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We describe the deconfining critical temperature dependence on the pion mass and on the isospin

chemical potential in remarkably good agreement with lattice data. Our framework incorporates explicit

dependence on quark masses, isospin and baryonic chemical potentials for the case of two flavors through

ingredients from well-known high- and low-energy theories. In the low-energy sector, the system is

described by a minimal chiral perturbation theory effective action, corresponding to a hot gas of pion

quasiparticles and heavy nucleons. For the high-temperature sector we adopt a simple extension of the

fuzzy bag model. We also briefly discuss the effects of mass asymmetry and baryon chemical potential.
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I. INTRODUCTION

The phase diagram of quark matter has been the object
of intense investigation during the last years, and yet
several open questions within the thermodynamics of
strong interactions still remain unsolved [1,2]. In this
quest, lattice QCD represents the main nonperturbative
approach within the full theory [3], always complemented
by effective models [4].

In this article we investigate the effects of finite quark
masses and isospin number on the equation of state of hot
and dense strongly interacting matter and on the deconfin-
ing phase transition within a framework inspired by chiral
perturbation theory (�PT) and lattice results for the pres-
sure and the trace anomaly. The setting we propose is
simple and completely fixed by vacuum QCD properties
(measured or simulated on the lattice) and lattice simula-
tions of finite temperature QCD. More explicitly, there is
no fitting of mass or isospin chemical potential dependence
at all. Nevertheless, our findings for the behavior of the
critical temperature as a function of both the pion mass and
the isospin chemical potential are in remarkably good
agreement with lattice data. It is crucial to note that several
detailed studies of chiral models failed to describe Tcðm�Þ
[5–7], while Polyakov-loop models, whose predictions can
be fitted to the lattice points for Tcðm�Þ [5], cannot at the
present form address isospin effects. In this approach, we
can also investigate in a straightforward manner the effects
of quark-mass asymmetry and nonzero baryon chemical
potential, physical cases in which the sign problem devel-
ops, constraining systematic lattice studies. The predic-
tions within our framework for these regimes, which are
not yet fully probed by lattice QCD, are left for a longer
publication (for preliminary results, see [8]). Throughout
the present paper, the baryon chemical potential is fixed to
zero. It is not our aim in this short paper to provide a
complete description of the full richness of the QCD phase
diagram. Still, we present a description of the dependence
of the critical deconfining temperature on the quark-

average mass and on the isospin chemical potential
simultaneously.
Small quark masses and a nonzero baryon chemical

potential have always represented a major challenge for
lattice simulations. Presently, although viable lattice sizes
still prevent extensive and precise studies with realistic
quark masses, and the sign problem considerably restricts
the applicability of Monte Carlo simulations to the descrip-
tion of chemically asymmetric media, lattice QCD is start-
ing to provide results with smaller quark masses, and
probing a larger domain at finite chemical potential [9–
11]. For the latter, it is believed that much can be learned
from simulations of realizations of QCD that avoid the sign
problem, such as those with vanishing baryon chemical
potential and finite isospin density, which has a positive
fermionic determinant.
QCD at finite isospin density is certainly, but not only, a

playground to test numerical approaches to the case of
finite baryon density on the lattice [12,13]. It is also part
of the physical phase diagram for strong interactions, and
exhibits a very rich phenomenology [14]. It has been under
careful study during the last years, both theoretically and
experimentally, with a clear identification of certain phe-
nomena that depend directly on the isospin asymmetry of
nuclear matter at intermediate-energy heavy ion experi-
ments (see Ref. [15] and references therein).
Nevertheless, theoretical and phenomenological studies

often focus on the chiral limit of QCD, putting aside effects
from finite quark masses, and on isospin symmetric hot
matter, mainly stimulated by the physical scenario found in
current high-energy heavy ion collision experiments [16]
and the quark-gluon plasma [17]. Some exceptions are,
however, chiral model analyses of pion-mass dependence
of the finite temperature transition (e.g., [5–7]), which fail
completely to reproduce the lattice behavior, and
Polyakov-loop models predictions as mentioned above.
At finite isospin chemical potential, though there are
phase-diagram investigations in Polyakov–Nambu–Jona-
Lasinio models [18], none of them has addressed the
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critical temperature dependence on the isospin chemical
potential, in particular.

To investigate the effects of nonzero quark masses and
isospin asymmetry on the deconfining transition, we build
an effective theory that combines ingredients from �PT in
the low-energy sector with the phenomenological fuzzy
bag model at high energy. The high-energy regime is
described perturbatively by two-flavor QCD with massive
quarks and explicit isospin symmetry breaking.
Nonperturbative (confinement) effects at this scale are
incorporated through a fuzzy bag description [19] with
coefficients extracted from lattice data. For the low-energy
sector, we adopt an effective action inspired by �PT that
exhibits the same structure of symmetries contained in the
high-energy theory [20]. The quasinucleon degrees of free-
dom described in this regime seem to be crucial for under-
standing the pion-mass dependence of the deconfining
temperature. The definition of parameters, as well as
masses, is such that variations in the deconfined sector
are totally consistent with variations in the confined one,
which guarantees the bookkeeping in the different degrees
of freedom that are present in the description.

By matching the two branches of the equations of state,
corresponding to the high- and low-temperature regimes,
we of course obtain a first-order transition. Recently im-
proved Lattice QCD calculations, with almost realistic
quark masses, seem to indicate a crossover instead [9].
On the other hand, from the experimental standpoint a
weakly first-order transition is not ruled out, and in fact
corresponds to the scenario adopted in very successful
hydrodynamic calculations [16]. Although this is a crucial
question for the understanding of the phase structure of
QCD, it is essentially of no consequence to the analysis we
undertake. The value of the critical temperature we obtain
is �5–10% different from current values extracted from
the lattice [9,21], which is always the case in effective field
theory approaches and of no harm to our analysis, either.
Our concern is with providing a good description of the
behavior of the critical temperature for increasing values of
quark masses and the isospin chemical potential.

II. LOW-ENERGY SECTOR

The physical setting for the low-energy regime of strong
interactions is that of a system of heavy nucleons in the
presence of a hot gas of pions whose masses are already
dressed by corrections from temperature, isospin chemical
potential, and quark masses. The effective Lagrangian
reads Leff ¼ LN þL� þL�N, where

L N ¼ N

�
i@6 �MN þ 1

2�I�0�
3 þ 3

2�B�0

�
N; (1)

L� ¼ ð@� � ih��0Þ�þð@� þ ih��0Þ�� � �m2��þ��

þ 1
2½ð@�0Þ2 �m2

0ð�0Þ2�; (2)

L �N ¼ gA
f�

Ni�5

�
@6 �� 1

2
�I�0½�3; ��

�
N; (3)

where gA is the axial vector current coefficient of the
nucleon, which accounts for renormalization in the weak
decay rate of the neutron, f� is the pion decay constant,
and h is a function of temperature and isospin chemical
potential. Nucleons are represented by N ¼ ðp; nÞ with p,
n being the proton and neutron spinors, respectively, and
have a mass matrix MN ¼ diagðMp;MnÞ ¼ diagðM�
�M;Mþ �MÞ. This corresponds to the OðPÞ nucleon
chiral Lagrangian [22], but considering mass corrections
at zero temperature and chemical potential, and the cou-
pling to dressed pions.
The effective (dressed) masses of the pions�0 ¼ �3 and

�� ¼ 1ffiffi
2

p ð�1 � i�2Þ, which depend on temperature T, iso-

spin chemical potential �I and mass asymmetry �m ¼
ðmd �muÞ=2, are denoted, respectively, by m0 ¼
m0ðT;�I; �mÞ and �m� ¼ �m�ðT;�IÞ [23] and their explicit
expressions were calculated in Ref. [20]. In the so-called
first phase, a regime in which j�Ij<m�, they have the
form

m�0 ¼ m0 ¼ m�½1þ 1
2��00�; (4)

m�� ¼ m� � h ¼ m�

�
1þ 1

2
��1 � 1

2
�
�0

m�

�
��I; (5)

up to first order in � ¼ ðm�=4�f�Þ2. Here, �00, �0, �1,
and h are functions of temperature, isospin chemical po-
tential, and quark masses [20].
In the second phase (j�Ij>m�), a condensation of

pions occurs, and a superfluid phase sets in [24]. In this
new phase, in order to reestablish the vacuum structure, a
chiral rotation is produced due to the isospin symmetry
breaking. All this produces a pion mixing, and the nucleons
also couple in a different way. The degrees of freedom do
not correspond anymore to pions, but we can still call them
quasipions since their masses in the two phases match at
the transition point. The tree-level masses do not have the
shape as in the equations above. Instead, m�0 ¼ j�Ij,
m�� ¼ 0, and m�þ ¼ �I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðm�=�IÞ4

p
[14].

However, it is possible to treat this phase with a simple
approximation near the superfluid phase transition. In the
regime in which j�Ij * m�, the natural expansion parame-
ter is given by s2 ¼ 1�m4

�=�
4
I [20], after scaling all the

parameters by j�Ij. The result of the first terms in this
expansion (s2 ¼ 0) provides the same equations as in the
normal phase, just replacing m� by j�Ij. Strictly speaking,
this is valid only for values of j�Ij very close to m�, i.e.

j�Ij &
ffiffiffiffiffiffiffiffi
8=7

p
m� (for a more detailed discussion cf. [20]).

For simplicity, we also apply this results for slightly higher
values of the isospin chemical potential [25]. These results
in �PT are confirmed by a Nambu–Jona-Lasinio analysis
[26].

E. S. FRAGA, L. F. PALHARES, AND C. VILLAVICENCIO PHYSICAL REVIEW D 79, 014021 (2009)

014021-2



The direct effect of the baryonic chemical potential in
the pure pion quasiparticle gas is omitted since, without
considering gluonic corrections, it appears as an anoma-
lous term in the OðP4Þ chiral Lagrangian [27], and will be
present only in two-loop corrections according to power
counting. For very large values of �B, one has in principle
to incorporate effects from the color superconductivity gap
in the calculation of meson masses in an effective theory
near the Fermi surface [28,29]. In the present analysis, we
treat the case �B ¼ 0.

The nucleon masses, Mp ¼ M� �M and Mn ¼ Mþ
�M, are dressed by leading-order contributions in zero-
temperature baryon �PT. Using the results from Ref. [30],
for the isospin symmetric case with explicit chiral symme-
try breaking, and Ref. [31], which includes explicit isospin
breaking effects, we have (neglecting terms �m2

q,

�m2
q logðmqÞ, and of higher order in mq):

MðmÞ ¼ M0 þ 2�1mþ 23=2�3=2m
3=2; (6)

�Mð�mÞ ¼ 2�asymm
1 �m; (7)

M0 being the nucleon mass in the chiral limit, m ¼ ðmu þ
mdÞ=2 the average quark mass, and [32]

�1 ¼ �4c1
f2�

ð�hqqiÞ; (8)

�3=2 ¼ � 3g2A
32�f5�

ð�hqqiÞ3=2; (9)

�
asymm
1 ¼ 2�� 	

3

ð�hqqiÞ
f2�

: (10)

Here, all parameters and coefficients are fixed to reproduce
properties of the QCD vacuum either measured or ex-
tracted from recent lattice simulations. Explicitly, hqqi ¼
�ð225 MeVÞ3 is the (one-flavor) chiral condensate in the
chiral limit [33] and, from Table I in Ref. [30], M0 ¼
ð0:882� 0:003Þ GeV, c1 ¼ ð�0:93� 0:04Þ GeV�1,
gA ¼ 1:267, and f� ¼ 92:4 MeV, so that �1 ¼ 4:9630�
0:2135, and �3=2 ¼ �0:273424 MeV�1=2. Finally, from

Table 3 in Ref. [31], one can extract ð2�� 	Þ=3.
Converting from lattice units to GeV (1ðlatticeunitsÞ ¼
b ¼ 0:125 fm), in the case of the OðmqÞ fit, we arrive at

�
asymm
1 ¼ 0:16734� 0:07858. This fixes the dispersion

relation satisfied by the proton and neutron as

Ep=nðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðM� �MÞ2

q
þ 3

2
�B � 1

2
�I; (11)

where p is the three momentum and the antiparticle dis-
persion relations are obtained from the ones above by the
substitution �i � ��i.

III. HIGH-ENERGY SECTOR

The fuzzy bag model has been proposed by Pisarski [19]
as a phenomenological parameterization of the equation of
state to account for the plateau in the trace anomaly nor-
malized by T2, ð
� 3pÞ=T2, observed in lattice results
above the critical temperature. Besides the usual MIT-
type bag constant, the total pressure for QCD in this model
has also a nonperturbative contribution �T2 [34]:
pdeconfðTÞ ’ ppQCDðTÞ � BfuzzyT

2 � BMIT. The trace

anomaly associated with this equation of state, assuming
that ppQCD � T4, is then 
� 3p ¼ 2BfuzzyT

2 þ 4BMIT.

Recently, a similar parameterization has been used to fit
lattice results for the trace anomaly at high temperatures
[9], T > 1:5Tc � 300 MeV, yielding�


� 3p

T4

�
highT

¼ 3

4
b0g

4 þ b

T2
þ c

T4
; (12)

with coefficients b and c given in Table VIII of Ref. [9].
Notice that the first term in Eq. (12) comes from a Oð�2

sÞ
perturbative contribution to the pressure and is important
for the fit only at very high temperatures. Hence, we
neglect this term in what follows, obtaining the following
values for the bag coefficients: Bfuzzy ¼ 0:05 GeV2 and

BMIT ¼ 0:006 GeV5.
In our effective theory, we adopt, phenomenologically, a

simple extension of the fuzzy bag equation of state, which
includes the influence of finite chemical potentials and
masses in the perturbative pressure, neglecting for simplic-
ity nonperturbative contributions due to the finite quark
chemical potentials �f, so that pdeconf ’
ppQCDðT;�f;mfÞ � BfuzzyT

2 � BMIT.

IV. RESULTS FORTHECRITICALTEMPERATURE

As detailed above, we constructed a model using results
of well-studied theories and choosing carefully the relevant
ingredients to study mass and isospin number effects. Both
low- and high-energy sectors are completely fixed, and
now we turn to the determination of the prediction of this
model for the behavior of the deconfining critical tempera-
ture. From our results for the massive free gas contribution
of the perturbative QCD pressure in the fuzzy bag model at
finite temperature, isospin, and baryon number, and the
free gas pressure of quasipions and nucleons in the low-
energy regime, the critical temperature and chemical po-
tential for the deconfining phase transition are extracted by
maximizing the total pressure. The validity of our approach
is, of course, restricted by the scale of �PT: e.g. for m� �
m� � 770 MeV, the expansion parameter in �PT is � �
0:45, so that the extension of the predictions to m� &
1 GeV is justified [35].
The pion mass dependence, or equivalently the quark

average mass dependence, of the critical temperature is
displayed in Fig. 1 for vanishing chemical potentials with
the temperature and the pion mass normalized by the
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square root of the string tension. Our curves stop at a point
from which our �PT approach clearly breaks down. The
results of our framework are compared to lattice data from
Ref. [36] (NF ¼ 2, 3) and [9] (NF ¼ 2þ 1) and two other
phenomenological treatments: theOð4Þ linear sigma model
[5] and a renormalization group improved computation [6]
(cf. also Ref. [7] that discusses the quark-meson model
using the proper-time renormalization group approach).
The approximate mass independence observed in the lat-
tice data is very well reproduced within our framework,
while the other descriptions tend to generate a qualitatively
different behavior. This feature is yet another indication
that the functional dependence of Tcðm�Þ requires confine-
ment ingredients to be reproduced, being incompatible
with a phase transition dictated by pure chiral dynamics.
This argument goes in the same direction of Ref. [5], the
main difference here being the fact that we construct the
mass dependence from themquark ¼ 0 limit, with the heavy

quasinucleons as the key new element at low energies.
Moreover, our results are not strongly sensitive to the
choice between the fuzzy bag model and the usual MIT
bag model. The critical values for the MIT bag model are
systematically lowered, but the qualitative behavior is not
altered, as illustrated in Fig. 1. This indicates that a con-
sistent treatment of the quark mass dependence connecting
both perturbative regimes of energy is probably the essen-
tial ingredient to describe this observable.

In Fig. 2, the critical temperature is plotted as a function
of the isospin chemical potential. The critical temperature
is normalized by its value in the absence of chemical
asymmetry, whereas the isospin chemical potential is nor-
malized by the critical temperature itself. The curves ob-
tained within our framework are represented by solid lines.
Once again our results are in good agreement with lattice
computations [13], even though the curve that is closer to
the lattice points corresponds to a small vacuum pion mass,

which is not the situation simulated on the lattice [13]. Our
curves for different values of m� start to disagree more
appreciably for�I > 2Tc. Recall that our treatment is valid
up to isospin chemical potentials that are larger but not
much larger than the pion mass, and contains the effects
from pion condensation for �I > m�. Figure 2 also exhib-
its, for comparison, results using the hadron resonance gas
model [37] that appear to depart from the lattice data at a
much lower value of the isospin chemical potential. The
two curves are produced by two different methods to
determine the critical temperature: the dotted curve is
obtained from the observation that the deconfined phase
emerges at a constant energy density, whereas the dashed
one uses the fact that the quark-antiquark condensate for
the light quarks almost disappears at the quark-hadron
transition [37]. Similar to what we observe for the quark-
mass dependence of Tc, it is clear from Fig. 2 that plain
chiral considerations render the largest discrepancies for
the behavior of Tcð�IÞ as compared to lattice data.
An up-down quark-mass imbalance, characterized by

the relative difference in quark mass, which is in principle
not much smaller than 1, tends to increase the critical
temperature, though by a quantitatively small amount, as
expected. The value of the critical baryonic chemical po-
tential, beyond which matter is deconfined, also seems to
increase with the vacuum pion mass. Detailed results in
these and other thermodynamic observables will be pre-
sented in a longer publication (see also [8]).

V. FINAL REMARKS

We constructed a frugal effective framework selecting
features from established theories that are relevant in the
determination of the quark-mass and chemical-asymmetry
dependence of the deconfining transition. From a simple
free gas calculation of the equation of state, we found
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FIG. 2 (color online). Critical temperature as a function of �I

for two different values of the pion mass. Our results are
compared to lattice data [13] and other approaches [37].
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FIG. 1 (color online). Critical temperature as a function of m�

normalized by the string tension
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�

p ¼ 425 MeV. Our results
are compared to lattice data [9,36] and other approaches [5,6].
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surprisingly good agreement with different lattice data for

the behavior of the critical temperature for the deconfining
transition with masses and the isospin chemical potential,

indicating that the model captures the essential features
brought about by the inclusion of those effects. It should be
emphasized that the framework provides simultaneous
predictions for these two functional dependences of the

critical temperature, Tcðm�Þ and Tcð�IÞ, with only one set
of coefficients completely determined by observed QCD
vacuum properties and lattice simulations at finite tempera-
ture and zero chemical potentials and fixed quark masses.

As far as we are aware of, this is the first framework to well
reproduce lattice data. Our description of Tcðm�Þ reinfor-
ces, through a completely different approach, the discus-
sion in Ref. [5] in which the quark-mass dependence of the
finite temperature transition on the lattice is shown to be
compatible with results from slightly perturbed Polyakov-
loop models, contrasting with the failure of different chiral
models. Confinement properties seem to influence strongly

the mass dependence of the QCD transitions observed on
the lattice. Moreover, the approximate framework built in

the present paper, constituted of selected ingredients from
well-known high- and low-energy theories, is able to ac-
cess physical settings including quark-mass asymmetry

and finite baryon chemical potential, regimes in which
lattice simulations encounter severe difficulties due to non-
positive definite fermion determinants. Therefore, this
model provides a pragmatic tool to investigate the role
played by nonzero quark masses and chemical potentials,
also going beyond the free gas approximation, comple-
menting in a healthy direction results from other model
approaches and lattice simulations. Since the (mass-
symmetric) isospin chemical potential regime does not
suffer from the sign problem, the road is open for detailed
Monte Carlo studies and further comparisons. On the
experimental side, intermediate-energy experiments in nu-
clear physics are providing data and observables that are
sensitive to chemical asymmetry, whereas high-energy
heavy ion collisions to start soon at RHIC-BES and
FAIR-GSI will probe a region of the phase diagram of
QCD where effects from �B become important. Here, we
have focused on the influence of finite quark masses and
isospin chemical potential. Predictions of this framework
for the finite �B regime will be reported in the near future.
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