
Unparticle and Higgs boson as composites

Francesco Sannino1,* and Roman Zwicky2,3,†

1HEP Center, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
2School of Physics and Astronomy, University of Edinburgh, Scotland

3IPPP, Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom
(Received 3 November 2008; published 28 January 2009)

We propose a generic framework in which the Higgs and the unparticle are both composite. The

underlying theories are four-dimensional, asymptotically-free, nonsupersymmetric gauge theories with

fermionic matter. We sketch a possible unification of these two sectors at a much higher scale resembling

extended technicolor models. By construction our extensions are natural, meaning that there is no

hierarchy problem. The coupling of the unparticle sector to the composite Higgs emerges as a four-

Fermi operator. The bilinear unparticle operator near the electroweak scale has scaling dimension in the

range 1< dU < 3. We investigate, in various ways, the breaking of scale invariance induced by the

electroweak scale resulting in an unparticle condensate. The latter acts as a natural infrared cutoff or

hadronic scale. We give the low-energy effective theory valid near the electroweak scale. The unparticle-

Higgs mixing is found to be suppressed within our framework.
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It is an exciting possibility that new strong dynamics
could be discovered at the LHC. The hope is fueled by the
fact that some of the best motivated extensions of the
standard model (SM) break the electroweak symmetry
dynamically [1,2]. The new models, passing the precision
electroweak tests, are summarized in [3]. It is then inter-
esting to explore the possibility to accommodate the un-
particle scenario [4] into a natural setting featuring four-
dimensional strongly interacting dynamics.

Georgi’s original idea is that at high energy there is an
ultraviolet (UV) sector coupled to the SM through the
exchange of messenger fields with a large mass scale
MU. Below that scale two things happen consecutively.
First, the messenger sector decouples, resulting in contact
interactions between the SM and the unparticle sector.
Second, the latter flows into a nonperturbative infrared
(IR) fixed point at a scale �U � MU hence exhibiting
scale invariance;

L �OUVOSM ! OUOSM: (1)

The UV unparticle operator is denoted by OUV and it
posses integer dimension dUV. When the IR fixed point is
reached the operator OIR � OU acquires a noninteger
scaling dimension dU through dimensional transmutation

jh0jOUjPij � ð
ffiffiffiffiffiffi
P2

p
ÞdU�1: (2)

This defines the matrix element up to a normalization

factor. In the regime of exact scale invariance the spectrum
of the operatorOU is continuous, does not contain isolated
particle excitations and might be regarded as one of the
reasons for the name ‘‘unparticle.’’ The unparticle propa-
gator carries a CP-even phase1 [6,7] for spacelike momen-
tum. Effects were found to be most unconventional for
noninteger scaling dimension dU, e.g. [4,6,8].
The coupling of the unparticle sector to the SM (1)

breaks the scale invariance of the unparticle sector at a
certain energy. Such a possibility was first investigated
with naive dimensional analysis (NDA) in Ref. [9] via
the Higgs-unparticle coupling of the form

L eff �OUjHj2: (3)

The dynamical interplay of the unparticle and Higgs sector
in connection with the interaction (3) has been studied in
[10]. It was found, for instance, that the Higgs VEV
induces an unparticle VEV, which turned out to be infrared
(IR) divergent for their assumed range of scaling dimen-
sion and forced the authors to introduce various IR regu-
lators [10,11].
In this work we elevate the unparticle scenario to a

natural extension of the SM by proposing a generic frame-
work in which the Higgs and the unparticle sectors are both
composites of elementary fermions. We use four-
dimensional, nonsupersymmetric asymptotically-free
gauge theories with fermionic matter. This framework
allows us to address, in principle, the dynamics beyond
the use of scale invariance per se.
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1The resulting CP violation was found to be consistent with
the CPT theorem [5].
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The Higgs sector is replaced by a walking technicolor
model (TC), whereas the unparticle one corresponds to a
gauge theory developing a nonperturbative2 IR fixed point
(conformal phase).3,4 By virtue of TC there is no hierarchy
problem. We sketch a possible unification of the two
sectors, embedding the two gauge theories in a higher
gauge group. The model resembles the ones of extended
technicolor and leads to a simple explanation of the inter-
action between the Higgs and the unparticle sectors.

The paper is organized as follows. In Sec. I A we de-
scribe the basic scenario. Thereafter we address the for-
mation of the unparticle VEV in Sec. I B and identify the
VEV as the natural IR cutoff in connection with the dy-
namical (constituent) fermion mass. The comparison with
the IR cutoff suggested by NDA is presented in
Appendix B. In Sec. II we give some more details about
the unified framework. The low-energy effective
Lagrangian, which could also be taken as a starting point,
is given in Sec. II A. The regularized unparticle propagator
with IR and UV cutoff is discussed in Sec. II B. The
normalization of the unparticle operator to our specific
model is discussed in Appendix C. In a further
section II C we discuss the mixing of the Higgs with the
unparticle based upon the previously given effective
Lagrangian. In Appendix D we comment on the proposed
unparticle limit of the model presented in [28]. The paper
ends with an outlook in Sec. III, where possible future
directions of research in collider physics, lattice, and dark
matter are discussed. For example, we put forward the idea
of the unbaryon as a possible dark matter candidate.

I. THE HIGGS AND UNPARTICLE AS
COMPOSITES

A. Scenario

Our building block is an extended GT�U � SUðNTÞ �
SUðNUÞ technicolor (TC) gauge theory. The matter content
constitutes of techniquarksQa

f charged under the represen-

tation RT of the TC group SUðNTÞ and Dirac techni-
unparticle fermions �A

s charged under the representation
RU of the unparticle group SUðNUÞ, where a=A ¼
1 . . . dim½RT=U� and f=s ¼ 1 . . .F=S denote gauge and

flavor indices, respectively. We will first describe the
(walking) TC and (techni)unparticle sectors separately
before addressing their common dynamical origin. A
graphical illustration of the scenario is depicted in Fig. 1
as a guidance for the reader throughout this section.
In the TC sector the number of techniflavors, the matter

representation and the number of colors are arranged in
such a way that the dynamics is controlled by a near
conformal (NC) IR fixed point.5 In this case the gauge
coupling reaches almost a fixed point around the scale
�T � MW , with MW the mass of the electroweak gauge
boson. The TC gauge coupling, at most, gently rises from
this energy scale down to the electroweak one. The cou-
pling is said to walk.6 Around the electroweak scale the TC
dynamics triggers the spontaneous breaking of the electro-
weak symmetry through the formation of the technifer-
mion condensate, which therefore has the quantum
numbers of the SM Higgs boson. The associated
Goldstone bosons (technipions) then become the longitu-
dinal degrees of freedom of the electroweak bosons in

FIG. 1. Schematic scenario. The ordering of the energy scales
�U and �T is not of any importance.

2We note that the Banks-Zaks [12] type IR points, used to
illustrate the unparticle sector in [4], are accessible in perturba-
tion theory. This yields anomalous dimensions of the gauge
singlet operators which are close to the perturbative ones,
resulting in very small unparticle type effects.

3Strictly speaking conformal invariance is a larger symmetry
than scale invariance but we shall use these terms interchange-
ably throughout this paper. We refer the reader to Ref. [13] for an
investigation of the differences.

4Only very recently has it been possible to directly investigate,
via lattice simulations, the dynamics of a number of gauge
theories [14–24] expected to develop or to be very close an IR
fixed point [25–27]. The bulk of the lattice results support the
theoretical expectations [25,27].

5There are a number of ways of achieving (near) conformal
dynamics as summarized in [29]. The state-of-the-art phase
diagram [26,27] and new tools [25] to construct viable NC
nonsupersymmetric gauge theory are reported in [3].

6Such models are known as walking TC [30]. They are
preferred over QCD-like TC models by the electroweak preci-
sion data. In particular, the S-parameter receives a negative
contribution for NC models [31]. A large class of phenomeno-
logically viable models have been identified [3,27,29,32] of
which minimal walking technicolor (MWT) and partially gauged
technicolor (PGT) constitute two relevant examples.
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exact formal analogy to the SM. In the simplest TC models
the technipion decay constant FT is related to the weak
scale as 2MW ¼ gFT (g is the weak coupling constant) and
therefore FT ’ 250 GeV. The TC scale, analogous to
�QCD for the strong force, is roughly �TC � 4�FT .

Now we turn our attention to the unparticle sector. Here
the total number of massless techni-unparticle flavors S is
balanced against the total number of colors NU in such a
way that the theory, per se, is asymptotically free and
admits a nonperturbative IR fixed point. The energy scale
around which the IR fixed point starts to set in is indicated
with �U � MW .

It might be regarded as natural to assume that the
unparticle and the TC sectors have a common dynamical
origin, e.g. are part of a larger gauge group at energies
above �T and �U. We would like to point out that the
relative ordering between �T and �U is of no particular
relevance for our scenario. The low-energy relics of such a
unified-type model are four-Fermi operators allowing the
two sectors to communicate with each other at low energy.
The unparticle sector will then be driven away from the
fixed point due to the appearance of the electroweak scale
in the TC sector.

The model, of which further details are presented in
Sec. II resembles models of extended technicolor (ETC)
[3], where the techni-unparticles play the role of the SM
fermions. We refer to these type of models as extended
techni-unparticle (ETU) models.7 At very high energies
E � MU the gauge group GT�U is thought to be em-
bedded in a simple group GTU � GT�U. At around the
scale MU the ETU group is broken to GTU ! GT�U and
the heavy gauge fields receive masses of the order of MU
and play the role of the messenger sector. Below the scale
MU the massive gauge fields decouple and four-Fermi
operators emerge, which corresponds to the first step of
the scenario, e.g. Eq. (1) and Fig. 1. Without committing to
the specific ETU dynamics the interactions can be parame-
trized as:

L eff
<MU

¼ �
�QQ ���

M2
U

þ �
�QQ �QQ

M2
U

þ �
��� ���

M2
U

: (4)

The coefficients �, �, and � (the latter should not be
confused with an anomalous dimension) are of order one,
which can be calculated if the gauge coupling gTU is
perturbative. The Lagrangian (4) is the relic of the
ETU (ETC) interaction and gives rise to two sources of
dynamical chiral symmetry breaking in addition to the
intrinsic dynamics of the groups GT=U. These are contact

interactions of the type emphasized in [34]. Firstly, when
one fermion pair acquires a VEV then the�-term turns into
a tadpole and induces a VEV for the other fermion pair.
This is what happens to the unparticle sector when the TC

sector, or the SM Higgs [10], breaks the electroweak
symmetry. Second, the � term corresponds to a
Nambu–Jona-Lasino type interaction which may lead to
the formation of a VEV, for sufficiently large �. This
mechanism leads to breaking of scale invariance even in
the absence of any other low-energy scale. Let us paren-
thetically note that this mechanism is operative in models
of top condensation, cf. the TC report [35] for an overview.
However, based on our analysis in Appendix A we shall
neglect this mechanism in the sequel of this paper. We shall
refer to these two mechanism as�=�-induced condensates.
At the scale �U � MW the unparticle gauge sector

flows into an IR fixed point and the UV operator OUV ¼
��� becomes the composite unparticle operator OIR �
OU with scaling dimension dU � 3� �U,8

ð ���ÞUV ���U
U OU; MW � �U � MU: (5)

Note, the anomalous dimension �U of the operator has to
satisfy �U 	 2 due to unitarity bounds of the representa-
tions of the conformal group [36]. The Lagrangian then
simply becomes

L eff
�U

¼ �0 �QQ�
�U
U OU

M2
U

þ �0 �QQ �QQ

M2
U

þ �0 �
2�U
U OUOU

M2
U

:

(6)

This realizes the second step in the scenario, cf. Fig. 1 and
Eq. (1). The matching coefficients �0, �0, �0 (6) are related
to �, �, � (4) by order one coefficients. The �-term in
Eq. (6) is similar to the unparticle-Higgs interaction in
Eq. (3).
The composite operator �QQ can be treated in analogy to

��� in (5),

ð �QQÞUV ��
�T

T
OT ; �TC � �T � MU; (7)

up to logarithmic corrections which are negligible.
Contrary to the unparticle sector the TC gauge dynamics
break scale invariance through the formation of an intrinsic
condensate

hOT i�T
’ w

�T
T �

dT
TC � w

�T
T �

3��T
TC ; wT �

�
�T

�TC

�
:

(8)

The estimate of the VEV is based on scaling fromQCD and
renormalization group evolution.
The relevant terms contained in the low-energy effective

theory around the electroweak scale are9:

7The work by Georgi and Kats [33] on a two dimensional
example of unparticles triggered this work.

8The parametrization dU � 3� �U will be standard through-
out the entire paper and in the text the scaling dimension dU and
the anomalous dimension �U will be used interchangeably.

9Note that in QCD-like TC models (the gauge coupling dis-
plays a running behavior rather than a walking one) one would
set �T ’ 0 in Eqs. (8) and (9).
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L eff
�T

¼ �0w�T
T

�3
TC�

�U
U OU

M2
U

þ �0 �
2�U
U OUOU

M2
U

þ . . .

(9)

This step involves another matching procedure but we shall
not introduce further notation here and denote the match-
ing coefficients by simple primes only. As stated previ-
ously the TC condensate drives the TC gauge sector away
from the fixed point and the coupling increases towards the
IR. The sector is then replaced by a low-energy effective
chiral Lagrangian featuring the relevant composite degrees
of freedom [35,37]. The lightest isosinglet composite sca-
lar, with JPC ¼ 0þþ quantum numbers, is the composite
Higgs. For further details cf. Appendix F of Ref. [3] as well
as [38]. The linear realization of the chiral Lagrangian of
the TC model will be discussed in Sec. II.

B. Unparticle VEV hOUi
We shall now investigate how the�-term in (9) induces a

VEV for the unparticle. In a theory with canonically nor-
malized fields the mass term, if present, has to be included
for the minimization of the potential. In the unparticle
setup we do not have explicit mass terms but there is a
continuous mass spectrum and it is not immediately clear
how to proceed. Yet we can make use of the deconstructed
version of unparticles, proposed by Stephanov [39], in
order to imitate the situation of isolated masses [10]. The
continuous spectrum is deconstructed into an infinite tower
of massive particles,

OUðxÞ ¼ X
n

fn’nðxÞ; f2n ¼ �2
BdU

2�
ðM2

nÞdU�2

M2
n ¼ n�2;

(10)

with an adjusted residuum fn and a finite spacing� in units
of the mass. The spectral function �dU of the operator

above is given by

�dUðP2Þ�ðP0Þ ¼
X
n

�ðP2 � P2
nÞjh0jOUjPnij2 ! �dUðsÞ

� BdU

2�
sdU�2�ðsÞ: (11)

The square root of BdU defines the strength with which a

state couples to the unparticle operator. The sum above is a
mnemonic for the sum over all the possible states in
the Hilbert space. The propagator then follows from the
spectral function from the Källén-Lehmann representation
(C3). The factor BdU corresponds to AdU in [4], but we

have chosen to denote it by a different letter since, as we
shall see, our model demands a different form. The value
dU ¼ 2 in (11) is the dividing value between the IR and
UV sensitive domains and will play a crucial role later on.
Other regularizations than the one in Eq. (10) are possible
[39]. Therefore, no physical interpretation should be at-
tached to it. The Lagrangian (9) with added mass terms

becomes

L ¼ ��
X
n

fn’n þ ��
X
n;m

fnfm’n’m � 1

2

X
n

M2
n’

2
n; (12)

with

�� � �0w�T
T

�3
TC�

�U
U

M2
U

; �� � �0 �
2�U
U

M2
U

; (13)

being the prefactors of OU and O2
U in (9), with mass

dimensions ½ ��� ¼ �U þ 1 and ½ ��� ¼ 2�U � 2. The equa-
tion of motion (e.o.m.) for the operator ’n is

��fn þ 2 ��fn

�X
m

fm’m

�
�M2

n’n ¼ 0: (14)

A simple recursive relation follows from these relations,

’n ¼ nðdU�4Þ=2’1: (15)

Inserting this result into the e.o.m. for ’1 we obtain,

h’1i ¼
��bdU�

dU�3

1� 2 ��ðbdU��Þ ; bdU �
ffiffiffiffiffiffiffiffiffi
BdU

2�

s
; (16)

where �� is the sum over the modes,

�� � �dU�3
X
n

�
fn
bdU

�
’n

’1

¼ �2
X
n

ðn�2ÞdU�3:

The quantities h’ni are then obtained from the recursion
relation (15) and the unparticle VEV is the sum of its
deconstructed parts (10),

hOUi� ¼ X
n

fnh’ni ¼ ��

1� 2 ��ðbdU��Þ ðbdU��Þ: (17)

Solving this equation with appropriate UV and IR regula-
rizations is the main goal of the rest of this section. The
unparticle condensate will be connected with the IR cutoff,
which implies that Eq. (17) has to be solved in a self-
consistent way. Removing the discrete regularization, the
sum �� is converted into an integral, which we shall
regularize with an IR and UV regulator for later conve-
nience,

�ð�IR;�UVÞ ¼ lim
�!0

�� ¼
Z �2

UV

�2
IR

dssdU�3

¼
�ð�2

UVÞdU�2 � ð�2
IRÞdU�2

dU � 2

�
: (18)

We note that when the quadratic term is removed, i.e. � !
0 in (9), the problem reduces to a single unparticle operator
coupled to an external source, of which the interaction (3)
is a special case when the Higgs assumes a VEV. In this
limit the result in Eq. (17) indeed reduces to the expression
found in Ref. [10].
The integral �ð�IR;�UVÞ (18) is sensitive to the UV

cutoff for dU > 2 and to the IR cutoff for dU < 2. The
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effective theory for the unparticle operator is valid up to the
scale �U and is therefore a UV cutoff of the theory.
Moreover at energies larger than �T there is no �QQ
condensate, which implies �� ! 0 (13) and therefore the
modes above�T do not contribute to the VEV in Eq. (17).
So effectively the UV cutoff is the lower of the two scales,

�UV ’ minð�U;�T Þ: (19)

The constituent fermion mass10mconst provides a natural IR
cutoff:

�IR ’ 2mconst ’ 2jhOUij1=dU : (20)

For numerical estimates we have chosen the factor two in
front of the condensate based on the crude idea of identi-

fying the IR cutoff with a possible lightest meson of mass
roughly twice the constituent mass. However, this choice
does not affect the qualitative nature of our results.
Assuming the UVand IR cutoffs as in Eqs. (19) and (20)

respectively the unparticle condensate can then be ex-
tracted from Eq. (17) in terms of the scales
f�TC;�U;�T ;MUg. and the anomalous dimensions �U
and �T . The parameters obey the following hierarchies,

�TC � �U; �T � MU; �U < �T ; (21)

cf. Fig. 1 for the scales and Sec. II for an explanation
concerning the relation of the anomalous dimensions. We
investigate Eq. (17) analytically in the following three
regimes

Approximate solution of Eq:ð17Þ for hÔUi
hÔUiðjhÔUijð2�U�2Þ=ð3��UÞ � 2C1�

0Þ � C0�
0 ¼ 0

valid near sensitive�
dU * 1

�U & 2
IR

C1 ¼
bdU

�U � 1

�
�2

U

M2
U

��ð2�TCÞ2
�2

U

�
1��U

C0 ¼ C1

�
�TC

�U

�
�U

w�T
T

(22)

hÔUi ’ ��0b2
�
�U�TC

M2
U

�
w�T

T log

�
�2

TC

�2
U

4jhÔUij
� �

dU ¼ 2

�U ¼ 1
IR� UV (23)

hÔUi ’ þ�0 bdU
1� �U

�
�2

U

M2
U

��
�2

TC

�2
U

�
�U

w�T

T

�
dU & 3

�U * 0
UV: (24)

We have chosen to normalize the unparticle VEV,

hÔUi � hOUi
�dU

TC

;

to the chiral symmetry breaking scale of the TC sector.
Equations (22) and (24) are sensitive to the IR and UV
domain of (18). The solutions are valid in a small neigh-
borhood of dU * 1 and dU & 3, respectively. Note, the
UV sensitive domain dU & 3 corresponds to a perturbative
Banks-Zaks type fixed point [12]. Equation (23) represents
the domain which is equally sensitive to the IR and UV. We
have set dU ¼ 2 strictly for presentational convenience
only. The �-term is solely important for (22) or more
precisely is of the same order as the �-term for typical
values of the model parameters. For �0, �0 
 0 all solu-
tions are positive. In Fig. 2 (left) we have plotted the IR

cutoff (20) as a function of �U for different �T up to the
bound �U 	 �T (21). The input values, which are thought
to be typical, are indicated in the caption.
The breaking of scale invariance, due to the coupling to

the Higgs sector, was investigated in an earlier reference by
the use of naı̈ve dimensional analysis (NDA) [9]. In
Appendix B we compare their results with ours. At the
parametric level we find,

�IR * �NDA
IR ; (25)

cf. Fig. 2 (right). The difference being caused by the fact
that in the NDA analysis it is implicitly assumed that the
unparticle sector scales with the IR cutoff whereas in our
model the unparticle condensate can also be sensitive to the
UV domain. Parametric equality is reached in the region of
IR sensitivity, e.g. (22). Needless to say that with NDA
factors of 4� can go unnoticed. In connection with the
latter, a similar criticism could apply to our prescription in
(20). Nevertheless it appears to us that it is physically
motivated and to some extent is backed up from our
empirical knowledge of QCD.
So far we have not specified the normalization factor

BdU introduced in Eqs. (10) and (11). In Appendix C we

motivate the following formula

10In QCD the condensate induces a dynamical mass, the so-
called constituent quark mass. An estimate can be obtained by
extending the definition of the perturbative pole mass to include
additional terms from the operator product expansion [40].
Adapting the situation to the case of a nontrivial fixed point
leads to ðmconstÞdU ’ �g2UCdU hOUi, where CdU an order one
coefficient which is not calculable due to virulent strong inter-
action effects. The lowest order QCD result is recovered by
setting dU ! 3 and CdU ! 1.
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ðBdUÞinterpol ¼ 2�ðdU � 1Þ þ
�
NU

16�
� �

�
ðdU � 1Þ2;

(26)

as the interpolation formula between the value of B3, which
is determined by the free-fermion loop in our model, and
the behavior around B1, which is model independent [36].
As previously stated it differs from the normalization
factor AdU in Ref. [4].

In the next section we will discuss an ETU model in
some more detail.

II. A SCHEMATIC ETU MODEL

We imagine that at an energy much higher than the
electroweak scale, the theory is described by a gauge
theory

LUV ¼ � 1

2
Tr½F �	F �	� þ XF

F¼1

�
F ði6@þ gTU 6AÞ
F

þ . . . (27)

whereA is the gauge field of the SUðNT þ NUÞ group and
gauge indices are suppressed. ð
A

F ÞT ¼ ðQ1 . . .QNT ;

�1 . . .�NU ÞF is the fermion field unifying the technifer-

mion and TC matter content. The dots in (27) stand for the
SUð3Þ � SUð2ÞL �Uð1ÞY gauge fields and their interac-
tions to the SM fermions and technifermions. There is no
elementary Higgs field in this formulation. Unification of
the TC and techni-unparticle dynamics, as outlined in
Sec. I, constrains the flavor symmetry of the two sectors
to be identical at high energies. The matter content and the
number of technifermions (TCþ techni-unparticles) is

chosen, within the phase diagram in [3], such that the
theory is asymptotically free at high energies. The non-
Abelian global flavor symmetry is SULðFÞ � SURðFÞ.
At an intermediate scaleMU, much higher than the scale

where the unparticle and TC subgroup become strongly
coupled, the dynamics is such that SUðNT þ NUÞ breaks to
SUðNTÞ � SUðNUÞ. Only two flavors (i.e. one electroweak
doublet) are gauged under the electroweak group. The
global symmetry group breaks explicitly to GF ¼
SULð2Þ � SURð2Þ � SULðF� 2Þ � SURðF� 2Þ. At this
energy scale the weak interactions are, however, negligible
and we can safely ignore it.
At the scale MU there are the Qi

c fermions—with i ¼
1; . . . ; F and c ¼ 1; . . . ; NT—as well as the�i

u ones—with
i ¼ 1; . . . ; F and u ¼ 1; . . . ; NU. Assigning the indices i ¼
1, 2 to the fermions gauged under the electroweak group
we observe that not only the TC fermions are gauged under
the electroweak but also the techni-unparticles. To ensure
that the unparticle sector is experimentally not too visible
we have to assume a mechanism that provides a large mass
to the charged techni-unparticle fermions. In reality this is
quite a difficult task, since we do not want to break the SM
weak symmetry explicitly.11 Our treatment below, how-
ever, is sufficiently general to be straightforwardly adapted
to various model constructions.
As already stated in the first section, the number of

flavors and colors for the TC and unparticle gauge groups

IR TC

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

γ U

Log10 IR
NDA

IR

0.0 0.5 1.0 1.5

4

3

2

1

0

1

2

γ U

FIG. 2 (color online). (left) �IR=�TC as a function of �U up to the constraint �U 	 �T . The actual value of �T can therefore be
read-off from the endpoint of the curve. (right) Logarithm of the ratio of IR cutoffs against �U for �T ¼ 1. The influence of the
�-term is completely negligible for the chosen input values. The dependence on �T is very mild and we have chosen somewhat
arbitrarily �T ¼ 3=2. Trivial factors, like bdU , are fixed such that equality of �IR and �NDA

IR is reached for � ¼ 0 in the domain

�U ¼ 2. In both figures we have chosen NU ¼ 4 in the interpolation formula (26). Furthermore, the hierarchies of scales (21) are set to
�TC:ð�U ¼ �T Þ:MU ¼ 1:101:103 and the coefficients �0 and �0 to a value of unity.

11One could for instance unify the flavor symmetry of the
unparticles with the technicolor gauge group into an ETC group.
This would also produce a Lagrangian of the type (4). The TC
fermions would be charged under the electroweak group
separately.
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SUðNTÞ and SUðNUÞ have to be arranged such that the
former is NC and the latter is conformal. This enforces the
conditions:

F 	 F�
NT
; F�

NU
	 F� 2: (28)

F�
N denotes the critical number of flavors, for a given

number of colors N, above which the theory develops an
IR fixed point. Recall that two unparticle flavors are de-
coupled and hence F ! F� 2 in the second inequality
in (28).

According to the conjectured all order beta function [25]
F�
N is

F�
N ¼ 11N

�� þ 2
; (29)

for an SUðNÞ gauge theory with matter in the fundamental
representation. This restricts F�

N inasmuch as the critical
anomalous dimension has to satisfy the unitarity bound
�� 	 2 [36]. The ladder approximation, for instance,
yields �� � 1 [41]. Combining Eqs. (28) and (29) we
arrive at the following allowed window for the number of
flavors:

11NU

�� þ 2
þ 2 	 F 	 11NT

�� þ 2
: (30)

The anomalous dimension of the mass operator for the
unparticle and TC fermions at the fixed point are

�U ¼ 11NU � 2Fþ 4

F� 2
; �T ¼ 11NT � 2F

F
: (31)

They follow from the conjectured all order beta function
[25]. For walking TC �T is, in fact, very near �� and F is
very close to the upper bound of Eq. (30). Conformality of
the unparticle sector requires �U to be smaller than ��.
Summarizing:

�U < �� & �T: (32)

A. Low-energy description

Below the scale MU all four-Fermi interactions have to
respect the flavor symmetry GF. The most general four-
Fermi operators have been classified in [42] and the coef-
ficient of the various operators depend on the specific
model used to break the unified gauge theory. Upon Fierz
rearrangement, the operators of greatest phenomenological
relevance are,

Leff ¼
�
G

2
��L��R þ H:c:

�
þ G0

2M2
U

ð ��L�RÞð ��R�LÞ

þ . . . ; (33)

the scalar-scalar interactions of Eq. (4). Here� is the quark
bilinear,

�j
i � ðQLi

�Qj
RÞUV; i ¼ 1; . . . ; F: (34)

The flavor indices are contracted and the sum starts from
the index value 3; the first two indices correspond to the
�’s charged under the electroweak force, which are de-
coupled at low energy. The fermion bilinear becomes the
unparticle operator (7),

ðOUÞji ¼
�Li

��j
R

�
�U
U

: (35)

The matrix � at energies near the electroweak symmetry
breaking scale is identified with the interpolating field for
the mesonic composite operators.
To investigate the coupling to the composite Higgs we

write down the low-energy effective theory using linear
realizations. We parametrize the complex F� F matrix �
by

� ¼ �þ i�ffiffiffiffi
F

p þ ffiffiffi
2

p ði�a þ ~�aÞTa; (36)

where ð�; ~�Þ and ð�;�Þ have 0þþ and 0�þ quantum
numbers, respectively. The Lagrangian is given by

L eff ¼ 1

2
Tr½ðD�ÞyD�� � k1ð bTr½�yOU� þ H:c:Þ

� k2 bTr½OUOU
y� �m2

ETC

XF2�1

a¼4

�a�a

2

� Vð�;�yÞ; (37)

where

D� ¼ @�� igW�þ ig0�BT3
R; and W ¼ WaTa

L;

(38)

and Tr½Ta
L=RT

b
L=R� ¼ �ab=2. The coefficients k1 and k2 are

directly proportional to the �0 and �0 coefficients in (6).
The hat on some of the traces indicates that the summation
is only on the flavor indices from 3 to F. Three of the
Goldstone bosons play the role of the longitudinal gauge
bosons and the remaining ones receive a mass m2

ETC from

an ETC mechanism. We refer the reader to Ref. [35] for
discussion of different ETC models with mechanisms for
sufficiently large mass generation. The first term in the
Lagrangian is responsible for the mass of the weak gauge
bosons and the kinetic term for the remaining Goldstone
bosons. The VEV’s for the flavor-diagonal part of the
unparticle operator, reduces to the computation performed
in the previous section. The potential term preserves the
global flavor symmetry GF. Up to dimension four, includ-
ing the determinant responsible for the �0 mass in QCD,
the terms respecting the global symmetries of the TC
theory are:

Vð�;�yÞ ¼ �m2

2
Tr½�y�� þ 1

F
Tr½�y��2

þ 2 Tr½ð�y�Þ2� � 3ðdet�þ det�yÞ:
(39)
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The coefficient m2 is positive to ensure chiral symmetry
breaking in the TC sector. The Higgs VEV enters as
follows,

� ¼ vþ h; with FT ¼
ffiffiffiffi
2

F

s
v ’ 250 GeV: (40)

F here is the number of flavors and h the composite field
with the same quantum numbers as the SM Higgs. The

particles �, �, ~� all have masses of the order of v. The
Higgs mass, the Higgs VEV, and the � mass, for instance,
are

v2 ¼ m2

ð1 þ 2 � 3Þ ; m2
h ¼ 2m2; m2

� ¼ 4v22
3;

(41)

up to corrections of the order of Oð�2
TC=M

2
UÞ due to

contributions from �-terms.
The lightest pesudoscalars of the unparticle sector are

the pseudo Goldstone bosons emerging from the explicit
breaking of the global flavor symmetry in the unparticle
sector. Their mass can be read off from the linear term in
OU of the effective Largrangian (37)

m2
�U

’ �2
TC

�
�TC

M2
U

�
2
�
�U

�TC

�
�U

�
�T

�TC

�
�T

: (42)

B. Regularized unparticle propagator

In our model the unparticle propagator to be used for
phenomenology, defined from the Källén-Lehmann repre-

sentation (C3), is

�Uðq2;�2
UV;�

2
IRÞ ¼ �BdU

2�

Z �2
UV

�2
IR

dssdU�2

s� q2 � i0
þ s:t:

(43)

For dU > 2 the integral is sensitive to the UV completion,
of which the subtraction terms (s.t.) are a mnemonic. More
precisely, the part which is sensitive to �UV is ambiguous
due to the presence of, in principle computable, counter-
terms, which are expected to be of order one.12 This will
limit, in practice, the predictivity of the theory. Modeling
the UV and IR transition regions by hard cutoffs is of
course a crude model. Yet this should not be relevant as
long as q2 is sufficiently far away from these cutoffs.
Whereas, for q2 close to the cutoff, the integral has an
endpoint singularity which is, to a great extent, a model
artefact. The situation could be ameliorated for instance by
smearing the momentum with a smooth probability den-
sity. Because of the breaking of the scale invariance there
will be single and multiparticle states appearing in the
spectrum, which will affect the q2 ��2

IR behavior.
Having made these statements, we now turn to the evalu-
ation of the integral in (43). It can be expressed as the
difference of an IR and UV part,

�Uðq2;�2
UV;�

2
IRÞ ¼ fdUð�2

IR; q
2 þ i0Þ

� fdUð�2
UV; q

2 þ i0Þ; (44)

given by,

fdUð�2; q2Þ �
�
BdU

2�

ð�2ÞdU�2

dU � 2

�
2F1

�
1; 2� dU; 3� dU;

q2

�2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� �fdU ðq2=�2Þ

: (45)

For later convenience we give the behavior of the function �fdUðxÞ for small and large arguments appropriate for the
respective domains:

�f dUðxþ i0Þ ¼
�
a0 þ a1xþOðx2Þ x � 1 UV
adU�2ð�x� i0ÞdU�2 þ a�1

1
x þOð 1

x2
Þ x � 1 IR

; (46)

where the leading coefficients are given by

a0 ¼ 1; a�1 ¼ �	ð1� dUÞ	ð3� dUÞ
	ð2� dUÞ2

a1 ¼ dU � 2

dU � 3
; adU�2

¼ 	ð3� dUÞ	ðdU�1Þ:
(47)

1. IR region: 1< dU < 2

In the domain 1< dU < 2 the regularized propagator is
close to the propagator without IR and UV regularization
presented in [6]. From the expansion (46) one immediately
obtains,

lim
�IR!0�UV!1

�Uðq2;�2
UV;�

2
IRÞ

¼ BdU

2 sinðdU�Þ ð�q2 � i0ÞdU�2

1< dU < 2;

(48)

using 	ðzÞ	ð1� zÞ sinð�zÞ ¼ �. Note that for finite cut-

12The counterterms are expected to be of order one in a theory
which is not fine-tuned. This is also known under the term:
‘‘naturalness.’’ In our model the UV completion is known and
the counterterms could in principle be determined, but in prac-
tice this is outside the scope of our possibilities.
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offs the UV part of the propagator is suppressed by

ð�IR=�UVÞ2ð2�dUÞ and is therefore of minor importance
for dU close to 1.

2. UV region: 2 	 dU < 3

As previously stated, for dU > 2 the UV part becomes
increasingly dominant and manifests itself in the appear-
ance of counterterms. In fact in the strict limit dU ! 3, for
example, the UV contribution is formally the same as the
fermion loop contribution to the Higgs mass in the SM, e.g.
Fig. 3, which is quadratically divergent. The effective
theory is valid for q2 � �2

UV and therefore the coefficient
a0 (46) is relevant for the UV part of the propagator (44). In
practice this means that only a single counterterm, the one
associated with a0 is relevant. As stated earlier, by natural-
ness the counterterms are expected to be of order one.

Note that the limit dU ! 2 leads to a particularly simple
expression

lim
dU!2

�Uðq2;�2
UV;�

2
IRÞ ¼

BdU

2�
log

��q2 � i0

�2
UV

�
þ s:t:;

(49)

where (s.t.) stands for subtraction terms (counterterms).

C. Unparticle-Higgs mixing

We shall now turn to the question of the mixing of the
unparticle and the Higgs. Our findings resemble results
from extra dimensional models. E.g. the model called
HEIDI [43], where the continuous spectrum is mimicked
by an infinite tower of narrowly spaced Kaluza-Klein
modes. The difference is that our model is inherently
four dimensional and that the parameters, such as the IR
cutoff and the strength of the unparticle-Higgs coupling,
are related to each other. Our model is also different from
the one in Ref. [10] since, although both are in four
dimensions, the Higgs and unparticle coupling emerges
dynamically within a UV complete theory.

The interaction term from Eq. (37)

L mix ¼ �ghOU
hOU; ghOU

¼ k1ðF� 2Þffiffiffiffi
F

p ; (50)

introduces a mixing between the Higgs and the unparticle.

The constant k1 has mass dimension �U. Its size, on which
wewill comment below, is crucial for the qualitative nature
of the physics. The Higgs propagator is obtained from
inverting the combined Higgs-unparticle system

�hhðq2Þ ¼ 1

q2 �m2
h � g2hOU

�Uðq2;�2
UV;�

2
IRÞ

: (51)

This, of course, results in unparticle corrections controlled
by ghOU

. The propagator can be rewritten in terms of a

dispersion representation

�hhðq2Þ ¼ �
Z ds�hhðsÞ

s� q2 � i0
; (52)

where the density, Z
ds�hhðsÞ ¼ 1; (53)

is automatically normalized to unity. The nonzero value of
the coupling ghOU

results solely in a change of basis (or

poles and cuts) of the intermediate particles but does not
change the overall density of states. A direct way to derive
(53) is to equate the representations (51) and (52), multiply
them by q2 and take the limit q2 ! 1 resulting in (53).
Please note, this only works in the case where dU < 3, for
which the interaction (50) is power counting renormaliz-
able. If this condition is not fulfilled, one could resort to a
subtracted dispersion relation.
The dispersion representation can be split into reso-

nance13 and continuum contributions,

�hhðsÞ ¼
X
i

ri�ðs� �m2
i Þ þ �ðsÞ: (54)

The resonance contribution, if present, can then be ob-
tained from the pole equation

��1
hh ð �m2

i Þ ¼ 0; ri ¼
��������d��1

hh ðsÞ
ds

���������1

s¼ �m2
i

	 1: (55)

The residues ri are smaller (or equal) to one as a conse-
quence of the normalization condition Eq. (53). The con-
tinuum is simply given by the cut,

�ðsÞ ¼ �ðs��2
IRÞIm½��1

hh ðsÞ�; (56)

which corresponds to the imaginary part; most familiar
from the optical theorem.
To a large extent the spectral function is characterized by

the zeros of the pole equation and the onset of the contin-
uum relative to the poles. This will depend on the strength
of the mixing and the anomalous dimension. Somewhat
exotic effects can be obtained when the mixing term is

FIG. 3. Fermion bubble with scalar vertices, corresponding to
the unparticle propagator in the limit dU ! 3.

13The pole description is only adequate in the narrow width
approximation. The Higgs width is of course rather sizable in a
theory of strong interactions. The presentation below is meant to
be for illustrative purposes only.
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made very large [28,44].14 In our model the mixing is
determined by k1 (50). Its parametric value is given by

k1 � �0��U
TC

�
�TC

MU

�
2
�
�U

�TC

�
�U

w
�T
T ; wT ¼

�
�T

�TC

�
(57)

which we have normalized to the TC scale
The value of k1 is, of course, suppressed by the large

scale MU per se, but receives enhancements from the
powers of the anomalous dimensions. For the maximal
allowed anomalous dimensions �U ’ �T ’ 2 and a hier-
archy of scales as indicated in the caption of Fig. 2 one
finds k1�

��U
TC ’ �0 Oð10�2Þ. We therefore expect the

coupling ghOU
���U

TC (50) to be considerably smaller

than 1.
In this case there is generally a unique solution to the

pole equation. In the IR region 1< dU < 2 the analysis
can be made quantitative whereas in the UV region 2<
dU < 3 the uncertainty due to sizable counterterms makes
a quantitative assessment difficult. As explained in
Sec. II B 2 these counterterms are expected to be compa-
rable in size only for the leading coefficient a0 (46).

At the qualitative level it is an interesting question of
whether the Higgs resonance is below or above the thresh-
old [10,43]. For the values chosen in the caption of Fig. 2
the Higgs resonance is close to the IR cutoff. On the other
hand it could very well be that the scaleMU is closer to the
GUT scale which would decrease the IR cutoff definitely
below the composite Higgs mass scale. In Appendix D we
comment on the unparticle limit of the HEIDI models and
compare our parameters with the fit of that model to the
excess of the Higgs search at LEP.

III. OUTLOOK

We introduced a framework in which the Higgs and the
unparticle are both composite. The underlying theories are
four-dimensional, asymptotically-free, nonsupersymmet-
ric gauge theories with fermionic matter. We sketched a
possible unification of these two sectors at a scale much
higher than the electroweak scale. The resulting model
resembles extended technicolor models and we termed it
extended technicolor unparticle (ETU). The coupling of
the unparticle sector to the SM emerges in a simple way
and assumes the form of four-Fermi interactions below
MU.

In our model the unparticle sector is coupled to the
composite Higgs. Another possibility is to assume that
the Higgs sector itself is unparticlelike, with a continuous

mass distribution. This unHiggs [45,46] could find a natu-
ral setting within walking technicolor, which is part of our
framework. Of course, it is also possible to think of an
unparticle scenario that is not coupled to the electroweak
sector, where scale invariance is broken at a (much) lower
scale. This could result in interesting effects on low-energy
physics as extensively studied in the literature.
With respect to our model in the future one can:
(i) Study the composite Higgs production in association

with a SM gauge boson, both for proton-proton
(LHC) and proton-antiproton (Tevatron) collisions
via the low-energy effective theory (37). In
Refs. [47,48] it has been demonstrated that such a
process is enhanced with respect to the SM, due to
the presence of a light composite (techni)axial reso-
nance.15 The mixing of the light composite Higgs
with the unparticle sector modifies these processes in
a way that can be explored at colliders. Concretely,
the transverse missing energy spectrum can be used
to disentangle the unparticle sector from the TC
contribution per se.

(ii) Use first principle lattice simulations to gain insight
on the nonperturbative (near) conformal dynamics.
It is clear from our analysis that this knowledge is
crucial for describing and understanding unparticle
dynamics. As a model example we have considered
in the main text partially gauge technicolor intro-
duced in [50]. These gauge theories are being
studied on the lattice [22–24]. Once the presence
of a fixed point is established, for example, via
lattice simulations [18–21], the anomalous dimen-
sion of the fermion mass can be determined from the
conjectured all order beta function [3,25], as done in
Sec. II. Moreover, on the lattice one should be able
to directly investigate the two-point function, i.e. the
unparticle propagator.

(iii) Investigate different models at the ETU level. For
example, one could adapt some models, introduced
to generate masses to the SM fermions, in [51–57]
to improve on our ETU model.

(iv) Study possible cosmological consequences of our
framework. The lightest baryon of the unparticle
gauge theory, the unbaryon, is naturally stable [due
to a protectedUð1Þ unbaryon number] and therefore
a possible dark matter candidate. Because of the
fact that we expect a closely spaced spectrum of
unbaryons and unparticle vector mesons, it shares
properties in common with secluded models of dark
matter [58] or previously discussed unparticle dark
matter models [59].

Within our framework unparticle physics emerges as a
natural extension of dynamical models of electroweak

14It should also be mentioned that for very large mixing the
theory typically becomes unstable. The pole equation has ta-
chyonic solutions and vertices grow in an uncontrolled manner,
indicating the appearance of a new vacuum. It is possible though
that interesting effects could arise in a somewhat intermediate
regime.

15A similar analysis within an extra-dimensional setup has been
performed in [49].
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symmetry breaking. As seen above the link opens the doors
to yet unexplored collider phenomenology and possible
new avenues for dark matter, such as the use of the
unbaryon.
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APPENDIX A: �-INDUCED CONDENSATE hOUi
In this appendix we intend to sketch how the �-term, in

addition to the �-term in Eq. (1), can induce an unparticle
VEV. The treatment essentially follows the Nambu–Jona-
Lasino model [60]; a simple and concise summary of the
latter is given in the appendix of Ref. [35]. The �-term

�Leff
�U

¼ �0 �
2�U
U

M2
U

O2
U (A1)

can be rewritten into the following form

�Leff
�U

¼
� ffiffiffiffiffi

�0
q �U

MU
��U

U OUH þ H:c

�
��2

UjHj2 (A2)

by the purely formal manipulation of introducing an aux-
iliary field H. The crucial question is then whether the
coupling of the �-term is large enough to enforce a dy-
namical VEV. This will be decided solely by the sign of the
jHj2-term. One has to integrate out the fermions between
the scales �U and �. This is straightforward in the un-
particle scenario since the propagator is known, up to UV
and IR cutoffs. The jHj2-term is then simply given by
contracting the unparticle propagator (43) between two
OUH interaction points; this leads to

�Leff
� ¼ ��2

UjHj2
�
1þ �0 �

2�U
U

M2
U

�Uð��2;�2
UV;�

2
IRÞ

�
� �m2

HjHj2: (A3)

For m2
H < 0 the jHj field acquires a VEV and induces an

unparticle VEV through the gap equation. We remind the
reader that the value of �0 is expected to be of the order
one. In the range �U � 0� 1 the sign ofm2

H is negative for
�0 >M2

U=�2
U which would demand an unnatural en-

hancement of the �0 coefficient. For �U > 1 the �-term
becomes a relevant operator and one could expect a quali-
tatively change in the picture. Around �U & 2 the inequal-

ity becomes �0 > ð�T =�UÞ2=3ðMU=�UÞ2=3ð�TC=�UÞ4=3
and could indeed lead to VEVat a scale comparable to the

one from the � VEV (17). To determine the value of the
VEV we would need to evaluate the coefficient of the
jHj4-term which is a difficult task per se and beyond the
scope of this paper.

APPENDIX B: COMPARISON WITH NAÏVE
DIMENSIONAL ANALYSIS

In Ref. [9] it was pointed out that the interaction of a SM
operator to the unparticle sector would act as a source of
breaking the scale invariance. In the absence of an under-
lying model, the authors resorted to NDA. We will see here
that the physics of the condensate or the anomalous di-
mension is, of course, not captured by such a generic
approach as in Ref. [9].
The schematic notation in (1) made more precise [4]

reads,

L eff ¼ M4
U

�
�U

MU

�
dUV�dU

�
OSM

M
dSM
U

��
OU

M
dU
U

�
; (B1)

where dSM=UV are the scaling dimensions of the SM op-

erator and the unparticle operator in the UV. Assuming that
OSM ! vdSM acquires a VEV at the electroweak scale v,
NDA then suggests that scale invariance is broken at a
scale �NDA

IR ,

ð�NDA
IR Þ4 ’ LeffðOU ! ð�NDA

IR ÞdU ; OSM ! vdSMÞ; (B2)

when the term in Eq. (B1) is of the same size as a generic
four dimensional operator of the unparticle sector. This
leads to

�NDA
IR � v

�
�U

MU

�ðdUV�dUÞ=ð4�dUÞ� v

MU

�ðdSM=ð4�dUÞÞ�1
:

(B3)

The above equation reduces to (3.3) in Ref. [9] for OSM ¼
jHj2 with dSM ¼ 2.
In our work OSM ! OTC ¼ �QQ (6) with dSM ¼ 3. The

role of the electroweak scale is taken by v ! �TC. The
knowledge of the UV completion settles the question on
the UV dimension; dUV ¼ 3. Furthermore, the anomalous
dimension �T introduces an additional multiplicative fac-
tor w

�T
T (9) to the Lagrangian density (B1) as an artefact of

walking technicolor. Altogether this yields

�NDA
IR ! �TCðwTÞ�T =ð1þ�UÞ

�
�U

MU

�
�U=ð1þ�UÞ

�
�
�TC

MU

�ð2��UÞ=ð1þ�UÞ
: (B4)

The crucial question is then how this compares with the IR
cutoff in (20). We find that, for generic values of the
parameters, the condensate IR cutoff is

�IR * �NDA
IR ; (B5)

larger than the IR cutoff suggested by NDA. The essential
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point is that the VEV is sensitive to the UV cutoff for dU 

2 through the spectral integral (18), whereas there is no
such notion in the NDA. In fact in the NDA, cf. Eq. (B2), it
is built in that the unparticle operator assumes the IR-scale
�NDA

IR .
This suggests that parametric equality (B5) is reached in

the IR sensitive domain dU * 1. Most reassuringly it is
verified that in this domain both IR cutoffs scale as

�TCð�U=MUÞ2=3. In the UV domain dU & 3 the scaling

differs, �NDA
IR ��TCð�TC=MUÞ2 and �IR �

�TCð�U=MUÞ2=3. In Fig. 2 (right) the logarithm of the
ratio of the two IR cutoffs is plotted against �U for
specified input values and provides an example of the
qualitative statement made above.

APPENDIX C: NORMALIZATION FACTOR BdU

In this appendix we shall discuss the normalization

factor bdU �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BdU=ð2�Þ

q
(11) and (16). This is a necessary

task in order to extract quantitative results from the un-
particle VEVequation (17). Generally we do not know the
behavior of BdU as a function of dU � 3� �U, except

around dU * 1 and at dU ¼ 3. Firstly, it is a fact that at
dU ¼ 1 the operator OU is equivalent to a free field [36].
This fixes the normalization factor,

BdU ¼ 2�ðdU � 1Þ þOððdU � 1Þ�Þ
with �> 1; for dU * 1; (C1)

around dU * 1 in a model independent way. Since with
(C1) the spectral function (11) precisely produces the free
massless field limit,

lim
dU!1þ

�dUðsÞ ¼ lim
dU!1þ

ðdU � 1ÞsdU�2�ðsÞ ¼ �ðsÞ; (C2)

with unit residue. This is equivalent to Georgi’s [4] require-
ment that AdU , in the notation of that paper, has to repro-

duce the 1-particle phase space in that limit. Second, in our
model at dU ¼ 3 the fermions are free fields and the
unparticle propagator, which we write in a Källén-
Lehmann form,

�Uðq2Þ � �i
Z

d4xeiqxh0jTOUðxÞOy
Uð0Þj0i

¼ �
Z ds�dUðsÞ

s� q2 � i0
þ s:t:; (C3)

has to reduce to the free fermion loop depicted in Fig. 3.
The letters s.t. denote possible subtraction terms which are
relevant for dU > 2 to be discussed in Sec. II B. This fixes
the spectral function or the normalization factor BdU (11)

at dU ¼ 3 to

�3ðsÞ ¼ s
NU

8�2
$ B3 ¼ NU

4�
: (C4)

This value is different from

A3 ¼ 1=ð256�3Þ (C5)

obtained from the normalization,

AdU ¼ 16�5=2

ð2�Þ2dU
	ðdU þ 1=2Þ

	ðdU � 1Þ	ð2dUÞ
¼ 1

2

1

ð4�Þ2dU�3

1

	ðdUÞ	ðdU � 1Þ (C6)

in Ref. [4]. This is not surprising since in this reference it
was proposed to adapt AdU as the analytic continuation of

the phase space of an integer number of dU massless

particles. The operator OU ¼ ’dU
0 , with ’0 denoting a

free massless scalar field, is of course a special realization
of the unparticle scenario for integer scaling dimension
dU. We would like to emphasize that in Ref. [4] it was
clearly stated that the actual normalization might be rather
different from the one in a concrete model.

In the case at hand OUjdU¼3 ¼ ��0�0 corresponds to

two free fermions, instead of three free boson, which
explains the difference. One could in principle generalize
this scenario to higher powers of pairs of free fermion
fields and adapt it as the normalization conditions for
BdU via analytic continuation. Unfortunately it appears

that no closed formula can be written down for this case.
In order to obtain some quantitative results we resort to
model BdU by a quadratic interpolation function,

ðBdUÞinterpol ¼ 2�ðdU � 1Þ þ
�
NU

16�
� �

�
ðdU � 1Þ2:

(C7)

Please not that these interpolation formula is positive as
required by a positive spectral function (11). Wewould like
to emphasize once more that the only firmly known parts
are B3 (model dependent) and the behavior around B1

(model independent).

APPENDIX D: UNPARTICLE LIMIT OF HEIDI
MODELS

In the HEIDI model [28] the Higgs-Higgs propagator
assumes the

�hhðq2Þ ¼ 1

q2 �M2 � c2ðm2
0 � q2 � i0Þðd�6Þ=2 ; (D1)

same form as in (51). The letter c denotes a dimensionful
constant proportional to the mixing parameter, m0 is the
mass of the lowest Kaluza-Klein excitations and M is the
tree-level Higgs mass. Comparing with (51) and (D1) it is
readily seen that identifying ðd� 6Þ=2 ¼ dU � 2 and m0

with �IR leads to a qualitatively similar propagator.
The authors in Ref. [28] attempted to reproduce the

strictly scale invariant unparticle propagator in Eq. (48)
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[6]. This can be achieved by making the mixing arbitrarily
large c � 1, adopting m0 ! 0 and keeping M fixed. The
Higgs-Higgs propagator then becomes the inverse unpar-
ticle propagator, which in turn looks like an unparticle
propagator with reversed scaling power. On this basis the
identification ðd� 6Þ=2 ¼ �ðdU � 2Þ ! dU ¼ 5� d=2
was proposed in [28]. In our model the unparticle itself
couples to the techniquark or technihadrons directly and
such a limit does therefore not seem necessary for unpar-
ticlelike effects in phenomenology.

Finally, the excess of the LEP data in the Higgs strah-
lung search of 2:3� and 1:7� around 98 GeVand 115 GeV,
respectively, were fitted to the HEIDI model [28]. The first
peak is interpreted as the Higgs resonance and the second
one as the onset of the continuum. Comparing the fitted
parameters in [43] with k1 in Eq. (57) and input values as
given in the caption of Fig. 2 it is seen that they are of the
same order of magnitude.
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