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Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T.

Hill’s schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane’s prototype

natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively

similar to those of Hill’s, but Lane’s model prefers a smaller technicolor group and the Z0 mass must be

smaller than 400 GeV. Furthermore, the S parameter is around the order ofþ1, mainly due to the existence

of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral

Lagrangian up to the order p4. Apart from large negative four-fermion coupling values, the extended

technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self

energy, which determines these coefficients, in general receives almost no influence from the extended

technicolor induced four-fermion interactions except for its large momentum tail.
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I. INTRODUCTION

The topcolor-assisted technicolor (TC2) model realizes
the electroweak symmetry breaking (EWSB) by joining
technicolor (TC) and topcolor together to remove the
objections that topcolor is unnatural and that TC cannot
generate a large top mass. In the first schematic model
proposed by C. T. Hill [1], EWSB is driven mainly by TC
interactions and light quark and lepton masses are expected
to be generated by extended technicolor (ETC). The third
generation ðt; bÞL;R is arranged to transform with the usual

quantum numbers under the gauge group SUð3Þ1 �Uð1Þ1,
while ðu; dÞ, and ðc; sÞ transform under a separate group
SUð3Þ2 �Uð1Þ2. At the scale of order 1 TeV, SUð3Þ1 �
SUð3Þ2 �Uð1Þ1 �Uð1Þ2 is dynamically broken to the di-
agonal subgroup SUð3ÞC �Uð1ÞY , and SUð3Þ1 �Uð1Þ1 in-
teractions are supercritical for t quark leading top
condensation, but subcritical for b quark causing no bot-
tom condensation which achieve a large mass difference
between t and b quarks.

As a candidate of a new physics model, before any new
particles such as Z0 or colorons predicted in the TC2 model
appear in upcoming collider experiments, the behavior of
the model in the low energy region for those discovered
particles can be tested and described by its effective elec-
troweak chiral Lagrangian (EWCL) [2–4] which, as a
model independent platform of investigating EWSB
mechanism, parametrizes the model by a set of coeffi-
cients. Starting from this EWCL, besides phenomenologi-
cal research on fixing the coefficients of EWCL from

experiments data, theoretical studies concentrate on com-
puting the values of the coefficients from the detailed
underlying model. Considering that TC2 model involves
strongly-coupled dynamics for which traditionally pertur-
bative expansion fails in computing the coefficients of
EWCL. As in the previous paper [5],and based on our
earlier systematic studies [6–10] on deriving the chiral
Lagrangian and evaluating corresponding low energy con-
stants (LECs) for pseudoscalar mesons from the first prin-
ciple of QCD, we built up a formulation computing
bosonic part of EWCL coefficients up to the order p4 for
one-doublet TCmodel [11] and Hill’s schematic model [1].
This formulation is of general purposes, and it can be
applied to many other strongly-coupled models. Then
EWCL becomes a universal platform on which we can
compare different underlying models with experiment data
and extract the true physical theory of our real world. To
achieve the aim of this comparison, the left theoretical
works are to compute EWCL coefficients model by model.
Present work is the second paper starting from Ref. [5] for
series computations for various strongly coupled new
physics models. Here we focus on K. Lane’s prototype
natural TC2 model [12].
In Hill’s original model, effects of ETC interactions are

only qualitatively estimated. Effective four-fermion inter-
actions induced by ETC (EFFIIETC) are even not explic-
itly written in Ref. [1]. Accordingly, our previous
computations [5] also do not involve possible ETC’s con-
tributions. By examining ETC effects, Chivukula,
Dobrescu, and Terning (CDT) [13] argued that the TC2
proposal cannot be both natural and consistent with ex-
perimental measurements of the parameter � ¼
M2

W=M
2
Zcos

2�W . In the extreme case, even for degenerate

up and down-type, the technifermions of third generation
are likely to have custodial-isospin violating couplings to
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the strong Uð1Þ1 since part ofmt must arise from ETC, and
this leads to large contributions to � parameter which
contradicts with experiment data.1 To overcome this diffi-
culty, instead of conventional just one-doublet third gen-
eration technifermions, K. Lane and E. Eichten propose
their model [12] by introducing two sets of technifermion
doublets for third generation techniquarks with different
Uð1Þ1 charges but up and down-type technifermions in the
same doublet possessing the same Uð1Þ1 charges: Tt

L;R ¼
ðUt;DtÞL;R giving the top quark its ETC mass; Tb

L;R ¼
ðUb;DbÞL;R giving the bottom quark its ETC mass, these

cut the intimate relation between custodial-isospin viola-
tion from techniquarks and t� bmass difference. Because
of this important role of ETC interactions in Lane’s model,
its effects in EWCL are worthy of examination. This paper
is not only for computing EWCL coefficients of Lane’s
model, but also for investigating ETC effects on these
coefficients.

In the next section, we apply our formulation developed
in Ref. [5] to Lane’s model [12]. We perform dynamical
calculations through several steps: first we integrate in the
Goldstone field U, then integrate out technigluons and
techniquarks by solving the Schwinger-Dyson equation
(SDE) for techniquarks and compute the effective action,
then we further integrate out Z0 and finally obtain the
EWCL coefficients. Section III contains the discussion.
In the Appendix, we list some requisite formulas.

II. DERIVATIONOF EWCL FROMLANE’SMODEL

Considering a prototype natural TC2 model proposed by
K. Lane and E. Eichten [12], the TC group is not specified
in Ref. [12], but chosen to be SUðNÞ in later Lane’s
improved model[14]. For definiteness, we take GTC ¼
SUðNÞ. The gauge charge assignments of techniquarks in
GTC � SUð3Þ1 � SUð3Þ2 � SUð2ÞL �Uð1ÞY1

�Uð1ÞY2
are

shown as Table I, for which we choose the case B solution2

to the anomaly free conditions of Ref. [12].
The action of the symmetry breaking sector then is

SSBS½G�
�;A

A
1�;A

A
2�;W

a
�;B1�;B2�; �T

l;Tl; �Tt;Tt; �Tb;Tb�
¼
Z

d4xðLgauge þLtechniquark þLbreaking þL4TÞ; (1)

with different parts of Lagrangian given by

L gauge ¼ � 1

4
F�
��F

�;�� � 1

4
AA
1��A

A��
1 � 1

4
AA
2��A

A��
2

� 1

4
Wa

��W
a;�� � 1

4
B1��B

��
1 � 1

4
B2��B

��
2 ;

(2)

Ltechniquark

¼ �Tl

�
i@6 � gTCt

�G6 � � g2
�a

2
W6 aPL � 1

2
q2B6 2�

3PR

�
Tl

þ �Tt

�
i@6 � gTCt

�G6 � � g2
�a

2
W6 aPL þ q1B6 1PL

� q2B6 2PL þ 1

2
q1B6 1PR �

�
1

2
þ �3

2

�
q2B6 2PR

�
Tt

þ �Tb

�
i@6 � gTCt

�G6 � � g2
�a

2
W6 aPL � q1B6 1PL

þ q2B6 2PL � 1

2
q1B6 1PR þ

�
1

2
� �3

2

�
q2B6 2PR

�
Tb; (3)

L 4T ¼ H diag; (4)

H diag ¼ g2ETC
M2

ETC

�Ti
L�

�Ti
LðbU �Uj

R��U
j
R þ bD �Dj

R��D
j
RÞ;
(5)

where gTC, g2, q1 and q2 are the coupling constants of,
respectively, SUðNÞ, SUð2ÞL, Uð1ÞY1

, and Uð1ÞY2
(since

techniquarks are SUð3Þ1 � SUð3Þ2 singlets, corresponding
coupling constants do not show up here); and the corre-
sponding gauge fields (field strength tensors) are denoted
by G�

�,W
a
�, B1� and B2� (F�

��,W
a
��, B1�� and B2��) with

the superscript � runs from 1 to N2 � 1 and a from 1 to 3
(SUð3Þ1 � SUð3Þ2 gauge fields and field strength tensors
are denoted by AA

1�, A
A
2� and AA

1��, A
A
2�� with the super-

script A runs from 1 to 8); t� ¼ ��=2 (� ¼ 1; . . . ; N2 � 1)
and �a (a ¼ 1, 2, 3) are, respectively, Gell-Mann and Pauli

TABLE I. Gauge charge assignments of techniquarks for pro-
totype natural TC2 model given in Ref. [12]. These techniquarks
are SUð3Þ1 � SUð3Þ2 singlets.

field SUðNÞ SUð2ÞL Uð1ÞY1
Uð1ÞY2

Tl
L N 2 0 0

Ul
R N 1 0 1

2

Dl
R N 1 0 � 1

2

Tt
L N 2 �1 1

Ut
R N 1 � 1

2 1

Dt
R N 1 � 1

2 0

Tb
L N 2 1 �1

Ub
R N 1 1

2 0

Db
R N 1 1

2 �1

1In fact, the detailed up and down-type technifermions of third
generation are formally arranged not to participate Uð1Þ1 inter-
action by vanishing their Uð1Þ1 charges in original Hill’s model
and then do not cause large contribution to �. This result is
compatible with that obtained in Ref. [5]. But this naive arrange-
ment is not realistic in the sense, as mentioned by CDT [13], that
to give top and bottom (which must have different Uð1Þ1 charges
to allow for their different masses) ETC masses, the different
right-handed technifermions to which top and bottom quarks
couple must have different Uð1Þ1 charges.

2Case A solution, as mentioned by K. Lane in Ref. [12], would
not be possible to generate proper ETC masses for the t and b
quarks and therefore not considered in this work.
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matrices. PR
L
¼ ð1� �5Þ=2. Ordinary quarks are neglected,

since we only discuss the bosonic part of EWCL.3 For ETC
induced four-fermion interactions L4T , although in origi-
nal Ref. [12], except H diag, there are other different kinds

of interactions, such as H �lt�tb and H �lb �bt, consider that
these nondiagonal interactions will induce nondiagonal
condensations which violate the preferred requirement

h �Ui
LU

j
Ri ¼ h �Di

LD
j
Ri / 	ij for i, j ¼ l, t, b given in

Ref. [12], we drop them in our calculation.
In Ref. [12], an operator effecting SUð3Þ1 � SUð3Þ2 �

Uð1Þ1 �Uð1Þ2 breaking to SUð3ÞC �Uð1ÞY is needed. We
introduce a 3� 3 matrix scalar field � to take the role of
this operator to break SUð3Þ1 � SUð3Þ2 �Uð1ÞY1

�Uð1ÞY2

to SUð3ÞC �Uð1ÞY which leads to massive colorons and Z0.
This scalar field transforms as ð�3; 3; 56 ;� 5

6Þ under the group
SUð3Þ1 � SUð3Þ2 �Uð1ÞY1

�Uð1ÞY2
which leads to the

covariant derivative

D�� ¼ @u�þ i�

�
h1

�A�

2
AA
1� � 5

6
q1B1�

�

� i

�
h2

�A

2
AA
2� � 5

6
q2B2�

�
�;

with h1 and h2 being the coupling constants of SUð3Þ1 �
SUð3Þ2 and corresponding Lagrangian can be written as

L H ¼ 1

2
tr½ðD��ÞyðD��Þ� þ Vð�Þ; (6)

in which potential Vð�Þ is assumed to cause vacuum
condensate �ij ¼ ~v	ij and the leading effects can be

obtained by just replacing � with its vacuum expectation
value in (6),

LHj�¼~v ¼ 1

4

g23 ~v
2

sin2�cos2�
BA
�B

A�

þ 25

72

g21 ~v
2

sin2�0cos2�0
Z0
�Z

0�; (7)

where the SM Uð1ÞY field B� with generator Y ¼ Y1 þ Y2

and the Uð1Þ0 field Z0
� (the gluon AA

� and coloron BA
�) are

defined by orthogonal rotations with mixing angle �0 (�):

B1� B2�

� � ¼ Z0
� B�

� � cos�0 � sin�0

sin�0 cos�0

 !
; (8a)

AA
1� AA

2�

� �
¼ BA

� AA
�

� � cos� � sin�

sin� cos�

 !
; (8b)

with

g1 � q1 sin�
0 ¼ q2 cos�

0 g3 � h1 sin� ¼ h2 cos�:

(9)

The coloron field BA
� does not couple to other fields except

to ordinary fermions at present order of approximation, so
we can ignore their contributions to bosonic part of
EWCL.4 i.e. we can take

L breaking ¼ 1

2
M2

0Z
0
�Z

0� M2
0 ¼

25

36

g21 ~v
2

sin2�0cos2�0
:

(10)

With the above preparations, the strategy to derive the
EWCL from Lane’s model can be formulated as

expðiSEW½Wa
�; B��Þ ¼

Z
D �TlDTlD �TtDTtD �TbDTb

�DG�
�DZ0

� exp½iSSBS½G�
�; 0; 0;

Wa
�; B1�; B2�; �T

l; Tl; �Tt; Tt; �Tb; Tb��
(11)

¼ N ½Wa
�; B��

Z
D�ðUÞ expðiSeff½U;Wa

�; B��Þ; (12)

where AA
� related to AA

1� and AA
2� through (8b) is ordinary

gluon field, UðxÞ is a dimensionless unitary unimodular
matrix field in EWCL, andD�ðUÞ denotes the normalized
functional integration measure on U. The normalization
factor N ½Wa

�; B�� is determined through requirements

that when the TC and ETC interactions are switched off,
Seff½U;Wa

�; B�� must vanish. This leads to the following

electroweak gauge fields Wa
�, B� dependent N ½Wa

�; B��,

N ½Wa
�; B�� ¼

Z
D �TlDTlD �TtDTtD �TbDTbDG�

�

�DZ0
�e

iSSBSjignore TC;ETC;AA
1�

¼AA
2�

¼0
: (13)

Since there are many steps in deriving EWCL, we discuss
them separately in the following subsections.

A. Integrating in Goldstone field U

In terms of Z0 and B fields given by (8a), we can rewrite
techniquark interaction (3) as

L techniquark ¼ �c ði@6 � gTCt
�G6 � þ V6 þ A6 �5Þc ; (14)

where all three doublets techniquarks are arranged in one
by six matrix c ¼ ðUl;Dl; Ut;Dt; Ub;DbÞT and

3For top quark, its effect should be considered due to its large
mass comparable to symmetry breaking scale. There is an

EFFIIETC H �tt ¼ g2
ETC

M2
ETC

�tL�
�Ut

L
�Ut
R��tR þ H:c: responsible for

top mass. This interaction should be included in our calculation
in principle, and if top quark has nonzero condensation, this
interaction will contribute to techniquark self energy. Since
Ref. [12] treats this term as a perturbation, we can ignore it at
leading order of our coefficients’ computations.

4One can consider higher order corrections by including in (7)
the quantum fluctuation effects of field �. Since these effects
depend on details of symmetry breaking mechanism which are
not specified in Ref. [12], in order not to deviate original Lane’s
model too much, we ignore them in the present paper.
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V� ¼
�
� 1

2
g2

�a

2
Wa

� � 1

2
g1

�3

2
B�

�
� Iþ ZV�; (15)

A� ¼
�
1

2
g2

�a

2
Wa

� � 1

2
g1

�3

2
B�

�
� Iþ ZA�; (16)

with I ¼ diagð1; 1; 1Þ, ZV� ¼ diagðZl
V�; Z

t
V�; Z

b
V�Þ,

ZA� ¼ diagðZl
A�; Z

t
A�; Z

b
A�Þ, and

Zl
V� ¼ 1

4
g1 tan�

0Z0
��

3;

Zt
V� ¼ g1Z

0
�

�
3

4
cot�0 þ

�
3

4
þ 1

4
�3
�
tan�0

�
;

Zb
V� ¼ g1Z

0
�

�
� 3

4
cot�0 �

�
3

4
� 1

4
�3
�
tan�0

�
;

(17)

Zl
A� ¼ 1

4
g1 tan�

0Z0
��

3;

Zt
A� ¼ g1Z

0
�

�
� 1

4
cot�0 þ

�
� 1

4
þ 1

4
�3
�
tan�0

�
;

Zb
A� ¼ g1Z

0
�

�
1

4
cot�0 þ

�
1

4
þ 1

4
�3
�
tan�0

�
:

(18)

The Lagrangian (1) is locally SUð2ÞL �Uð1ÞY invariant
and approximately globally SUð6ÞL � SUð6ÞR invariant.
We introduce a local 2� 2 operator OðxÞ as OðxÞ �
trlc½Tl

LðxÞ �Tl
RðxÞ þ Tt

LðxÞ �Tt
RðxÞ þ Tb

LðxÞ �Tb
RðxÞ� with trlc as

the trace with respect to Lorentz and TC indices. The

transformation of OðxÞ under SUð2ÞL �Uð1ÞY is OðxÞ !
VLðxÞOðxÞVy

RðxÞ (with VL ¼ eið�a=2Þ�a and VR ¼ eið�3=2Þ�0).
Then we decompose OðxÞ as OðxÞ ¼ 
y

LðxÞ�ðxÞ
RðxÞ with
the �ðxÞ represented by a Hermitian matrix describes the
modular degree of freedom; while 
LðxÞ and 
RðxÞ are
represented by unitary matrices describe the phase degree
of freedom of SUð2ÞL and Uð1ÞY respectively. Now we

define a new field UðxÞ as UðxÞ � 
y
LðxÞ
RðxÞ which is the

nonlinear realization of the Goldstone boson field in
EWCL. Subtracting the �ðxÞ field, we find that the present
decomposition results in a constraint 
LðxÞOðxÞ
y

RðxÞ �

RðxÞOyðxÞ
y

LðxÞ ¼ 0, the functional expression of it is

Z
D�ðUÞF ½O�	ð
LO
y

R � 
RO
y
y

LÞ ¼ const:; (19)

where D�ðUÞ is an effective invariant integration mea-
sure; F ½O� only depends on O. Substituting identity (19)
into (11), we obtain

Z
DG�

�D �cDcDZ0
� expðiSSBSjAA

1�
¼AA

2�
¼0Þ

¼
Z

D�ðUÞDZ0
� expðiSZ0 ½U;Wa

�; B�; Z
0
��Þ; (20)

where D �cDc is the shorthand notation for
D �TlDTlD �TtDTtD �TbDTb and

SZ0 ½U;Wa
�; B�; Z

0
�� ¼

Z
d4x

�
� 1

4
Wa

��W
a;�� � 1

4
B��B

�� � 1

4
Z0
��Z

0�� þ 1

2
M2

0Z
0
�Z

0�
�

� i log
Z

DG�
�D �cDcF ½O�	ð
LO
y

R � 
RO
y
y

LÞ

� exp

	
i
Z

d4x

�
� 1

4
F�
��F

�;�� þ �c ði@6 � gTCt
�G6 � þ V6 þ A6 �5Þc þL4T

�

: (21)

From (12), Seff relates to SZ0 by

N ½Wa
�; B��eiSeff ½U;Wa

�;B�� ¼
Z

DZ0
�e

iSZ0 ½U;Wa
�;B�;Z

0
�� (22)

To match the correct normalization, we introduce the logarithm function as the normalization factorR
D �cDc ei

R
d4x �c ði@6 þV6 þA6 �5Þc ¼ exp Tr logði@6 þ V6 þ A6 �5Þ and then take a special SUð2ÞL �Uð1ÞY rotation, as VLðxÞ ¼


LðxÞ and VRðxÞ ¼ 
RðxÞ, on both numerator and denominator,

SZ0 ½U;Wa
�; B�; Z

0
�� ¼

Z
d4x

�
� 1

4
Wa

��W
a;�� � 1

4
B��B

�� � 1

4
Z0
��Z

0�� þ 1

2
M2

0Z
0
�Z

0�
�
� iTr logði@6 þ V6 þ A6 �5Þ

� i log

R
DG�

�D �c 
Dc 
F ½O
�	ðO
 �Oy

ÞeiS0R

D �c 
Dc 
e
iS0jignore TC;ETC

(23)

S0 ¼
Z

d4x

�
� 1

4
F�
��F

�;�� þ �c 
ði@6 � gTCt
�G6 � þ V6 
 þ A6 
�

5Þc 
 þL
4T

�
; (24)

where the rotated fields are denoted by subscript 
 and they are defined as follows

Ti

 ¼ PL
LðxÞTi

LðxÞ þ PR
RðxÞTi
RðxÞ; i ¼ l; t; b O
ðxÞ � 
LðxÞOðxÞ
y

RðxÞ Z0

;�ðxÞ � Z0

�ðxÞ; (25)
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g2
�a

2
Wa


;�ðxÞ � 
LðxÞ
�
g2

�a

2
Wa

�ðxÞ � i@�

�

y
LðxÞ; (26)

g1
�3

2
B
;�ðxÞ � 
RðxÞ

�
g1

�3

2
B�ðxÞ � i@�

�

y
RðxÞ: (27)

andL
4T isL4T with TC fields replaced by rotated ones. It
can be shown that

L 
4T ¼ L4T: (28)

Action (23) can be further decomposed as

SZ0 ½U;Wa
�; B�; Z

0
�� ¼

Z
d4x

�
� 1

4
Wa

��W
a;�� � 1

4
B��B

��

� 1

4
Z0
��Z

0�� þ 1

2
M2

0Z
0
�Z

0�
�

þ Snorm½U;Wa
�; B�; Z

0
��

þ Sanom½U;Wa
�; B�; Z

0
��; (29)

where

Snorm½U;Wa
�; B�� ¼ �i log

Z
DG�

�D �c 
Dc 
F ½O
�
� 	ðO
 �Oy


ÞeiS0 ; (30)

and

iSanom½U;Wa
�; B�; Z

0
�� ¼ Tr logði@6 þ V6 þ A6 �5Þ

� Tr logði@6 þ V6 
 þ A6 
�
5Þ:
(31)

The transformations of the rotated fields under SUð2ÞL �
Uð1ÞY are c 
ðxÞ ! hðxÞc 
ðxÞ, O
ðxÞ ! hðxÞO
ðxÞhyðxÞ
with hðxÞ describes a hidden local Uð1Þ symmetry. Thus,
the chiral symmetry SUð2ÞL �Uð1ÞY covariance of the
unrotated fields has been transferred totally to the hidden
symmetry Uð1Þ covariance of the rotated fields.

B. Integrating out techinigluons and techniquarks

With the technique developed in Ref. [5], the technigu-
lon fields in Eq. (3) can be formally integrated out with the
help of full n-point Green’s function of the G�

�-field

G�1...�n
�1...�n ,

eiSnorm½U;Wa
�;B�;Z

0
�� ¼

Z
D �c 
Dc 
F ½O
�	ðO
�Oy


Þ

� exp

	
i
Z
d4x½ �c 
ði@6 þV6 
þA6 
�

5Þc 


þL
4T�þ
X1
n¼2

Z
d4x1 . . .d

4xn
ð�igTCÞn

n!

�G�1...�n
�1...�nðx1; . . . ;xnÞJ�1


;�1
ðx1Þ . . .J�n


;�n

�ðxnÞ


; (32)

where effective source J
��

 ðxÞ is identified as J

��

 ðxÞ �

�c 
ðxÞt���c 
ðxÞ.

1. Schwinger-Dyson equation for techniquark propagator

To show that the TC interaction indeed induces the
condensation h �c c i � 0 which triggers EWSB, we explic-
itly calculate the behavior of techniquark propagator
S��ðx; x0Þ � hc �


 ðxÞ �c �

ðx0Þi in the following. Neglecting

the factor F ½O
�	ðO
 �Oy

Þ, the total functional deriva-

tive of the integrand with respect to �c �

 ðxÞ is zero,

0 ¼
Z

D �c 
Dc 


	

	 �c �

 ðxÞ

exp

�Z
d4xð �c 
I þ �Ic 
Þ

þ i
Z

d4x½ �c 
ði@6 þ V6 
 þ A6 
�
5Þc 
 þL
4T�

þ X1
n¼2

Z
d4x1 . . .d

4xn
ð�igTCÞn

n!
G�1...�n

�1...�nðx1; . . . ; xnÞ

� J�1


;�1
ðx1Þ . . . J�n


;�n
ðxnÞ

�
; (33)

where IðxÞ and �IðxÞ are the external sources for techniquark
fields, respectively, �c 
ðxÞ and c 
ðxÞ; and which leads to

SDE for techniquark propagators,

SXðx; yÞ ¼ hXðxÞ �XðyÞi X ¼ Ul

;D

l

; U

t

; D

t

; U

b

; D

b

:

(34)

The detail derivation procedure is similar to that in Ref. [5].
The only difference is that now we have EFFIIETC in the
theory. The final obtained SDE5 is

i�Xðx; yÞ ¼ C2ðNÞg2TCG��ðx; yÞ½��SXðx; yÞ���
� iCX��½PLSXðx; xÞPL

þ PRSXðx; xÞPR���	ðx� yÞ; (35)

with techniquark self energy defined as

i�Xðx; yÞ � S�1
X ðx; yÞ þ i½i@6 x þ V6 
ðxÞ þ A6 
ðxÞ�5�

� 	ðx� yÞ; (36)

5Notice that in original studies of QCD chiral Lagrangian,
SDE was derived as stationary equation of effective action [6,7].
While in generalizing the formulation to EWCL in Ref. [5], to
simplify the procedure, we change the original complex deriva-
tion of SDE from effective action to explicit path integral
evaluation in which we have taken approximations of neglecting
higher-point Green’s functions and factorizing four point
Green’s function. The effects of these approximations are
equivalent to take the lowest order in dynamical perturbation
theory and the improved ladder approximation in original sta-
tionary equation approach. The judgment for the validity of these
approximations relies on the results for QCD chiral Lagrangian,
for which the obtained results with this approach more or less
agree with the experimentally determined LEC’s. In present
work, we just follow the process proposed in Ref. [5].
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and technigluon propagator G��
��ðx; yÞ ¼ 	��G��ðx; yÞ.

C2ðNÞ ¼ ðN2 � 1Þ=ð2NÞ is Casimir operator from
ðt�t�Þab ¼ C2ðNÞ	ab for the fundamental representation
of TC group SUðNÞ. Further CX is effective ETC induced
four fermion coupling which is

CUl


¼ CUt



¼ CUb



¼ g2ETC

M2
ETC

bU

CDl


¼ CDt



¼ CDb



¼ g2ETC

M2
ETC

bD:

(37)

In the following, we first consider the case of V
;� ¼
A
;� ¼ 0. In this situation, the technigluon propagator in

Landau gauge isG��
��ðx; yÞ ¼ R d4p

ð2Þ4 e
�ipðx�yÞG��ðp2Þwith

G��ðp2Þ ¼ i
�p2½1þ�ð�p2Þ� ðg�� � p�p�=p

2Þ. And the tech-

niquark self energy and propagator are respectively

�Xðx; yÞ
SXðx; yÞ

� �
¼
Z d4p

ð2Þ4 e
�ipðx�yÞ � �Xð�p2Þ

SXð�p2Þ
� �

; (38)

with SXðpÞ ¼ i=½p6 ��Xð�p2Þ�. Substitute the above re-
sults into the SDE and parametrize the technigluon propa-
gator as �TC½ðpE � qEÞ2� � g2TC=ð4½1þ�ðp2

EÞ�Þ for the
Euclidean momentum pE, qE, and we obtain the following
integration equation which with angular approximation
�TC½ðpE � qEÞ2� ¼ �TCðp2

EÞ�ðp2
E � q2EÞ þ

�TCðq2EÞ�ðq2E � p2
EÞ. It can be further reduced to differen-

tial equation,

i�Xð�p2Þ ¼ 4
Z d4q

ð2Þ4
	
3C2ðNÞ�TC½�ðp� qÞ2�

ðp� qÞ2 þ CX




�
�

�Xð�q2Þ
q2 � �2

Xð�q2Þ
�
: (39)

Once the above equation presents a nonzero solution, we
obtain the nontrivial techniquark condensate

h �XðxÞX0ðxÞi ¼ �4N	XX0
Z d4pE

ð2Þ4
�Xðp2

EÞ
p2
E þ�2

Xðp2
EÞ

; (40)

which breaks SUð2ÞL �Uð1Þ1 �Uð1Þ2 to the subgroup
Uð1Þem.

To obtain the numerical solution of Eq. (39), we take the
running constant �TCðp2Þ, the same as that used in Eq. (49)
of Ref. [5], for which there are three input parameters: N,
Nf, and �TC. N as the TC number is a free parameter, and

we take four different values N ¼ 3, 4, 5, 6 to estimate its
effects. Nf ¼ 6 is due to three doublets of techniquarks.

The scale of TC interaction �TC will be fixed from f ¼
250 GeV determined later in (71). There is another pa-
rameter due to the presence of EFFIIETC. We denote its
dimensionless value by b � C�2

TC with C, introduced in

(37) as coefficients of EFFIIETC. Consider that C is pro-
portional to 1=M2

ETC, the dimensionless parameter b /
�2

TC=M
2
ETC should be very small. We take the physical

cutoff of the equation to be the scale of ETC and � ¼

�ETC ¼ 100�TC. The results of �ðp2
EÞ are depicted in

Fig. 1 in which dashed lines are for a positive b and
different Ns; while solid lines are for different negative
bs and N ¼ 3. From which, we find
(1) For N ¼ 3 and positive b, EFFIIETC influences

�ðp2
EÞ very little except for its large momentum

tail. We have changed coupling b by enlarging its
magnitude 100 times, the general form of �ðp2

EÞ
almost does not change. For N ¼ 3 and a negative
b, above b ¼ �0:00300 the change in �ðp2

EÞ is

small. Below b ¼ �0:00300, we see the explicit
change of �ðp2

EÞ which at large momentum region

exhibits typical slowly damping asymptotic behav-
ior due to the existence of four-fermion coupling. To
check the validity of the phenomena, we have
changed the differential equation to the original
integration equation for SDE with and without an-
gular approximation �TC½ðpE � qEÞ2� ¼
�TCðp2

EÞ�ðp2
E � q2EÞ þ �TCðq2EÞ�ðq2E � p2

EÞ and in-

creased the cutoff of the theory, but all obtain the
similar result. For N ¼ 4, 5, 6, we can find similar
phenomena as the case of N ¼ 3 which are not
written down here, since later we will show that
present model prefers smaller N and then the final
result of our calculation will be only limited in the
case of N ¼ 3.

(2) For large momentum tail of �ðp2
EÞ, we find that if

the positive b is larger than some critical value,
�ðp2

EÞwill be negative as momentum becomes large

which indicates the possible oscillation. These val-
ues are bN¼3 ¼ 2:45� 10�4, bN¼4 ¼ 2:26� 10�4,
bN¼5 ¼ 2:15� 10�4, and bN¼6 ¼ 2:08� 10�4.
Considering that bN / �2

TC=�
2
ETC must be very

small, we take b ¼ 2:08� 10�4 as a typical value
of our computation. To exhibit the differences of

10
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10
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2
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0.5

1

1.5

2

2.5

3

p
E
/Λ

TC

Σ(
p E2

)/
Λ

T
C

 

 

N=3,Λ
TC

=420,b=−3.33×10−3

N=3,Λ
TC

=586,b=−3.30×10−3

N=3,Λ
TC

=671,b=−3.00×10−3

N=3,Λ
TC

=680,0<b<2.45×10−4

N=4,Λ
TC

=609,0<b<2.26×10−4

N=5,Λ
TC

=556,0<b<2.15×10−4

N=6,Λ
TC

=514,0<b<2.08×10−4

FIG. 1 (color online). Techniquark self energy �ðp2
EÞ. �TC is

in unit of GeV and is fixed by f ¼ 250 GeV.
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tails for different bs, we draw diagrams of �ðp2
EÞ

with b ¼ 2:08� 10�4 and b ¼ 0 together in Fig. 2.
We find that the differences show up only in the tail
of self energy at momentum beyond 50�TC and
bellow that limit, there is almost no difference. We
further find that for fixed f ¼ 250 GeV, from the
later result of (71), both b ¼ 0 and b ¼ 2:08� 10�4

cases lead to almost the same �TC.
If we further take bU ¼ bD ¼ b, �X equals for each

techniflavor and we can neglect subscript X. Then with the
technique developed in Ref. [5], we can show that if the
function �ð@2xÞ	ðx� yÞ is the solution of the SDE in the
case V
;� ¼ A
;� ¼ 0, we can replace its argument @x by

the minimal-coupling covariant derivative �rx �
@x � iV
ðxÞ and use it, i.e., �ð �r2

xÞ	ðx� yÞ, as an approxi-

mate solution of the SDE in the case V
;� � 0 and A
;� �

0.

2. Effective action

Starting from (32), the exponential multifermion terms
on the right-hand side of the equation can be written
explicitly as

X1
n¼2

Z
d4x1 . . .d

4xn
ð�igTCÞn

n!
G�1...�n

�1...�n
ðx1; . . . ; xnÞJ�1


;�1
ðx1Þ . . .

� J
�n


;�n
ðxnÞ �

Z
d4xd4x0 �c �


 ðxÞ���ðx; x0Þc �

ðx0Þ;

(41)

���ðx; x0Þ ¼
X1
n¼2

�ðnÞ
��ðx; x0Þ � �2

��ðx; x0Þ; (42)

�ð2Þ
��ðx; x0Þ ¼ �g2TCG

�1�2
�1�2

ðx; x0Þ½t�1
��1Sðx; x0Þt�2

��2���;
(43)

where we have taken the approximation that (a). replacing
the summation over 2n-fermion interactions with parts of
them by their vacuum expectation values (VEVs); (b). only
keeping the leading four fermion interactions. The ap-
proximation (a) can be seen as some kinds of average field
approximation and the approximation (b) is a low energy
approximation in which we ignore the high dimension
operators. The effects of these two approximations are
that they lead finally to Tr logð. . .Þ terms given in (44)
which is originally obtained by taking large Nc limit and
lowest order in dynamical perturbation theory in Ref. [7,8].
We base validity of these approximations on the previous
experience of the agreement between our theoretical com-
putation for QCD chiral Lagrangian and experiment data.
For the L
4T term in (32), we use the same average field

approximation given above. Combining with the result

(35) and neglecting the factor F ½O
�	ðO
 �Oy

Þ in Eq.

(32),6 we obtain

Snorm½U;Wa
�;B�� � �i log

Z
D �c 
Dc 
 exp

�
i
Z

d4x �c 


� ði@6 þV6 
 þA6 
�
5Þc 
 � i

Z
d4xd4x0

� �c �

 ðxÞ���ðx; x0Þc �


ðx0Þ
�

��iTr log½i@6 þV6 
 þA6 
�
5 ��ð �r2Þ�;

(44)

where �ð �r2Þ in techniflavor space is block diagonal.
Notice that the arguments of Tr log are block diagonal
which enable us to compute them block by block,

Snorm½U;Wa
�;B��¼

X3
�¼1

�iTrlog½i@6 þv6 nþa6 ��5��ð �r�;2Þ�

¼X3
�¼1

Z
d4xtrf½ðF1D

0 Þ2a�2�K1D
1 ðd�a��Þ2

�K1D
2 ðd�a���d�a

�
�Þ2þK1D

3 ða�2Þ2
þK1D

4 ða��a�� Þ2�K1D
13 V

�
��V���

þiK1D
14 a

�
�a

�
�V����þOðp6Þ; (45)

for which �r�
� � @� � iv�


 and from (15) to (18) and (25)

to (27),

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

p
E

/Λ
TC

Σ(
p E2

)/
Λ

T
C

 

 

N=3,b=0
N=4,b=0
N=5,b=0
N=6,b=0

N=3,b=2.08×10−4

N=4,b=2.08×10−4

N=5,b=2.08×10−4

N=6,b=2.08×10−4

FIG. 2 (color online). The tail of techniquark self energy
�ðp2

EÞ exhibits ETC effects.

6This approximation is also used in Eq. (33) and was first
introduced in Ref. [7], where F ½O
� is dropped out, because it
belongs to the 1=Nc order. 	ðO
 �Oy


Þ is exponentialized there
by introducing auxiliary field � and it is shown in Eq. (17) in
Ref. [7] that in large Nc limit, there is no contribution of
corresponding term due to Eq. (15) there.
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v
�
� ¼ � 1

2
g2

�a

2
Wa


;� � 1

2
g1

�3

2
B
;� þ Z

�
V�;

a
�
� ¼ 1

2
g2

�a

2
Wa


;� � 1

2
g1

�3

2
B
;� þ Z

�
A� � ¼ l; t; b;

(46)

where d�a
�
� � @�a

�
� � i½v�

�; a
�
� �, V

�
�� � i½@� �

iv�
�; @� � iv�

� �. F1D
0 andK1D

i coefficients with superscript

1D to denote that they are from one doublet TC model
discussed in Ref. [5] which are functions of techniquark
self energy �ðp2Þ and detailed expressions of them are

already given in Eq. (36) of Ref. [7] with the replacement
of Nc ! N.
For anomaly part, the U field dependent part can be

produced by the normal part with vanishing techniquark
self energy �, i.e.

iSanom½U;Wa
�; B�� ¼ Tr logði@6 þ V6 þ A6 �5Þ

� iSnorm½U;Wa
�; B��j�¼0: (47)

Notice that the pure gauge field part independent ofU field
is irrelevant to EWCL. Combined with (45), above relation
implies

iSanom½U;Wa
�; B�� ¼ Tr logði@6 þ V6 þ A6 �5Þ þ i

X3
�¼1

Z
d4x trf½�K1D;ðanomÞ

1 ðd�a��Þ2 �K1D;ðanomÞ
2 ðd�a�� � d�a

�
�Þ2

þK1D;ðanomÞ
3 ða�2Þ2 þK1D;ðanomÞ

4 ða��a�� Þ2 �K1D;ðanomÞ
13 V

�
��V��� þ iK1D;ðanomÞ

14 a
�
�a

�
�V����

þOðp6Þ; (48)

with

K 1D;ðanomÞ
i ¼ �K1D

i j�¼0 i ¼ 1; 2; 3; 4; 13; 14 (49)

where we have used the result that F1D
0 j�¼0 ¼ 0. Combining normal and anomaly part contributions together, with the help

of (29), we finally find

SZ0 ½U;Wa
�; B�; Z

0
�� ¼

Z
d4x

�
� 1

4
Wa

��W
a;�� � 1

4
B��B

�� � 1

4
Z0
��Z

0�� þ 1

2
M2

0Z
0
�Z

0�
�
� iTr logði@6 þ V6 þ A6 �5Þ

þ X3
�¼1

Z
d4x trf½ðF1D

0 Þ2a�2 �K1D;��0
1 ðd�a��Þ2 �K1D;��0

2 ðd�a�� � d�a
�
�Þ2 þK1D;��0

3 ða�2Þ2

þK1D;��0
4 ða��a�� Þ2 �K1D;��0

13 V�
��V��� þ iK1D;��0

14 a��a
�
�V���� þOðp6Þ: (50)

With the help of (46) and (25) to (27), the above result can
be further simplified to the form (A4) in which the explic-
itly U field dependence is displayed.

C. Integrating out Z0

We can further decompose (A4) into

SZ0 ½U;Wa
�; B�; Z

0
�� ¼ ~SZ0 ½U;Wa

�; B�; Z
0
��

þ SZ0 ½U;Wa
�; B�; 0�; (51)

where ~SZ0 ½U;Wa
�; B�; Z

0
�� is the Z0 dependent part of

Seff½U;Wa
�; B�; Z

0
��. We find the Z0 independent part

SZ0 ½U;Wa
�; B�; 0� is just the same as that of one-doublet

TC model given in Ref. [5], the only difference is that now
there is an extra overall factor 3 multiplied in front of all
terms. The source of this factor comes from the fact that in
the present model, instead of one doublet, we have three
techniquark doublets. So switching off the effects from the
Z0 particle, contributions of the present TC2 model to
bosonic part of EWCL are equivalent to those of the

three-doublets TC model. In ~SZ0 ½U;Wa
�; B�; Z

0
��, in order

to normalize the Z0 field correctly, we introduce normal-

ized field Z0
R;� as

Z0
� ¼ 1

cZ0
Z0
R;�

c2Z0 ¼ 1þ g21

�
3Ktan2�0 þ 10Kðtan�0 þ cot�0Þ2

þK1D;��0
2 ðtan�0 þ cot�0Þ2 þ 3

2
K1D;��0

2 tan2�0

þ 9

2
K1D;��0

13 ðtan�0 þ cot�0Þ2 þ 3

2
K1D;��0

13 tan2�0
�
;

(52)

in terms of normalized field Z0
R;�,

~SZ0 ½U;Wa
�; B�; Z

0
��

become

~S Z0 ½U;Wa
�; B�; Z

0
�� ¼

Z
d4x

�
1

2
Z0
R;�D

�1;��
Z Z0

R;�

þ Z
0;�
R JZ;� þ Z2

RZ
0
R;�J

�
3Z

þ g4Z
g41
c4Z0

Z0;4
R

�
(53)
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with

D�1;��
Z ¼ g��ð@2 þM2

Z0 Þ � ð1þ �ZÞ@�@� þ ���
Z ðXÞ; (54)

M2
Z0 ¼ 1

c2Z0

	
M2

0 þ
1

2
ðF1D

0 Þ2g21ðcot�0 þ tan�0Þ2 þ 3

4
ðF1D

0 Þ2g21tan2�0


; (55)

�Z ¼ g21
c2Z0

�
� 1

2
ðtan�0 þ cot�0Þ2 � 3

4
tan2�0

�
K1D;��0

1 ; (56)

�
��
Z ðXÞ ¼ 1

c2Z0

	�
� 3

4
K1D;��0

1 � 3

16
K1D;��0

3 þ 3

8
K1D;��0

13 � 3

16
K1D;��0

14

�
g21tan

2�0 tr½X��3�tr½X��3�

þ
�
3

2
K1D;��0

1 tan2�0 � 1

4
ðcot�0 þ tan�0Þ2K1D;��0

3 � 1

4
ðcot�0 þ tan�0Þ2K1D;��0

4 � 3

8
K1D;��0

4 tan2�0

� 3

4
K1D;��0

13 tan2�0 þ 3

8
K1D;��0

14 tan2�0
�
g21 tr½X�X�� þ g��

��
� 1

8
ðcot�0 þ tan�0Þ2 � 3

16
tan2�0

�
K1D;��0

3

þ 3

16
tan2�0K1D;��0

4 � 1

8
ðcot�0 þ tan�0Þ2K1D;��0

4 þ 3

4
tan2�0K1D;��0

13 � 3

8
tan2�0K1D;��0

14

�
g21 tr½XkXk�

þ g��

�
� 3

16
K1D;��0

4 � 3

8
K1D;��0

13 þ 3

16
K1D;��0

14 Þ
�
� g21tan

2�0 tr½Xk�
3�tr½Xk�3�



; (57)

J
�
Z ¼ J

�
Z0 þ

g21�

cZ0
@�B�� þ ~J

�
Z ; (58)

JZ0� ¼ � 3

4cZ0
iðF1D

0 Þ2g1 tan�0 tr½X��
3�; (59)

� ¼ 3K tan�0 þ
�
3

2
K1D;��0

2 þ 3

2
K1D;��0

13

�
tan�0; (60)

~J�Z ¼ 1

cZ0

	
3

4
ig1 tan�

0K1D;��0
1 ftr½UyðD�D�UÞUyD�U�3� � tan�0 tr½UyðD�D�UÞ�3UyD�Uþ @�ðUyD�D�U�3Þ�g

þ 3

2
ð�K1D;��0

2 þK1D;��0
13 Þg1 tan�0@� tr½ �W���3� þ 3i

4

�
1

4
K1D;��0

3 � 1

4
K1D;��0

4 �K1D;��0
13 þ 1

2
K1D;��0

14

�

� g1 tan�
0 tr½X�X��tr½X��3� þ 3i

4

�
1

2
K1D;��0

4 þK1D;��0
13 � 1

2
K1D;��0

14

�
g1 tan�

0 tr½X�X��tr½X��3�

� 3

4
ðK1D;��0

13 � 1

4
K1D;��0

14 Þg1 tan�0 tr½ �W��ðX��
3 � �3X�Þ� þ 3

2
iðK1D;��0

13 � 1

4
K1D;��0

14 Þg1 tan�0@� tr½X�X��3�


;

(61)

g4Z ¼ ðK1D;��0
3 þK1D;��0

4 Þ
�

3

128
tan4�0 þ 3

32
tan2�0ðcot�0 þ tan�0Þ2 þ 1

64
ðcot�0 þ tan�0Þ4

�
; (62)

J�3Z ¼ �i

c3
Z0
ðK1D;��0

3 þK1D;��0
4 Þg31

�
3

32
tan3�0 þ 3

16
ðcot�0 þ tan�0Þ2 tan�0

�
tr½X��3�: (63)
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Perform the loop expansion to (22), the result of Z0 field
integration is

Seff½U;Wa
�; B�� � i logN ½Wa

�; B��
¼ ~SZ0 ½Z0

c; U;Wa; B� þ loop terms; (64)

with classical field Z0
c satisfies

@

@Z0
c;�ðxÞ ½

~SZ0 ½Z0
c; U;Wa; B� þ loop terms� ¼ 0; (65)

and

� i logN ½Wa
�; B�� ¼ ½~SZ0 ½Z0

c; U;Wa; B�
þ loop terms��¼0; (66)

which is obtained from (13) and the fact that when we
switch off TC and ETC interactions, techniquark self en-
ergy vanishes. With (53), the solution is

Z0�
c ðxÞ ¼ �D��

Z JZ;�ðxÞ þOðp3Þ þ loop terms: (67)

Then

Seff½U;Wa
�; B�� � i logN ½Wa

�; B��

¼
Z

d4x

�
� 1

2
JZ;�D

��
Z JZ;� � J3Z;�0 ðD�0�0

Z JZ;�0 Þ

� ðD��
Z JZ;�Þ2 þ g4Z

g41
cZ0

ðD��
Z JZ;�Þ4

�
þ loop terms;

(68)

where D�1;��
Z DZ;�� ¼ D��

Z D�1
Z;�� ¼ g�� and it is not diffi-

cult to show that if we are accurate up to order p4, then
order p of Z0

c solution is enough, and all contributions from
order p3 of Z0

c belong to order p6. The loop terms in (68)
should be small, at least they are expected not to change the
qualitative picture of the model. Otherwise the physics
related to Z0 of the model will deviate from its designers
since original discussions are mainly limited in tree order.
With this expectation, we can ignore loop terms which will
simplify the further computation. With the help of (54),
(58), and (68),

Seff½U;Wa
�;B��� i logN ½Wa

�;B��

¼
Z
d4x

�
�1

2
JZ0;�D

��
Z JZ0;�� 1

M2
Z0
JZ0;�

�
~J
�
Z þ

g21�

cZ0
@�B

��

�

� 1

M6
Z0
J3Z;�J

�
Z0J

2
Z0þ

g4Zg
4
1

c4Z0M8
Z0
J4Z0

�
: (69)

Ignoring terms higher than order p4, we find
Seff½U;Wa

�; B�� has the exact form of standard EWCL up
to order p4. We can then read out the corresponding
coefficients. The results will be given in the next subsec-
tion. The normalization factor now is

�i logN ½Wa
�;B��¼

Z
d4x

�
�
�
1

4
þ3

4
Kg22þ

3

8
K1D;��0

2 g22

þ3

8
K1D;��0

13 g22

�
Wa

��W
a;��

�
�
1

4
þ3

4
Kg21þ

3

8
K1D;��0

2 g21

þ3

8
K1D;��0

13 g21þ
3ðF1D

0 Þ2
8M2

Z0
�1g

2
1

þ�1g
2
1 cot�

0�
�
B��B

��

�
: (70)

D. Coefficients of EWCL

From Seff½U;Wa
�; B�� obtained in the last subsection, we

can read out coefficients of EWCL. The p2 order coeffi-
cients are

f2 ¼ 3ðF1D
0 Þ2 �1 ¼ 3ðF1D

0 Þ2g21tan2�0
8c2Z0M2

Z0
: (71)

Combining with (10) and (55) and T parameter �T ¼ 2�1

given in Ref. [2], we further obtain

�1 ¼ 1

2
�T ¼ 12

ð200~v2

3f2
þ 16Þð1þ cot2�0Þ2 þ 24

; (72)

then T is positive and uniquely determined by �0 and ~v=f.
It is bounded above and the upper limit is 3=ð5þ
25~v2=3f2Þ� 	 9=ð40�Þ, since we know ~v 
 f. In the
following numerical computations, for simplicity, we all
take ~v ¼ f. The p4 order coefficients are
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�1 ¼ 3ð1� 2�1ÞL1D
10 þ 3ðF1D

0 Þ2
2M2

Z0
�1 � 2��1 cot�

0; �2 ¼ � 3

2
ð1� 2�1ÞL1D

9 þ 3ðF1D
0 Þ2

2M2
Z0

�1 � 2��1 cot�
0;

�3 ¼ � 3

2
ð1� 2�1ÞL1D

9 ; �4 ¼ 3L1D
2 þ 6�1L

1D
9 þ 3ðF1D

0 Þ2
2M2

Z0
�1; �5 ¼ 3L1D

1 þ 3

2
L1D
3 � 3ðF1D

0 Þ2
2M2

Z0
�1 � 6�1L9;

�6 ¼ � 3ðF1D
0 Þ2

2M2
Z0

�1 � 6�1ð4L1D
1 þ L1D

9 Þ þ �2
1½ð1þ cot2�0Þ2ð48L1D

1 þ 8L1D
3 Þ þ 24L1D

1 �;

�7 ¼ 3ðF1D
0 Þ2

2M2
Z0

�1 � 2�1ð3L1D
3 þ 6L1D

1 � 3L1D
9 Þ þ �2

1½ð1þ cot2�0Þ2ð24L1D
1 þ 4L1D

3 Þ þ 6 tan�0ðL1D
3 þ 2L1D

1 Þ�;

�8 ¼ � 3ðF1D
0 Þ2

2M2
Z0

�1 þ 12�1L
1D
10 ; �9 ¼ � 3ðF1D

0 Þ2
2M2

Z0
�1 þ 6�1ðL1D

10 � L1D
9 Þ;

�10 ¼ 4�2
1ð18L1D

1 þ 3L1D
3 Þ þ 32�4

1g4Zcot
4�0 � �3

1ð144L1D
1 þ 24L1D

3 Þ½1þ 2ð1þ cot2�0Þ2�;
�11 ¼ �12 ¼ �13 ¼ �14 ¼ 0; (73)

where Li relate to K1D;��0
i coefficients through

K1D;��0
2 ¼ L1D

10 � 2H1D
1 ;

K1D;��0
3 ¼ 64L1D

1 þ 16L1D
3 þ 8L1D

9 þ 2L1D
10 þ 4H1D

1 ;

K1D;��0
4 ¼ 32L1D

1 � 8L1D
9 � 2L1D

10 � 4H1D
1 ;

K1D;��0
13 ¼ �L1D

10 � 2H1D
1 ;

K1D;��0
14 ¼ �4L1D

10 � 8L1D
9 � 8H1D

1 : (74)

Several features of these results are:
(1) The contributions to p4 order coefficients are di-

vided into two parts: the three doublets TC model

contribution (equals to 3 times of one doublet TC
model discussed in Ref. [5]) and the Z0 contribution.

(2) All corrections from Z0 particle are at least propor-
tional to �1 which vanish if the mixing disappears
by �0 ¼ 0.

(3) Since L1D
10 < 0, combining with positive �1, (73)

then tells us �8 is negative. Then U ¼ �16�8

coefficient given in Ref. [2] is always positive in
the present model.

(4) �1 and �2 depend on � which from (60) further rely
on an extra parameterK. We can combine (52) and
(71) together to fix K,

ðF1D
0 Þ2g21tan2�0
8�1M

2
Z0

¼ 1

3
þ g21

�
Ktan2�0 þ 10

3
Kðtan�0

þ cot�0Þ2 þ 1

3
K1D;��0

2 ðtan�0

þ cot�0Þ2 þ 1

2
K1D;��0

2 tan2�0

þ 3

2
K1D;��0

13 ðtan�0 þ cot�0Þ2

þ 1

2
K1D;��0

13 tan2�0
�
: (75)

Once K is fixed, with the help of (A5), we can
determine the ratio of infrared cutoff � and ultra-
violet cutoff �. In Fig. 3, we draw the �=� as
function of T and MZ0 , we find natural criteria �>
� offers stringent constraints on the allowed region
for T and MZ0 that present theory prefer small Z0
mass (< 0:4 TeV) and small TC group. For ex-
ample, T < 0:035 for MZ0 ¼ 0:3 TeV and N ¼ 3,
T < 0:25 for MZ0 ¼ 0:2 TeV and N ¼ 6, T < 0:74
for MZ0 ¼ 0:2 TeV and N ¼ 3. In Fig. 4, we draw
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FIG. 3 (color online). The ratio of infrared cutoff and ultra-
violet cutoff �=� as function of T parameter and Z0 mass in unit
of TeV.
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Z0 mass as function of T parameter and �=�. The
line of �=� ¼ 1 gives the upper bound of Z0 mass
MZ0 < 0:4 TeV, which is already beyond the experi-
ment limit given by Ref. [15,16]. To check whether
this bound is reliable, we have changed coupling of
EFFIIETC by either enlarging its magnitude 100
times or reversing its sign, the results all almost do
not change. The special case of b ¼ �3:33� 10�3

also has no effect here. To examine the reason why
the present model causes smallerMZ0 than that from
Hill’s model, we consider the situation of very tiny
�0 and �=�, then the leading term in the right-hand
side of (75) is 10

3 g
2
1Kcot2�0. Combining with Eq.

(72), we find that (75) in this extreme case gives

MZ0 ¼ F0

ffiffiffiffiffiffiffiffiffiffiffiffi
31
120K

q
’ f

ffiffiffiffiffiffi
K

p
=ð2 ffiffiffi

3
p Þ. For Hill’s model,

we obtain the result that MZ0 ¼ F0

ffiffiffiffiffiffi
K

p
=2 ¼

f
ffiffiffiffiffiffi
K

p
=2. So Z0 mass is smaller than that in Hill’s

model by a factor 1=
ffiffiffi
3

p
due to the identification of

F0 with f=
ffiffiffi
3

p
now in (71) but with f in Hill’s model.

Considering the smaller TC group will allow rela-
tive larger Z0 mass. In following discussions, we
only limit us in the case of N ¼ 3.

(5) For a typical case with b ¼ �3:33� 10�3, except
for coefficients F1D

0 and K1D
1 which receive

relative large corrections from ETC interaction,
all other K1D

i coefficients only feel small ETC
effects.

With f ¼ 250 GeV, all EWCL coefficients depend on two
physical parameters �1 and MZ0 . Combined with �T ¼
2�1, we can use the present experimental result for the T
parameter to fix �1. In Fig. 5 and 6, we draw graphs for the
S ¼ �16�1 andU ¼ �16�8 in terms of the T parame-
ter, respectively. We take three typical Z0 masses MZ0 ¼
0:2, 0.3, 0.4 TeV for references. For S parameter, we find
that all values of it are at order of 1. This can be understood
as that at region of small T parameter, the main contribu-
tion to S parameter comes from the three doublets TC
model which results in positive S. This result roughly
equals to �3L1D

10 which is 3 times larger than the corre-

sponding value in Hill’s model due to the existence of
three doublets techniquarks. We also find that large nega-
tive b will reduce the value of S, but considering that
the value b ¼ �0:00333 corresponding to g2ETCbU ¼
�0:00333�2

ETC=�
2
TC is already large enough, we do not

think any larger negative bs will have physical meaning.
For U parameter, we find it is positive and below 0.2.
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Considering that the facts of smallMZ0 and relative large S
are all not favored by present precision measurements of
the SM, we just leave the analytic formulas for other �i

coefficients there and will not draw diagrams for them any
further.

III. DISCUSSION

In this paper, we generalize the calculation in Ref. [5] for
C. T. Hill’s schematic TC2 model to K. Lane’s prototype
natural TC2 model. We find that, similar to Hill’s model,
coefficients of EWCL for the Lane’s model are divided into
a direct TC and ETC interaction part, a TC and topcolor
induced effective Z0 particle contribution part, and an
ordinary quarks contribution part. The first two parts are
computed in this paper. We show that the direct TC and
ETC interaction part is 3 times larger than the correspond-
ing part of Hill’s model due to the existence of three
techniquark doublets, while effective Z0 contributions are
different from Hill’s model due to changes of Uð1Þ1 �
Uð1Þ2 group representation arrangements and are at least
proportional to the p2 order parameter �1 in EWCL.
Typical features of the model are that it only allows posi-
tive S, T, andU parameters. S is around 1 which is roughly
3 times larger than that in original Hill’s model due to the
existence of three doublets of techniquarks, and T parame-
ter varies in the range 0� 9=ð40�Þ. Analytical expression
(73) for five p4 order coefficients �3, �4, �5, �8, and �9

exactly equal to 3 times of those obtained from Hill’s
model in Ref. [5]. These coefficients include all three
custodial symmetry conserve ones. The Z0 mass is bounded
from 0.4 TeV and larger MZ0 prefers smaller N. Compared
to the results obtained in Ref. [5] for C. T. Hill’s TC2
model, the results from Lane’s first natural TC2 model
deviate more from the experiment data. This calls for
improvement of the model.

In fact, the present model is only a prototype natural
TC2 model. Many details of the model are not even speci-
fied in the original paper [12], prohibiting us from
performing the computation more accurately and leaving
us more space to improve the dynamics. One typical non-
specified effect is the walking dynamics. As mentioned
by K. Lane, the TC of the model is expected to be a
walking gauge theory. This is a new feature different
from the conventional gauge theory, and this walking
is not explicitly realized in the present prototype model,
since techniquarks are in fundamental representation of
the TC group and the number of techniquarks is not
large enough. Another unspecified detail is the SUð3Þ1 �
SUð3Þ2 symmetry-breaking mechanism. It is now simu-
lated without detailed dynamics content by introducing
an effective scalar field � which transforms as
ð�3; 3; 56 ;� 5

6Þ under the group SUð3Þ1 � SUð3Þ2 �Uð1ÞY1
�

Uð1ÞY2
and corresponding interaction potential Vð�Þ.

Introducing scalar fields, which is only how the theory is

effective, deviates the basic idea of TC models. All these
shortcomings are overcome in the improved model
[14]. Considering that this new model is much more
complex and different than the present one, it involves
different dynamics and therefore requires more analysis
and computation techniques. For example, the condensa-
tions of the techniquarks are block diagonal in three dou-
blets flavor space now but not for the additional two
doublets techniquarks newly added in the improved
model (which is more like the case A solution of the
paper [12], while in the present paper we only discuss
the case B solution as mentioned in footnote 2). In order
to make our discussion less complex and to specially
exhibit the result of Lane’s first natural TC2 model,
in this paper we limit ourselves to the primary
prototype model and focus our attention on figuring
out the analytical expressions for the coefficients of
EWCL, estimating possible constrains to the model
and identifying the effects of ETC interactions. We leave
the discussion of the new improved model for a future
paper.
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APPENDIX: NECESSARY FORMULAS FOR EWCL

In this appendix, we list the necessary formulas needed
in the text. With definitions in which

D�U ¼ @�Uþ ig2
�a

2
Wa

�U� ig1U
�3

2
B�; (A1)

D�U
y ¼ @�U

y � ig2U
y �

a

2
Wa

� þ ig1
�3

2
B�U

y; (A2)

X� ¼ UyðD�UÞ �W�� ¼ Uyg2
�a

2
Wa

��U; (A3)

we have
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SZ0 ½U;Wa
�;B�;Z

0
��¼

Z
d4x

	
�1

4
Wa

��W
a;���1

4
B��B

���1

4
Z0
��Z

0��þ1

2
M2

0Z
0
�Z

0��K
�
3

4
g21B��B

���3

2
g21 tan�

0B��Z
0��

þ3

4
g21tan

2�0Z0
��Z

0��þ5

2
g21ðtan�0 þcot�0Þ2Z0

��Z
0��þ3

4
g22W

a
��W

a��

�
þðF1D

0 Þ2
	
�3

4
tr½X�X��

þ1

4
g21ðcot�0 þ tan�0Þ2Z02þ3

8
g21tan

2�0Z02� i
3

4
g1 tan�

0Z0� tr½X��
3�


�K1D;��0

1

	
�3

4
tr½UyðD�D�UÞ

�UyðD�D�UÞþ2UyðD�D�UÞðD�UyÞðD�UÞ��3

4
ig1 tan�

0Z0� tr½UyðD�D�UÞUyD�U�3�

þ3

4
ig1 tan�

0Z0� tr½UyðD�D�UÞ�3UyD�U��3

4
ig1 tan�

0@�Z0� tr½UyðD�D�UÞ�3�


þ3

8

�
K1D;��0

1

þ1

4
K1D;��0

3 �1

4
K1D;��0

4 �K1D;��0
13 þ1

2
K1D;��0

14

�
�½trðX�X�Þ�2�3

8

�
K1D;��0

1 þ1

4
K1D;��0

3

�1

2
K1D;��0

13 þ1

4
K1D;��0

14

�
g21tan

2�0Z0�Z0
� tr½X��

3�tr½X��3�þ1

8

�
6K1D;��0

1 tan2�0 �ðcot�0 þ tan�0Þ2

�K1D;��0
3 �ðcot�0 þ tan�0Þ2K1D;��0

4 �3
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K1D;��0

4 tan2�0 �3K1D;��0
13 tan2�0þ3

2
K1D;��0

14 tan2�0
�

�g21Z
0�Z0

� tr½X�X
��þ

�
�1

4
ðtan�0 þcot�0Þ2�3

8
tan2�0

�
K1D;��0

1 g21ð@�Z0�Þ2�3

8
ðK1D;��0
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þK1D;��0
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� tr½ �W��ðX��

3��3X�Þ�þ3i
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; (A4)

K ¼ � 1

482

�
log

�2

�2
þ �

�
�; �: ultraviolet and infrared cutoffs: (A5)
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