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We deduce the mass of the pseudoscalar glueball G from an �-�0-G mixing formalism based on the

anomalous Ward identity for transition matrix elements. With the inputs from the recent KLOE

experiment, we find a solution for the pseudoscalar glueball mass around ð1:4� 0:1Þ GeV, which is

fairly insensitive to a range of inputs with or without Okubo-Zweig-Iizuka-rule violating effects. This

affirms that �ð1405Þ, having a large production rate in the radiative J=� decay and not seen in ��

reactions, is indeed a leading candidate for the pseudoscalar glueball. Other relevant quantities including

the anomaly and pseudoscalar density matrix elements are obtained. The decay widths for G ! ��, ‘þ‘�

are also predicted.
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I. INTRODUCTION

The quest for pseudoscalar glueballs has continued for
decades. An Eð1420Þmeson with a mass of 1426 MeV was
first discovered at CERN in 1963 through p �p interactions
[1]. In 1980, Mark II observed that a J=c meson decays
via photon emission into a resonance at a mass around
1440 MeV [2]. This new state, named �ð1440Þ by Mark II
and Crystal Ball Collaborations [3], was also once called
Gð1440Þ in [4,5]. Shortly after the Mark II experiment,
Eð1420Þ and �ð1440Þ were first proposed to be the pseudo-
scalar glueball candidates in [6] and in [4,5,7], respec-
tively, while an opposite opinion that Eð1420Þ was an 1þ
s�s quark state was advocated in [8]. As the experimental
situation was sorted out, Eð1420Þ turned out to be an 1þ
meson now known as f1ð1420Þ, and �ð1440Þ was a pseu-
doscalar state now known as �ð1405Þ. For an excellent
review of the E and � mesons, see [9].

�ð1405Þ indeed behaves like a glueball in its produc-
tions and decays. The K �K� and ��� channels in ��
collisions have been investigated [10]. While �ð1475Þ in
K �K� was observed, �ð1405Þ in ��� was not. Since the
glueball production is presumably suppressed in �� colli-
sions, the above observations suggest that the latter state
has a large glueball content [11]. J=c radiative decays
through �gg have been considered as the ideal channels of
searching for glueballs. The branching ratio BðJ=c !
��ð1405ÞÞ of order 10�3 is much larger than the decays
J=c ! ��ð1295Þ, ��ð2225Þ, . . .which are either not seen
or are of order 10�4. The decay of a nearby �ð1475Þ ! ��
has been observed [10], but �ð1405Þ ! �� has not. All
these features support the proposal that �ð1405Þ is a good
pseudoscalar glueball candidate [9]. There has also been

theoretical support based on the closed flux-tube model
[12] and the model that combines the octet, the singlet, and
the glueball into a decuplet [13]. Besides �ð1405Þ, other
states with masses below 2 GeV have also been proposed
as the candidates, such as �ð1760Þ in [14] and Xð1835Þ in
[15].
As for the scalar glueball, two of the authors (H. Y. C.

and K. F. L.) and Chua [16] have considered a model for
the glueball and q �q mixing, which involves the neutral
scalar mesons f0ð1370Þ, f0ð1500Þ and f0ð1710Þ, based on
two lattice results: (i) a much better SU(3) symmetry in the
scalar sector than in the other meson sectors [17] and (ii) an
unmixed scalar glueball at about 1.7 GeV in the quenched
approximation [18]. It was found that f0ð1500Þ is a fairly
pure octet, having very little mixing with the singlet and
the glueball, while f0ð1370Þ and f0ð1710Þ are dominated
by the glueball and the q �q singlet, respectively, with about
10% mixing between them. The observed enhancement of
!f0ð1710Þ production over �f0ð1710Þ in hadronic J=c
decays and the copious f0ð1710Þ production in radiative
J=c decays lend further support to the prominent glueball
nature of f0ð1710Þ.
Contrary to the above case, the pseudoscalar glueball

interpretation for �ð1405Þ is, however, not favored by
quenched lattice gauge calculations, which predicted the
mass of the 0�þ state to be above 2 GeV in [19] and around
2.6 GeV in [18,20]. It is not favored by the sum-rule
analysis with predictions higher than 1.8 GeV [21,22]
either. Readers are referred to [23] for a recent review on
the results of the glueball masses. Note that the above
lattice calculations were performed under the quenched
approximation without the fermion determinants. It is be-
lieved that dynamical fermions may have a significant
effect in the pseudoscalar channel, because they raise the
singlet would-be-Goldstone boson mass from that of the
pion to � and �0. It has been argued that the pseudoscalar
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glueball mass in full QCD is substantially lower than that
in the quenched approximation [22]. In view of the fact that
the topological susceptibility is large ( � ð191 MeVÞ4) in
the quenched approximation [24], and yet is zero for full
QCD in the chiral limit, it is conceivable that full QCD has
a large effect on the glueball as it does on � and �0.

In this paper, we infer the pseudoscalar glueball mass
mG from the �-�0-Gmixing, whereG denotes the physical
pseudoscalar glueball. Implementing this mixing into the
equations of motion for the anomalous Ward identity, that
connects the vacuum to �, �0, and G transition matrix
elements of the divergence of axial-vector currents to those
of pseudoscalar densities and the U(1) anomaly, mG is
related to other phenomenological quantities such as the
�, �0 masses, the decay constants, and the mixing angles.
Since the mixing angles have been measured recently from
the � ! ��, ��0 decays by KLOE [25], mG can be
solved. Our numerical study gives a fairly robust result
mG � 1:4 GeV, which is insensitive to a range of inputs.
We also obtain the matrix elements for the pseudoscalar
densities and axial U(1) anomaly associated with the �, �0,
andG states. The values of the pseudoscalar density matrix
elements for the�,�0 mesons are close to those obtained in
the Feldmann-Kroll-Stech (FKS) scheme [26], which does
not include the mixing with the pseudoscalar glueball. The
results of the anomaly matrix elements for the above states
are quite consistent with those estimated from the topo-
logical susceptibility [27–29] and the lattice evaluation
[18], indicating that the J=c ! ��0 branching ratio could
be comparable to that of J=c ! �G. We then study the
pseudoscalar glueball decays into two photons and two
leptons G ! ��, ‘þ‘�. The comparison of our analysis
with the properties of known mesons suggests that the
�ð1405Þ meson is a strong pseudoscalar glueball
candidate.

In Sec. II, we set up the formalism for the �-�0-G
mixing, assuming that the glueball only mixes with the
flavor-singlet �1, but not with the flavor-octet �8. Our
parametrization for the mixing matrix contains only two
angles and differs from that in [25], where it is assumed
that � does not mix with the glueball state. The solution for
the pseudoscalar gluaball mass mG is derived in Sec. III
with the phenomenological inputs from KLOE [25]. The
solutions with the inputs from [30] and from [26] as a limit
of vanishing mixture with the glueball state are also pre-

sented for comparison. It will be shown in Sec. IV that the
result for mG is stable against the variations of phenome-
nological inputs and of corrections violating the Okubo-
Zweig-Iizuka (OZI) rule [31]. The G ! ��, ‘þ‘� decay
widths are also estimated. Section V is the conclusion.

II. �-�0-G MIXING

We extend the FKS formalism [26] for the �-�0 mixing
to include the pseudoscalar glueballG. In the FKS scheme,
the conventional singlet-octet basis and the quark-flavor

basis have been proposed. For the latter, the q �q � ðu �uþ
d �dÞ= ffiffiffi

2
p

and s�s flavor states, labeled by the �q and �s

mesons, respectively, are defined. In the extension to the
�-�0-Gmixing, the physical states �, �0, andG are related
to the octet, singlet, and unmixed glueball states �8, �1,
and g, respectively, through the combination of rotations

j�i
j�0i
jGi

0
@

1
A ¼ U3ð�ÞU1ð�GÞ

j�8i
j�1i
jgi

0
@

1
A; (1)

with the matrices

U3ð�Þ ¼
cos� � sin� 0
sin� cos� 0
0 0 1

0
@

1
A;

U1ð�GÞ ¼
1 0 0
0 cos�G sin�G

0 � sin�G cos�G

0
@

1
A:

(2)

The matrix U1 (U3) represents a rotation around the axis
along the �8 meson (unmixed glueball g). Equation (1) is
based on the assumption that �8 does not mix with the
glueball, under which two mixing angles � and �G are
sufficient.
The octet and singlet states are related to the flavor states

via

j�8i
j�1i
jgi

0
@

1
A ¼ U3ð�iÞ

j�qi
j�si
jgi

0
@

1
A; (3)

where �i is the ideal mixing angle with cos�i ¼
ffiffiffiffiffiffiffiffi
1=3

p
and

sin�i ¼
ffiffiffiffiffiffiffiffi
2=3

p
, i.e., �i ¼ 54:7�. The flavor states are then

transformed into the physical states through the mixing
matrix

Uð�;�GÞ ¼ U3ð�ÞU1ð�GÞU3ð�iÞ ¼
cos�þ sin� sin�i�G � sin�þ sin� cos�i�G � sin� sin�G

sin�� cos� sin�i�G cos�� cos� cos�i�G cos� sin�G

� sin�i sin�G � cos�i sin�G cos�G

0
@

1
A; (4)

with the angle � ¼ �þ �i and the abbreviation �G ¼ 1� cos�G. U has been written in the form, which approaches the
FKS mixing matrix [26] in the �G ! 0 limit. That is, the angle � plays the same role as the mixing angle in the FKS
scheme.

Our formalism assumes isospin symmetry, i.e., no mixing with�0, and neglects other possible admixtures from c �c states
and radial excitations. The widely studied decay constants fq and fs are defined by [26]
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h0j �q���5qj�qðPÞi ¼ � iffiffiffi
2

p fqP
�;

h0j�s���5sj�sðPÞi ¼ �ifsP
�

(5)

for the light quark q ¼ u or d. The �q (�s) meson decay
constant fsq (fqs ) through the s (q) quark current [32], and
the unmixed glueball decay constants fq;sg through the q
and s quark currents, can be defined in a similar way:

h0j �q���5qj�sðPÞ; gðPÞi ¼ � iffiffiffi
2

p fqs;gP�;

h0j�s���5sj�qðPÞ; gðPÞi ¼ �ifsq;gP
�:

(6)

The decay constants associated with the � meson, �0
meson, and the physical glueball defined in

h0j �q���5qj�ðPÞ; �0ðPÞ; GðPÞi ¼ � iffiffiffi
2

p fq�;�0;GP
�;

h0j�s���5sj�ðPÞ; �0ðPÞ; GðPÞi ¼ �ifs
�;�0;GP

�

(7)

are related to those associated with the �q, �s, and g states

via the same mixing matrix

fq� fs�
fq
�0 fs

�0

fqG fsG

0
B@

1
CA ¼ Uð�;�GÞ

fq fsq
fqs fs
fqg fsg

0
B@

1
CA: (8)

Sandwiching the equations of motion for the anomalous
Ward identity

@�ð �q���5qÞ ¼ 2imq �q�5qþ �s

4�
G�	

~G�	;

@�ð �s���5sÞ ¼ 2ims �s�5sþ �s

4�
G�	

~G�	
(9)

between vacuum and j�i, j�0i and jGi, where G�	 is the

field-strength tensor and ~G�	 the dual field-strength tensor,
and following the procedure in [32], we derive

M2
qsg ¼ Uyð�;�GÞM2Uð�;�GÞ~J: (10)

In the above expression the matrices are written as

M2
qsg ¼

m2
qq þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þj�qi m2
sq þ ð1=fsÞh0j�sG ~G=ð4�Þj�qi 0

m2
qs þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þj�si m2
ss þ ð1=fsÞh0j�sG ~G=ð4�Þj�si 0

m2
qg þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þjgi m2
sg þ ð1=fsÞh0j�sG ~G=ð4�Þjgi 0

0
B@

1
CA;

M2 ¼
m2

� 0 0
0 m2

�0 0

0 0 m2
G

0
B@

1
CA; ~J ¼

1 fsq=fs 0
fqs =fq 1 0
fqg=fq fsg=fs 0

0
B@

1
CA;

(11)

with the abbreviation

m2
qq;qs;qg �

ffiffiffi
2

p
fq

h0jmu �ui�5uþmd
�di�5dj�q; �s; gi;

m2
sq;ss;sg � 2

fs
h0jms �si�5sj�q; �s; gi:

(12)

In the limit of the large color number Nc, the scaling for
the decay constants, the pseudoscalar densities, and the
anomaly matrix elements is [33]

fq;s �Oð ffiffiffiffiffiffi
Nc

p Þ; fq;sg �Oð1Þ; fsq � fqs �Oð1= ffiffiffiffiffiffi
Nc

p Þ;
mG �Oð1Þ; �G �Oð1= ffiffiffiffiffiffi

Nc

p Þ; m2
qq �Oð1Þ;

m2
ss �Oð1Þ; m2

qg �m2
sg �Oð1= ffiffiffiffiffiffi

Nc

p Þ;
m2

qs �m2
sq �Oð1=NcÞ; h0j�sG ~G=ð4�Þjgi �Oð1Þ;

h0j�sG ~G=ð4�Þj�qi � h0j�sG ~G=ð4�Þj�si �Oð1= ffiffiffiffiffiffi
Nc

p Þ:
(13)

The pseudoscalar meson and glueball masses scale asOð1Þ
in large Nc. However, it has been pointed out [27–29] that

the subleading Oð1=NcÞ term in the �1 mass squared
m2

�1
�Oð1Þ þOð1=NcÞ is numerically large due to the

Uð1Þ anomaly, and is related to the topological suscepti-
bility 
 in the quenched QCD without fermions. In the

chiral limit, the relation m2
�0 ¼ 4NF
=f

2
� ¼

2
ffiffiffiffiffiffiffi
NF

p h0j�sG ~G=ð4�Þj�0i=f� with NF being the number

of flavors gives h0j�sG ~G=ð4�Þj�0i � 0:035 GeV3 for 
 ¼
ð191 MeVÞ4 [24]. Although being Oð1= ffiffiffiffiffiffi

Nc

p Þ in large Nc,
this anomaly matrix element is numerically much larger
than the Oð ffiffiffiffiffiffi

Nc

p Þ quantities m2
qqfq � 0:0026 GeV3 for

m2
qq � m2

� and comparable to m2
ssfs � 0:087 GeV3 for

m2
ss � 2m2

K �m2
�. In view of this, we shall keep all the

anomaly matrix elements for �q,�s, and g in the following

analysis. On the other hand, we expect the decay constants
and the pseudoscalar density matrix elements to have the
normal ordering in terms of Nc. That is, we expect fq;s >

fq;sg > fsq; f
q
s , m2

qq > m2
qg > m2

qs, and m2
ss > m2

sg > m2
sq.

The above ordering is consistent with the OZI rule in that
double quark annihilation, which is present in fsq, f

q
s , m2

qs,

and m2
sq but not in others, is OZI-rule violating and sup-

pressed. We note that the two sides of each of the equations
in Eq. (10) have the same Nc scaling, implying consistency
of our formalism in terms of Nc.
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III. PSEUDOSCALAR GLUEBALL MASS

The explicit expansion of Eq. (10) leads to

Uy
11½U11 þU12R

0 þU13r
0�m2

� þUy
12½U21 þU22R

0

þU23r
0�m2

�0 þUy
13½U31 þU32R

0 þU33r
0�m2

G

¼ m2
qq þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þj�qi; (14)

Uy
11½U11RþU12 þU13r�m2

� þUy
12½U21RþU22

þU23r�m2
�0 þUy

13½U31RþU32 þU33r�m2
G

¼ m2
sq þ ð1=fsÞh0j�sG ~G=ð4�Þj�qi; (15)

¼ m2
qs þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þj�si; (16)

Uy
21½U11RþU12 þU13r�m2

� þUy
22½U21RþU22

þU23r�m2
�0 þUy

23½U31RþU32 þU33r�m2
G

¼ m2
ss þ ð1=fsÞh0j�sG ~G=ð4�Þj�si; (17)

Uy
31½U11 þU12R

0 þU13r
0�m2

� þUy
32½U21 þU22R

0

þU23r
0�m2

�0 þUy
33½U31 þU32R

0 þU33r
0�m2

G

¼ m2
qg þ ð ffiffiffi

2
p

=fqÞh0j�sG ~G=ð4�Þjgi; (18)

Uy
31½U11RþU12 þU13r�m2

� þUy
32½U21RþU22

þU23r�m2
�0 þUy

33½U31RþU32 þU33r�m2
G

¼ m2
sg þ ð1=fsÞh0j�sG ~G=ð4�Þjgi; (19)

where the parameters r � fsg=fs, r
0 � fqg=fq, R � fsq=fs,

and R0 � fqs =fq are introduced, andUij denotes the matrix

element of U. In developing our mixing formalism, the
flavor-independent couplings between the glueball g and
the pseudoscalar u �u, d �d and s�s states are assumed, so that g
only mixes with the flavor-singlet �1. Accordingly, we

postulate fqg ¼ ffiffiffi
2

p
fsg and fqs ¼ fsq, and thus the relations

r0 ¼ ffiffiffi
2

p fs
fq

r R0 ¼ fs
fq

R; (20)

which will be adopted in the numerical study in Sec. IV.
We first explore the implication of the�-�0-Gmixing on

the glueball mass mG. To simplify the matter, the ratios r,
r0, R, and R0 are neglected, which are Oð1= ffiffiffiffiffiffi

Nc

p Þ and
Oð1=NcÞ, respectively, in large Nc as shown in Eq. (13).
We also neglect m2

qg and m2
sg relative to the numerically

large anomaly term h0j�sG ~G=ð4�Þjgi=fq;s as an approxi-

mation. It should be safe to drop m2
qg, since it is, like the

smallm2
qq � m2

�, proportional to the light u=d quark mass.

On the other hand, it is not clear if it is safe to drop m2
sg.

Although it is Oð1= ffiffiffiffiffiffi
Nc

p Þ compared to m2
ss, but the latter,

being proportional to the strange quark mass, is larger than

h0j�sG ~G=ð4�Þj�0i=fs in the chiral limit as discussed in
Sec. II. This subject will be investigated in a more detailed
numerical analysis later in Sec. IV. Having made the above
assumptions, we take the ratio of Eqs. (18) and (19), and
obtain

c�ðs�� c�s�i�GÞm2
�0 � s�ðc�þ s�s�i�GÞ2m2

� � s�ic�Gm
2
G

c�ðc�� c�c�i�GÞm2
�0 þ s�ðs�� s�c�i�GÞ2m2

� � c�ic�Gm
2
G

¼
ffiffiffi
2

p
fs

fq
; (21)

where c� (s�) is the shorthand notation for cos� ( sin�)
and similarly for others.

Note that the above simple formula still holds, even after
keeping the r0- and r-dependent terms, as long as they obey
Eq. (20). In other words, the r0-dependent terms in Eq. (18)
and the r-dependent terms in Eq. (19) can be absorbed into
the right-hand sides of these equations and are therefore
canceled after taking the ratio of Eqs. (18) and (19). The
factor sin�G in the numerator and the denominator of Eq.
(21) has been canceled out, so that the �G dependence
appears at order of �G � �2

G for small �G. As such, we

find that the solution for mG is stable against the most
uncertain input�G, as long as the �, �

0 mesons do not mix
with the glueball g intensively. The solution depends on the
ratio fs=fq, which is, through Eqs. (15) and (16), related toffiffiffi

2
p

fs
fq

¼ h0j�sG ~G=ð4�Þj�qi
h0j�sG ~G=ð4�Þj�si

; (22)

if the pseudoscalar density matrix elements m2
qs and m2

sq

are neglected. It implies that the SU(3) symmetry breaking
in the axial anomaly matrix element echoes the symmetry
breaking in the decay constants, and plays a sensitive role
in the determination of the pseudoscalar glueball mass. For
a given �G, mG increases with decreasing fs=fq. By the

same token, when the anomaly matrix element for the �s

becomes larger relative to that of the�q meson, the mass of

the pseudoscalar glueball gets higher.
Before solving for mG from Eq. (21), we explain the

strategies for data fitting adopted in [25,30], which led to
different extractions of the mixing angle �G. In Ref. [25],
the decay constants fq ¼ ð1� 0:01Þf� and fs ¼ ð1:4�
0:014Þf� [34], and the parameters associated with meson
wave function overlaps [35] were fixed as inputs. The
angles � ¼ ð39:7� 0:7Þ� and �G ¼ ð22� 3Þ� were then
determined from the relevant data. A tiny error (1%) was
assigned to fq and fs, which is one of the reasons why a
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high precision was reached for the determination of�G. In
[30] the data of P ! �V and V ! �P were first consid-
ered, which do not depend on fq and fs, and the fit gave the

outcomes � ¼ ð41:4� 1:3Þ� and �G ¼ ð12� 13Þ�.
Without precise inputs of fq and fs, and with the hadronic

parameters for meson wave function overlaps being free, it
is not unexpected to get a wide range for �G. The value of
�G, being consistent with zero [36], means that the data
could be accommodated by the hadronic uncertainty alone.
The extracted � and �G were then used as inputs to
determine fq and fs from the �, �0 ! �� data. Since

�G has a wide range, the results fq ¼ ð1:05� 0:03Þf�
and fs ¼ ð1:57� 0:28Þf� also have larger errors. The
correlation between �G and fs (a smaller �G correspond-
ing to a larger fs) is a consequence of the constraint from
these data. We also note that a larger mixing angle �G ¼
ð33� 13Þ� has been extracted from the J=c ! VP data
recently [37]. In summary, both sets of parameters in
[25,30] can fit the data, and are consistent with each other
within their uncertainties. It is seen that fq, fs, and � are

more or less certain, but �G varies in a wider range.
Fortunately, the solution for the pseudoscalar glueball
mass mG is not sensitive to �G as discussed above and
will be explored further in the remainder of this paper.

As stated before, KLOE postulated that the glueball does
not mix with � [25]. We shall point out that this postulate
does not yield a solution for mG in our formalism. The
KLOE parametrization for the �-�0-G mixing matrix is
written as

UKLOE ¼
cos� �sin� 0

sin�cos�G cos�cos�G sin�G

�sin�sin�G �cos�sin�G cos�G

0
@

1
A: (23)

Repeating the above procedure, Eq. (21) is modified to

s�c�Gs�Gðm2
�0 �m2

GÞ
c�c�Gs�Gðm2

�0 �m2
GÞ

¼ s�

c�
¼

ffiffiffi
2

p
fs

fq
: (24)

For the KLOE parameter set fq ¼ f�, fs ¼ 1:4f�, and

� ¼ 39:7� [25], Eq. (24) does not hold, and there is no
solution for mG as a result.

Since we have changed the mixing matrix from KLOE’s
in Eq. (23) to Eq. (4), we need to refit � and �G in
principle. However, comparing Eqs. (4) and (23), it is
easy to find that their 2� 2 submatrices in the left-upper
hand corner have almost equal elements for � � 40� and
�G � 22�:

U ¼
0:751 �0:654 0:097
0:585 0:725 0:362
�0:306 �0:216 0:927

0
@

1
A;

UKLOE ¼
0:766 �0:643 0
0:596 0:710 0:375
�0:241 �0:287 0:927

0
@

1
A:

(25)

These four elements, which are responsible for the quark

mixing, are the only ones involved in the data fitting of
� ! ��; ��0, �0 ! ��; �!, and �;�0 ! �� mentioned
above. Therefore, it is expected that the refit of the data
using our parametrization will give the mixing angles close
to KLOE’s. That is, the KLOE parameter set can be
employed directly in our numerical analysis within uncer-
tainty. The other off-diagonal elements in Eq. (25), de-
scribing the mixing among the �, �0 mesons and the
glueball, do have different values. It is thus understood
why the two parametrizations have similar mixing angles,
but the ratios in Eqs. (21) and (24) exhibit different behav-
iors as far as mG is concerned.
It is also interesting to consider the parameter set from

[26] with fq ¼ ð1:07� 0:02Þf�, fs ¼ ð1:34� 0:06Þf�,
� ¼ ð39:3� 1:0Þ�, and�G ¼ 0 (no mixing with the pseu-
doscalar glueball). Note that the lower fs in [26] arises
from combined experimental and phenomenological con-
straints. If only the experimental constraints were used,
mainly those of the �, �0 ! �� data, its central value
would increase and the range is enlarged, giving fs ¼
ð1:42� 0:16Þf� close to that extracted in [25]. Using the
central values of fs=fq and �G from [25,26,30] as inputs,

we derive the pseudoscalar glueball mass from Eq. (21)
[see also Eqs. (27)–(29) below]

mG ¼ 1:41; 1:56; 1:30 GeV; (26)

respectively. The above investigation leads to mG ¼
ð1:4� 0:1Þ GeV with the currently determined phenome-
nological parameters. The proximity of the predictedmG to
the mass of �ð1405Þ and other properties of �ð1405Þ make
it a very strong candidate for the pseudoscalar glueball. We
shall come back to visit the robustness of our prediction in
the next section, when higher order effects in 1=Nc are
included.
One may question whether other pseudoscalar mesons

with masses around 1.4 GeV, such as �ð1295Þ and
�ð1475Þ, should be included into our mixing formalism.
We note that �ð1295Þ and �ð1475Þ have been assigned as
the 21S0 states, namely, the radial excitations of q �q and s�s,
respectively [38,39]. As stated in the previous section,
these radial excitations do not mix with the � and �0
mesons by definition, since they are diagonalized under
the same Hamiltonian. As for the mixing of the radial
excitations with the glueball, we speculate that it is negli-
gible for the following reason. �ð1295Þ is practically de-
generate with the radially excited pion �ð1300Þ, and
�ð1475Þ is about 200 MeV above �ð1295Þ, a situation
similar to the ideal mixing in the vector meson sector
with �ð1020Þ being �200 MeV above !ð780Þ. This sug-
gests that �ð1295Þ and �ð1475Þ are much like the radially
excited isovector pseudoscalar q �q and pseudoscalar s�s
without annihilation. The difference between the isoscalar
�, �0 mesons and the isovector pion is that the former have
disconnected insertions (annihilation) with the coupling
going through the contact term in the topological suscep-
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tibility which pushes their masses up. By virtue of the fact
that �ð1295Þ is degenerate with �ð1300Þ and �ð1475Þ is
�200 MeV above, they do not seem to acquire such an
enhancement for their masses. Therefore, we venture to
suggest that the annihilation process is not important for
these two mesons, and their mixing with the glueball is
weak.

A pseudoscalar glueball mass about 1.4 GeV was also
determined from the framework of the �-�0-G mixing in
[40], but with a strategy quite different from ours: The
mixing is assumed to occur through a perturbative poten-
tial, so that the mixing angles are parametrized in terms of
the transition strength among the states �q, �s, and g and

their massesm�q
,m�s

, andmg [40]. These parameters were

then fixed from data fitting. Hence, it is the unmixed
glueball mass mg, instead of the physical glueball mass

mG, that was derived in [40]. Moreover, the result of [40] is
a consequence of data fitting, while ours comes from the
solution to Eq. (21). If the quark-flavor states do not mix
strongly with the glueball, mG is expected to be close to
that of mg. Following this reasoning, three possible 0�þ

glueball candidates, �ð1405Þ, �ð1475Þ, and Xð1835Þ with
masses around 1.4 GeV, have been examined in [40], and
the latter two were found to be experimentally disfavored.

IV. NUMERICAL ANALYSIS

We now proceed to solve Eqs. (14)–(19) based on the
large Nc hierarchy in Eq. (13). As discussed in Sec. II, all
the anomaly matrix elements will be kept. Even though
they are small parametrically (Oð1Þ and Oð1= ffiffiffiffiffiffi

Nc

p Þ), they
are large numerically. As a follow up to the last section, we
first neglect the decay constants fsq, f

q
s , and f

q;s
g , which are

Oð1= ffiffiffiffiffiffi
Nc

p Þ and Oð1=NcÞ lower than fq;s, respectively. We

also neglect the pseudoscalar density matrix elementsm2
qg,

m2
sg, m2

qs, and m2
sq, which are similarly suppressed as

compared to m2
qq and m2

ss.
1 Under this approximation,

our formalism involves six unknowns: three mass related
terms mG, m

2
qq, and m2

ss, and three anomaly matrix ele-

ments h0j�sG ~G=ð4�Þj�qi, h0j�sG ~G=ð4�Þj�si, and

h0j�sG ~G=ð4�Þjgi, provided that the phenomenological
quantities m2

�, m
2
�0 , fq, fs, �, and �G are given as inputs.

There are six equations from Eq. (10), so the six unknowns
can be solved in principle. We note in passing that the four

unknowns m2
qq, m2

ss, h0j�sG ~G=ð4�Þj�qi, and

h0j�sG ~G=ð4�Þj�si were solved for five given inputs m2
�,

m2
�0 , fq, fs, and � in the �-�0 mixing case [41].

Using the central values of the parameter sets from
[25,26,30] for fq, fs, �, and �G as inputs, we obtain the

following solutions:

m2
qq ¼ �0:073 GeV2;

h0j�sG ~G=ð4�Þj�qi ¼ 0:069 GeV3;

m2
ss ¼ 0:52 GeV2;

h0j�sG ~G=ð4�Þj�si ¼ 0:035 GeV3;

mG ¼ 1:41 GeV;

h0j�sG ~G=ð4�Þjgi ¼ �0:033 GeV3;

(27)

m2
qq ¼ �0:084 GeV2;

h0j�sG ~G=ð4�Þj�qi ¼ 0:067 GeV3;

m2
ss ¼ 0:50 GeV2;

h0j�sG ~G=ð4�Þj�si ¼ 0:032 GeV3;

mG ¼ 1:30 GeV;

h0j�sG ~G=ð4�Þjgi ¼ �0:015 GeV3;

(28)

and

m2
qq ¼ 0:012 GeV2;

h0j�sG ~G=ð4�Þj�qi ¼ 0:054 GeV3;

m2
ss ¼ 0:50 GeV2;

h0j�sG ~G=ð4�Þj�si ¼ 0:030 GeV3;

mG ¼ 1:56 GeV;

h0j�sG ~G=ð4�Þjgi ¼ 0 GeV3:

(29)

The above solutions give us an idea of the range of
uncertainties in our predictions. It is observed that the
solutions for the anomaly matrix elements associated
with the �q and �s mesons change little in Eqs. (27)–

(29). However, h0j�sG ~G=ð4�Þjgi for the pseudoscalar
glueball varies with the inputs of �G and fs=fq strongly

as can be seen from Eqs. (18) and (19). The solutions of
m2

qq in Eqs. (27) and (28) deviate from the naive expecta-

tion m2
qq ¼ m2

� [26], while that in Eq. (29) is in better

agreement with m2
� due to a smaller fs. The solutions of

m2
ss, on the other hand, are stable with respect to the various

inputs, and are close to the expected leading Nc result
m2

ss ¼ 2m2
K �m2

�. The values for mG have been shown
in Eq. (26) already. We should comment that m2

qq is small

because of the cancellation of two large terms as pointed
out in [41]. It flips sign easily, depending on the inputs of
fs=fq and OZI-rule violating effects, which have been

considered before in the two-angle formalism for the
�-�0 mixing [42,43]. Our opinion is that introducing the
OZI-rule suppressed decay constants fsq, f

q
s [32] is more

transparent than employing the multiple-angle formalism.
It has been observed that the tiny corrections from fsq and

fqs can turn a negative m2
qq into a positive value easily due

to the smallness of m2
qq [32].

In the following, we investigate the higher Oð1=NcÞ
effects from the decay constants fq;sg , fsq, and fqs , i.e.,

1The off-diagonal mass termsm2
sq andm

2
qs have been absorbed

into the matrix elements h0j�sG ~G=ð4�Þj�qi and
h0j�sG ~G=ð4�Þj�si, respectively, in [26].
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from r and R on our solutions. The pseudoscalar density
matrix elements m2

qg, m
2
sg, m

2
qs, and m2

sq are still ignored.

We take m2
qq¼m2

�, m2
ss¼2m2

K�m2
� and

h0j�sG ~G=ð4�Þj�qi¼0:065, 0.050, and 0:035GeV3 [the

typical values from Eqs. (27)–(29)], as the inputs in order
to solve for the unknowns r, R, and fs. The relation m

2
ss ¼

2m2
K �m2

� seems to hold well for the earlier solutions in
Eqs. (27)–(29). Thus, it is reasonable to fix it to its leading
Nc value. Taking fq¼f�, �¼42:4�, and �G¼22� and

12�, the corresponding solutions are listed in Table I. The
results of R, fs, and mG are independent of the inputs of

h0j�sG ~G=ð4�Þj�qi, reaffirming that mG is independent of

r as seen from Eq. (21). The magnitude of R is smaller than
that of r, which in turn is smaller than unity. This finding is
in agreement with the large Nc counting rule. The decay
constant fs turns out to be lower than those in [25,30],
following from the observation that a smaller fs leads to a
positive m2

qq [41]. The values of mG and

h0j�sG ~G=ð4�Þj�si are consistent with the range derived
in Eqs. (27)–(29), implying that these higher Oð1=NcÞ
effects are small. The parameters r and h0j�sG ~G=ð4�Þjgi
are found to be sensitive to the inputs, and both of them

increase with decreasing h0j�sG ~G=ð4�Þj�qi.
Finally, we explore the impact of m2

sg on our solutions.

To do so, we add fs as an input so that m2
sg can be

introduced as an unknown. m2
qg is not considered, because

its effect should be very minor as explained before. The
results for the various inputs of fs ¼ ð1:24–1:30Þf�,�G ¼
22� and 12�, and h0j�sG ~G=ð4�Þj�qi¼0:050ð0:035ÞGeV3

are listed in Table II (III). In the large Nc analysis for the
resolution of the Uð1Þ anomaly [27–29], it is the combined
contribution from a contact term and the glueball that
cancels the �0 contribution to give a zero topological
susceptibility in full QCD in the chiral limit. This com-
bined contribution is just the topological susceptibility

quench in the quenched QCD, which leads to the Witten-

Veneziano mass formula m2
�0 ¼ 4NF
quench=f

2
�. 
quench is

calculated to be � 0:00 133 GeV4 [24], and the quenched
glueball contributes about �11% to 
quench [18], which

makes the contact term to be � 0:00 148 GeV4. It is ob-

served that the anomaly matrix element h0j�sG ~G=ð4�Þjgi
is 0:105 GeV3 or larger in Table III. This anomaly matrix
element contributes h0j�sG ~G=ð4�Þjgi2=ð�4m2

gÞ �
�0:00 141 GeV4 to the topological susceptibility for

h0j�sG ~G=ð4�Þjgi¼0:105GeV3 and mg ¼ 1:4 GeV.

Namely, the glueball contribution is as large as but de-
structive to the contact term. As the glueball contribution
and the contact term already cancel each other to a large
extent, there is no room left for the contact term to cancel
the sizable � and �0 contributions in order to end in a very
small topological susceptibility in full QCD, which has a
value 
ðfullQCDÞ ¼ �h �c c i=ð1=mu þ 1=md þ 1=msÞ �
4� 10�5 GeV4 [44]. It implies that the anomaly matrix

element h0j�sG ~G=ð4�Þjgi ¼ 0:105 GeV3 is probably too
large.
Based on the above reasoning, we believe that

h0j�sG ~G=ð4�Þjgi 	 0:105 GeV3 is not likely to be a via-
ble solution. This criterion would exclude all the results in

TABLE I. Solutions for various inputs of h0j�sG ~G=ð4�Þj�qi ¼ 0:065 GeV3 (the first row),
0:050 GeV3 (the second row), and 0:035 GeV3 (the third row) with m2

qq ¼ m2
�, m

2
ss ¼ 2m2

K �
m2

�, m
2
sg ¼ m2

qg ¼ m2
qs ¼ m2

sq ¼ 0, and � ¼ 42:4�. The upper (lower) table is for �G ¼ 22�

(�G ¼ 12�).

r R fs mG (GeV) h0j �s

4�G
~Gj�si (GeV3) h0j �s

4�G
~Gjgi (GeV3)

0.004 �0:002 1:25f� 1.50 0.037 �0:038
0.22 �0:002 1:25f� 1.50 0.028 0.036

0.44 �0:002 1:25f� 1.50 0.020 0.111

�0:26 �0:003 1:28f� 1.44 0.036 �0:108
0.16 �0:003 1:28f� 1.44 0.028 0.035

0.58 �0:003 1:28f� 1.44 0.019 0.178

TABLE II. Same as Table I except that h0j�sG ~G=ð4�Þj�qi ¼ 0:050 GeV3 and fs is fixed to trade for m2
sg as a free parameter.

fs r R m2
sg (GeV2) mG (GeV) h0j �s

4�G
~Gj�si (GeV3) h0j �s

4�G
~Gjgi (GeV3)

1:24f� 0.22 �0:001 �0:009 1.60 0.028 0.036

1:26f� 0.22 �0:003 0.004 1.47 0.028 0.036

1:28f� 0.23 �0:005 0.016 1.34 0.028 0.038

1:30f� 0.24 �0:007 0.029 1.21 0.028 0.040

1:24f� 0.12 0.001 �0:054 2.15 0.027 0.030

1:26f� 0.13 �0:001 �0:029 1.84 0.027 0.031

1:28f� 0.15 �0:003 �0:005 1.52 0.027 0.034

1:30f� 0.24 �0:005 0.018 1.16 0.028 0.045
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Table III with h0j�sG ~G=ð4�Þj�qi ¼ 0:035 GeV3 as an

input. For Table II, it is seen that m2
sg and mG do depend

on fs sensitively. In some cases, we have mG as large as
1.84 GeV and 2.15 GeV, for which m2

sg are negative and

large. We cannot discard these solutions of m2
sg a priori,

but they are not favored due to their negative values. This
issue can be sorted out, when lattice calculations of m2

sg

with dynamical fermions are available. As fs 	 1:30f�,
mG becomes smaller than 1.2 GeV, where there are no
pseudoscalar glueball candidates. Therefore, if excluding
the solutions with large and negativem2

sg, the range ð1:4�
0:1Þ GeV of the pseudoscalar glueball mass obtained in
Sec. III will be more or less respected.

Having studied the higher Oð1=NcÞ effects and con-
firmed that they are small, modulo the uncertainty regard-
ing m2

sg, we shall simply use the typical results in Eq. (27)

[Eq. (28)] to obtain the anomaly matrix elements for the
physical states �, �0, and G

h0j�sG ~G=ð4�Þj�i ¼ 0:026ð0:028Þ GeV3;

h0j�sG ~G=ð4�Þj�0i ¼ 0:054ð0:057Þ GeV3;

h0j�sG ~G=ð4�ÞjGi ¼ �0:059ð�0:041Þ GeV3:

(30)

It is found that the value of h0j�sG ~G=ð4�Þj�i is close toffiffiffiffiffiffiffiffi
3=2

p
f�m

2
�=3 � 0:021 GeV3 obtained in [45], and

h0j�sG ~G=ð4�Þj�0i is within a factor of 2 from its chiral
limit estimated from the topological susceptibility, i.e.,

h0j�sG ~G=ð4�Þj�0i ¼ 2
ffiffiffiffiffiffiffi
NF

p

=f� ¼ 0:035 GeV3.

Equation (30) also reveals that h0j�sG ~G=ð4�ÞjGi is almost
the same as that from the quenched lattice QCD calcula-

tion, which gives jh0j�sG ~G=ð4�ÞjGij ¼ ð0:06�
0:01Þ GeV3 [18]. The fact that h0j�sG ~G=ð4�Þj�0i is com-

parable to h0j�sG ~G=ð4�ÞjGi, which defies the large Nc

scaling in Eq. (13), implies that the �0 meson production in
the J=c radiative decay may have a branching ratio as
large as that for the pseudoscalar glueball production.
Given the mixing angles, we can predict the widths of

the G ! ��, ‘þ‘� decays, assuming that they take place
through the quark content [11]. The ratio of the G ! ��
width over the �0 ! �� one is expressed as

�ðG ! ��Þ
�ð�0 ! ��Þ ¼

1

9

�
mG

m�0

�
3
�
5
f�
fq

sin�i sin�G

þ ffiffiffi
2

p f�
fs

cos�i sin�G

�
2
: (31)

We have confirmed that both the parameter sets in [25,30]
give the �, �0 ! �� widths in agreement with the data
�ð� ! ��Þ � 0:51 keV and �ð�0 ! ��Þ � 4:28 keV
[38], by considering the similar ratios for the �, �0 mesons.
The parameter set in [25] ([30]) leads to a ratio 387 (83.3)
in Eq. (31), i.e., the decay width �ðG ! ��Þ ¼ 3ð0:6Þ keV
for �ð�0 ! ��Þ ¼ 7:7 eV [38]. If �ð1405Þ is a pseudo-
scalar glueball, we predict the branching ratio
Bð�ð1405Þ ! ��Þ ¼ 6ð1Þ � 10�5, i.e., an order of 10�5

for the total decay width �ð�ð1405ÞÞ ¼ 51 MeV [38]. The
above result can be confronted with future experimental
data. The ‘‘stickiness’’ S has been proposed to be a useful
quantity for identifying a glueball rich state [46], which is
defined as the ratio of �ðJ=c ! �GÞ to �ðG ! ��Þ with
the phase space factors taken out. Combining our predic-
tions for the pseudoscalar glueball production and decay,
we obtain S ¼ 18–80 forG, which is much larger than S ¼
1 as defined for the � meson.
For the G ! ‘þ‘� decays, we calibrate their widths

using the available �0 ! eþe� and � ! �þ�� data:

�ðG ! eþe�Þ
�ð�0 ! eþe�Þ ¼

1

9

�
mG

m�0

�
3
�
5
f�
fq

sin�i sin�G þ ffiffiffi
2

p f�
fs

cos�i sin�G

�
2
;

�ðG ! �þ��Þ
�ð� ! �þ��Þ ¼

�
mG

m�

�
3
�
5
f�
fq

sin�i sin�G þ ffiffiffi
2

p f�
fs

cos�i sin�G

�
2

�
�
5
f�
fq

ðcos�þ sin� sin�i�GÞ �
ffiffiffi
2

p f�
fs

ðsin�þ sin� cos�i�GÞ
��2

: (32)

TABLE III. Same as Table II except h0j�sG ~G=ð4�Þj�qi ¼ 0:035 GeV3.

fs r R m2
sg (GeV2) mG (GeV) h0j �s

4�G
~Gj�si (GeV3) h0j �s

4�G
~Gjgi (GeV3)

1:24f� 0.40 �0:001 �0:009 1.60 0.019 0.105

1:26f� 0.45 �0:003 0.004 1.47 0.020 0.113

1:28f� 0.54 �0:005 0.016 1.34 0.021 0.126

1:30f� 0.69 �0:007 0.029 1.21 0.022 0.148

1:24f� 0.27 0.001 �0:054 2.15 0.018 0.136

1:26f� 0.34 �0:001 �0:029 1.84 0.018 0.146

1:28f� 0.51 �0:003 �0:005 1.52 0.019 0.168

1:30f� 1.18 �0:005 0.018 1.16 0.023 0.262
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For �ð�0 ! eþe�Þ ¼ 4:8� 10�7 eV [38], we obtain
�ðG ! eþe�Þ ¼ 1:9ð0:4Þ � 10�4 eV using the parameter
set from [25] ([30]). For �ð� ! �þ��Þ ¼ 7:5� 10�3 eV
[38], we have �ðG ! �þ��Þ ¼ 4:0ð1:0Þ � 10�2 eV. If
�ð1405Þ is a pseudoscalar glueball, the above predictions
correspond to the branching ratiosBð�ð1405Þ ! eþe�Þ ¼
4ð0:8Þ � 10�12 and Bð�ð1405Þ ! �þ��Þ ¼ 8ð2Þ �
10�10, which would be quite a challenge to observe
experimentally.

V. CONCLUSION

In this paper, we have formulated the �-�0-G mixing
scheme via the vacuum to meson transition matrix ele-
ments for the anomalous Ward identity. The extension
to include the glueball mixing with the flavor-singlet �1

is a generalization of the FKS scheme for the �-�0 mixing
[26]. Therefore, only one extra angle �G for the mixing
of the glueball state g and �1 is introduced in addition
to the angle � in the FKS scheme. We have explained
the different parameter extractions from the same set of
�, �0 meson data in [25,30], which give an idea of
the uncertainties contained in the inputs. The obtained
pseudoscalar glueball mass mG around 1.4 GeV is
much lower than the results from quenched lattice QCD
(> 2:0 GeV). It has been examined that our solution
for mG depends weakly on the ratio of the decay constants
fs=fq in the favored phenomenological range and is stable

against the variation of �G and the higher Oð1=NcÞ
corrections.

There may not exist a unique feature that tells a glue-
ball apart from a quark-antiquark state. We need to
combine information from J=c radiative decays, had-
ronic decays, as well as �� and leptonic decays as advo-
cated in [47]. The comparison of our solutions with the
available data suggests that �ð1405Þ, which is copiously
produced in the J=c radiative decay but has not been seen
in the �� reaction, is a strong pseudoscalar glueball can-

didate. The anomaly matrix elements h0j�sG ~G=ð4�Þj�0i
and h0j�sG ~G=ð4�ÞjGi in Eq. (30) are in reasonable agree-
ment with those estimated from the topological suscepti-
bility and quenched lattice calculation. According to our
analysis, the �ð1405Þ ! �� decay width is 0.6–3 keV, and
the leptonic decays �ð1405Þ ! ‘þ‘� are very small. Both
predictions can be confronted with future experiments.
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