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We compute a formula including operator-product expansion power corrections to describe the running

of a QCD coupling nonperturbatively defined through the ghost and gluon dressing functions. This turns

out to be rather accurate. We propose the ‘‘plateau’’ procedure to compute �MS from the lattice

computation of the running coupling constant. We show a good agreement between the different methods

which have been used to estimate �
Nf¼0

MS
. We argue that �MS or the strong coupling constant computed

with different lattice spacings may be used to estimate the lattice spacing ratio.
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I. INTRODUCTION

Much work has been devoted in the last years to the
study of the QCD running coupling constant determined
from lattice simulations, in its perturbative regime [1–9] as
well as in the deep infrared domain [10]. The two main
approaches to obtain the running coupling in terms of the
renormalization momentum were either an application of
the Schrödinger functional method with special boundary
conditions or the confrontation of the behavior with respect
to the renormalization scale of 2-gluon and 3-gluon Green
functions with the corresponding perturbative predictions.
The latter Green’s functions approach also revealed a
dimension-two nonzero gluon condensate in the Landau
gauge. Much work has been also done to investigate its
phenomenological implications in the gauge-invariant
world [11]. In a very recent work [9], the Green’s function
approach to estimate�MS has been pursued by exploiting a

nonperturbative definition of the coupling derived from the
ghost-gluon vertex and computed over a large momentum
window in the perturbative regime. Much of this work was
based on the analysis of quenched lattice simulations and
led to the determination of �MS in pure Yang-Mills (Nf ¼
0). Works on unquenched lattice configurations (Nf ¼ 2)

started some time ago [12] and have been more actively
pursued recently.

Many unquenched configurations are presently available
and we are planning to apply what we have learned on pure
Yang-Mills to gauge configurations with twisted Nf ¼ 2

[13]) and Nf ¼ 2þ 1þ 1 dynamical quarks. Thus, a very

realistic estimate of �MS, directly comparable with experi-

mental determinations, will become an immediate possi-
bility. With the latter remarks in mind, we pay attention in
this paper to study of the above-mentioned nonperturbative
coupling derived from the ghost-gluon vertex. We show in
Sec. II that, when the incoming ghost momentum van-

ishes—and only in this case—this ghost-gluon vertex can
be directly related to the bare gluon and ghost propagators;
we then obtain a formula to describe its running including
nonperturbative power corrections. We propose to confront
this formula with lattice estimates of the coupling and we
argue that this constitutes an optimal method for the iden-
tification of�MS and of the gluon condensate. In particular,

it benefits from two main advantages: it has only a two-
points function to deal with (much simpler to be managed
and more precise than a three-points function) and the
precision could be improved by extending the analysis of
lattice data over a very large momenta window. In Sec. III,
we apply this procedure to previously published lattice data
for quenched simulations with a two-sided goal: (i) to
check the method and (ii) to confirm the consistency of
the picture we have acquired for the UV behavior of Green
functions in pure Yang-Mills. We finally conclude in
Sec. IV and add two appendices for presenting the gluon
and ghost anomalous dimension coefficients in the mo-
mentum substraction scheme (MOM) up to four loops
(Appendix A) and the subleading Wilson coefficient up
to leading logarithms of ghost and gluon propagators
(Appendix B).

II. THE GHOST-GLUON COUPLING

There is a large number of possibilities to define the
QCD renormalized coupling constant, depending on the
observable used to measure it and on the renormalization
scheme. Actually, any observable which behaves, from the
perturbative point of view, as g provides a suitable defini-
tion for it. Among such quantities stand the 3-gluon and the
ghost-gluon vertices, which have been widely used by the
lattice community to get a direct knowledge of �s from
simulations. Of course an important criterion to choose
among those definitions will be how easy it is to connect it

to other commonly used definitions, specially the MS one,
and to extract from it fundamental parameters like �QCD.

A convenient class of renormalization schemes to work
with on the lattice is made of the so-called MOM schemes
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which are defined through the requirement that a given
scalar coefficient function of the Green’s function under
consideration takes its tree-level value in a specific kine-
matical situation given up to an overall renormalization
scale. To make the point clearer we recall two schemes
which we have used in previous works on �s:

(i) The symmetric 3-gluon scheme in which one uses
the 3-gluon vertex ����ðp1; p2; p3Þ with p2

1 ¼ p2
2 ¼

p2
3 ¼ �2.

(ii) The asymmetric 3-gluon scheme ( gMOM) in which
the 3-gluon vertex ����ðp1; p2; p3Þ is used with

p2
1 ¼ p2

2 ¼ �2, p2
3 ¼ 0.

In the present paper we shall apply a specific MOM-type
renormalization scheme defined by fixing the (ghost and
gluon) propagators and the ghost-gluon vertex at the re-
normalization point. Let us start by writing the ghost and
gluon propagators in Landau gauge as follows:

ðGð2ÞÞab��ðp2;�Þ ¼ Gðp2;�Þ
p2

�ab

�
��� �

p�p�

p2

�
;

ðFð2ÞÞa;bðp2;�Þ ¼ ��ab

Fðp2;�Þ
p2

;

(1)

� being some regularization parameter (a�1ð�Þ if, for
instance, we specialize to lattice regularization). The re-
normalized dressing functions GR and FR are defined
through

GRðp2; �2Þ ¼ lim
�!1

Z�1
3 ð�2;�ÞGðp2;�Þ

FRðp2; �2Þ ¼ lim
�!1

~Z�1
3 ð�2;�ÞFðp2;�Þ; (2)

with renormalization condition

GRð�2; �2Þ ¼ FRð�2; �2Þ ¼ 1: (3)

Now, we will consider the ghost-gluon vertex which could
be nonperturbatively obtained through a three-point Green
function, defined by two ghost and one gluon fields, with
amputated legs after dividing by two ghost and one gluon
propagators. This vertex can be written quite generally as

(4)

where q is the outgoing ghost momentum and k the in-
coming one, and renormalized according to

~� R ¼ ~Z1�: (5)

The vertex �� involves two independent scalar functions.
In the MOM renormalization procedure ~Z1 is fully deter-
mined by demanding that one specific combination of
those two form factors (chosen at one’s will) be equal to

its tree-level value for a specific kinematical configuration.
We choose to apply a MOM prescription for the scalar
function H1 þH2 that multiplies q� in Eq. (4) and the
renormalization condition reads1

ðHR
1 ðq; kÞ þHR

2 ðq; kÞÞjq2¼�2 ¼ lim
�!1

~Z1ð�2;�ÞðH1ðq; k; �Þ
þH2ðq; k; �ÞÞjq2¼�2

¼ 1; (6)

where we prescribe a kinematics for the substraction point
such that the outgoing ghost momentum is evaluated at the
renormalization scale, while the incoming one k depends
on the choice of several possible configurations; for in-
stance: k2 ¼ ðq� kÞ2 ¼ �2 (symmetric configuration) or
k ¼ 0, ðq� kÞ2 ¼ �2 (asymmetric ghost configuration).
On the other hand, the fields involved in the nonpertur-

bative definition of the vertex �� in Eq. (4) can be directly
renormalized by their renormalization constants Z3 and ~Z3,
and the same MOM prescription applied to the scalar
combination H1 þH2 also implies

gRð�2Þ ¼ lim
�!1

~Z3ð�2;�ÞZ1=2
3 ð�2;�Þg0ð�2ÞðH1ðq; k; �Þ

þH2ðq; k; �ÞÞjq2��2

¼ lim
�!1

g0ð�2ÞZ
1=2
3 ð�2;�2Þ~Z3ð�2;�2Þ

~Z1ð�2;�2Þ : (7)

We combine both Eq. (6) and the first-line equation of (7)
to replace H1 þH2 and obtain the second line that shows

the well-known relationship Zg ¼ ðZ1=2
3

~Z3Þ�1 ~Z1, where

gR ¼ Z�1
g g0.

We turn now to the specific MOM-type renormalization
scheme defined by a zero incoming ghost momentum. Since
those kinematics are the ones (and the only ones) in which
Taylor’s well-known nonrenormalization theorem
(cf. Ref. [14]) is valid we shall refer to this scheme as to
the T scheme and the corresponding quantities will bear a
T subscript. Then, in Eq. (4), we set k to 0 and get

~� abc
� ð�q; 0;qÞ ¼ ig0f

abcðH1ðq; 0Þ þH2ðq; 0ÞÞq�: (8)

Now, Taylor’s theorem states that H1ðq; 0;�Þ þ
H2ðq; 0;�Þ is equal to 1 in full QCD for any value of q.
Therefore, the renormalization condition Eq. (6) implies
~Z1ð�2Þ ¼ 1 and then

�Tð�2Þ � g2Tð�2Þ
4�

¼ lim
�!1

g20ð�2Þ
4�

Gð�2;�2ÞF2ð�2;�2Þ;
(9)

where we also apply the renormalization condition for the

1In the case of zero-momentum gluon, an appropriate choice
would be ~Z1ð�2ÞH1ðq; qÞjq2¼�2 ¼ 1. This would make the re-
normalized vertex equal to its tree-level value at the renormal-
ization scale.
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propagators Eqs. (2) and (3) to replace the renormalization
constants Z3 and ~Z3 by the bare dressing functions. The
remarkable feature of Eq. (9) is that it involves only F and
G so that no measure of the ghost-gluon vertex is needed
for the determination of the coupling constant.

Equation (9) has extensively been advocated and studied
on the lattice (see for instance Ref. [15]) and used for a
determination of �QCD in Ref. [9]. However it must be

stressed that the T scheme is the only one in which ~Z1 ¼ 1.
In any other scheme ~Z1 will be finite (since going from one
scheme to any other one only involves an additional finite
renormalization) but will keep a nontrivial dependence on
the scale, in particular, for the symmetric scheme of
Ref. [16] that has been computed at one loop in
Ref. [17]. In such cases one must in principle apply the
general definition (7) of the coupling constant; neverthe-
less the form (9) is used quite often in this case (for a
kinematical configuration other than T schemes) also as an
approximation, especially in relation with the study of
Dyson-Schwinger equations.

We conclude this section by recalling that, in any
scheme, the standard renormalization flow dictating the
evolution with respect to the scale

g2Rð�2Þ ¼ g2Rð�02Þ
� ~Z1ð�02Þ
~Z1ð�2Þ

�
2
F2
Rð�2; �02ÞGRð�2; �02Þ

(10)

will be straightforwardly obtained from the second line of
Eq. (7) and the propagators renormalization conditions in
Eqs. (2) and (3), where

~Z 1ð�2Þ ¼ lim
�!1

~Z1ð�2;�2Þ (11)

because of the Taylor’s nonrenormalization theorem. Of
course, Eq. (10) reduces to

g2Tð�2Þ ¼ g2Tð�02ÞF2
Rð�2; �02ÞGRð�2; �02Þ (12)

in the T scheme.

1. Pure perturbation theory

In Ref. [18], the three-loop perturbative substraction of
all the three-vertices appearing in the QCD Lagrangian for
kinematical configurations with one vanishing momentum
has been done [in particular, the one involved in the
definition of the coupling by Eq. (9)]. Different definitions
of the coupling constant can be related in perturbation
theory through relations like

�Tð�2Þ ¼ ��ð�2Þ
�
1þX

i¼1

ci

�
��ð�2Þ
4�

�
i
�
; (13)

where �� is the coupling renormalized according to the

usual MS prescription, its standard � function

�MSð ��Þ ¼
d ��

d ln�2
¼ �4�

X
i¼0

��i

�
��

4�

�
iþ2

(14)

given at four loops in Ref. [19] ( ��0 and ��1 being scheme-
independent). On the other hand, since Eq. (9) completely
defines the running of the coupling, after properly deriving
both its left-hand side and right-hand side, one obtains

1

�Tð�2Þ
d�Tð�2Þ

d ��
¼ 1

�MSð ��Þ
�
2 lim
�!1

d

d ln�2
lnFð�2;�Þ

þ lim
�!1

d

d ln�2
lnGð�2;�Þ

�

¼ 2~�ð ��Þ þ �ð ��Þ
�MSð ��Þ

: (15)

The anomalous dimensions for gluon and ghost propaga-
tors,

~�ð ��Þ ¼ lim
�!1

d ln ~Z3;MOMð�2;�Þ
d ln�2

¼ lim
�!1

d lnFð�2;�Þ
d ln�2

¼ �X
i¼0

~�i

�
��

4�

�
iþ1

�ð ��Þ ¼ lim
�!1

d lnZ3;MOMð�2;�Þ
d ln�2

¼ lim
�!1

d lnGð�2;�Þ
d ln�2

¼ �X
i¼0

�i

�
��

4�

�
iþ1

; (16)

are both renormalized along MOM prescriptions (i.e.,
GRð�2; �2Þ ¼ FRð�2; �2Þ ¼ 1) but expanded in terms of
��. Then, Eqs. (13), (14), and (16) can be applied to Eq. (15)
and one is led to deal with a coupled system of n algebraic
equations to compute the coefficients ci and determine �T

at n loops. To summarize, the running of coupling constant
�T , although formally defined from a three-point Green
function, can be derived from the knowledge of the stan-

dard MS � function and only two-points functions for
ghost and gluon. These two anomalous dimensions were

computed in the MS scheme at four loops in Refs. [20,21]
and were converted into the MOM scheme in Ref. [22] for
Nf ¼ 0 by applying

��;MOMð ��Þ ¼ lim
�!1

d lnðZ�;MSð�2;�ÞÞ
d ln�2

þ d lnð�R;MSð ��ÞÞ
d ln�2

� ��;MSð ��Þ þ
d ��

d ln�2

@

@ ��
ln�R;MSð ��Þ; (17)

where � stands generically for the two bare two-point
dressing functions F and G, �R for the renormalized
ones2 and Z� for the appropriate renormalization constant.
Equation (17) provides also the coefficients ~�i and �i for
any Nf (see Appendix A). Thus, one can solve the above-

2The gluon and ghost renormalized propagators in the MS
scheme were also provided by Ref. [18].
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mentioned coupled system of algebraic equations coming
from Eq. (15) with these coefficients and obtain the ones,
ci, in Eq. (13). The first of those coupled equations from
Eq. (15) (the one stemming from matching the 1=� terms
in the two sides) results in the following constraint3:

2~�0 þ �0 ¼ ��0; (18)

which, in this context, results from Eq. (9). The three first
coefficients ci in Landau gauge, obtained as above ex-
plained [i.e., by substituting the results of Appendix A
into Eq. (15)], will be

c1 ¼
507� 40Nf

36
;

c2 ¼ 76063

144
� 351

8
	ð3Þ �

�
1913

27
þ 4

3
	ð3Þ

�
Nf þ 100

91
N2

f

c3 ¼ 42074947

1728
� 60675

16
	ð3Þ � 70245

64
	ð5Þ

�
�
769387

162
� 8362

27
	ð3Þ � 2320

9
	ð5Þ

�
Nf

þ
�
199903

972
þ 28

9
	ð3Þ

�
N2

f �
1000

729
N3

f: (19)

These three coefficients obviously define unambiguously
the running of �T given in Eq. (9) up to four loops. In other
words, one obtains for the � function of �T

�Tð�TÞ ¼ d�T

d ln�2
¼ �4�

X
i¼0

~�i

�
�T

4�

�
iþ2

(20)

the following coefficients up to four loops

~�0 ¼ ��0 ¼ 11� 2

3
Nf

~�1¼ ��1 ¼ 102� 38
3 Nf

~�2 ¼ ��2 � ��1c1 þ ��0ðc2 � c21Þ
¼ 3040:48� 625:387Nf þ 19:3833N2

f

~�3 ¼ ��3 � 2 ��2c1 þ ��1c
2
1 þ ��0ð2c3 � 6c2c1 þ 4c31Þ

¼ 100541� 24423:3Nf þ 1625:4N2
f � 27:493N3

f:

(21)

These coefficients ~�i are the same as the ones obtained in
Ref. [18] thanks to a direct application of the MOM
prescription to the ghost-gluon coupling with vanishing
incoming ghost momentum, as it should be. As for the
�QCD parameters in the two schemes, they are related

through

�MS

�T

¼ e�ðc1=2�0Þ ¼ e�ð507�40Nf=792�48NfÞ: (22)

Equation (20) can be integrated and perturbatively inverted

to obtain the following standard four-loop formula for the
running coupling,

�Tð�2Þ ¼ 4�

�0t

�
1� �1

�2
0

logðtÞ
t

þ �2
1

�4
0

1

t2

��
logðtÞ � 1

2

�
2

þ
~�2�0

�2
1

� 5

4

��
þ 1

ð�0tÞ4
� ~�3

2�0

þ 1

2

�
�1

�0

�
3

�
�
�2log3ðtÞ þ 5log2ðtÞ þ

�
4� 6

~�2�0

�2
1

�

� logðtÞ � 1

��
with t ¼ ln

�2

�2
T

: (23)

As a last remark, applying the approximation ~Z1 ¼ 1 for
symmetric (ghost-gluon vertex renormalized at a symmet-
ric momenta configuration) or soft-gluon (vertex renormal-
ized at a vanishing-gluon momenta configuration) schemes
implies that the same lattice data for the coupling, obtained
through Eq. (9), would be confronted to different perturba-
tive formulae analogous to Eq. (23) with � function co-
efficients and �QCD parameters appropriate for each

scheme. Thus, the systematic deviation induced by apply-
ing this approximation to the determination of �MS from

the confrontation of perturbation theory and lattice data,
provided that �0 and �1 are scheme-independent, mainly
results from the ratio of �QCD to �MS in Eq. (22). For

instance in pure Yang-Mills, if one takes Nf ¼ 0 in Eq.

(22), it gives a ratio of 0.527 in the T scheme, while the
same ratio for instance in symmetric and soft-gluon
schemes is 0.463 (14% of error) and 0.429 (23% of error),
respectively.

B. OPE power corrections

One of the goals of the present paper consists in obtain-
ing a formula for the QCD running coupling that could be
implemented in conjunction with lattice estimates to de-
termine a ‘‘plateau’’ for �QCD in terms of the momentum,

as will be explained in the next section. In order to extend
this plateau to energies as low as possible (of the order of
3 GeV) and to take full advantage of the lattice data in
order to reduce the systematic uncertainties, it is manda-
tory to take into account the gauge-dependent dimension-
two operator-product expansion (OPE) power corrections
(cf. [7,8,10,23]) to �T .
The leading power contribution to the ghost propagator

ðFð2ÞÞabðq2Þ ¼
Z

d4xeiq�xhTðcaðxÞ �cbð0ÞÞi (24)

can be computed using the [24] OPE, as is done in
Ref. [25],

TðcaðxÞ �cbð0ÞÞ ¼ X
t

ðctÞabðxÞOtð0Þ; (25)

here Ot is a local operator, regular when x ! 0, and the

3Equation (18) is a well-known relation verified by scheme-
independent coefficients of the ghost and gluon anomalous
dimensions and of the � function.
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Wilson coefficient ct contains the short-distance singular-
ity. Equation (25) involves a full hierarchy of terms, or-
dered according to their mass dimension, among which
only 1 and : Aa

�A
b
� : contribute to Eq. (26) in Landau

gauge4 up to the order 1=q4. Then, using Eq. (25) into Eq.
(24), we obtain

ðFð2ÞÞabðq2Þ ¼ ðc0Þabðq2Þ þ ðc2Þab
�st ðq2Þh:As

ð0ÞAt

�ð0Þ:i
þ � � �

¼ ðFð2Þ
pertÞabðq2Þ þ wab hA2i

4ðN2
C � 1Þ þ � � � (26)

where

(27)

and the Shiffman-Vainshtein-Zakharov (SVZ) factoriza-
tion [26] is invoked to compute the Wilson coefficients.
Thus, one should compute the ‘‘sunset’’ diagram of the last
line of Eq. (27), that binds the ghost propagator to the
gluon condensate (where the blue bubble means contract-
ing the color and Lorentz indices of the incoming legs with
1=2�st�
�) to obtain the leading nonperturbative contribu-
tion (of course, the first Wilson coefficient gives trivially
the perturbative propagator).

Finally,

ðFð2Þ
R Þabðq2; �2Þ ¼ ðFð2Þ

R;pertÞabðq2; �2Þ
�
1þ 3

q2
g2RhA2iR;�2

4ðN2
C � 1Þ

�
þOðg4; q�4Þ; (28)

where the A2 condensate is renormalized at the subtraction
point q2 ¼ �2, according to the MOM scheme definition,
by imposing the tree-level value to the Wilson coefficient
at the renormalization point. As far as we do not need to
deal with the anomalous dimension of the A2 operator, we
can factorize the tree-level ghost propagator. The ghost
dressing function is then written as

FRðq2; �2Þ ¼ FR;pertðq2; �2Þ
�
1þ 3

q2
g2RhA2iR;�2

4ðN2
C � 1Þ

�
; (29)

where the multiplicative correction to the purely perturba-
tiveFR;pert is determined up to corrections of the order 1=q4

or lnq=� (theWilson coefficient at the leading logarithm is
computed in Appendix B).

We can handle in the sameway (see Refs. [7,8]) the OPE
power correction to the gluon propagator and obtain

(30)

Then, after renormalization, one gets

ðGð2Þ
R Þab��ðq2; �2Þ ¼ ðGð2Þ

R;pertÞab��ðq2; �2Þ þ ðwab
��ÞR;�2

� hA2iR;�2

4ðN2
C � 1Þ þ � � �

¼ ðGð2Þ
R;pertÞab��ðq2; �2Þ

�
1þ 3

q2

� g2RhA2iR;�2

4ðN2
C � 1Þ

�
þOðg4; q�4Þ: (31)

And an appropriate projection gives for the gluon dressing
function

GRðq2; �2Þ ¼ GR;pertðq2; �2Þ
�
1þ 3

q2
g2RhA2iR;�2

4ðN2
C � 1Þ

�
: (32)

Finally, putting together the defining relation Eq. (9) and
the results Eqs. (29) and (32) we get

4The operators with an odd number of fields (d ¼ 1, 3=2; @�A,
and @� �c) cannot satisfy color and Lorentz invariance and do not
contribute a nonzero nonperturbative expectation value, and �cc
does not contribute either because of the particular tensorial
structure of the ghost-gluon vertex.
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�Tð�2Þ ¼ lim
�!1

g20
4�

F2ð�2;�ÞGð�2;�Þ

¼ lim
�!1

g20
4�

F2ðq20;�ÞGðq20;�Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�pert

T ðq2
0
Þ

F2
Rð�2; q20ÞGRð�2; q20Þ

¼ �
pert
T ðq20ÞF2

R;pertð�2; q20ÞGR;pertð�2; q20Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�
pert
T ð�2Þ

�
�
1þ 9

�2

g2Tðq20ÞhA2iR;q2
0

4ðN2
C � 1Þ

�
; (33)

where q20 � �QCD is some perturbative scale and the �
function, and its coefficients in Eq. (21) of course describe

the running of the perturbative part of the evolution �pert
T .

The Wilson coefficient at the leading logarithm for the T
scheme MOM running coupling is presented in
Appendix B, where we also show that the inclusion of
the logarithmic correction would induce no significant
effect, provided that the coupling multiplying A2 inside
the bracket is taken to be renormalized also in T scheme.
Thus, for the sake of simplicity, Eq. (33) will be applied for
our analysis in the next section.

III. DATA ANALYSIS

In the following, we will first propose a plateau-
procedure exploiting Eq. (33) to get a reliable estimate of
the �QCD parameter from the lattice and we will apply it to

previously published quenched lattice data [22,25] as a
check of the method.

A. The plateau method

The goal being to get a trustworthy estimate of the �MS

parameter, one could attempt to do it by inverting the
perturbative formula Eq. (23) and using in the inverted
formula the lattice estimates of the running coupling ob-
tained by means of Eq. (9) for as many lattice momenta as
possible. Then, one should look for a plateau of �MS in

terms of momenta in the high-energy perturbative regime
(this was done with the coupling defined by the three-gluon
vertex in [4,5]). In the next subsection, Fig. 2(a) shows the
estimates of �MS so calculated for the lattice data pre-

sented in Refs. [22,25] over 9 & p2 & 33 GeV2.
However, in order to take advantage of the largest pos-

sible momenta window one can use instead Eq. (33). In this
way we shall hopefully be able to extend towards low
momenta the region over which to look for the best pos-
sible values of the gluon condensate and of �MS.

5 In other

words, one requires the best-fit to a constant of

ðxi; yiÞ � ðp2
i ;�ð�iÞÞ; with: �i ¼ �Lattðp2

i Þ
1þ c

p2
i

; (34)

where �ð�Þ is obtained by inverting the perturbative four-
loop formula Eq. (23) and c results from the best fit [it
appeared written in terms of the gluon condensate in Eq.
(33)]. Thus, �ð�Þ reaches a plateau (if it does) behaving in
terms of the momentum as a constant that we will take as
our estimate of �MS. Of course, this is nothing but a fitting

strategy for a 2-parameters (�MS and hA2i) fit of the

estimates of Eq. (9) from lattice data.

B. Applying the method

The lattice data that we will exploit here to check the
method we have explained above were previously pre-
sented in Ref. [22]. We refer to this work for all the details
concerning the lattice implementation: algorithms, action,
Faddeev-Popov operator inversion, etc.
The parameters of the whole set of simulations are

described in Table I.

1. The scaling from different lattices

It should first be noted that the scaling of Eq. (9) from
the several lattices we use is indeed satisfactory. The
prescription of taking the infinite cutoff limit in Eq. (9)
means in practice to have the lattice artifacts under control.
This is in fact the case for UV ones. In particular, the
hypercubic artifacts behaving as Oðak P pk

i Þ for the lattice
propagators we analyze were cured, as explained in [22],
by exploiting the H4 symmetry.
As an indirect way of testing that scaling, we consider all

the lattice propagators as functions of the momentum
measured in lattice units, [i.e. with dimensionless mo-
menta pLat ¼ að�Þp, where að�Þ is the lattice spacing in
physical units at the particular bare lattice coupling g20 ¼
6=�], and determine the ratios of að�Þ’s for the scaling to
work. Then, still working in lattice units, the best-fit pa-
rameters to be obtained by applying the plateau-method
will be að�Þ�MS and a2ð�Þg2ThA2iR, and the ratio of those

best-fit parameters for different lattices will provide the
ratio of the corresponding lattice spacings.
In Table II, the ratio of lattice spacings obtained by the

standard string-tension method [1] is compared with those
obtained as explained above. More precisely: (i) we first
determine �MSað6:2Þ and a2ð6:2Þg2ThA2iR for the lattice

data with � ¼ 6:2; (ii) then, for each new �, we determine

TABLE I. Run parameters of the exploited data [22].

� Volume a�1 (GeV) Number of gauge configurations

6.0 164 1.96 1000

6.0 244 1.96 500

6.2 244 2.75 500

6.4 324 3.66 250

5This increases the statistics and reduces errors. It also avoids
some possible systematic deviation appearing when lattice mo-
mentum components, in lattice units, approach �=2 (Brillouin’s
region border).
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x ¼ að�Þ=að6:2Þ in such a way that a plateau for
xað6:2Þ�MS is obtained with a gluon condensate given by

x2a2ð6:2Þg2ThA2iR. They agree very well, at least for the
ratios computed for the three lattice simulations with
roughly the same physical volume: � ¼ 6:0ðL ¼ 16 ¼
1:58 fmÞ, � ¼ 6:2ðL ¼ 24 ¼ 1:72 fmÞ, � ¼ 6:4ðL ¼
32 ¼ 1:72 fmÞ. A slightly larger discrepancy (� 4%) ap-
pears when comparing with data for the largest lattice
(� ¼ 6:0, L ¼ 24 ¼ 2:37 fm). We suspect that this is the
manifestation of a finite-volume effect. Actually, if we
compare the two simulations at � ¼ 6:0 for different vol-
umes (see Fig. 1), such an effect can be seen, although it
decreases as the physical momentum increases (and be-
comes in practice negligible at p2 � 9 GeV2).

Thus, one can conclude that the scaling of the coupling
defined by Eq. (9) for p2 * 9 GeV2 is very good.
Conversely, this argument provides an alternative method
to determine the lattice size for a simulation at a given � in
terms of the one known in physical units at any other one.

2. Looking for the plateau

In Fig. 2(a), we show the estimates of �MS obtained

when interpreting the lattice coupling computed by Eq. (9)
for any momentum 9 & p2 & 33 GeV2 in terms of the
inverted four-loop perturbative formula for the coupling,
Eq. (23). The estimates systematically decrease as the
squared momentum increases until around 22 GeV2; above
this value, only a noisy pattern results. In Fig. 2(b), the
same is plotted but inverting instead the nonperturbative
formula including power corrections, Eq. (33). The value
of the gluon condensate has been determined by requiring a

plateau to exist (as explained in the previous section) over
the total momenta window.
One should realize that, had we not taken into account

the noisy ballpark of points above 22 GeV2 and had we
considered the perturbative regime as reached at that mo-
mentum, wewould have gotten an estimate of�MS roughly

35–40 MeVabove the one obtained from the nonperturba-
tive formula. In other words, the nonperturbative analysis
seems to indicate that the perturbative regime is far from
being achieved at p ¼ 5 GeV. This is illustrated in Fig. 3
in which, adopting for �MS the value 224 MeV which

results from the nonperturbative analysis, we plot against
the square of the renormalization momentum the coupling
constant as computed by means of the nonperturbative
formula (33) (upper red curve) and of the perturbative one
(23) (lower blue curve). Displayed are also the lattice data,
i.e. the values of �T obtained from Eq. (9). In Fig. 3(a) one
sees that the nonperturbative approach provides a fairly
good agreement with the data, the �2 being 1.3 per degree
of freedom. On the contrary there is a clear disagreement
with the perturbative formula. Furthermore, one can ex-
trapolate the value of �T up to very high momenta with Eq.
(33), p2 � 300–500 GeV2, where the purely perturbative
Eq. (23) and the nonperturbative Eq. (33), both with the
same �MS, generate in practice the same results. The plot

of Fig. 3(b) shows indeed that the curve for the coupling
extrapolated in this way joins perfectly the lattice estimates
at high momenta taken from [9]. Thus, the inclusion of the
nonperturbative OPE power correction Eq. (33), to de-
scribe the running of the coupling eliminates effectively
the observed systematic deviations for the estimates of
�MS from the momenta window from 3 to 5 GeV [Fig. 2

TABLE II. Comparison of lattice spacing ratios obtained by means of the scaling of Eq. (9) as
explained in the text and of the string-tension method.

� Volume að�Þ=að6:2Þ (this work) að�Þ=að6:2Þ [1] Deviations (%)

6.0 164 1.368 1.378 0.7

6.0 244 1.322 1.378 4.1

6.2 244 1 1 0

6.4 324 0.768 0.751 2.2

2 4 6 8 10
p2

0.25

0.5

0.75

1

1.25

1.5

α

3 4 5 6 7 8 9 10
p2

0.25

0.35
0.4

0.45
0.5

0.55
0.6

0.65
α

(a) (b)

FIG. 1 (color online). (a) Plot of �T defined by Eq. (9) in terms of the square of the renormalization momentum as computed from
the two lattices at � ¼ 6:0with different volumes: V ¼ 164 (gray [green] boxes) and V ¼ 244 (black [red] boxes). (b) A zoom onto the
high momenta region of the left plot.
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(a)] and essentially leads to the same estimate as was found
from the perturbative regime at very high momentum.

Thus, we have been able to obtain simultaneous best-fit
values for both the gluon condensate and �MS. It is how-

ever manifest that they are correlated by their determina-
tion: the larger the gluon condensate is, the smaller the
value of �MS has to be. In Fig. 4, we plot the ellipsoid

defined by6 �2ð�MS; g
2
ThA2iRÞ ¼ �2

min þ 1 for a fitting

window defined by p2 > 9 GeV2 and for one restricted
to p2 > 14 GeV2. It is seen that, neglecting other sources
of errors like, for instance, the calibration of the lattices,
but being conservative with the choice of the fitting win-
dow, one can conclude that our best-fit parameters incor-
porating only7 statistical errors are

�Nf¼0

MS
¼224þ8

�5 MeV g2ThA2iR¼5:1þ0:7
�1:1 GeV

2: (35)

(a) (b)

FIG. 3 (color online). (a) Plot of �T defined by Eq. (9) in terms of the square of the renormalization momentum: the upper (red) line
is computed with Eq. (33) with �MS ¼ 224 MeV, the lower (blue) one with Eq. (23) for the same �MS and the data are obtained from

the lattice data set up in Table I. (b) The same but with some additional lattice estimates for the coupling at very high momenta
(300–500 GeV2) taken from [9].

(a) (b)

FIG. 2. (a) Plot of�MS (in GeV) computed by the inversion of the four-loop perturbative formula Eq. (23) as a function of the square
of the momentum (in GeV2); the coupling is estimated from the lattice data through Eq. (9). (b) Same as plot (a) except for applying
the nonperturbative formula Eq. (33) for the coupling and looking for the gluon condensate generating the best plateau over 9 &
p2 & 33 GeV2.

6The errors on the lattice estimates of the coupling that were
used to compute �2 were obtained by propagating the ones
computed through the jackknife method for F and G in [22].

7We define the errors by taking the larger ellipsoid and this
could be considered to account for some systematic effect related
to the choice of the fitting window.
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These values are in very good agreement with the
previous estimates from quenched lattice simulations of
the three-gluon Green function [7,8] or, in the case of�MS,

from the implementation of the Schrödinger functional
method [2], although slightly larger than the one obtained
by the ratio of ghost and gluon dressing functions [25]
[see Fig. 4(b) and Table III). Concerning the gluon con-
densate estimate only, it is worth pointing out that it can be
computed at the renormalization momentum8 �2 ¼
100 GeV2 (see Table III) and it also agrees very well
with the estimate from the analysis of the quark propagator

vector part Zc that gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2iR;�¼10 GeV

q
¼ 1:76ð8Þ GeV

[27]. A comment about higher-order nonperturbative
OPE corrections is in order at this point. The neglect of
their contribution (at least of the order of Oð1=p4Þ) could
explain the deviation of the lattice estimates from our
OPE formula Eq. (33) below p2 ¼ 9 GeV. However,
the consistency with other calculations shown above
and the very good agreement of our formula with lattice
data at very high momenta (see Fig. 3) guarantee that
the impact of those high-order OPE corrections, as a
possible source of uncertainty in determining �MS and

the gluon condensate over our fitting window, is indeed
negligible.
As a final remark, had we taken into account the leading-

logarithm behavior of the Wilson coefficient for the run-
ning coupling [applied Eq. (B7) instead of Eq. (33)], the

parameters so fitted would not significantly differ from

those in Eq. (35): We estimate a difference of �4% in

the determination of g2ThA2iR and less than 0.5% in that of
�MS.

0 1 2 3 4 5 6 7
200

210

220
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240

250

260

270
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290
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310

Λ
M

S
(M

eV
)

Average

(a) (b)

FIG. 4 (color online). (a) The ellipsoid defined by �2ð�MS; g
2
ThA2iRÞ ¼ �2

min þ 1. The y axis is for �MS expressed in GeVand x axis
for g2ThA2iR in GeV2. The small ellipsoid is obtained for a fitting window defined by p2 > 9 GeV2 and the larger is for p2 > 14 GeV2.
(b) Comparison with previous estimates of �MS in pure Yang-Mills collected in Table III; the blue triangle stands for the estimate in

this work and the red square for the average of the five estimates presented in the plot. The 1-
 error interval for the average (dashed
red line) was estimated by treating the errors in Table III as purely statistical ones.

TABLE III. Comparison of estimates of �MS obtained from the analysis of the ghost-gluon vertex in this work (first column), the
asymmetric 3-gluon vertex (second column), the symmetric 3-gluon vertex (third column), the ratio of gluon and ghost dressing
functions (fourth column) and with the Schrödinger functional method (last column). The gluon condensate hA2iR;� has been obtained

at the renormalization momentum � ¼ 10 GeV, for the sake of comparison with the other estimates, from Eq. (35) by applying
g2ð�2 ¼ 100 GeV2Þ=4� ¼ 0:15.

F2G (this work) Asymmetric 3-gluon [8] Symmetric 3-gluon [8] F=G [25] Schrödinger [2]

�MS (MeV) 244þ8
�5 260(18) 233(28) 270(30) 238(19)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hA2iR;�
q

(GeV) 1.64(17) 2.3(6) 1.9(3) 1.3(4) —

8Neglecting the leading logarithm for the Wilson coefficient
implies that g2hA2i, one of the quantities determined through our
fits in this paper, is a renormalization-group invariant and does
not depend on the renormalization momentum, but hA2i does.
We fix anyhow �2 ¼ 100 GeV2 and compute hA2i at that
momentum, for the sake of comparison with other determina-
tions of the gluon condensate in literature.
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IV. CONCLUSIONS

In the present paper we reconsider in some detail the
determination of �MS from gluon and ghost Green func-

tions using the MOM scheme. We stick here to the
quenched case, or rather to the pure Yang-Mills SUð3Þ
theory, having of course in mind to apply what we learn
also to the unquenched situation.

A. Ghost-gluon vertex

We give some details about the proper renormalization
of the ghost-gluon vertex in the MOM scheme mainly
because we realized that there is some carelessness in the
literature. An obvious remark is that applying MOM to a
vertex function needs to specify the kinematics of the
renormalization point. Renormalizing at the scale � may
be performed in the symmetric case, with the three mo-
menta at the renormalization scale (p2 ¼ �2) or in the
soft-gluon limit (pgluon ¼ 0, p2

ghost ¼ �2), or with a van-

ishing incoming ghost momentum, etc. The latter case is
the one in which Taylor’s theorem applies which leads to
~Z1 ¼ 1. We present in Sec. II A an alternative derivation of
the perturbative renormalization of the coupling constant
in the latter scheme, defined by Eq. (9), in agreement with
the result by Chetyrkin [18]. The other kinematics lead to a
finite but nontrivial ~Z1 ¼ 1þOð�2Þ. This difference has
been often overlooked, presumably because it is assumed
to be small. However, as we have shown in Sec. II A,
applying ~Z1 ¼ 1 to the symmetric case leads to a 14%
systematic error on �MS while it gives 23% when applied

to the soft-gluon limit.

B. The �MS plateau

�MS is a constant independent of the scale �. Inverting

the perturbative expansion of the coupling constant one can
invert Eq. (23) leading for each � to �MSð�2Þ from

�Tð�2Þ.9 If we were in a perturbative region of �
�MSð�2Þ should not depend on � up to statistical errors.

One should see a nice plateau. Figure 2(a) shows that this is
far from being the case up to �2 ¼ 30 GeV2. We have
since long advocated that there is a sizeable nonperturba-
tive contribution from the vacuum expectation value of the
unique (in Landau gauge) dimension-two operator hA2i.
We propose to fit this condensate by adjusting the resulting
�MS to a plateau. This is successfully achieved (see Fig. 2

(b)). Since we scan a large window in the scale � we
believe that we are in a position to claim that we indeed
see a nonperturbativeOð1=�2Þ contribution rather than the
effect of logarithmically behaved higher orders in pertur-
bation theory (Oð�5Þ).

C. Comparison of different estimates of �MS

We have performed a comparison of different estimates
of �MS and hA2i in the pure Yang-Mills theory using the

coupling constant defined in Eq. (9), the MOM coupling
constant from symmetric three-gluon vertex function, the
MOM coupling constant from the three-gluon vertex func-
tion with one vanishing momentum and from the ghost to
gluon propagator ratio, and also with the estimate of �MS

from the Schrödinger functional approach. The result is
reported in Table III and Fig. 4(b). The agreement is quite
satisfactory. Figure 3(b) shows also a good agreement of
our fit from �Tð�2Þ with very large � measurements from
[9]. Notice also that �MS from �Tð�2Þ has the smallest

statistical errors due to the fact that it relies only on a
propagator, not on noisier three-point Green functions.
This opens a possibility of using the matching of�MS as

computed from different lattices in order to fit the lattice
spacing ratio. One might also match directly �Tð�2Þ from
different lattices, a procedure which is not constrained to
large scales and does not need to estimate the hA2i con-
densate. In fact from Eq. (9) we get directly a quantity
which should be independent of the lattice spacing at the
same � in physical units, up to Oð1=a2Þ artifacts. This
method is complementary to the use of Sommer’s parame-
ter r0 [28] and it also only depends on gauge fields.

APPENDIX A: GHOSTAND GLUON
PROPAGATORS ANOMALOUS DIMENSION IN

MOM

The ghost and gluon anomalous dimension can be com-
puted in the MOM scheme by applying Eq. (17) with the

results obtained in MS for the radiative corrections of all
the relevant Green functions [18,20,21]. Thus, one obtains
for the coefficients defined in Eq. (16)

~�0 ¼ 9

4
~�1 ¼ 813

16
� 13Nf

4

~�2 ¼ 157303

64
� 14909Nf

48
þ 125N2

f

18
� 5697	ð3Þ

32

� 21

4
Nf	ð3Þ

~�3 ¼ 219384137

1536
� 30925009Nf

1152
þ 288155N2

f

216

� 2705N3
f

162
� 9207729	ð3Þ

512
þ 132749

96
Nf	ð3Þ

� 19

2
N2

f	ð3Þ �
221535	ð5Þ

32
þ 15175

16
Nf	ð5Þ; (A1)

9This can be done in any MOM scheme using the appropriate
equivalent to Eq. (23).
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�0 ¼ 13

2
� 2Nf

3
�1 ¼ 3727

24
� 250Nf

9
þ 20N2

f

27

�2 ¼ 2127823

288
� 9747	ð3Þ

16
þ Nf

�
� 5210

3
þ 119	ð3Þ

3

�

þ N2
f

�
1681

18
þ 16	ð3Þ

9

�
� 200N3

f

243

�3 ¼ 3011547563

6912
� 18987543	ð3Þ

256
� 1431945	ð5Þ

64

þ Nf

�
� 221198219

1728
þ 2897113	ð3Þ

216
þ 845275	ð5Þ

96

�

þ N2
f

�
6816713

648
� 60427	ð3Þ

162
� 4640	ð5Þ

9

�

þ N3
f

�
� 373823

1458
� 88	ð3Þ

27

�
þ 2000N4

f

2187
: (A2)

These coefficients appear for the expansion, given by Eq.
(17), of the MOM-renormalized ghost and gluon anoma-

lous dimension in terms of the MS coupling. However,
provided that the � function for any other renormalization
scheme is known, it can be applied to replace �MS in Eq.

(16) by the coupling in that scheme.

APPENDIX B: WILSON COEFFICIENTS AT
LEADING LOGARITHMS

The purpose of this appendix is to present up to leading
logarithms the subleading Wilson coefficients in Eqs. (29)
and (32) and, in view of checking the validity of neglecting
those logarithms, estimate their impact on the momenta
window we use for our fits. Following [8], let us write

GRðq2; �2Þ ¼ c0

�
q2

�2
; �ð�2Þ

�
þ c2

�
q2

�2
; �ð�2Þ

�

� hA2
Ri�

4ðN2
c � 1Þq2

FRðq2; �2Þ ¼ ~c0

�
q2

�2
; �ð�2Þ

�
þ ~c2

�
q2

�2
; �ð�2Þ

�

� hA2
Ri�

4ðN2
c � 1Þq2

(B1)

for gluon and ghost propagators. Then, with the help of the
appropriate renormalization constants one can rewrite Eq.
(B1) in terms of bare quantities

Gðq2;�2Þ ¼ Z3ð�2;�2Þc0
�
q2

�2
; �ð�2Þ

�

þ Z3ð�2;�2ÞZ�1
A2 ð�2;�2Þc2

�
q2

�2
; �ð�2Þ

�

� hA2i
4ðN2

c � 1Þq2 ; (B2)

where A2
R ¼ Z�1

A2 A
2. For the ghost dressing function

Fðq2;�2Þ, equations totally analogous to Eqs. (B1) and
(B2), with ~ci and ~Z3 in place of ci and Z3 can be obtained.
Now, as the � dependence of both the left-hand side and
right-hand side of Eq. (B2) should match each other for any
q, one can take the logarithmic derivative with respect to�
and infinite cutoff limit, term by term, on right-hand side
and obtain

�ð�ð�2ÞÞþ
�

@

@log�2
þ�ð�ð�2ÞÞ @

@�

�
lnc0

�
q2

�2
;�ð�2Þ

�
¼0

��A2ð�ð�2ÞÞþ�ð�ð�2ÞÞþ
�

@

@log�2
þ�ð�ð�2ÞÞ @

@�

�

�lnc2

�
q2

�2
;�ð�2Þ

�
¼0;

(B3)

where �ð�ð�2ÞÞ is the gluon propagator anomalous dimen-
sion defined in Eq. (16) and

�A2ð�ð�2ÞÞ ¼ lim
�!1

d

d ln�2
lnZA2ð�2;�2Þ

¼ ��A2

0

�ð�2Þ
4�

þ � � � : (B4)

Both Eqs. (B3) can be finally combined to give

�
��A2ð�ð�2ÞÞþ @

@log�2
þ�ð�ð�2ÞÞ @

@�

�c2ðq2�2 ;�ð�2ÞÞ
c0ðq2�2 ;�ð�2ÞÞ

¼0:

(B5)

We can proceed in the same way for the ghost dressing
function and derive analogous equations for the Wilson
coefficients ~ci that differ from those for ci only because
~�ð�ð�2ÞÞ takes the place of �ð�ð�2ÞÞ. Thus, the combina-
tion ~c2=~c0 obeys exactly the same Eq. (B5), above derived
for c2=c0, that can be solved at the leading logarithm as
explained in [8] to give

α
α

FIG. 5 (color online). �NP=�pert in terms of the square of the
momentum computed by using both Eq. (B7) (dashed blue) and
Eq. (33) (solid red).
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c2ðq2�2 ; �ð�2ÞÞ
c0ðq2�2 ; �ð�2ÞÞ

¼
~c2ðq2�2 ; �ð�2ÞÞ
~c0ðq2�2 ; �ð�2ÞÞ

¼ 3g2ðq2Þ
�
g2ðq2Þ
g2ð�2Þ

���A2

0
=�0

: (B6)

The boundary condition comes from requiring Eq. (B3) to
be equal to Eq. (29) for the ghost and Eq. (32) for the gluon

at �2 ¼ q2. The coefficient �A2

0 was computed to be 35=4
for the first time in [8]. Of course, Eqs. (B3) define not only
the dependence of the Wilson coefficient on the renormal-
ization momentum�2 but also that on the momentum scale
q2 because of standard dimensional arguments: the only
dimensionless quantities10 are the ratio q2=�2 and �.

Then, putting all together, the nonperturbative formula
for the running coupling at the leading logarithm is given
by

�Tð�2Þ ¼ �pert
T ð�2Þ

0
@1þ 9

�2

0
@ln �2

�2
QCD

ln
�2

0

�2
QCD

1
A�9=44

� g2Tð�2
0ÞhA2iR;�2

0

4ðN2
C � 1Þ

1
A; (B7)

where the only correction to Eq. (33) comes from the ratio
of logarithms inside the bracket that, as can be seen in
Fig. 5, introduces no significant deviation.
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