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We propose a comprehensive theory of dark matter that explains the recent proliferation of unexpected

observations in high-energy astrophysics. Cosmic ray spectra from ATIC and PAMELA require a WIMP

(weakly interacting massive particle). with mass M� � 500–800 GeV that annihilates into leptons at a

level well above that expected from a thermal relic. Signals from WMAP and EGRET reinforce this

interpretation. Limits on �p and �0-�’s constrain the hadronic channels allowed for dark matter. Taken

together, we argue these facts imply the presence of a new force in the dark sector, with a Compton

wavelengthm�1
� * 1 GeV�1. The long range allows a Sommerfeld enhancement to boost the annihilation

cross section as required, without altering the weak-scale annihilation cross section during dark matter

freeze-out in the early universe. If the dark matter annihilates into the new force carrier �, its low mass

can make hadronic modes kinematically inaccessible, forcing decays dominantly into leptons. If the force

carrier is a non-Abelian gauge boson, the dark matter is part of a multiplet of states, and splittings between

these states are naturally generated with size �m� � MeV, leading to the eXciting dark matter (XDM)

scenario previously proposed to explain the positron annihilation in the galactic center observed by the

INTEGRAL satellite; the light boson invoked by XDM to mediate a large inelastic scattering cross section

is identified with the � here. Somewhat smaller splittings would also be expected, providing a natural

source for the parameters of the inelastic dark matter (iDM) explanation for the DAMA annual modulation

signal. Since the Sommerfeld enhancement is most significant at low velocities, early dark matter halos at

redshift �10 potentially produce observable effects on the ionization history of the universe. Because of

the enhanced cross section, detection of substructure is more probable than with a conventional WIMP.

Moreover, the low velocity dispersion of dwarf galaxies and Milky Way subhalos can increase the

substructure annihilation signal by an additional order of magnitude or more.
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I. PAMELA/ATIC AND NEW DARK FORCES

Thermal weakly interacting massive particles (WIMPs)
remain one of the most attractive candidates for dark
matter. In addition to appearing generically in theories of
weak-scale physics beyond the standard model, they natu-
rally give the appropriate relic abundance. Such particles
also are very promising in terms of direct and indirect
detection, because they must have some connection to
standard model particles.

Indirect detection is particularly attractive in this re-
spect. If dark matter annihilates to some set of standard
model states, cosmic ray detectors such as PAMELA,
ATIC, and Fermi/GLAST have the prospect of detecting
it. This is appealing, because it directly ties the observable
to the processes that determine the relic abundance.

For a weak-scale thermal particle, the relic abundance in
the case of s-wave annihilation is approximately set by

�h2 ’ 0:1�
� h�vifreeze
3� 10�26 cm3s�1

��1
: (1)

For perturbative annihilations, s-wave dominates in the
late universe, so this provides an approximate upper limit

on the signal that can be observed in the present day. Such a
low cross section makes indirect detection, whereby the
annihilation products of dark matter are detected in cosmic
ray detectors, a daunting task.
However, recent experiments have confirmed the long-

standing suspicion that there are more positrons and elec-
trons at 10s–100s of GeV than can be explained by super-
nova shocks and interactions of cosmic ray protons with
the ISM. The experiments are
(i) PAMELA.—The Payload for Antimatter Matter

Exploration and Light-nuclei Astrophysics has re-
ported results [1] indicating a sharp upturn in the
positron fraction (eþ=ðeþ þ e�Þ) from 10–100 GeV,
counter to what is expected from high-energy cosmic
rays interacting with the interstellar medium (ISM).
This result confirms excesses seen in previous ex-
periments, such as HEAT [2,3] and AMS-01 [4]. One
possible explanation for this is dark matter annihila-
tion into eþe� [5–7], but this requires a large cross
section [8].

(ii) ATIC.—The Advanced Thin Ionization Calorimeter
is a balloon-borne cosmic ray detector which studies
electrons and positrons (as well as other cosmic rays)
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up to �TeV energies, but cannot distinguish posi-
trons and electrons. The primary astrophysical
sources of high-energy electrons are expected to be
supernovae: electrons are accelerated to relativistic
speeds in supernova remnants and then diffuse out-
ward. The ATIC-2 experiment reported a 4–6� ex-
cess (over a simple power law) in its eþ þ e� data
[9] at energies of �300–800 GeV, with a sharp cut-
off in the 600–800 GeV range. Dark matter would
seem a natural candidate for this as well, with its
mass scale determining the cutoff.

(iii) WMAP.—Studies of theWMAPmicrowave emission
from the galactic center show a hard component not
spatially correlated with any known galactic emis-
sion mechanism. This ‘‘WMAP haze’’ [10,11] can
be explained as synchrotron radiation from electrons
and positrons produced from dark matter annihila-
tion in the galactic center [12].

(iv) EGRET.—Gamma-ray measurements in the galactic
center (inner 5�) provide hints of an excess at 10–
50 GeV [13]. Strong et al. reanalyzed EGRET data
and found a harder spectrum at these energies than
previously derived, using the improved EGRET sen-
sitivity estimates of [14]. Despite poor spatial reso-
lution, Strong et al. found an excess in this energy
range above the expected �0 gamma-ray emission
from cosmic ray protons interacting with the inter-
stellar medium (see Fig. 8 of [13]). Such �’s could
naturally arise from inverse-Compton scattering of
high-energy electrons and positrons off of starlight
and the cosmic microwave background (CMB).

Taken together, these make a compelling case for ex-
cessive electronic production in the galaxy. While individ-
ual astrophysical explanations may exist for each signal
(pulsar wind nebulae for PAMELA and ATIC [15–17], for
instance, supernovae for the WMAP haze [18]), the data
cry out for a unified explanation. Dark matter annihilations
provide an appealing candidate.

In addition to the above, there are two other anomalies
that are worth mentioning. The INTEGRAL 511 keV sig-
nal indicates �3� 1042eþ=s annihilating in the galactic
center, far more than expected from supernovae. The spec-
trum suggests that these positrons are injected with rela-
tively low energies (E & few MeV), and so form a distinct
population from those above. eXciting dark matter (XDM)
[19] can naturally explain such low energy positrons with
�1 MeV excited states of the dark matter, while still
producing the high-energy positrons via annihilation
[20,21]. Lastly, there is the DAMA/LIBRA indication of
an annual modulation consistent with that expected from
dark matter induced nuclear scattering [22]. Such a signal
is difficult to reconcile with null results of other experi-
ments, but can be reconciled with�100 keV excited states
in the ‘‘inelastic dark matter’’ (iDM) scenario [23–25].
Although we are motivated by the specific signals above

(PAMELA/ATIC as well as the haze and EGRET), the
picture we are led to for explaining them naturally incor-
porates the necessary ingredients to explain the
INTEGRAL and DAMA signals as well.
Focusing on only the high-energy positrons and elec-

trons, there are a number of challenges to any model of
dark matter. These are
(i) A large cross section.—Studies of PAMELA and

ATIC signals seem to require a cross section much
larger than what is allowed by thermal relic abun-
dance. Boost factors of Oð100Þ or more above what
would be expected for a thermal WIMP are required
to explain these excesses [26,27].

(ii) A large cross section into leptons.—Typical annihi-
lations via Z bosons produce very few hard leptons.
Annihilations into W bosons produce hard leptons,
but many more soft leptons through the hadronic
shower. Higgs bosons and heavy quarks produce
even softer spectra of leptons, all of which seem to
give poor fits to the data. At the same time, absent a
leptophilic gauge boson, it is a challenge to construct
means by which dark matter would annihilate di-
rectly to leptons.

(iii) A low cross section into hadrons.—Even if a suitably
high annihilation rate into leptons can be achieved,
the annihilation rate into hadronic modes must be
low. Limits from diffuse galactic gamma rays [28],
as well as gamma rays from the center of the galaxy.
constrain the production of �0’s arising from the
dark matter annihilation. PAMELA measurements
of antiprotons tightly constrain hadronic annihila-
tions as well [27]. Consequently, although quark
and gauge boson annihilation channels may occur
at some level, the dominant source of leptons must
arise through some other channel.

The combination of these issues makes the observed
high-energy anomalies—especially ATIC and PAMELA—
difficult to explain with thermal dark matter annihilation.
However, we shall see that the inclusion of a new force in
the dark sector simultaneously addresses all of these
concerns.

New forces in the dark sector

A new interaction for the dark sector can arise naturally
in a variety of theories of physics beyond the standard
model, and is thus well motivated from a theoretical point
of view. Although there are strong limits on the self-
interaction scattering cross section from structure forma-
tion [29,30], the presence of some new force-carrying
boson should be expected, with only the mass scale in
question. A light boson could arise naturally if its mass
scale is generated radiatively [31], or if it were a pseudo-
goldstone boson.
One of the important modifications that can arise with a

new light boson is an enhancement of the annihilation
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cross section via a mechanism first described by
Sommerfeld [32]. The presence of a new force carrier
can distort the wave function of the incoming particles
away from the plane-wave approximation, yielding signifi-
cant enhancements (or suppressions) to annihilation cross
sections [33]. Equivalently, ladder diagrams involving
multiple exchanges of the force carrier must be resummed
(Fig. 1). As we shall describe, the Sommerfeld enhance-
ment can only arise if the gauge boson has a mass m� &

�MDM � few GeV. Thus, with the mass scale of
�800 GeV selected by ATIC, and the large cross sections
needed by both ATIC and PAMELA, the mass scale for a
new force carrier is automatically selected. Interactions
involving W and Z bosons are insufficient at this mass
scale.

Once this new force carrier� is included, the possibility
of a new annihilation channel �� ! �� opens up, which
can easily be the dominant annihilation channel. Absent
couplings to the standard model, some of these particles
could naturally be stable for kinematical reasons; even
small interactions with the standard model can then lead
them to decay only into standard model states. If they
decay dominantly into leptons, then a hard spectrum of
positrons arises very naturally. Motivated by the setup of
XDM, Cholis, Goodenough, and Weiner [20] first invoked
this mechanism of annihilations into light bosons to pro-
vide a simple explanation for the excesses of cosmic ray
positrons seen by HEAT without excessive antiprotons or
photons. Simple kinematics can forbid a decay into heavier
hadronic states, and as we shall see, scalars lighter than
�250 MeV and vectors lighter than �GeV both provide a
mode by which the dark matter can dominantly annihilate
into very hard leptons, with few or no �0’s or antiprotons.

In the following sections, we shall make these points
more concretely and delineate which ranges of parameters
most easily explain the data; but the essential point is very
simple: if the dark matter isOð800 GeVÞ and interacts with
itself via a force carrier with massm� � GeV, annihilation

cross sections can be considerably enhanced at present
times via a Sommerfeld enhancement, far exceeding the
thermal freeze-out cross section. If that boson has a small
mixing with the standard model, its mass scale can make it
kinematically incapable of decaying via a hadronic shower,
preferring muons, electrons and, in some cases, charged

pions, and avoiding constraints from �0’s and antiprotons.
If the force-carriers are non-Abelian gauge bosons, we
shall see that other anomalies may be incorporated natu-
rally in this framework, explaining the INTEGRAL
511 keV line via the mechanism of ‘‘eXciting dark mat-
ter’’, and the DAMA annual modulation signal via the
mechanism of ‘‘inelastic dark matter’’ (iDM). We shall
see that the excited states needed for both of these mecha-
nisms [Oð1 MeVÞ for XDM and Oð100 keVÞ for iDM]
arise naturally with the relevant mass splitting generated
radiatively at the correct scale.

II. SOMMERFELD ENHANCEMENTS FROM NEW
FORCES

A new force in the dark sector can give rise to the large
annihilation cross sections required to explain recent data,
through the ‘‘Sommerfeld enhancement’’ that increases the
cross section at low velocities [37]. A simple classical
analogy can be used to illustrate the effect. Consider a
point particle impinging on a star of radius R. Neglecting
gravity, the cross section for the particle to hit and be
absorbed by the star is �0 ¼ �R2. However, because of
gravity, a point coming from a larger impact parameter
than R will be sucked into the star. The cross section is
actually � ¼ �b2max, where bmax is the largest the impact
parameter can be so that the distance of closest approach of
the orbit is R. If the velocity of the particle at infinity is v,
we can determine bmax trivially using conservation of
energy and angular momentum, and we find that

� ¼ �0

�
1þ v2

esc

v2

�
(2)

where v2
esc ¼ 2GNM=R is the escape velocity from the

surface of the star. For v � vesc, there is a large enhance-
ment of the cross section due to gravity; even though the
correction vanishes as gravity shuts off (GN ! 0), the
expansion parameter is 2GNM=ðRv2Þ which can become
large at small velocity.
The Sommerfeld enhancement is a quantum counterpart

to this classical phenomenon. It arises whenever a particle
has an attractive force carrier with a Compton wavelength
longer than ð�MDMÞ�1, i.e. dark matter bound states are
present in the spectrum of the theory. (We generically refer
to �� coupling2=4�, assuming such couplings are com-
parable to those in the standard model, with 10�3 & � &
10�1.)
Let us study this enhancement more quantitatively. We

begin with the simplest case of interest, namely, a particle
interacting via a Yukawa potential. We assume a dark
matter particle � coupling to a mediator � with coupling
strength �. For s-wave annihilation in the nonrelativistic
limit, the reduced two-body wave function obeys the radial
Schrödinger equation,

FIG. 1. The annihilation diagrams �� ! �� both with (a)
and without (b) the Sommerfeld enhancements.
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1

m�
c 00ðrÞ � VðrÞc ðrÞ ¼ �m�v

2c ðrÞ; (3)

where the s-wave wave function �ðrÞ is related to c ðrÞ as
�ðrÞ ¼ c ðrÞ=r, v is the velocity of each particle in the
center-of-mass frame (here we use units where @ ¼ c ¼ 1),
and for scalar� the potential takes the usual Yukawa form,

VðrÞ ¼ � �2

4�r
e�m�r: (4)

The interaction in the absence of the potential is pointlike.
As reviewed in the appendix, the Sommerfeld enhance-
ment in the scattering cross section due to the potential is
given by

S ¼
��������

dc k

dr ð0Þ
k

��������
2

; (5)

where we solve the Schrödinger equation with boundary
conditions c ð0Þ ¼ 0, c ðrÞ ! sinðkrþ �Þ as r ! 1. In
the recent dark matter literature, a different but completely
equivalent expression is used, with

S ¼ jc ð1Þ=c ð0Þj2; (6)

where we solve the Schrödinger equation with the outgoing
boundary condition c 0ð1Þ ¼ im�vc ð1Þ [34].

Defining the dimensionless parameters

� ¼ �2=4�; 	v ¼ v

�
; 	� ¼ m�

�m�

; (7)

and rescaling the radial coordinate with r0 ¼ �m�r, we can

rewrite Eq. (3) as

c 00ðr0Þ þ
�
	2v þ 1

r0
e�	�r

0
�
c ðr0Þ ¼ 0: (8)

In the limit where the�mass goes to zero (	� ! 0), the

effective potential is just the Coulomb potential and Eq. (8)
can be solved analytically, yielding an enhancement factor
of

S � jc ð1Þ=c ð0Þj2 ¼ �=	v

1� e��=	v
: (9)

For nonzero m� and hence nonzero 	�, there are two

important qualitative differences. The first is that the
Sommerfeld enhancement saturates at low velocity—the
attractive force has a finite range, and this limits how big
the enhancement can get. At low velocities, once the
deBroglie wavelength of the particle ðMvÞ�1 gets larger
than the range of the interaction m�1

� , or equivalently once

	v drops beneath 	�, the Sommerfeld enhancement satu-

rates at S� 1
	�
. The second effect is that for specific values

of 	�, the Yukawa potential develops threshold bound

states, and these give rise to resonant enhancements of
the Sommerfeld enhancement. We describe some of the
parametrics for these effects in the appendix, but for reli-

able numbers Eq. (8) must be solved numerically, and plots
for the enhancement as a function of 	� and 	v are given

there. As we will see in the following, we will be interested
in a range ofm� � 100 MeV–GeV; with reasonable values

of �, this corresponds to 	� in the range �10�2–10�1,

yielding Sommerfeld enhancements ranging up to a factor
�103–104. At low velocities, the finite range of the
Yukawa interaction causes the Sommerfeld enhancement
to saturate, so the enhancement factor cannot greatly ex-
ceed this value even at arbitrarily low velocities. The non-
zero mass of the � thus prevents the catastrophic
overproduction of gammas in the early universe pointed
out by [39].
Having obtained the enhancement S as a function of 	v

and 	�, we must integrate over the velocity distribution of

the dark matter in Earth’s neighborhood, to obtain the total
enhancement to the annihilation cross section for a par-
ticular choice of � mass and coupling �. We assume a
Maxwell-Boltzmann distribution for the one-particle ve-
locity, truncated at the escape velocity:

fðvÞ ¼
�
Nv2e�v2=2�2

v � vesc

0 v > vesc:
(10)

The truncation does not significantly affect the results, as
the enhancement factor drops rapidly with increasing ve-
locity. The one-particle rms velocity is taken to be
150 km=s in the baseline case, following simulations by
Governato et al. [40]. Figure 2 shows the total enhance-
ment as a function of m�=m� and the coupling � for this

case.
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FIG. 2. Contours for the Sommerfeld enhancement factor S as
a function of the mass ratio m�=m� and the coupling constant �,

� ¼ 150 km=s.
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One can inquire as to whether dark matterannihilations
in the early universe experience the same Sommerfeld
enhancement as dark matter annihilations in the galactic
halo at the present time. This is important, because we are
relying on this effect precisely to provide us with an
annihilation cross section in the present day much larger
than that in the early universe. However, it turns out that
particles leave thermal equilibrium long before the
Sommerfeld enhancement turns on. This is because the
Sommerfeld enhancement occurs when the expansion pa-
rameter �=v ¼ 1=	v is large. In the early universe, the
dark matter typically decouples at TCMB �m�=20, or v�
0:3c. Since we are taking � & 0:1 generally, the
Sommerfeld enhancement has not turned on yet. More
precisely, in the early-universe regime 	v � 	�, so we

can use Eq. (9) for the massless limit. Where 	v � 1,
Eq. (9) yields S 	 1þ �=2	v: thus the enhancement
should be small and independent of m�. Figure 3 shows

this explicitly. We are left with the perturbative annihila-
tion cross section �� �2=m2

� which gives us the usual

successful thermal relic abundance.
At some later time, as the dark matter velocities redshift

to lower values, the Sommerfeld enhancement turns on and

the annihilations begin to scale as a�5=2 (before kinetic
decoupling) or a�2 (after decoupling). From decoupling
until matter-radiation equality, where the Hubble scale
begins to evolve differently, or until the Sommerfeld effect
is saturated, dark matter annihilation will produce a uni-
form amount of energy per comoving volume per Hubble
time. This uniform spread of energy injected could have

potentially interesting signals for observations of the early
universe. An obvious example would be a possible effect
on the polarization of the CMB, as described in [41–43].
Because at the time of matter-radiation equality, the dark
matter may have slowed to velocities of v� 10�6c or
slower, the large cross sections could yield a promising
signal for upcoming CMB polarization observations, in-
cluding Planck. However, we emphasize that saturation of
the cross section at low v avoids the runaway annihilations
discussed by [39].

III. MODELSOF THE SOMMERFELD FORCEAND
NEWANNIHILATION CHANNELS

What sorts of forces could give rise to a large
Sommerfeld enhancement of the dark matter annihilation?
As we have already discussed, we must have a light force
carrier. On the other hand, a massless particle is disfavored
by the agreement between big bang nucleosynthesis cal-
culations and primordial light element measurements [44],
as well as constraints from WMAP on new relativistic
degrees of freedom [45]. Thus, we must have massive
degrees of freedom, which are naturally light, while still
coupling significantly to the dark matter. There are three
basic candidates.
(i) The simplest possibility is coupling to a light scalar

field, which does give rise to an attractive interac-
tion. However, given that we need an Oð1Þ coupling
to the DM fields, this will typically make it unnatural
for the scalar to stay as light as is needed to max-
imize the Sommerfeld enhancement, unless the dark
matter sector is very supersymmetric. This can be a
challenge given that we are expecting the dark matter
to have a mass OðTeVÞ. Consequently, the natural
scale for a scalar which couples to it would also be
OðTeVÞ, although this conclusion can be evaded
with some simple model-building.

(ii) The scalar could be naturally light if it is a pseudo-
scalar � with a goldstonelike derivative coupling to
matter 1=FJ
@


�. This does lead to a long-range

spin-dependent potential of the form Vð~rÞ ¼ 1
r3
ð ~S1 


~S2 � 3 ~S1 
 r̂ ~S2 
 r̂Þ, but the numerator vanishes when
averaged over angles, so there is no long-range
interaction in the s-wave and hence no Sommerfeld
enhancement.

(iii) Finally, we can have a coupling to spin-1 gauge
fields arising from some dark gauge symmetry
Gdark. Since the gauge fields must have a mass
OðGeVÞ or less, one might worry that this simply
begs the question, as the usual explanation of such a
light gauge boson requires the existence of a scalar
with a mass of OðGeVÞ or less. However, because
that scalar need not couple directly to the dark
matter, it is sufficiently sequestered that its small
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FIG. 3. Contours for the Sommerfeld enhancement factor S as
a function of the mass ratio m�=m� and the coupling constant �,

at a temperature TCMB ¼ m�=20 (the enhancement is integrated

over a Boltzmann distribution with � ¼ 0:3c).
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mass is technically natural. Indeed, the most straight-
forward embedding of this scenario within SUSY
[31] naturally predicts the breaking scale for Gdark

near� GeV. Alternatively, no fundamental scalar is
needed, with the vector boson possibly generated by
the condensate of a strongly coupled theory.

At this juncture it is worth discussing an important point.
As we have emphasized, to produce a Sommerfeld en-
hancement, we need an attractive interaction. Scalars
(like gravitons) universally mediate attractive forces, but
gauge fields can give attraction or repulsion, so do we
generically get a Sommerfeld enhancement? For the case
of the Majorana fermion (or real scalar), in particular, the
dark matter does not carry any charge, and there does not
appear to be any long-range force to speak of, so the
question of the enhancement is more interesting. As we
discuss in a little more detail in the appendix, the point is
that the gauge symmetry is broken. The breaking domi-
nates the properties of the asymptotic states. For instance,
the dark matter must be part of a multiplet with at least two
states, since a spin-1 particle cannot have a coupling to a
single neutral state. The gauge symmetry breaking leads to
a mass splitting between the states, which dominates the
long-distance behavior of the theory, determining which
state is the lightest, and therefore able to survive to the
present time and serve as initial states for collisions leading
to annihilation. However, if the mass splitting between the
states is small enough compared to the kinetic energy of
the collision, the gauge-partner DM states will necessarily
be active in the collision, and eventually at distances
smaller than the gauge boson masses, the gauge breaking
is a negligible effect. Since the asymptotic states are in
general roughly equal linear combinations of ‘‘positive’’
and ‘‘negative’’ charge gauge eigenstates, the result of
asymptotic gauge breaking at short distances is that the
incoming scattering states are linear combinations of gauge
eigenstates, so the two-body wave function will be a linear
combination of attractive and repulsive channels. While
two-body wave function in the repulsive channel is indeed
suppressed at the origin, the attractive part is enhanced.
Therefore there is still a Sommerfeld enhancement, sup-
pressed at most by an Oð1Þ factor reflecting the attractive
component of the two-body state. (This is of course com-
pletely consistent with the Sommerfeld enhancements seen
for ordinary WIMP annihilations, mediated by W=Z=�
exchange.)

Because of the presence of a new light state, the anni-
hilation �� ! �� can, and naturally will, be significant.
In order not to spoil the success of nucleosynthesis, we
cannot have very light new states in this sector, with a mass
& 10 MeV, in thermal equilibrium with the standard
model; the simplest picture is therefore that all the light
states in the dark sector have a mass � GeV. Without any
special symmetries, there is no reason for any of these
particles to be exactly stable, and the lightest ones can

therefore only decay back to standard model states, indeed
many SM states are also likely kinematically inaccessible,
thus favoring ones that produce high-energy positrons and
electrons. This mechanism was first utilized in [20] to
generate a large positron signal with smaller �0 and �p
signals. Consequently, an important question is the ten-
dency of � to decay to leptons. This is a simple matter of
how � couples to the standard model. (A more detailed
discussion of this can be found in [31].)
A scalar � can couple with a dilatonlike coupling

�F
�F
�, which will produce photons and hadrons (via

gluons). Such a possibility will generally fail to produce a
hard eþe� spectrum. A more promising approach would
be to mix � with the standard model Higgs with a term
��2hyh. Should � acquire a vev h�i �m�, then we yield

a small mixing with the standard model Higgs, and the �
will decay into the heaviest fermion pair available. For
m� & 200 MeV it will decay directly to eþe�, while for

200 MeV & m� & 250 MeV, � will decay dominantly to

muons. Above that hadronic states appear, and pion modes
will dominate. Both eþe� and 
þ
� give good fits to the
PAMELA data, while eþe� gives a better fit to
PAMELAþ ATIC.
A pseudoscalar, while not yielding a Sommerfeld en-

hancement, could naturally be present in this new sector.
Such a particle would typically couple to the heaviest
particle available, or through the axion analog of the
dilaton coupling above. Consequently, the decays of a
pseudoscalar would be similar to those of the scalar.
A vector boson will naturally mix with electromagne-

tism via the operator F0

�F


�. This possibility was consid-

ered some time ago in [46]. Such an operator will cause a
vector �
 to couple directly to charge. Thus, for m� &

2m
 it will decay to eþe�, while for 2m
 & m� & 2m� it

will decay equally to eþe� and
þ
�. Above 2m�, it will
decay 40%eþe�, 40%
þ
�, and 20%�þ��. At these
masses, no direct decays into �0’s will occur because they
are neutral and the hadrons are the appropriate degrees of
freedom. At higher masses, where quarks and QCD are the
appropriate degrees of freedom, the�will decay to quarks,
producing a wider range of hadronic states, including �0’s,
and, at suitably high masses m� * 2 GeV, antiprotons as

well [47]. In addition to XDM [19], some other important
examples of theories under which dark matter interacts
with new forces include WIMPless models [49], mirror
dark matter [50], and secluded dark matter [51].
Note that, while these interactions between the sectors

can be small, they are all large enough to keep the dark and
standard model sectors in thermal equilibrium down to
temperatures far beneath the dark matter mass, and (as
mentioned in the previous section), we can naturally get
the correct thermal relic abundance with a weak-scale dark
matter mass and perturbative annihilation cross sections.
Kinetic equilibrium in these models is naturally main-
tained down to the temperature TCMB �m� [52].
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IV. A NONABELIAN Gdark: INTEGRAL, DIRECT
DETECTION, AND DAMA

Up to this point we have focused on a situation where
there is a single force-carrying boson �, whether vector or
scalar. Already, this can have significant phenomenological
consequences. In mixing with the standard model Higgs
boson, there is a nuclear recoil cross section mediated by
�. With technically natural parameters as described in
[19], the rate is unobservable, although in a two-Higgs
doublet model the cross section is within reach of future
experiments [53].

In contrast, an 800 GeV WIMP which interacts via a
particle that couples to charge is strongly constrained.
Because the � boson is light and couples to the electro-
magnetic vector current, there are strong limits. The cross
section per nucleon for such a particle is [51]

�0 ¼ 16�Z2�SM�Dark	
2
2

ne

A2m4
�

¼
�
Z

32

�
2
�
73

A

�
2
�

	

10�3

�
2
�
�Dark

137�1

��

ne

938 MeV

��
1 GeV

m�

�
4

� 1:8� 10�37 cm2; (11)

where �Dark is the coupling of the � to the dark matter, 	
describes the kinetic mixing,
ne is the reduced mass of the
DM-nucleon system, and �SM is the standard model elec-
tromagnetic coupling constant. With the parameters above,
such a scattering cross section is excluded by the present
CDMS [54] and XENON [55] bounds by 6 orders of
magnitude. However, this limit can be evaded by splitting
the two Majorana components of the Dirac fermion [23] or
by splitting the scalar and pseudoscalar components of a
complex scalar [56,57]. Since the vector coupling is off-
diagonal between these states, the nuclear recoil can only
occur if there is sufficient kinetic energy to do so. If the
splitting � > v2
=2 (where 
 is the reduced mass of the
WIMP-nucleus system) no scattering will occur. Such a
splitting can easily arise for a Uð1Þ symmetry by a Uð1Þ
breaking operator such as 1

M c cc h�h� which generates a

small Majorana mass and splits the two components (see
[24] for a discussion).

Remarkably, for �� 100 keV one can reconcile the
DAMA annual modulation signature with the null results
of other experiments [23–25], in the ‘‘inelastic dark mat-
ter’’ scenario. We find that the ingredients for such a
scenario occur here quite naturally. However, the splitting
here must be Oð100 keVÞ and the origin of this scale is
unknown, a point we shall address shortly.

Exciting dark matter from a non-Abelian symmetry

One of the strongest motivations for a �GeV mass �
particle prior to the present ATIC and PAMELA data was
in the context of eXciting dark matter [19]. In this scenario,

dark matter excitations could occur in the center of the
galaxy via inelastic scattering �� ! ���. If � ¼ m�� �
m�� �m� * 2me, the decay �� ! �eþe� can generate

the excess of 511 keV x-rays seen from the galactic center
by the INTEGRAL [58,59] satellite. However, a large
(nearly geometric) cross section is needed to produce the
large numbers of positrons observed in the galactic center,
necessitating a boson with mass of the order of the mo-
mentum transfer, i.e., m� & M�v� GeV, precisely the

same scale as we require for the Sommerfeld enhancement.
But where does the scale ��MeV come from?
Remarkably, it arises radiatively at precisely the appropri-
ate scale. [60]
We need the dark matter to have an excited state, and we

will further assume the dark matter transforms under a non-
Abelian gauge symmetry. Although an excited state can be
present with simply a Uð1Þ, this only mediates the process
�� ! ����. If this requires energy greater than 4me it is
very hard to generate enough positrons to explain the
INTEGRAL signal. If we assume the dark matter is a
Majorana fermion, then it must transform as a real repre-
sentation of the gauge symmetry. For a non-Abelian sym-
metry, the smallest such representation will be three-
dimensional [such as a triplet of SUð2Þ]. This will allow
a scattering �1�1 ! �2�3. If m3 is split from m2 �m1 by
an amount ��MeV, we have arrived at the setup for the
XDM explanation of the INTEGRAL signal.
Because the gauge symmetry is Higgsed, we should

expect a splitting between different states in the dark
matter multiplet. This could arise already at tree level, if
the dark matter has direct couplings to the Higgs fields
breaking the gauge symmetry; these could naturally be as
large as the dark gauge breaking scale� GeV itself, which
would be highly undesirable, since we need these splittings
to be not much larger than the DM kinetic energies in order
to get a Sommerfeld enhancement to begin with. However,
such direct couplings to the Higgs bosons could be absent
or very small (indeed most of the Yukawa couplings in the
standard model are very small). We will assume that such a
direct coupling is absent or negligible. The gauge breaking
in the gauge boson masses then leads, at one loop, to
splittings between different dark matter states, analogous
to the familiar splitting between charged and neutral com-
ponents of a Higgsino or Dirac neutrino. These splittings
arise from infrared effects and so are completely calcu-
lable, with sizes genericallyOð�mZÞ in the standard model
or Oð�m�Þ �MeV in the case at hand. Thus we find that

the MeV splittings needed for XDM arise automatically
once the mass scale of the � has been set to OðGeVÞ.
We would like �2 and �1 to stay similar in mass, which

can occur if the breaking pattern approximately preserves a
custodial symmetry. However, if they are too degenerate,
we are forced to take 	 < 10�5 in order to escape direct-
detection constraints. On the other hand, we do not want
too large of a splitting between �2 and �1, as this would
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suppress the rate of positron production for INTEGRAL.
Thus, we are compelled to consider �21 � 100–200 keV,
which puts us precisely in the range relevant for the in-
elastic dark matter explanation of DAMA. (See Fig. 4.)

All of these issues require detailed model-building,
which we defer to future work; however, existence proofs
are easy to construct. The Lagrangian is of the form

L ¼ LSM þLDark þLmix: (12)

As a familiar example, imagine that GDark ¼ SUð2Þ �
Uð1Þ, with gauge bosonsw
I and b
 which we collectively

refer to as a
i, and the dark matter multiplet � transform-

ing as a triplet under SUð2Þ and neutral under the Uð1Þ; it
could be either a scalar or fermion. We also assume that
some set of Higgs bosons completely break the symmetry.
Working in unitary gauge, the tree-level dark sector
Lagrangian is

L Dark ¼ LGauge Kin þ 1
2m

2
ija



i a
j þ 
 
 
 ; (13)

where them2
ij makes all the dark spin-1 fields massive, and


 
 
 refers to other fields such as the physical Higgses that
could be present. At one loop, this broken gauge symmetry
will induce splittings between the three real DM states all
of Oð�DarkmDarkÞ as just discussed above. The leading
interaction between the two sectors is via kinetic mixing
between the new Uð1Þ and the photon (which is inherited
from such a mixing with hypercharge):

L mix ¼ 1
2	b
�F


�: (14)

We put an 	 in front of this coupling because it is natural
for this coupling to be small; it can be induced at one loop
by integrating out some heavy states (of any mass between
the GeV and Planck scales) charged under both this new
Uð1Þ and hypercharge. This can easily make 	�
10�4–10�3. Even without a Uð1Þ, a similar mixing could
be achieved with an ‘‘S-parameter’’ type operator
Tr½ð�=MÞpG
��F
�, where � is a dark Higgs field with

quantum numbers such that ð�=MÞp transforms as an
adjoint under GDark; it is reasonable to imagine that the
scale M suppressing this operator is near the weak scale.

Going back to PAMELA/ATIC, the non-Abelian self-
couplings of the vector bosons can have an interesting

effect on the annihilation process. For large enough
�Dark, the gauge bosons radiate other soft and collinear
gauge bosons leading to a ‘‘shower’’; this can happen when
�Darklog

2ðM�=m�Þ * 1. While for quite perturbative val-

ues of �Dark this is not an important effect, it could be
interesting for larger values, and would lead to a greater
multiplicity of softer eþe� pairs in the final state.
Before closing this section, it is important to point out

that it is not merely a numerical accident that the excited
states relevant for INTEGRAL and DAMA can actually be
excited in the DM-DM collisions and DM collisions with
direct-detection nuclei, but is rather a parametric conse-
quence of maximizing the Sommerfeld enhancement for
the annihilation cross section needed to explain ATIC/
PAMELA. As we already emphasized in our discussion
of Sommerfeld enhancement with vector states, vector
boson couplings necessarily connect different dark matter
mass eigenstates, and therefore there is no enhancement for
the annihilation cross section needed to explain ATIC/
PAMELA if the mass splittings are much larger than the
kinetic energy available in the collision. But this parametri-
cally implies that dark matter collisions should also have
the kinetic energy needed to create the excited states, as
necessary for the INTEGRAL signal. It is also interesting
to note that the condition needed for the large geometric
capture cross section, m� & Mv, also tells us that the

Sommerfeld enhancement is as large as can be at these
velocities, and has not yet been saturated by the finite range
of the force carrier. Furthermore, since the mass of the
heavy nuclei in direct-detection experiments is comparable
to the dark matter masses, the WIMP-nucleus kinetic
energy is also naturally comparable to the excited state
splittings. In this sense, even absent the direct experimental
hints, signals like those of INTEGRAL and inelastic scat-
tering for direct detection of dark matter are parametric
predictions of our picture.

V. SUBSTRUCTURE AND THE SOMMERFELD
ENHANCEMENT

As we have seen, the Sommerfeld enhancement leads to
a cross section that scales at low energies as �v� 1=v.
This results in a relatively higher contribution to the dark
matter annihilation from low-velocity particles. While the
largest part of our halo is composed of dark matter particles
with an approximately thermal distribution, there are
subhalos with comparable or higher densities. Because
these structures generally have lower velocity dispersions
than the approximately thermal bulk of the halo, the
Sommerfeld-enhanced cross sections can make these com-
ponents especially important.
Subhalos of the Milky Way halo are of particular inter-

est, and N-body simulations predict that many should be
present. There is still some debate as to what effect sub-
structures can have on indirect detection prospects.
However, some of these subhalos will have velocity dis-

FIG. 4. Spectrum of exciting dark matter.
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persions of order 10 km=s [61], and a simple examination
of Fig. 5 shows that dramatic increases of up to 2 orders of
magnitude in the Sommerfeld enhancement can occur for
these lower velocities.

Although in our model there are no direct �0 gammas,
there are still significant hopes for detection of dwarf
galaxies through dark matter annihilation. If the DM is
also charged under SUð2Þ �Uð1Þ there may be a subdo-
minant component of annihilations into WþW� for in-
stance, much larger than the s-wave limited thermal
cross section, which could yield significant photon signals
from the hadronic shower [62]. The copious high-energy
positrons and electrons, produced even more abundantly
than expected for a nonthermal WIMP generating the
ATIC or PAMELA signal, can produce inverse Compton
scattering signals off of the CMB. Even a loop suppressed
annihilation into �� may be detectable with this
enhancement.

This presumes that the local annihilation does not have
significant enhancement from a low-velocity component,
however. If the local annihilation rate is also enhanced by
substructure, then our expectations of the enhancement for
dwarf galaxies would not be as large. As a concrete ex-
ample, we can consider the possibility of a ‘‘dark disk.’’
Recently, it has been argued that the old stars in the thick
Milky Way disk should have an associated dark matter
component, with dynamics which mirror those stars, and
a density comparable to the local density [65]. Because of
the low velocity dispersion (of order 10 km=s), our esti-
mates of what is a reasonable Sommerfeld boost may be off
by an order of magnitude.

As a consequence of this and other substructure, the
Sommerfeld boost of Fig. 2 should be taken as a lower
bound, with contributions from substructure likely increas-
ing the cross section significantly further. We will not
attempt to quantify these effects here beyond noting the
possible increases of an order of magnitude or more sug-
gested by Fig. 5. However, understanding them may be
essential for understanding the size and spectrum if this
enhancement of the cross section is responsible for the
signals we observe.

VI. OUTLOOK: IMPLICATIONS FOR PAMELA,
PLANCK, FERMI/GLAST, AND THE LHC

If the excesses in positrons and electrons seen by
PAMELA and ATIC are arising from dark matter, there
are important implications for a wide variety of experi-
ments. It appears at this point that a simple modification of
a standard candidate such as a minimal supersymmetic
standard model (MSSM) neutralino is insufficient. The
need for dominantly leptonic annihilation modes with large
cross sections significantly changes our intuition for what
we might see, where, and at what level. There are a few
clear consequences looking forward.
(i) The positron fraction seen by PAMELA should con-

tinue to rise up to the highest energies available to
them (� 270 GeV), and the electronþ positron sig-
nal should deviate from a simple power law, as seen
by ATIC.

(ii) If the PAMELA/ATIC signal came from a local
source, we would not expect additional anomalous
electronic activity elsewhere in the galaxy. Dark
matter, on the other hand, should produce a signifi-
cant signal in the center of the galaxy as well, yield-
ing significant signals in the microwave range
through synchrotron radiation and in gamma rays
through inverse-Compton scattering. The former
may already have been seen at WMAP [10,12] and
the latter at EGRET [13,14]. Additional data from
Planck and Fermi/GLAST will make these signals
robust [66].

(iii) We have argued that the most natural way to generate
such a large signal is through the presence of a new,
light state, which decays dominantly to leptons. It is
likely these states could naturally be produced at the
LHC in some cascade, leading to highly boosted
pairs of leptons as a generic signature of this scenario
[31].

(iv) Although the cross section is not Sommerfeld en-
hanced during freeze-out, it can keep pace with the
expansion rate over large periods of the cosmic
history, between kinetic decoupling and matter-
radiation equality. This can have significant impli-
cations for a variety of early-universe phenomena as
well as the cosmic gamma-ray background [66].
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FIG. 5. Contours for the Sommerfeld enhancement factor S as
a function of the mass ratio m�=m� and the coupling constant �,
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(v) The Sommerfeld enhancement is increasingly im-
portant at low velocity. Because substructure in the
halo typically has velocity dispersions an order of
magnitude smaller than the bulk of the halo, annihi-
lations can be an order of magnitude higher, or more.
With the already high local cross sections, this makes
the prospects for detecting substructure even higher.
With the mass range in question, continuum photons
would be possibly visible at GLAST, while mono-
chromatic photons [which could be generated in
some models [31] would be accessible to air
Cerenkov telescopes, such as HESS (see [67] for a
discussion, and [68] for HESS limits on DM annihi-
lation in the Canis Major overdensity)].

We have argued that dark matter physics is far richer
than usually thought, involving a multiplet of states and a
new sector of dark forces. We have been led to propose this
picture not by a flight of fancy but rather directly from
experimental data. Even so, one can justifiably ask whether
such extravagances are warranted. After all, experimental
anomalies come and go, and it is entirely possible that the
suite of hints that motivate our proposal are incorrect, or
that they have more conventional explanations. However,
we are very encouraged by the fact that the theory we have
presented fits into a very reasonable picture of particle
physics, is supported by overlapping pieces of experimen-
tal evidence, and that features of the theory motivated by
one set of experimental anomalies automatically provide
the ingredients to explain the others. Our focus in this
paper has been on outlining this unified picture for dark
matter; new experimental results coming soon should be
able to tell us whether these ideas are even qualitatively on
the right track. Needless to say it will then be important to
find a specific and simple version of this theory, with a
small number of parameters, to more quantitatively con-
front future data
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APPENDIX A: A QUICK REVIEW OF
SOMMERFELD ENHANCEMENT

The Sommerfeld enhancement is an elementary effect in
nonrelativistic quantum mechanics; in this appendix we
will review it in a simple way and discuss some of the
parametrics for how the enhancement works for various
kinds of interactions.
Consider a nonrelativistic particle moving around some

origin. There is an interaction Hamiltonian Hann ¼
Uann�

3ð ~rÞ localized to the origin, which e.g. annihilates
our particle or converts to another state in some way.
Imagine that the particle is moving in the z direction so
that its wave function is

c ð0Þ
k ð ~xÞ ¼ eikz (A1)

then the rate for this process is proportional to jc ð0Þð0Þj2.
But now suppose we also have a central potential VðrÞ
attracting or repelling the particle to the origin. We could
of course treat V perturbatively, but again at small veloc-
ities the potential may not be a small perturbation and can
significantly distort the wave function, which can be de-
termined by solving the Schrödinger equation

� 1

2M
r2c k þ VðrÞc k ¼ k2

2M
c k (A2)

with the boundary condition enforcing that the perturbation
can only produce outgoing spherical waves as r ! 1:

c ! eikz þ fðÞ e
ikr

r
as r ! 1: (A3)

Now, since the annihilation is taking place locally near r ¼
0, the only effect of the perturbation V is to change the
value of the modulus of the wave function at the origin
relative to its unperturbed value. Then, we can write

� ¼ �0Sk; (A4)

where the Sommerfeld enhancement factor S is simply

Sk ¼ jc kð0Þj2
jc ð0Þ

k ð0Þj2 ¼ jc kð0Þj2; (A5)

where we are using the normalization of the wave function
c k as given by the asymptotic form of Eq. (A3).
Finding a solution of the Schrödinger equation with

these asymptotics is a completely elementary and standard
part of scattering theory in nonrelativistic QM, which we
quickly review for the sake of completeness. Any solution
of the Schrödinger equation with rotational invariance
around the z axis can be expanded as

c k ¼
X
l

AlPlðcosÞRklðrÞ; (A6)

where RklðrÞ are the continuum radial functions associated
with angular momentum l satisfying
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� 1

2M

1

r2
d

dr

�
r2

d

dr
Rkl

�
þ

�
lðlþ 1Þ

r2
þ VðrÞ

�
Rkl

¼ k2

2M
Rkl: (A7)

The RklðrÞ are real, and at infinity look like a spherical
plane wave which we can choose to normalize as

RklðrÞ ! 1

r
sin

�
kr� 1

2
l�þ �lðrÞ

�
; (A8)

where �lðrÞ � kr as r ! 1. The phase shift �lðrÞ is
determined by the requirement that RklðrÞ is regular as r !
0. Indeed, if the potential VðrÞ does not blow up faster than
1=r near r ! 0, then we can ignore it relative to the kinetic
terms, and we have that RklðrÞ � rl as r ! 0; all but the
l ¼ 0 terms vanish at the origin. We now have to choose
the coefficients Al in order to ensure that the asymptotics of
Eq. (A3) are satisfied. Using the asymptotic expansion of
eikz

eikz ! 1

2ikr

X
l

ð2lþ 1ÞPlðcosÞ½eikr � ð�1Þle�ikr� (A9)

determines the expansion to be

c k ¼ 1

k

X
l

ilð2lþ 1Þei�lPlðcosÞRklðrÞ: (A10)

It is now very simple to determine c kð0Þ, since as we just
commented, Rklðr ¼ 0Þ vanishes for every term other than
l ¼ 0. Thus, we have

Sk ¼
��������
Rk;l¼0ð0Þ

k

��������
2

: (A11)

We can furthermore make the standard substitution
Rk;l¼0 ¼ �k=r, then the Schrödinger equation for � turns

into a one-dimensional problem

� 1

2M

d2

dr2
�k þ VðrÞ�k ¼ k2

2M
�k; (A12)

which we normalize at infinity with the condition

�kðrÞ ! sinðkrþ �Þ; (A13)

and since Rk;l¼0 goes to a constant as r ! 0, we have to

have that � ! 0 as r ! 0, or

�kðrÞ ! r
d�k

dr
ð0Þ as r ! 0: (A14)

Effectively, we can imagine launching � from � ¼ 0 at

r ¼ 0with different velocities d�k

dr ð0Þ, and these will evolve
to some waveform as r ! 1, but the correct �0ð0Þ is
determined by the requirement that the waveform at infin-
ity have unit amplitude.

Summarizing, then, the Sommerfeld enhancement is

Sk ¼
��������

d�k

dr ð0Þ
k

��������
2

; (A15)

where �k satisfies the 1D Schrödinger equation (A12) with
boundary conditions Eqs. (A13) and (A14). As a sanity
check, let us see how this works with vanishing potential.
The solution that vanishes as r ! 0 is �kðrÞ ¼ A sinðkrÞ,
and matching the asymptotics forces A ¼ 1. Then �0

kð0Þ ¼
k and Sk ¼ 1.
In the recent literature on the subject, a different ex-

pression for the Sommerfeld enhancement is used, arising
from the use of the optical theorem. We are instructed to
solve the same 1D Schrödinger equation [Eq. (A12)], this
time with no special boundary conditions at � ¼ 0, but
with boundary conditions so that � / eþikr as r ! 1.
Then, the Sommerfeld enhancement is said to be

Sk ¼ j�kð1Þj2
j�kð0Þj2

: (A16)

It is very easy to show that these two forms for Sk agree
exactly. To see this, let us begin by denoting �1ðrÞ to be the
solution to the Schrödinger equation [Eq. (A12)] with the
boundary condition �1ðrÞ ! sinðkrþ �Þ as r ! 1
[Eq. (A13)]. As shown above, �1ð0Þ ¼ 0. Let �2ðrÞ be
the linearly independent solution with the boundary con-
dition �2ðrÞ ! cosðkrþ �Þ as r ! 1, and define A �
�2ð0Þ. Now Eq. (A12) has a conserved Wronskian

W ¼ �1ðrÞ�0
2ðrÞ � �2ðrÞ�0

1ðrÞ: (A17)

It is easy to verify directly from the differential equation
that W 0ðrÞ ¼ 0; this is true (Abel’s theorem) because there
are no �0 terms in the differential equation. But comparing
the values of the conserved Wronskian at zero and 1,

Wð1Þ ¼ �kðsin2ðkrþ �Þ þ cos2ðkrþ �ÞÞ ¼ �k

¼ Wð0Þ ¼ �A�0
1ð0Þ: (A18)

So then j�0
1ð0Þj ¼ k=jAj, and our new expression for the

Sommerfeld enhancement, Eq. (A15), is just Sk ¼ 1=jAj2.
Now, our second form Sk ¼ j�ð1Þj2, where �ðrÞ satisfies
the boundary conditions �0ðrÞ ! ik�ðrÞ as r ! 1, and
�ð0Þ ¼ 1. By the asymptotic behavior at large r, we can
identify �ðrÞ as the linear combination �ðrÞ ¼ Cð�2ðrÞ þ
i�1ðrÞÞ, where C is some complex constant. But then
�ð0Þ ¼ CA ¼ 1, and Sk ¼ jCj2, so as previously we obtain
Sk ¼ 1=jAj2. Thus the two formulas for the Sommerfeld
enhancement are equivalent.

1. Attractive Coulomb potential

Let us see how this works in some simple examples. We
are solving the Schrödinger equation for a particle of mass
M and asymptotic velocity v, with potential
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VðrÞ ¼ � �

2r
; (A19)

which we solve with the boundary conditions of Eqs. (A13)
and (A14).

We simplify the analysis by working with the natural
dimensionless variables, with the unit of length normalized
to the Bohr radius, i.e. we take

r ¼ ��1M�1x: (A20)

Then the Schrödinger equation becomes

� �00 � 1

x
� ¼ 	2�; (A21)

where we have defined the parameter

	v � v

�
: (A22)

Of course we can solve this exactly in terms of hyper-
geometric functions to find the result obtained by
Sommerfeld

Sk ¼
��������

�
	v

1� e�ð�=	vÞ

��������: (A23)

Note that as 	v ! 1, Sk ! 1 as expected; there is no
enhancement at large velocity. For the attractive Yukawa
at small velocities we have the enhancement

Sk ! ��

v
; (A24)

while for the repulsive case, there is instead the expected
exponential suppression from the need to tunnel through
the Coulomb barrier

Sk � e�ðð�j�jÞ=vÞ: (A25)

To get some simple insight into what is going on, let us
rederive these results approximately. For x much smaller
than 1=	2v, we can ignore the kinetic term. In the WKB

approximation, the waves are of the form x1=4ei
ffiffi
x

p
, so the

amplitudes grow like x1=4. In order to match to a unit norm
wave near x� 1=	2v, we have to scale the wave function at

small x by a factor �	1=2v , so that near the origin

�� x	1=2v � �Mr	1=2v (A26)

from which we can read off the derivative at the origin
d�
dr ð0Þ ¼ 	1=2v �M, and with k ¼ Mv we can determine

Sk �
��������
	1=2v �M

Mv

��������
2¼ �

v
; (A27)

which is correct parametrically. We can also arrive at this
result from the second form for Sk. The computation is

even more direct here. We have waveforms growing as x1=4

towards x� 1
	2v
. In the region near x� 1=	v, we must

transition to a purely outgoing wave. This is a transmis-
sion/reflection problem, and ingoing and outgoing waves

from the left will have comparable amplitude. When we
continue these back to the origin, we will then have an

amplitude reduced by a factor �	1=2v . Then,

Sk �
�

1

	1=2v

�
2 � �

v
: (A28)

2. Attractive well and resonance scattering

Let us do another example, where

V ¼ �V0ðL� rÞ; V0 � �2

2M
: (A29)

The solution inside is �ðrÞ ¼ A sinkinr, where k
2
in ¼ �2 þ

k2, while outside we write it as sinðkðr� LÞ þ �. Then,
matching across the boundary at r ¼ L gives

A sinkinL ¼ sin�; kinA coskinL ¼ k cos�: (A30)

Squaring these equations and adding them we can deter-
mine

A2 ¼ 1

sin2kinLþ k2
in

k2
cos2kinL

(A31)

and so

Sk ¼ A2k2in
k2

¼ 1
k2

k2
in

sin2kinLþ cos2kinL
: (A32)

Now for k2=2M � V0, we have kin ¼ �þ k2=ð2�Þ þ 
 
 
 .
Clearly, if cos�L is not close to zero, there is no enhance-
ment. However, if cos�L ¼ 0, then we have a large en-
hancement

Sk ! �2

k2
: (A33)

This has a very simple physical interpretation in terms of
resonance with a zero-energy bound state. Our well has a
number of bound states, and typically the binding energies
are of order V0. We see that if cos�L is not close to zero, we
have to have A� k=kin be small. However, if accidentally
cos�L ¼ 0, then there is a zero-energy bound state: the
wave function can match on to c ¼ 1 for r > L smoothly,
giving a zero-energy bound state. The enhancement is of
the form

S� V0

E� Ebound

� �2

k2
: (A34)

Note this formally diverges as v ! 0, but is actually cut off
by the finite width of the state as familiar from Breit-
Wigner.
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3. Attractive Yukawa potential

Now let us examine

VðrÞ ¼ � �

2r
e�m�r: (A35)

Working again in Bohr units, we have

VðxÞ ¼ � 1

x
e�	�x; (A36)

where

	� � m�

�M
: (A37)

Now, if 	� � 	2v, the Yukawa term is always irrelevant and

we revert to our previous Coulomb analysis.
However, if 	� � 	2v, our analysis changes; we will use

the second expression for the Sommerfeld enhancement
for simplicity. The potential turns off exponentially around
x� 1=	�. Now, the effective momentum is

k2eff ¼
1

x
e�	�x þ 	2v (A38)

and the quantity ��������
k0eff
k2eff

�������� (A39)

determines the length scale the potential is varying over
relative to the wavelength; so long as it is small, the WKB
approximation is good, and we have a waveform growing

as k�1=2
eff ei

R
x
dx0keff ðx0Þ. Note that for 1 � x � 1=	�, the

WKB approximation is manifestly good. Let us now take
the arbitrarily low-velocity limit, where 	v ! 0. Then in
the neighborhood of x� 1=	� we have k2eff � 	�e

�	�x,

and ��������
k0eff
k2eff

���������
ffiffiffiffiffiffi
	�

p
eð1=2Þ	�x � 	�

keff
; (A40)

so the WKB approximation breaks down when keff � 	�,

where the WKB amplitude is �	�1=2
� . The potential then

varies more sharply than the wavelength, and we have a
reflection/transmission problem, with an O(1) fraction of
the amplitude escaping to infinity. The enhancement is then

S� 1

	�
� �M

m�

: (A41)

We did this analysis for 	v ! 0, but clearly it will hold for
larger 	v, till 	v � 	�, at which point it matches smoothly

to the 1
	v

enhancement we get for the Coulomb problem.

The crossover with 	v � 	� is equivalent to Mv�m�,

when the deBroglie wavelength of the particle is compa-
rable to the range of the interaction. This is intuitive–as the
particle velocity drops and the deBroglie wavelength be-
comes larger than the range of the attractive force, the
enhancement saturates. Of course if 	� is close to the

values that make the Yukawa potential have zero-energy
bound states, then the enhancement is much larger; we can
get an additional enhancement �	�=	

2
v up to the point

where it gets cut off by finite width effects.
In this simple theory it is of course also straightforward

to solve for the Sommerfeld enhancement numerically. We
show the enhancement as a function of 	� and 	v in Figs. 6

and 7.

10-4 10-3 10-2 10-1 100 101

εv

10-3

10-2

10-1

100

101

ε φ

10

100

1000

10000

101

102

103

104

S

FIG. 6. Contour plot of S as a function of 	� and 	v. The lower
right triangle corresponds to the zero-mass limit, whereas the
upper left triangle is the resonance region.
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FIG. 7. As in Fig. 6, showing the resonance region in more
detail.
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4. Two-particle annihilation

Let us finally consider our real case of interest, involving
two-particle annihilation. To keep things simple, let us
imagine that the two particles are not identical, for instance
they could be Majorana fermions with opposite spins; we
can restrict to this case because none of the interactions we
consider depend on spin, and the annihilation channels we
imagine can all proceed from this spin configuration. Let
us imagine that there are a number of states �A of (nearly)
equal mass, with the label A running from A ¼ 1; 
 
 
 ; N.
The two-particle Hilbert space is labeled by states
j ~x; A; ~y; Bi and a general wave function is hc j ~x; A; ~y; Bi �
c ABð ~x; ~yÞ. There is some short-range annihilation
Hamiltonian U�3ð ~x1 � ~x2Þ into decay products jfinali;
where U is an operator

hfinaljUjABi � Mann
AB : (A42)

Now, suppose there is also a long-range interaction be-
tween the two particles with a potential. The general
Schrödinger equation is of the form

� 1

2M
ðr2

x þr2
yÞc ABðx; yÞ þ VABCDðx� yÞc CDðx; yÞ

¼ Ec ABðx; yÞ: (A43)

As usual we factor out the center-of-mass motion by writ-

ing c ABð ~x; ~yÞ ¼ ei
~P
ð ~xþ ~yÞ�ABð ~x� ~yÞ, and we have

� 1

M
r2

r�ABð ~rÞ þ VABCDð ~rÞ�CDð~rÞ ¼ ECM�ABð ~rÞ;
(A44)

where ECM is the energy in the center-of-mass frame.
We have an initial state with some definite A�, B�, and

we take as an unperturbed solution

�ðA�B�Þð0ÞAB ¼ �A�
A �B�

B eikz: (A45)

The annihilation cross section without the interaction V is
proportional to

�ð0Þ
ann / jMann

A�B� j2: (A46)

However with the new interaction, the annihilation cross
section is

�ann / j�ðA�B�Þ
CD ð0ÞMCDj2: (A47)

So we can write

�ann ¼ �ð0Þ
ann � SA

�B�
k ; (A48)

where

SA
�B�

k ¼ j�A�B�
CD ð0ÞMann

CDj2
j�A�B�

CD ð1ÞMann
CDj2

(A49)

Just as above, in reducing the problem to an S-wave

computation, we can replace �A�B�
CD ð0Þ with ð�0ðr ¼

0ÞÞA�B�
CD in the obvious way.

Of course one contribution to VABCD comes from the
small mass splittings between the states. If we write the
(almost equal) common mass term for the DM states as
ðMþ �MAÞ�A�A, the �M’s show up in the potential as

V
split
ABCD ¼ ð�MA þ �MBÞ�AC�BD: (A50)

For the Sommerfeld enhancement, we also need some
long-range attractive interaction. As we have discussed,
vectors are possibly the most promising candidate. The
leading coupling to spin-1 particles a
i is

g ��A ��
�BT
i
ABai
; (A51)

and ignoring the mass of the gauge boson this gives us a
1=r contribution to the effective potential

Vgauge
ABCDð~rÞ ¼ ��

1

r
Ti
ACT

i
BD; (A52)

while taking the vector masses into account gives both
Yukawa exponential factors and a more complicated tensor
structure. In total,

VABCD ¼ Vsplit
ABCD þ Vgauge

ABCD: (A53)

Now, it is obvious that in our basis, the Ti
AB should be

antisymmetric

Ti
AB ¼ �Ti

BA (A54)

since the gauge symmetry must be a subgroup of the
SOðNÞ global symmetry preserved by the large common
mass termM�A�A, and the SOðNÞ generators are antisym-
metric. Thus, the coupling to vectors in this basis is nec-
essarily off-diagonal. Let us look at a simple example,
where N ¼ 2 and we have a single Abelian gauge field.
The �AB span a four-dimensional Hilbert space, with j11i,
j12i, j21i, j22i as a basis. Since the gauge boson exchange
necessarily changes 1 $ 2, VABCD is block diagonal, op-
erating in two separate Hilbert spaces, spanned by
ðj11i; j22iÞ and ðj12i; j21iÞ. Since we are ultimately inter-
ested in scattering with 11 initial states, let us look at the
first one, where we have

V ¼ 2�M � �
r� �

r 0

� �
;

in the basis j11i ¼ 0
1

� �
; j22i ¼ 1

0

� �
:

(A55)

Clearly, if �M is enormous, we will not have any interest-
ing Sommerfeld enhancement in (11) scattering, since in
this case there is no long-range interaction between 11 at
all, so let us assume that �M is smaller than the kinetic
energy of the collision. Now it is clear that as r ! 1, the
mass splitting dominates the potential, and obviously par-
ticle 1 is the lightest state. However, at smaller distances,
the gauge exchange term dominates. This is not diagonal in
the same basis, and has ‘‘attractive’’ and ‘‘repulsive’’ ei-
genstates with energies �=r. Note that the asymptotic
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j11i state is an equal linear combination of the attractive
and repulsive channels. While the repulsive channels suffer
a Sommerfeld suppression, the attractive channel is
Sommerfeld enhanced. Note that as long as �M is para-
metrically smaller than the kinetic energy, its only role in
this discussion was to split the two asymptotic states, and
therefore determine what the natural initial states are. Note
also that if �M is large but not infinite, the mixing with 2
generates an attractive potential between 11 of the form
VeffðrÞ ¼ ��2=ð�MrÞ. It would be interesting to under-
stand these limits of the multistate Sommerfeld effect in
parametric detail; we defer this to future work.

It is very easy to see that our conclusion about the
presence of a Sommerfeld effect is general for any gauge
interaction. We think of V

gauge
ðABÞðCDÞ as a matrix in the Hilbert

space spanned by (AB). Note that since the Ti are anti-
symmetric, they are also traceless, and as a consequence,
the matrix V

gauge
ðABÞðCDÞ is also traceless and so has both

positive and negative eigenvalues, reflecting the obvious
fact that gauge exchange gives us both attractive and
repulsive potentials. Let us go to a basis in (AB) space

where Vgauge is diagonal, and denote eigenvectors with
negative (attractive) eigenvalues as fattractiveAB and repulsive

ones as frepulsiveAB . We can think of the initial wave function

in AB space �A�B�
AB as a state in (AB) space and expand it in

terms of these eigenvectors as

�ðA�B�Þ
AB ¼ CA�B�

att fattractiveAB þ CA�B�
rep f

repulsive
AB : (A56)

We can determine the coefficients by dotting the left-hand
side and right-hand side into the eigenvectors, so that

�ðA�B�Þ
AB ¼ fattractiveA�B� fattractiveAB þ f

repulsive
A�B� f

repulsive
AB : (A57)

Then, since the repulsive components are exponentially
suppressed at the origin while the attractive components
are enhanced, we get a Sommerfeld enhancement as long
as fA�B� � 0. In particular, for scattering the same species,
this is true so long as fA�A� � 0. Said more colloquially,
these Majorana states are linear combinations of positive
and negative charged states; so long as they have any
component which would mutually attract, there is a
Sommerfeld enhancement from that component alone.
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