possible final state signatures is
given in Table IV, for ~�L and for ~�� production. For

completeness, we include here the direct B3 decays via
�0
2jk, which usually contribute at the percent level for

couplings at the order of Oð10�2Þ. Neutrinos do not give
a signal in a detector and are denoted as missing transverse
energy, E6 T . Final state quarks are treated as indistinguish-
able jets j.
The 4-body decays via �0

2jk and the 2-body decays via

the inverse production process lead to two jets in the final
state. In contrast, the 2-body decays via �233 are purely
leptonic. Many cascade decay chains provide missing
transverse energy. Furthermore, since we are considering
~�1 LSP scenarios, there is always at least one � among the
final state particles. The experimentally most promising
signatures are most likely those involving a large number

TABLE III. Slepton decay chains with all possible final states
for single ~��

L and single ~�� production via �0
2jk, respectively.

The charge conjugated processes are not shown explicitly.
Slepton decays into heavier neutralinos or charginos are ne-
glected. The ~�0

1 decays predominantly into a ~�1 LSP and a �.
In some scenarios, decays as in Eq. (4.4) are possible, they are
cited in brackets. Owing to the Majorana-type nature of the
neutralino two charge conjugated decays of the neutralino are
possible (second and third column). In the first column the B3

coupling involved in the subsequent 4- or 2-body ~�1 decays are
given.

�ujdk!�0
~��
L ! �ujdk=�

� ~�0
1

or
�djdk!�0

~�� ! �djdk=�� ~�0
1

~�0
1 ! �þ~��1 ~�0

1 ! ��~�þ1
½~�0

1 ! �þ~��1 ‘þ‘�� ½~�0
1 ! ��~�þ1 ‘�‘þ�

�0
2jk ~��1 ! ����uj �dk ~�þ1 ! �þ�þ �ujdk

~��1 ! ���þ �ujdk ~�þ1 ! �þ��uj �dk
~��1 ! ����dj �dk ~�þ1 ! �þ ���

�djdk
~��1 ! �� ���

�djdk ~�þ1 ! �þ��dj �dk
�233 ~��1 ! ���� ~�þ1 ! �þ ���

~��1 ! �� ��� ~�þ1 ! �þ��

~��1 ! ���� ~�þ1 ! �þ ���

TABLE IV. Summary of all possible final states for single
slepton production via �0

2jk. Decays involving the dominant

�0
2jk coupling and involving the generated �233 coupling are

listed separately, cf. Table III. If kinematically allowed, the ~�0
1

may also decay into a light-flavor lepton-slepton pair, which
gives rise to an additional �þ�� or eþe� pair in the final state.
The corresponding signatures are given in brackets. The decay
via the inverse production process is also listed.

~��
L production

�0
2jk �þ�� ���� jj

�þ�� �� E6 T jj
½�þ�� �������þ jj�
½�þ�� �����þ E6 T jj�
½�þ�� ���� eþe� jj�
½�þ�� �� eþe� E6 T jj�

�233 �� ���� E6 T

�þ�� �� E6 T

½�� �������þ E6 T ]

½�þ�� �����þ E6 T ]

½�� ���� eþe� E6 T ]

½�þ�� �� eþe� E6 T ]

Inv. prod. jj

~�� production

�0
2jk �þ�� �� E6 T jj

�þ�� E6 T jj
½�þ�� �����þ E6 T jj�
½�þ�� ���þ E6 T jj�
½�þ�� �� eþe� E6 T jj�
½�þ�� eþe� E6 T jj�

�233 �� �� E6 T

�þ�� E6 T

½�� �����þ E6 T ]

½�þ�� ���þ E6 T ]

½�� �� eþe� E6 T ]

½�þ�� eþe� E6 T ]

Inv. prod. jj
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of muons, for example, like-sign dimuons and three or four
final state muons. If the ~�0

1 decays only into ~�1�, there are
two signatures including like-sign dimuons for ~�L produc-
tion. For ~�� production, muons can be produced singly

only. But if the decays Eq. (4.4) are open, both slepton
production processes allow for dimuon and trimuon pro-
duction. In the case of ~�L production, even four final state
muons are possible. Additionally, depending on how easily
taus will be identified, an analysis could be based on like-
sign �� pairs.

The final state signatures depend sensitively on which
particle is the LSP. Compared to slepton production in the
~�0
1 LSP scenarios [52–56,60,61,63,64], there are three

main differences here. First, for a ~�1 LSP we have always
one or two taus in the final state, which in ~�0

1 LSP scenarios

is only possible for smuon production if heavier neutrali-
nos are involved in the decay chain. These heavy neutra-
linos then decay into the lightest neutralino and possibly
taus. Second, the generation of a � coupling can be ne-
glected in ~�0

1 LSP scenarios. As argued above, � only

allows for additional 3-body decays, which are thus not
phase-space enhanced compared to the 3-body decays via
the dominant �0 coupling. As a consequence, purely lep-
tonic final state signatures are absent in ~�0

1 LSP scenarios.
Third, due to the modified spectra in ~�0

1 LSP scenarios, also

~�� production can provide like-sign dimuon events. In this

case, ~�� can often decay into a� and a chargino. Like-sign

dimuons arise either if the chargino directly decays via �0
into a � and two quarks, or if the chargino first decays into
the ~�0

1 LSP and then the ~�0
1 LSP decays via �0 into a� and

two quarks.
This discussion can easily be translated to scenarios with

�0
1jk � 0 by replacing the muons by electrons (and

vice versa). Since there is typically no difference in mass
between sleptons of the first and second generation, re-
spectively, the kinematics are the same. Note however that
the bounds on the B3 couplings are stronger for �0

1jk than

for �0
2jk for example due to the nonobservation of neutrino-

less double beta decays.

C. �0
3jk � 0jGUT

Some additional remarks are in order for a dominant
�0
3jk B3 coupling. These couplings allow for resonant

single ~�� production and, owing to the L–R mixing in
the stau sector, also both resonant ~�1 and ~�2 production
(j � 3).

For ~�1 production, we refer to the discussion of LSP
decay modes in Sec. III A. Here, the LSP couples directly
to the B3 operator and the inverse production process
dominates the decay rate

�ujdk ! ~��1 ! �ujdk: (4.6)

This decay is kinematically accessible if j � 3. For j ¼ 3
the stau decays via a virtual top quark, cf. Eq. (3.6), for

m~�1 <mt. Note that j ¼ 3 requires associated production,

e.g. gdk ! ~�t, due to the absence of top quarks inside the
proton [50,69–71].
For ~�2 and ~�� production, there are the following 2-body

decay modes:

�ujdk ! ~��2 !
8><
>:

�ujdk;

�� ~�0
1;

~��1 h
0=Z0;

(4.7)

�djdk ! ~�� !
8><
>:

�djdk;

�� ~�
0
1;

~��1 W:
(4.8)

The inverse production process contributes and leads to a
jj final state. The decay into a lepton and a neutralino often
dominates for small tan� ( tan� & 10). The neutralino
decays further into the ~�1 LSP, which directly decays
into two quarks:

~� 0
1 ! ��~��1 ; ~��1 ! �ujdk; (4.9)

where we have included the two charge conjugated decays
of the neutralino. The final states of these decay modes are
����jj, and there is the possibility of like-sign tau events.
If the ~�0

1 decay (4.4) is kinematically allowed, we can have

an additional pair of electrons or muons in the final state.
The singly produced slepton can also decay into the ~�1

LSP and a SM particle, Z0, h0, or W, respectively, (final
states: h0=Z0=Wjj). This decay mode is special for singly
produced sleptons of the third generation because they are
L–R mixed eigenstates. It can be the dominant decay mode
of the ~�2 and ~��, depending on the parameters.
The branching ratios for all B3 conserving ~�2 and ~�� 2-

body decay modes are given in Table XI in Appendix B, for
the SUSY parameter Sets A and B.

V. SINGLE-SMUON PRODUCTION: AN EXPLICIT
NUMERICAL EXAMPLE

In this section, we present explicit calculations of prom-
ising signal rates for resonant slepton production at the
LHC in the B3 mSUGRA model with a ~�1 LSP, focussing
on parameter Sets A and B, cf. Eq. (2.7). First, we consider
in Sec. VA (exclusive) like-sign dimuon events, i.e. events
with exactly two muons of the same charge in the final
state. An analysis of SM and SUSY backgrounds for the
like-sign dimuon signature is given in Sec. VB. Second, in
Sec. VC, we present event rates for single-smuon produc-
tion leading to three or four muons in the final states, which
are kinematically accessible within Sets A and B.

A. Like-sign dimuon events

Following Refs. [52,53], we first concentrate on events
with exclusive like-sign dimuons. Here, events with more
than two muons are rejected. In this sense, in ~�1 LSP
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scenarios, only single-smuon production leads to exclusive
like-sign dimuon pairs, cf. Table IV. It has been shown in
Refs. [52,53] that this selection criterion enhances the
signal to background ratio considerably. In Refs. [52,53]
it was shown that using a set of cuts, the SM background
rate at the LHC, �BjSM, can be reduced to

�BjSM ¼ 4:9� 1:6 events=10 fb�1: (5.1)

At the same time the cut efficiency, i.e. the number of
signal events that pass the cuts, lies roughly between 20%
and 30%. Note that Refs. [52,53] assume a ~�0

1 LSP. As we
will argue in Sec. VB, similar cuts are also applicable in ~�1
LSP scenarios. For the numbers presented in this section,
however, no cuts are applied and full cross sections and
event rates are given.

The total cross section for like-sign dimuon events is
given by the resonant ~�þ

L or ~��
L production cross section

multiplied by the respective branching ratios leading to
like-sign dimuon final states. Both decays via the dominant
�0
2jk coupling and a generated �233 coupling contribute. For

a negatively charged smuon they are

�ujdk!�
0
~��
L ! �� ~�0

1;

,! �þ~��1

,!�
0
����uj �dk;

,!� ���
�;

,! ��~�þ1

,!�
0
�þ��uj �dk; (5.2)

plus the analogous decay chains where the neutralino
decays first into an ~e�R -e� pair, cf. Eq. (4.4). The couplings
depicted on the arrows indicate the employed B3 coupling.
The decay chain for a positively charged smuon can be
obtained by charge conjugation. However, one should keep
in mind that the production cross sections for ~�þ

L and ~��
L

differ at pp colliders, since charge conjugated quarks (and
corresponding parton densities) are involved.

TABLE V. Cross sections for exclusive like-sign dimuon (���� or �þ�þ) final states at the LHC within Set A. In the left column,
we present the single-smuon production cross sections, �prod:ð ~��

L Þ, see also Tables IX and X. In the right column, we have folded in the

relevant decay branching ratios, in order to obtain like-sign dimuons. All cross sections are given in femtobarn (fb). Where they exist,
we have assumed always a cascade of 2-body decays. We consider in turn quark mixing in the up- and down-sector, when determining
the dominant ~�1 decay mode. The ~�1 LSP can either decay via �0 (4-body decay) or via � (2-body decay), cf. Table III, which leads to
different like-sign dimuon cross sections, �prod: � BR�0 and �prod: � BR�, respectively. The �0

2jk couplings are in accordance with

neutrino mass bounds [10,96]. In case of up-type mixing, larger values of �0
2jk for the four considered couplings are allowed by the

neutrino mass bounds. The cross sections scale with j�0j2 and the corresponding rescaling can easily be performed.

Up-type mixing Down-type mixing

Set A �prod:ð ~��
L Þ [fb] �prod: � BR�0 �prod: � BR� �prod: � BR�0 �prod: � BR�

�0
211 ¼ 2� 10�3jGUT ���� 61.6 11.1 0.71 9.81 2.09

�þ�þ 108 19.4 1.25 17.2 3.66

�0
221 ¼ 2� 10�3jGUT ���� 42.0 7.84 - 4.51 3.88

�þ�þ 16.2 3.03 - 1.74 1.50

�0
212 ¼ 2� 10�3jGUT ���� 18.6 3.46 - 1.99 1.71

�þ�þ 86.0 16.1 - 9.23 7.94

�0
213 ¼ 2� 10�3jGUT ���� 8.80 1.67 - 1.32 0.40

�þ�þ 49.8 9.43 - 7.43 2.24

TABLE VI. Same as Table V but for single slepton production within Set B. The neutrino mass bounds are less restrictive in the case
of Set B, and �0

2jk ¼ 0:01jGUT are considered for both up- and down-type quark mixing. All cross sections are given in fb.

Up-type mixing Down-type mixing

Set B �prod:ð ~��
L Þ [fb] �prod: � BR�0 �prod: � BR� �prod: � BR�0 �prod: � BR�

�0
211 ¼ 1� 10�2jGUT ���� 476 1.04 101 0.21 102

�þ�þ 885 1.93 188 0.39 189

�0
221 ¼ 1� 10�2jGUT ���� 309 62.8 - - 66.2

�þ�þ 105 21.4 - - 22.5

�0
212 ¼ 1� 10�2jGUT ���� 123 25.1 - - 26.3

�þ�þ 681 139 - - 146

�0
213 ¼ 1� 10�2jGUT ���� 54.6 11.2 - 0.02 11.7

�þ�þ 370 75.6 - 0.16 79.4
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The cross sections for the exclusive like-sign dimuon
final states are presented in Table V for Set A and in
Table VI for Set B. The smuon production cross sections,
�prod:ð ~��

L Þ (see also Tables IX and X), include NLO QCD

and SUSY-QCD corrections [67], see Appendix A. For the
numerical analysis, we only consider couplings �0

2jk that

involve partons of the first generation leading to large
production cross sections at the LHC.

As already discussed, the ~�1 LSP can either decay via �0
(4-body decay) or via � (2-body decay). A list of the

respective branching ratios is given in Appendix A,
Tables XII and XIII, for Sets A and B and for several
�0
2jk couplings. Here, we show the resulting cross section

times branching ratio, �prod: � BR�0 and �prod: � BR�, for

like-sign dimuon events involving ~�1 decays via �
0 and �,

respectively, as described in Eq. (5.2).
The total number of exclusive like-sign dimuon events is

given by the integrated luminosity multiplied by the total
cross section. In Set A with up-type (down-type) quark
mixing, we obtain per 10 fb�1

Nð���� þ�þ�þÞ=10 fb�1 ¼ ½�prod:ð ~��
L Þ þ �prod:ð ~�þ

L Þ� � ½BR�0 þ BR�� � 10

�

8>>>>><
>>>>>:

325 ð330Þ
110 ð115Þ
195 ð210Þ
110 ð115Þ

=10 fb�1 for

8>>>>><
>>>>>:

�0
211 ¼ 0:002jGUT

�0
221 ¼ 0:002jGUT

�0
212 ¼ 0:002jGUT

�0
213 ¼ 0:002jGUT

: (5.3)

Note that for up-type mixing, some larger couplings may be considered. From the neutrino mass bounds, also
�0
211;221;212;213 ¼ 0:01jGUT (and even larger) are allowed. The cross sections are proportional to j�0j2 and thus a 5 times

larger coupling implies cross sections and event numbers multiplied by a factor of 25 compared to those of Table V.
For Set B, �0

2jk ¼ 0:01jGUT is allowed for both up- and down-type mixing. The numbers of like-sign dimuon events are

Nð���� þ�þ�þÞ=10 fb�1 �

8>>><
>>>:
2920 ð2920Þ
840 ð890Þ
1640 ð1720Þ
870 ð910Þ

=10 fb�1 for

8>>><
>>>:
�0
211 ¼ 0:01jGUT

�0
221 ¼ 0:01jGUT

�0
212 ¼ 0:01jGUT

�0
213 ¼ 0:01jGUT

; (5.4)

for up-type (down-type) quark mixing, respectively.
As can be seen in Eqs. (5.3) and (5.4), for each nonzero

�0 coupling the total event numbers for up- and down-
mixing are of the same order. But as Tables V and VI
show, the parts contributing to the event rate can be quite
different. In case of up-type mixing and j � k, the 4-body
decays via �0 dominate and the contributions of the 2-body
decay are negligible [since the size of the necessary �
coupling is proportional to ðYDÞjk]. In contrast, for down-

type mixing all four considered couplings can generate a
relatively large �233, cf. Fig. 2, and the 2-body decay
modes contribute considerably. In Set B, where tan� is
large and where thus the fraction of 2-body decays is
especially high (see discussion of Fig. 6), reliable event
numbers are only obtained if the generation of �233 is
included in the theoretical framework. Moreover, a mea-
surement of the ratio of 2-body to 4-body ~�1 decays can
reveal information about where the quark mixing takes
place.

For j ¼ k, the generation of a � coupling is also possible
in case of up-type mixing. In Set A, the generated �233

is not large enough to allow for large 2-body decay
rates. However in Set B, due to the large tan� value, the
2-body decays dominate over the 4-body decays. Thus, the

different ~�1 decay modes contain also information about
tan�.
We present in Tables V and VI also the total hadronic

cross sections for single-smuon production, �prod:ð ~��
L Þ.

Within one parameter set, the cross sections vary strongly
for different �0

2jk. This is of course related to corresponding

required parton density functions. The largest cross section
is obtained for �0

211 � 0, i.e. for the processes �ud ! ~��
L

and u �d ! ~�þ
L . Smaller cross sections are obtained for

�0
212 � 0 (involving an up quark and a strange quark) and

the smallest cross section for �0
221 � 0 (charm quark and

down quark) and �0
213 � 0 (up quark together with bottom

quark).
Since the LHC is a pp collider, there is an asymmetry

between the ~�þ
L and ~��

L production cross sections. If
experimentally a distinction between �þ�þ and ����
event rates is found, the ratio can be used to constrain
the indices of the nonzero �0

2jk coupling. For example, a

nonvanishing coupling �0
211 leads to a ratio of

Nð�þ�þÞ:Nð����Þ � 2:1 in Sets A and B, whereas for
nonvanishing �0

221 the ratio is 1:2:5 in Set A and 1:3 in

Set B. The highest event rates are obtained for processes
that involve the valence quarks u and d. The charge con-
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jugated processes, involving �u or �d, are suppressed in
comparison. Thus, a larger fraction of �þ�þ events goes
along with j ¼ 1 (where the production process is u �dk !
~�þ
L ) and a larger fraction of�

��� events is related to k ¼
1 and j � 1 (production process �ujd ! ~��

L ).

B. Discussion of background and cuts for like-sign
dimuon final states

In this section, we discuss the background for like-sign
dimuon events from the SM and from SUSY particle pair
production via gauge interactions. We follow Refs. [52,53]
closely. There, single-smuon production via �0

211 was in-
vestigated assuming a ~�0

1 LSP. A detailed signal over
background analysis was performed based on like-sign
dimuon events. We argue that a similar or even the same
set of cuts might be used to suppress the background in our
case, and we compare background and signal rates to
determine the discovery potential of our analysis.

The main SM background sources are t�t production, b �b
production, single top production, and gauge boson pair
production, i.e. WW, WZ, and ZZ production. In
Refs. [52,53], the dominant signature from single-smuon
production including like-sign dimuon events is

~��
L ! �� ~�0

1 ! ��ð��u �dÞ: (5.5)

The two muons of the signal (5.5) are isolated because they
stem from different decays of SUSY particles. In addition,
the muons carry large momenta since they originate from
the decay of (heavy) SUSY particles. The following cuts
were proposed to improve the signal over SM background
ratio at the LHC:

(i) the muon rapidity j�j< 2:0, thus requiring all the
leptons in the central region of the detector,

(ii) a cut on the transverse momentum on each muon:
pTj� � 40 GeV,

(iii) an isolation cut on each of the muons,
(iv) a cut on the transverse mass of each of the muons,

60 GeV<MT < 85 GeV,
(v) a veto on the presence of a muon with the opposite

charge as the like-sign dimuons,
(vi) a cut on the missing transverse energy, E6 T 

20 GeV.
These cuts reduce the SM background to 4:9� 1:6

events per 10 fb�1 at the LHC, cf. Eq. (5.1). Among the
above cuts, the isolation and pT cut lead to the strongest
suppression of the SM background.

We now investigate the case of a ~�1 LSP. If the 4-body
decays (3.3) of the ~�1 LSP dominate, the leading signature
of resonant single-smuon production including like-sign
dimuon events can be written as

~��
L ! �� ~�0

1 ! ����~�� ! ����ð����u �dÞ: (5.6)

As above, the muons originate from the decay of heavy

particles (~�1 and ~�L), are in general well isolated, and
carry large momenta. Thus, for both signals Eqs. (5.5) and
(5.6), the same cuts should allow to discriminate between
the signal and the SM background. Furthermore, the addi-
tional pair of taus in Eq. (5.6) allows to require one or two
(isolated!) taus. This might additionally improve the signal
to background ratio.
If the ~�1 LSP predominantly decays via 2-body decay

modes, Eq. (3.4), the situation is a bit different. The like-
sign dimuon signature is now

~��
L ! �� ~�0

1 ! ���þ~�� ! ���þð����Þ: (5.7)

We again have two isolated muons with large momenta,
and the same isolation and pTj� cuts as before should be

useful to suppress the SM background. But the neutrino of
the ~�1 decay leads to high missing transverse energy E6 T in
the signal and an upper bound on E6 T is not appropriate
anymore. Alternatively, we propose a cut that requires a
minimum missing energy, e.g. E6 T � 60 GeV. This would
also reduce the SM background where the main source of
E6 T are low-energetic neutrinos from W decays. Further-
more, we can again require an additional tau in the final
state. Finally, one can exploit the fact that the 2-body
decays lead to a pure leptonic final state and a jet veto
can be applied.
In Refs. [52,53], the SUSY background on like-sign

dimuon events is suppressed by vetoing all events with
more than two jets of pTjjet > 50 GeV. This cut will also

work if the 4-body decay mode of the ~�1 LSP (3.3) domi-
nates. The 2-body decay modes lead to purely leptonic
final states and even no high-pT jet may be required.
We conclude that for ~�1 LSP scenarios, the background

for like-sign dimuon events can be suppressed similarly as
it has been proposed for ~�0

1 LSP scenarios in [52,53].
We thus compare our signal, as given in Eqs. (5.3) and

(5.4) for Sets A and B, respectively, to the background,
assuming that cuts as discussed above reduce the SM
background to less than 5 events per 10 fb�1, cf.
Eq. (5.1). For the signal efficiency, we assume 20%, i.e.
20% of signal events pass the cuts. We neglect systematic
errors, at this stage of the analysis.
For Set A, a more than 5� excess over the SM back-

ground can be obtained for an integrated luminosity of
10 fb�1 for all couplings given in Eq. (5.3). For Set B, a
cut efficiency of 20% for the signal corresponds to an
excess between 100� and 300� for the number of like-
sign muon events over the SM background! Therefore,
within Set B, couplings can be tested at the LHC down
to �0

2jkjGUT �Oð10�3Þ. But a detailed Monte Carlo based

signal over background analysis remains to be done.

C. Final states with 3 and 4 muons

To round off our studies, we consider in this section final
states with more than two muons. For example, for pa-
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rameter Sets A and B, the ~�0
1 cannot only decay into a ~�1-�

pair but also into a ~�R-� or ~eR-e pair. These are kinemati-
cally accessible and have non-negligible branching ratios
(Set A: 7.0%, Set B: 2.2%; see Table XI). As we have
shown in Table IV, these decays lead to three or even four
muons of mixed signs in the final state. Each of the muons
stems from the decay of a different SUSY particle.
Especially the four-muon final state cannot be found at a
high rate in ~�0

1 LSP scenarios, and its observation could be
a hint for a ~�1 LSP. Therefore, we analyze the three- and
four-muon final states in this section. All necessary branch-
ing ratios and production cross sections are given in the
Appendix, see Tables IX, X, XI, XII, and XIII.

The four-muon events may be classified into
�������þ, �����þ�þ, and ���þ�þ�þ
signatures and we introduce the notations �ð� ��þÞ,
�ð� �þþÞ, and �ðþ þþ�Þ, for the respective cross
sections. The four-muon final states require a long decay
chain, and many different decays contribute at various
stages. For smuon production, summing up all contribu-
tions, the cross sections can be written in the following
compact form:

� ~�ð� ��þÞ ¼ �prod:ð ~��
L Þ � BRð ~��

L ! ~�0
1�

�Þ
� BRð~�0

1 ! ~�þ
R�

�Þ � P~�1ð1�Þ;
� ~�ðþ þþ�Þ ¼ � ~�ð� ��þÞ � �prod:ð ~�þ

L Þ=�prod:ð ~��
L Þ;

� ~�ð� �þþÞ ¼ � ~�ð� ��þÞ þ � ~�ðþ þþ�Þ; (5.8)

where P~�1ð1�Þ ¼ BRð~��1 ! �� . . .Þ þ BRð~�þ1 ! �� . . .Þ
denotes the probability of a negatively charged final state
muon in a ~�1 decay. The difference between � ~�ð� ��þÞ
and � ~�ðþ þþ�Þ stems from the different partons and

parton densities involved in the production cross sections.
Smuon production can also lead to exactly three final

state charged muons, �����þ or �þ�þ��. The corre-

sponding cross sections now involve the probability
P~�1ð0�Þ for a ~�1 decay without a final state muon,

� ~�ð� �þÞ ¼ �prod:ð ~��
L Þ � BRð ~��

L ! ~�0
1�

�Þ
� BRð~�0

1 ! ~�þ
R�

�Þ � 2P~�1ð0�Þ;
� ~�ðþ þ�Þ ¼ � ~�ð� �þÞ � �prod:ð ~�þ

L Þ=�prod:ð ~��
L Þ:
(5.9)

There are 16 different decay chains of the ~��
L leading to a

�����þ final state. The factor of 2 in Eq. (5.9) is a
consequence of summing over all these decay chains.
The same final state signatures (exactly three muons)

can be obtained via ~�� production. The decay chain is

similar to that of a produced smuon. The missing muon
from the slepton decay is here replaced by demanding a
muon in the final ~�1 decay,

�~�ð� �þÞ ¼ ½�prod:ð~��Þ þ �prod:ð~��
�Þ�

� BRð~�� ! ~�0
1��Þ

� BRð~�0
1 ! ~�þ

R�
�Þ � P~�1ð1�Þ;

�~�ðþ þ�Þ ¼ �~�ð� �þÞ:

(5.10)

The total cross sections for (exactly) three final state muons
are then given by

�ð� ��Þ ¼ � ~�ð� ��Þ þ �~�ð� ��Þ: (5.11)

Tables VII and VIII give an overview over the numerical
results. The same �0 couplings as in the previous Tables V
and VI are considered. The generation of �233 has been
taken into account for the ~�1 decays and the cross sections
give total numbers, including both 4- and 2-body ~�1
decays.
We see that the sum of three- and four-muon events is in

the same order of magnitude as the results for purely like-
sign dimuons. For Set A, where BRð~�0

1 ! ~�R�Þ ¼ 7%,

TABLE VII. Cross sections for signals with three or four final state muons within parameter Set A, assuming down-type (up-type)
quark mixing. Given are the cross sections as defined in Eqs. (5.8), (5.9), (5.10), and (5.11) and the sums for two negatively or
positively charged muons,

P
�ð� � . . .Þ or P �ðþ þ . . .Þ, respectively. All cross sections are given in fb.

Set A �ð� �þÞ �ðþ þ�Þ �ð� �þþÞ �ðþ þþ�Þ �ð� ��þÞ P
�ð� � . . .Þ P

�ðþ þ . . .Þ
�0
211 ¼ 2� 10�3jGUT 9.38 (9.39) 12.9 (13.0) 5.32 (5.26) 3.39 (3.35) 1.93 (1.91) 16.6 (16.6) 21.7 (21.6)

�0
221 ¼ 2� 10�3jGUT 5.77 (5.77) 3.84 (3.74) 1.89 (1.77) 0.53 (0.49) 1.36 (1.27) 9.02 (8.81) 6.26 (6.00)

�0
212 ¼ 2� 10�3jGUT 4.02 (3.93) 9.05 (9.24) 3.39 (3.17) 2.79 (2.61) 0.60 (0.56) 8.01 (7.66) 15.2 (15.0)

�0
213 ¼ 2� 10�3jGUT 2.04 (2.02) 5.14 (5.19) 1.85 (1.80) 1.57 (1.53) 0.28 (0.27) 4.17 (4.09) 8.56 (8.52)

TABLE VIII. Same as Table VII but for single slepton production within Set B. All cross sections are given in fb.

Set B �ð� �þÞ �ðþ þ�Þ �ð� �þþÞ �ðþ þþ�Þ �ð� ��þÞ P
�ð� � . . .Þ P

�ðþ þ . . .Þ
�0
211 ¼ 1� 10�2jGUT 20.8 (20.8) 29.1 (29.1) 13.4 (13.4) 8.73 (8.73) 4.69 (4.69) 38.9 (38.9) 51.3 (51.3)

�0
221 ¼ 1� 10�2jGUT 11.9 (12.0) 7.77 (7.59) 4.08 (3.88) 1.04 (0.98) 3.05 (2.89) 19.1 (18.7) 12.9 (12.4)

�0
212 ¼ 1� 10�2jGUT 8.14 (7.98) 19.5 (19.9) 7.93 (7.53) 6.72 (6.39) 1.21 (1.15) 17.3 (16.7) 34.2 (33.8)

�0
213 ¼ 1� 10�2jGUT 3.94 (3.85) 10.4 (10.6) 4.20 (4.00) 3.66 (3.48) 0.54 (0.51) 8.68 (8.36) 18.3 (18.1)
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the event numbers are even larger. In Set B, with BRð~�0
1 !

~�R�Þ ¼ 2%, the total contributions are smaller by a factor
of about three. Depending on the experimental goals, these
channels thus give important contributions and should be
included in an analysis. On the other hand, these events
also suggest to use three or four final state muons as a
signal for slepton production, since the background is
expected to be very low.

VI. CONCLUSION

B3 interactions allow for LSP decays and thus reopen
large regions in the SUSY parameter space, where the LSP
is charged. We have investigated for the first time in detail
the phenomenology of B3 mSUGRAmodels with a ~�1 LSP.
We have hereby assumed only one nonvanishing B3 cou-
pling �0

ijk at MGUT.

An essential feature of the B3 mSUGRA signatures is
the decay of the ~�1 LSP. Given only one B3 coupling at
MGUT, we would expect either a 4-body or 2-body decay of
the ~�1 LSP depending on whether it couples directly to the
dominant B3 operator or not. However, in B3 mSUGRA
models the RGEs are highly coupled and further couplings
are generated at the weak scale. These are of course sup-
pressed relative to the dominant coupling but may lead to
2-body decays, which have larger phase space and do not
involve heavy propagators.

We have here numerically investigated the generation of
�i33 couplings via dominant �0

ijk couplings. The generated

couplings are typically smaller by at least 2 orders of
magnitude; see Figs. 2 and 3. We have then performed a
first detailed analysis of the parameter dependence of the
~�1 LSP decay modes. It turned out that in large regions of
parameter space the 2-body decay dominates over the 4-
body decay, see Figs. 6–10.

In the second part of the paper, we applied our results to
resonant single slepton production at the LHC, which is
possible in B3 scenarios with a nonzero �0

ijk coupling. We

first studied the general decay signatures. From the experi-
mental point of view, the final states with two like-sign or

even more charged leptons are of special interest. Each
event is also accompanied by at least one tau.
We further investigated numerically single-smuon pro-

duction for �0
2jk � 0 within two representative ~�1 LSP

scenarios, i.e. for two sets of B3 mSUGRA parameters.
We include the 2-body ~�1 LSP decays via the generated
�233 couplings in our analysis. The cross sections for like-
sign dimuon final states are given in Tables V and VI and
those for final states with three or four muons in Tables VII
and VIII. For example, we found resulting cross sections
for exclusive like-sign dimuon events of Oð100 fbÞ for
�0
2jkjGUT ¼ 0:01. Additional three- and four-muon events

can occur with the same rate. This is a novel discovery
mechanism for the LHC and should be investigated in more
detail, also by the LHC experimental groups.
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APPENDIX A: CROSS SECTIONS AND
BRANCHING RATIOS RELEVANT FOR SLEPTON

PRODUCTION AND DECAY

In this appendix we give the necessary cross sections and
branching ratios to calculate rates of all possible decay
signatures for single slepton production at the LHC, within
the B3 Sets A and B with a ~�1 LSP, cf. Eq. (2.7).
In Tables IX and X, all hadronic production cross sec-

tions of resonant single sleptons within parameter Set A
and Set B, respectively, are given. We consider here

TABLE IX. Complete list of hadronic cross sections for resonant single slepton/sneutrino production via �0
ijk ¼ 0:01jGUT at the pp

collider LHC (
ffiffiffi
S

p ¼ 14 TeV) within the parameter Set A. The cross sections include QCD and SUSY-QCD corrections at NLO [67].
For �0

i3k, sleptons cannot be produced because of the vanishing top-quark density in the proton.

�prod: [fb]

Set A ~eþL = ~�þ
L ~e�L = ~��

L ~��
e=� ~�e=� ~�þ2 ~��2 ~�þ1 ~��1 ~��

� ~��

�0
i11 ¼ 0:01jGUT 2700 1540 1860 1860 2620 1500 434 272 190 190

�0
i22 ¼ 0:01jGUT 268 268 410 410 2600 2600 64.5 64.5 421 421

�0
i12 ¼ 0:01jGUT 2150 464 1430 602 2090 451 360 103 1460 616

�0
i21 ¼ 0:01jGUT 405 1050 602 1430 393 1020 91.9 197 616 1460

�0
i13 ¼ 0:01jGUT 1240 220 788 292 1210 214 216 51.3 806 299

�0
i23 ¼ 0:01jGUT 119 119 191 191 116 116 30.0 30.0 196 196

�0
i31 ¼ 0:01jGUT - - 247 666 - - - - 253 681

�0
i32 ¼ 0:01jGUT - - 161 161 - - - - 166 166

�0
i33 ¼ 0:01jGUT - - 69.3 69.3 - - – - 71.1 71.1

H. K. DREINER, S. GRAB, AND M.K. TRENKEL PHYSICAL REVIEW D 79, 016002 (2009)

016002-20



�0
ijk ¼ 0:01jGUT, but the cross section scales with j�0

ijkj2.
The running of �0

ijk is taken into account according to

Eq. (2.22), leading to the following values at the SUSY
scale Qsusy, cf. Eq. (2.28):

Set A: �0
2jk ¼ 0:0282; �0

3jk ¼ 0:0282;

�0
23k ¼ 0:0258; �0

33k ¼ 0:0257;

�0
2j3 ¼ 0:0281; �0

3j3 ¼ 0:0280;

�0
233 ¼ 0:0255; �0

333 ¼ 0:0254; (A1)

Set B: �0
2jk ¼ 0:0274; �0

3jk ¼ 0:0271;

�0
23k ¼ 0:0249; �0

33k ¼ 0:0247;

�0
2j3 ¼ 0:0269; �0

3j3 ¼ 0:0266;

�0
233 ¼ 0:0238; �0

333 ¼ 0:0236; (A2)

where j, k ¼ 1, 2 and Qsusy ¼ 893 GeV for Set A and

Qsusy ¼ 1209 GeV for Set B.

The production cross sections include NLO SUSY-QCD
corrections [67]. The latter depend on the trilinear quark-
squark-slepton coupling, hDk , defined in Ref. [10].
Numerically, it is hDk ¼ �23:4 GeV (� 21:2 GeV)
within Set A (Set B) at the SUSY scale. We incorporated
the running of hDk by using the one-loop contributions
from gauge interactions [10].

Second, for the calculation of the rate for a given sig-
nature of resonant single slepton production, the branching
ratios for the slepton decay and for the subsequent decay
chains down to the ~�1 LSP are needed. For all dominant
�0
ijk couplings these branching ratios are universal within

parameter Set A and Set B, respectively, and are given in
Table XI.

Finally, we show in Table XII (Table XIII) all branching
ratios of ~�1 LSP decays for different couplings �0

2jk at the

GUT scale. Branching ratios within scenarios with �0
1jk �

0 are analogous and can be obtained from the tables by
replacing � by e in the final state signatures.

In the case of a nonvanishing �0
3jk, the ~�1 LSP directly

couples to the dominant L3Qj
�Dk operator and decays

predominantly via the inverse production process, see
also the discussion in Sec. III A. For the special case of
�0
33k � 0 and m~�1 <mt, however, the ~�1 decays into a W

boson and two jets, cf. Eq. (3.6). The corresponding matrix
element and partial width are calculated in Appendix B.

TABLE X. Same as Table IX but for parameter Set B.

�prod: [fb]

Set B ~eþL = ~�þ
L ~e�L = ~��

L ~��
e=� ~�e=� ~�þ2 ~��2 ~�þ1 ~��1 ~��

� ~��

�0
i11 ¼ 0:01jGUT 885 476 559 559 949 515 1168 750 657 657

�0
i22 ¼ 0:01jGUT 67.3 67.3 102 102 74.7 74.7 192 192 124 124

�0
i12 ¼ 0:01jGUT 681 123 414 155 735 136 976 301 490 187

�0
i21 ¼ 0:01jGUT 105 309 155 414 117 337 269 548 187 490

�0
i13 ¼ 0:01jGUT 370 54.6 214 70.2 401 60.6 572 146 255 85.4

�0
i23 ¼ 0:01jGUT 28.2 28.2 44.4 44.4 31.4 31.4 87.2 87.2 54.3 54.3

�0
i31 ¼ 0:01jGUT - - 60.4 184 - - - - 73.5 219

�0
i32 ¼ 0:01jGUT - - 38.2 38.2 - - - - 46.7 46.7

�0
i33 ¼ 0:01jGUT - - 14.8 14.8 - - - - 18.2 18.2

TABLE XI. Table of branching ratios, BRs, that are relevant
for single slepton production and decays within the B3

mSUGRA scenarios Set A and Set B. Two different nonzero
B3 couplings are considered, �

0
2jk ¼ 0:01jGUT for columns 2 and

3 and �0
3jk ¼ 0:01jGUT for columns 4 and 5. The branching ratios

for �0
1jk � 0 can be obtained from those for �0

2jk � 0 by inter-

changing muon and electron flavor in the first four decay
channels. The branching ratios for ~eL ð~�e; ~eRÞ in scenarios
with �0

ijk � 0, i � 1 are equal to those of ~�L ð~��; ~�RÞ with

�0
3jk � 0. The branching ratios for ~�1 LSP decays are listed

separately in Tables XII and XIII.

BRs [%]

�0
2jk ¼ 0:01jGUT �0

3jk ¼ 0:01jGUT
Set A Set B Set A Set B

~��
L ! ~�0

1�
� 91.1 91.3 100 100

~��
L ! �ujdk 8.9 8.7 - -

~�� ! ~�0
1�� 91.7 91.5 100 100

~�� ! �djdk 9.3 8.4 - -

~�0
1 ! ~��1 �� 36.0 45.7 36.0 45.7

~�0
1 ! ~��

R�
� 7.0 2.2 7.0 2.2

~�0
1 ! ~e�R e� 7.0 2.1 7.0 2.1

~��
R ! ~�þ1 �

��� 54.3 64.1 54.3 64.1

~��
R ! ~��1 �

��þ 45.7 35.9 45.7 35.9

~��2 ! ~�0
1�

� 58.4 14.7 55.5 14.5

~��2 ! ~��1 h0 22.5 41.8 21.4 41.2

~��2 ! ~��1 Z0 19.1 43.5 18.1 42.9

~��2 ! �ujdk - - 5.0 1.3

~�� ! ~�0
1�� 62.2 13.6 58.8 13.4

~�� ! ~��1 Wþ 37.8 86.4 35.8 85.2

~�� ! �djdk - - 5.4 1.4
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APPENDIX B: THE B3 SLEPTON DECAY
~‘�i ! W� �bdk

A nonvanishing LiQ3
�Dk operator allows for slepton

decay into a top quark t and a down-type quark dk of
generation k,

~‘�
i ! �tdk: (B1)

However, this decay mode is kinematically only allowed if
m~‘i

> mt þmdk . For m~‘i
< mt þmdk , the slepton decays

via a virtual top quark,

~‘�
i ! W� �bdk: (B2)

This 3-body decay has not been considered in the literature
yet and is not implemented in the R-parity violating ver-
sion of HERWIG, either. We complete the picture by calcu-
lating the 3-body decay (B2) in the following.

The relevant parts of the supersymmetric Lagrangian are
[100]

TABLE XII. Branching ratios of the ~�1 LSP for different nonzero �0
2jk couplings at the GUT scale. The branching ratios are

calculated within the mSUGRA parameter Set A for the SUSY breaking scale Qsusy ¼ 893 GeV. We assume down-type (up-type)

quark mixing. Branching ratios for nonvanishing �0
1jk are analogous, with � replaced by e.

~��1 !� ���
�

Set A ½¼ ~��1 !� ���
�� ~��1 !� ����

� ~��1 !�
0
����uj �dk ~��1 !�

0
���þ �ujdk ~��1 !�

0
����dj �dk ~��1 !�

0
�� ���

�djdk

�0
211 7.9% (2.7%) 0.2% (0.1%) 11.8% (13.3%) 25.3% (28.5%) 15.2% (17.1%) 31.6% (35.6%)

�0
212 21.5% (-) 0.5% (-) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

�0
213 10.5% (-) 0.2% (-) 11.1% (14.1%) 23.8% (30.2%) 14.3% (18.1%) 29.6% (37.6%)

�0
221 21.5% (-) 0.5% (-) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

�0
222 46.8% (46.8%) 1.1% (1.1%) 0.7% (0.8%) 1.6% (1.6%) 1.0% (1.0%) 2.0% (2.0%)

�0
223 48.2% (-) 1.1% (-) 0.4% (14.2%) 0.8% (29.3%) 0.5% (18.2%) 1.0% (38.4%)

�0
231 17.9% (-) 0.4% (-) - (-) - (-) 20.7% (32.1%) 43.0% (67.9%)

�0
232 48.8% (-) 1.1% (-) - (-) - (-) 0.4% (32.5%) 0.8% (67.5%)

�0
233 49.4% (49.4%) 1.1% (1.1%) - (-) - (-) - (-) - (-)

TABLE XIII. Branching ratios of the ~�1 LSP for different nonzero �0
2jk couplings at the GUT scale. The branching ratios are

calculated within the mSUGRA parameter Set B for the SUSY breaking scale Qsusy ¼ 1209 GeV. We assume down-type (up-type)

quark mixing. Branching ratios for nonvanishing �0
1jk are analogous, with � replaced by e.

~��1 !� ���
�

Set B ½¼ ~��1 !� ���
�� ~��1 !� ����

� ~��1 !�
0
����uj �dk ~��1 !�

0
���þ �ujdk ~��1 !�

0
����dj �dk ~��1 !�

0
�� ���

�djdk

�0
211 49.0% (48.6%) 1.7% (1.7%) - (0.1%) 0.1% (0.4%) - (0.1%) 0.1% (0.5%)

�0
212 49.1% (-) 1.7% (-) - (5.6%) - (41.1%) - (6.3%) - (46.9%)

�0
213 49.0% (-) 1.7% (-) - (5.7%) 0.1% (41.0%) - (6.4%) 0.1% (46.9%)

�0
221 49.1% (-) 1.7% (-) - (5.6%) - (41.0%) - (6.3%) - (47.0%)

�0
222 49.1% (49.1%) 1.7% (1.7%) - (-) - (-) - (-) - (-)

�0
223 49.1% (-) 1.7% (-) - (5.7%) - (41.0%) - (6.4%) - (47.0%)

�0
231 49.1% (-) 1.7% (-) - (-) - (-) - (12.0%) 0.1% (88.0%)

�0
232 49.1% (-) 1.7% (-) - (-) - (-) - (12.0%) - (88.0%)

�0
233 49.1% (49.1%) 1.7% (1.7%) - (-) - (-) - (-) - (-)

FIG. 13. Partial width in GeV for the 3-body decay ~eL !
W� �bd as a function of the selectron mass m~eL . We take �0

131 ¼
0:01 and L11 ¼ 1, in Eq. (B4).
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LLiQ3
�Dk
¼ �0

i3kL1�
~‘�i� �dkPLtþ h:c:;

LbWt ¼ � gffiffiffi
2

p Wþ
� �t
�PLbþ h:c:;

(B3)

where L�� is the slepton mixing matrix, � the left-right

eigenstate, and � the mass eigenstate. From Eq. (B3), the
squared matrix element (summed over final state polar-
izations and colors) can be derived,

jMð~‘�i� ! W� �bdkÞj2

¼ 3

2

�02
i3kL

2
1�g

2

½ðW þ bÞ2 �m2
t �2 þm2

t�
2
t

�
�
2ðdk 
 bÞ

�
m2

b �m2
W þ 4ðW 
 bÞ þ 4ðW 
 bÞ2

m2
W

�

þ 4ðdk 
WÞ
�
m2

b þ 2ðW 
 bÞ �m2
b

ðW 
 bÞ
m2

W

��
: (B4)

We denote the particle four-momenta by the particle letter,
and mt, mb, and mW , are the top, bottom, and W mass,
respectively. �t is the total width of the top quark.
From the squared matrix element (B4) we obtain easily

the partial width for the 3-body decay (B2), see e.g. [100].
We show in Fig. 13 the partial width �ð~eL ! W� �bdÞ as a
function of the left-handed selectron mass m~eL . Here, we

take �0
131 ¼ 0:01 and L11 ¼ 1, in Eq. (B4).

In comparison to the 3-body decay (B2), the possible 4-
body decays via �0

i3k are negligible. For example, for the

parameter Set B with nonvanishing �0
331, the branching

ratio of the 3-body ~�1 LSP decay (B2) is larger by 5 orders
of magnitude than the branching ratio of the 4-body ~�1 LSP
decays.
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