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Chiral symmetry restoration at nonzero temperature and quark densities are investigated in the

framework of a linear sigma model with Nf ¼ 3 light quark flavors. After the derivation of the grand

potential in mean-field approximation, the nonstrange and strange condensates, the in-medium masses of

the scalar and pseudoscalar nonets are analyzed in hot and dense medium. The influence of the axial

anomaly on the nonet masses and the isoscalar mixings on the pseudoscalar �-�0 and scalar

�ð600Þ-f0ð1370Þ complex are examined. The sensitivity of the chiral phase transition as well as the

existence and location of a critical end point in the phase diagram on the value of the sigma mass are

explored. The chiral critical surface with and without the influence of the axial Uð1ÞA anomaly is

elaborated as a function of the pion and kaon masses for several values of the sigma mass.
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I. INTRODUCTION

The understanding of the properties of strongly interact-
ing matter under extreme conditions is one of the most
fascinating and challenging tasks. General features of hot
and dense matter are summarized in the QCD phase dia-
gram which can be probed by ultrarelativistic heavy ion
experiments such as the RHIC (BNL), LHC (CERN) and
the planned future CBM experiment at the FAIR facility in
Darmstadt.

Theoretical considerations indicate that at high tempera-
ture and high baryon densities there should be a phase
transition from ordinary hadronic matter to a chirally sym-
metric plasma of quarks and gluons [1]. Several issues
concerning this transition are not yet clarified [2]. QCD
in this temperature and density regime is a strongly
coupled theory and hence perturbation theory cannot be
used. In the absence of a systematically improvable and
converging method to approach QCD at finite density one
often turns to model investigations see, e.g., [3]. These
models incorporate the important chiral symmetry break-
ing mechanism of QCD but neglect any effects of confine-
ment. Only recently, certain aspects of confinement based
on the Polyakov loop have been incorporated in chiral
effective models in a systematic fashion [4,5] and interest-
ing conclusions could be drawn (see, e.g., [6]).

The most prominent finding from low-energy chiral
effective models is the QCD critical end point (CEP) [7].
Common to almost all effective model calculations is that
the chiral phase transition is continuous in the low density
region and discontinuous in the high density regime.
Consequently, the endpoint where the phase transition
ceases to be discontinuous is the QCD critical end point.
Unfortunately, several obvious and related features such as

the exact location of this point in the QCD phase diagram
cannot be predicted by these models.
On the other side, lattice QCD simulations are important

alternatives to effective models’ calculations and can gain
much insights in the QCD phase structure [8–15]. Because
of the notorious sign problem emerging at finite baryon
density reliable predictions for QCD are still not conclu-
sive. Even worse, recently different lattice methods that
circumvent the sign problem are in conflict with each other.
For example, using the imaginary chemical potential
method for three physical quark masses no critical end-
point in the phase diagram is found [16–21].
The present work is an extension of a previous analysis

within an effective linear sigma model (L�M) with two
quark flavors to three quark flavors [22,23]. The restoration
of the chiral SUð3Þ � SUð3Þ and axial Uð1ÞA symmetries
with temperature and quark chemical potentials is inves-
tigated. The axial Uð1ÞA anomaly is considered via an
effective ’t Hooft determinant in the Lagrangian which
breaks the Uð1ÞA symmetry. The restoration of the Uð1ÞA
symmetry is linked to a vanishing of the topological sus-
ceptibility which can further be related to the �0 mass via
the Witten-Veneziano relation [24,25].
Some results depend sensitively on the model parame-

ters which are tuned to reproduce the vacuum phenome-
nology. There are model-input parameters such as the �
meson mass which are poorly known experimentally. The
generic findings of several parameter fits over a broad
range of input parameters are compared. Furthermore,
the extrapolation towards the chiral limit is also addressed
and the mass sensitivity of the chiral phase structure is
investigated.
The paper is organized as follows: after introducing the

L�M with three quark flavors, some symmetry breaking
patterns in the vacuum are briefly discussed. In Sec. III the
grand thermodynamic potential is derived in mean-field
approximation. In Sec. IV a discussion of the model pa-
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rameter fits is given. Since the experimental situation con-
cerning the scalar �-meson, �ð600Þ, is not settled we
consider a wide range of different values of the �-meson
mass, m�, as input parameter. All parameter sets are col-
lected in Appendix A.

For the L�M without quarks it is known that the stan-
dard loop expansion and related approximation methods at
finite temperatures fail and imaginary meson masses are
generated. In our approximation no such artifacts occur
which enables us to perform a careful and detailed analysis
of chiral symmetry restoration in hot and dense matter.
This is demonstrated in Sec. V where the pseudoscalar and
scalar meson masses at finite temperatures and chemical
potentials with and without axial Uð1ÞA symmetry break-
ing are investigated. All mass expressions are summarized
in Appendix B. In addition, the scalar and pseudoscalar
flavor mixing behavior in the medium is explored. Various
definitions are deferred to Appendix C

The grand potential determines all thermodynamic prop-
erties. The resulting phase diagrams are presented in
Sec. VI where the mass sensitivity of the chiral phase
boundaries is also explored. Subsequently, the shape of
the chiral critical surface which confines the region of the
chiral first-order transitions in the m�-mK plane at the
critical chemical potential is evaluated for several values
of m�. Finally, in Sec. VII a summary with concluding
remarks is given.

II. LINEAR SIGMAMODELWITH THREE QUARK
FLAVORS

The Lagrangian, Lqm ¼ Lq þLm, of the SUð3ÞL �
SUð3ÞR symmetric L�M with three quark flavors consists
of the fermionic part

L q ¼ �qði@6 � gTað�a þ i�5�aÞÞq (1)

with a flavor-blind Yukawa coupling g of the quarks to the
mesons and the purely mesonic contribution

Lm ¼ Trð@��y@��Þ �m2 Trð�y�Þ � �1½Trð�y�Þ�2
� �2 Trð�y�Þ2 þ cðdetð�Þ þ detð�yÞÞ
þ Tr½Hð�þ�yÞ�: (2)

The column vector q ¼ ðu; d; sÞ denotes the quark field for
Nf ¼ 3 flavors and Nc ¼ 3 color degrees of freedom [26].

The �-field represents a complex (3� 3)-matrix and is
defined in terms of the scalar �a and the pseudoscalar �a

meson nonet

� ¼ Ta�a ¼ Tað�a þ i�aÞ: (3)

The Ta ¼ �a=2 with a ¼ 0; . . . ; 8 are the nine generators
of the Uð3Þ symmetry, where the �a are the usual eight

Gell-Mann matrices and �0 ¼
ffiffi
2
3

q
1. The generators Ta are

normalized to TrðTaTbÞ ¼ �ab=2 and obey the Uð3Þ alge-
bra ½Ta; Tb� ¼ ifabcTc and fTa; Tbg ¼ dabcTc respectively
with the corresponding standard symmetric dabc and anti-
symmetric fabc structure constants of the SUð3Þ group and

fab0 ¼ 0; dab0 ¼
ffiffiffi
2

3

s
�ab: (4)

Chiral symmetry is broken explicitly by the last term in
Eq. (2) where

H ¼ Taha (5)

is a (3� 3)-matrix with nine external parameters ha. In
general, one could add further explicit symmetry breaking
terms to Lm which are nonlinear in � [27,28], but this is
ignored in this work.
Because of spontaneous chiral symmetry breaking in the

vacuum a finite vacuum expectation value of the� field, ��,
is generated which must carry the quantum numbers of the
vacuum [29]. As a consequence, only the diagonal compo-
nents h0, h3 and h8 of the explicit symmetry breaking term
can be nonzero. This in turn involves three finite conden-
sates ��0, ��3 and ��8 of which ��3 breaks the SUð2Þ isospin
symmetry. In the following we shall restrict ourselves to a
2þ 1 flavor symmetry breaking pattern and neglect the
violation of the isospin symmetry. This is reflected by the
choice h0 � 0, h3 ¼ 0, h8 � 0 and corresponds to two
degenerated light quark flavors ðu; dÞ and one heavier
quark flavor (s).
Besides the explicit symmetry breaking terms h0 and h8

the model has five more parameters: the squared tree-level
mass of the meson fields m2, two possible quartic coupling
constants �1 and �2, a Yukawa coupling g and a cubic
coupling constant cwhich models the axialUð1ÞA anomaly
of the QCD vacuum. The Uð1ÞA symmetry of the classical
QCD Lagrangian is anomalous [30], i.e., broken by quan-
tum effects. Without the anomaly a ninth pseudoscalar
Goldstone boson corresponding to the spontaneous break-
ing of the chiral Uð3ÞL �Uð3ÞR symmetry should emerge.
However, experimentally, the lightest candidate for this
boson is the �0 meson, whose mass is of the order m�0 �
960 MeV which is far from being a light Goldstone boson.
The explicit breaking of the Uð1ÞA symmetry is held re-
sponsible for the fact that the�0 mass is considerably larger
than all other pseudoscalar meson masses. This well-
known Uð1ÞA problem of QCD is effectively controlled
by the anomaly term c in the Lagrangian. The comprehen-
sive procedure of how to fix the parameters will be given in
Sec. IV.
Depending on the signs and values of the parameters

several possible symmetry breaking patterns in the vacuum
can be obtained (see also [28] for more details). Without
explicit symmetry breaking terms, i.e. for H ¼ 0, and
without an explicit Uð1ÞA symmetry breaking term, i.e.
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for c ¼ 0, the Lagrangian has a global SUð3ÞV �Uð3ÞA ’
SUð3ÞV � SUð3ÞA �Uð1ÞA symmetry if the quartic cou-
pling �2 and m2 are positive.1 If the mass parameter m2

changes sign the symmetry is spontaneously broken down
to SUð3ÞV . The first quartic coupling �1 has no influence on
the symmetry breaking. Because of the breaking of the
Uð3ÞA symmetry nine pseudoscalar Goldstone bosons arise
which form the entire nonet consisting of three pions, four
kaons, the � and �0 meson. The scalar nonet belongs to the
SUð3ÞV group which has a singlet and an octet representa-
tion. All masses of the octet particles are degenerate. The�
meson belongs to the singlet and its mass is in general
different from the masses of the other octet particles.

By setting c � 0 the effects of the Uð1ÞA symmetry
breaking, caused by a nonvanishing topological suscepti-
bility, are included and the symmetry of the Lagrangian is
reduced to SUð3ÞV � SUð3ÞA. Because of the spontaneous
symmetry breaking of the SUð3ÞA, the vacuum has a
SUð3ÞV symmetry. In this case the entire pseudoscalar
octet is degenerated and only eight Goldstone bosons
appear. The �0 meson, the would-be Goldstone boson, is
still massive in this case. The masses of the scalar particles
are not modified by the Uð1ÞA breaking.

With explicit symmetry breaking terms, more precisely,
for only finite h0 and h8 terms, the vacuum SUð3ÞV sym-
metry is explicitly broken down to the isospin SUð2ÞV
symmetry since the h3 term is set to zero. This symmetry
pattern is already a good approximation to nature because
the violation of the isospin symmetry is small anyway. The
resulting ground state spectrum for this symmetry pattern
will be discussed in Sec. VB.

III. GRAND POTENTIAL

In this section, the derivation of the grand thermody-
namic potential for the three-flavor model is given. We will
use a mean-field approximation similar to the one for the
two-flavor model in [22]. The mean-field approximation is
simple in its application, in particular, at finite temperature
and quark densities. Low-energy theorems, such as, e.g.,
the Goldstone theorem or the Ward identities are also
fulfilled at finite temperatures and densities. In this way
we can circumvent more advanced many-body resumma-
tion techniques which are usually necessary to cure the
breakdown of naive perturbation theory due to infrared
divergences. For example, it is well-known that the stan-
dard loop expansion or related expansion methods of the
SUð3Þ version of the L�M with or without quarks break
down at finite temperature and imaginary meson masses
are generated in the spontaneously broken phase [31–35].

Contributions of thermal excitations to the meson masses
are neglected in these approximation schemes which result
in a too rapid decrease of the meson masses, and, e.g., the
squared pion mass becomes negative for temperatures
much below the phase transition. This deficiency can be
cured by self-consistent resummation schemes such as the
Hartree approximation in the Cornwall-Jackiw-Tomboulis
formalism [34,36] or the so-called Optimized Perturbation
Theory (OPT) e.g., [37] and variants thereof. Recently, the
OPTmethod has been frequently applied to the three-flavor
L�M with and without quarks at finite temperature and
baryon densities [38,39]. However, the predictive power of
the OPT method depends on how it is implemented and
approximations thereof are made. For instance, when the
external momentum of the self-energy are taken on-shell a
solution of the corresponding gap equation and also of the
equation of state cease to exist above a certain temperature,
particularly below the critical one. Details and some im-
provements of certain approximations in the OPT frame-
work can be found in [38,39].
All these problems do not emerge in the mean-field

approximation used here. This enables us to study the
phase structure of the more involved three-flavor model
in great detail and in a rather simple framework.
In order to calculate the grand potential in mean-field

approximation we start from the partition function. In
thermal equilibrium, the grand partition function is defined
by a path integral over the quark/antiquark and meson
fields

Z ¼
Z Y

a

D�aD�a

Z
DqD �q

� exp

�
�
Z 1=T

0
d	

Z
V
d3xLE

�
; (6)

where T is the temperature and V the three-dimensional
volume of the system.2 For three quark flavors the
Euclidean Lagrangian LE generally contains three inde-
pendent quark chemical potentials �f

L E ¼ Lqm þ X
f¼u;d;s

�fq
y
fqf:

Because of the assumed SUð2ÞV isospin symmetry we
neglect the slight mass difference between an u- and
d-quark and the light quark chemical potentials become
equal. In the following we denote the degenerated light
quark quantities by an index q, i.e., the light quark chemi-
cal potential by �q � �u ¼ �d, and the strange quark

quantities by an index s.
The calculation of the partition function in the mean-

field approximation is performed similar to Refs. [22,40]
for the two-flavor case. The quantum and thermal fluctua-
tions of the mesons are neglected and the quarks/antiquarks

1More precisely, without the determinant the Lagrangian Lqm
is Uð3Þ �Uð3Þ invariant which is isomorphic to SUð3ÞL �
SUð3ÞR �Uð1ÞB �Uð1ÞA. The Uð1ÞB is related to the baryon
number and is always conserved which is why we have
neglected it. 2An irrelevant normalization constant is suppressed.
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are retained as quantum fields. This means that the inte-
gration over the mesonic fields in Eq. (6) is dropped and the
fields are replaced by their nonvanishing vacuum expecta-
tion values �� ¼ T0 ��0 þ T8 ��8. The remaining integration
over the Grassmann fields yields a determinant which can
be rewritten as a trace over a logarithm. Evaluating the
trace within the Matsubara formalism, the quark contribu-
tion��qqðT;�fÞ of the grand potential is obtained [41]. The
ultraviolet divergent vacuum contribution to ��qqðT;�fÞ
which results from the negative energy states of the Dirac
sea has been neglected here (cf. [22,40] for further details).
Finally, the total grand potential is obtained as a sum of the
quark contribution and meson contribution Uð ��0; ��8Þ as

�ðT;�fÞ ¼ �T lnZ
V

¼ Uð ��0; ��8Þ þ��qqðT;�fÞ: (7)

Explicitly, the quark contribution reads

��qqðT;�fÞ ¼ 
cT
X

f¼u;d;s

Z 1

0

d3k

ð2�Þ3 flnð1� nq;fðT;�fÞÞ

þ lnð1� n �q;fðT;�fÞÞg (8)

with the usual fermionic occupation numbers for the
quarks

nq;fðT;�fÞ ¼ 1

1þ expððEq;f ��fÞ=TÞ (9)

and antiquarks n �q;fðT;�fÞ � nq;fðT;��fÞ respectively.

The number of internal quark degrees of freedom is de-
noted by 
c ¼ 2Nc ¼ 6. The flavor-dependent single-
particle energies are

Eq;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
(10)

with the flavor-dependent quark masses mf which are also

functions of the expectation values ��0 and ��8.
The vacuum condensates ��0 and ��8 are members of the

scalar (JP ¼ 0þ) nonet and both contain strange and non-
strange components. For further analysis it is more conve-
nient to convert the condensates into a pure nonstrange and
strange part. This is achieved by an orthogonal basis trans-
formation from the original octet-singlet basis ð�0; �8Þ to
the nonstrange (�x) and strange (�y) quark flavor basis

�x

�y

� �
¼ 1ffiffiffi

3
p

ffiffiffi
2

p
1

1 � ffiffiffi
2

p
 !

�0

�8

� �
: (11)

As a consequence, the light quark sector decouples from
the strange quark sector (cf., e.g., [39]) and the quark
masses simplify in this new basis to

mq ¼ g�x=2; ms ¼ g�y=
ffiffiffi
2

p
: (12)

The meson potential modifies accordingly

Uð�x; �yÞ ¼ m2

2
ð�2

x þ �2
yÞ � hx�x � hy�y � c

2
ffiffiffi
2

p �2
x�y

þ �1

2
�2

x�
2
y þ 1

8
ð2�1 þ �2Þ�4

x

þ 1

8
ð2�1 þ 2�2Þ�4

y; (13)

therein the explicit symmetry breaking parameters h0 and
h8 have also been transformed according to Eq. (11). The
order parameters for the chiral phase transition are identi-
fied here with the expectation value ��x for the nonstrange
and with ��y for the strange sector. They are obtained by

minimizing the total thermodynamic potential (7) in the
nonstrange and strange directions

@�

@�x

¼ @�

@�y

���������x¼ ��x;�y¼ ��y

¼ 0: (14)

The solutions of these coupled equations determine the
behavior of the chiral order parameters as a function of T
and chemical potentials, �q and �s. Note that the in-

medium condensates are also labeled with a bar over the
corresponding fields.

IV. PARAMETER FITS

The L�M with three quark flavors has altogether seven
parameters m2, �1, �2, c, g, h0, h8 and two unknown
condensates ��x and ��y. The six parameters m2, �1, �2, c,

hx and hy of the mesonic potential are fixed in the vacuum

by six experimentally known quantities. Similar to
Ref. [34], we have chosen as input the low-lying pseudo-
scalar mass spectrum, m� and mK, the average squared
mass of the � and �0 mesons, m2

� þm2
�0 , and the decay

constants of the pion and kaon, f� and fK, and in addition
the scalar�meson massm�. We can then predict the scalar
meson masses ma0 , m�, mf0 , the difference of the �, �0

squared masses,m2
� �m2

�0 and the scalar and pseudoscalar

mixing angles �S, �P.
In analogy to, e.g., Ref. [34] the values of the conden-

sates are determined from the pion and kaon decay con-
stants by means of the partially conserved axial-vector
current relation (PCAC). In the strange-non-strange basis
they are given by

�� x ¼ f�; ��y ¼ 1ffiffiffi
2

p ð2fK � f�Þ: (15)

The average squared � and �0 meson mass determines
the parameter �2 by
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�2 ¼
3ð2fK � f�Þm2

K � ð2fK þ f�Þm2
� � 2ðm2

�0 þm2
�ÞðfK � f�Þ

ð3f2� þ 8fKðfK � f�ÞÞðfK � f�Þ
; (16)

and the Uð1ÞA anomaly breaking term c is fixed by �2 and
the difference of the pion and kaon masses squared via

c ¼ m2
K �m2

�

fK � f�
� �2ð2fK � f�Þ: (17)

Note, that without anomaly breaking, i.e. for c ¼ 0, the
average �-�0 meson mass is not used anymore for fixing
the parameter �2. It is then given by the kaon and pion
masses and decay constants only,

�2 ¼ m2
K �m2

�

ð2fK � f�Þ ðfK � f�Þ: (18)

The input parameters from the pseudoscalar sector in-
volve only a relation between �1 andm

2. Therefore, further
input from the scalar sector is necessary. In principle two
possible options are available. At first, the parameter m2 is
expressed as a function of the yet undetermined parameter
�1. This can be achieved by using the equation for the pion
mass or the kaon mass (see Appendix B). In this way the
m2 dependence of the � meson mass (or of the f0ð1370Þ
meson mass) can be transformed in a �1 dependence since
the scalar mixing angle does not depend on m2. By fixing
the mass of the � meson (or of the f0ð1370Þ meson) �1 is
determined by solving the corresponding equation.
Afterwards, the m2 parameter follows immediately, since
�1 is fixed.

The explicit symmetry breaking terms hx and hy in the

non-strange-strange basis are related to the pion and kaon
masses by the Ward identities

hx ¼ f�m
2
�; hy ¼

ffiffiffi
2

p
fKm

2
K � f�m

2
�ffiffiffi

2
p : (19)

These relations can be derived by using the gap equations,
Eqs. (14). The last open parameter, the value of the Yukawa
coupling g, is fixed from the nonstrange constituent quark
mass

g ¼ 2mq= ��x: (20)

For example, using for the light constituent quark mass a
value ofmq ¼ 300 MeVwe obtain g� 6:5 and can predict

a strange constituent quark mass ms � 433 MeV.
Since the experimental situation concerning the broad �

(or f0ð600Þ) resonance is not yet clear, cf. [42], we will use
different input values for m� in the range of m� ¼
400–1000 MeV and will investigate its mass dependence
on various quantities (see also [43]). In Appendix A several
parameter sets for different m� values with and without
effects of the axial Uð1ÞA anomaly are summarized
(Table I). Furthermore, a discussion of the parameter sets
with respect to spontaneous symmetry breaking can be
found in this appendix. The corresponding predictions of
the scalar and pseudoscalar meson masses and mixing
angles are collected in Table II

V. CHIRAL SYMMETRY RESTORATION

Having fixed the model parameters we can now evaluate
the grand potential numerically. In the following we
present our results for the chiral symmetry restoration at
finite temperature and finite quark density with and without
axial anomaly breaking. Throughout this section, the axial
anomaly breaking term is kept constant, in particular,
independent of the temperature and the chemical
potentials.

TABLE I. Different parameter sets for various m� with (c � 0) and without (c ¼ 0) Uð1ÞA anomaly.

m� [MeV] c [MeV] �1 m2 [MeV2] �2 hx [MeV3] hy [MeV3]

400 0 �24:55 þð309:41Þ2 82.47 ð120:73Þ3 ð336:41Þ3
500 0 �21:24 þð194:82Þ2 82.47 ð120:73Þ3 ð336:41Þ3
600 0 �17:01 �ð189:85Þ2 82.47 ð120:73Þ3 ð336:41Þ3
700 0 �11:61 �ð360:91Þ2 82.47 ð120:73Þ3 ð336:41Þ3
800 0 �4:55 �ð503:55Þ2 82.47 ð120:73Þ3 ð336:41Þ3
900 0 5.56 �ð655:82Þ2 82.47 ð120:73Þ3 ð336:41Þ3
1000 0 24.22 �ð869:50Þ2 82.47 ð120:73Þ3 ð336:41Þ3
400 4807.84 �5:90 þð494:75Þ2 46.48 ð120:73Þ3 ð336:41Þ3
500 4807.84 �2:70 þð434:56Þ2 46.48 ð120:73Þ3 ð336:41Þ3
600 4807.84 1.40 þð342:52Þ2 46.48 ð120:73Þ3 ð336:41Þ3
700 4807.84 6.62 þð161:98Þ2 46.48 ð120:73Þ3 ð336:41Þ3
800 4807.84 13.49 �ð306:26Þ2 46.48 ð120:73Þ3 ð336:41Þ3
900 4807.84 23.65 �ð520:80Þ2 46.48 ð120:73Þ3 ð336:41Þ3
1000 4807.84 45.43 �ð807:16Þ2 46.48 ð120:73Þ3 ð336:41Þ3
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A. Condensates

The chiral phase structure of the underlying three-flavor
model is completely governed by the total thermodynamic
potential. Hence, the solution of the gap Eqs. (14) deter-
mines the behavior of the condensates as a function of
temperature and quark chemical potentials. In general, the
three quark chemical potentials are independent but here
we will consider symmetric quark matter and define a
uniform chemical potential � � �q ¼ �s.

In Fig. 1 the nonstrange ��x and strange ��y condensates

are shown as a function of temperature for vanishing
chemical potential � for m� ¼ 800 MeV. The reason for
choosing this value for m� will become clear later on, see
also Appendix A. The solid lines in this figure are obtained

with an explicit axialUð1ÞA symmetry breaking term while
the dashed line corresponds to the anomaly-free case, i.e.
c ¼ 0. The difference in the nonstrange condensate ��x,
caused by the anomaly, is not visible in the figure. The
condensates start at T ¼ 0 with the fitted values, ��x ¼
92:4 MeV and ��y ¼ 94:5 MeV. The temperature behavior

of both condensates shows a smooth crossover. The tem-
perature derivative of the nonstrange condensate peaks
around T � 181 MeV. The precise value of this pseudo-
critical temperature depends on the value of m� in the
vacuum. For smaller values of m� the pseudocritical tem-
perature decreases (cf. Sec. VI). The chiral transition in the
strange sector is much smoother due to the larger constitu-
ent strange quark mass, ms ¼ 433 MeV. As a conse-
quence, the chiral SUð2Þ � SUð2Þ symmetry is restored
more rapidly. With axial anomaly the strange condensate
melts a little earlier but only for temperatures above the
transition. At very high temperatures both condensates
become degenerate, indicating chiral SUð3Þ � SUð3Þ sym-
metry restoration.
If one uses a temperature-dependent anomaly term by

making use of lattice results for the topological suscepti-
bility which yields, e.g., a decreasing anomaly term for
increasing temperatures, a faster effective restoration of the
axial symmetry can be achieved, see, e.g., [44,45].
For zero temperature and finite chemical potential both

condensates are independent of� in the broken phase until
the Fermi surface of the light quarks is reached. For zero
temperature the light Fermi surface coincides with the light
quark mass, i.e. � ¼ mq ¼ 300 MeV. Before the chiral

transition takes place at a critical chemical potential �c �
352 MeV the nonstrange condensate drops by about 10%
from its vacuum value as can be seen in Fig. 2. At �c the
phase transition is of first-order and three solutions of each
gap Eq. (14) appear corresponding to two degenerate min-

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350  400

σ x
, σ

y 
[M

eV
]

T [MeV]

σx
σy
σy

FIG. 1. The nonstrange, ��x and strange, ��y condensates as a
function of temperature for vanishing chemical potentials with
(solid) and without Uð1ÞA anomaly (dashed). The anomaly does
not modify the nonstrange condensate.

TABLE II. Meson masses and mixing angles in the vacuum for different sets of parameters. The first five columns are input while the
remaining columns are predictions. Upper block: without (c ¼ 0) Uð1ÞA anomaly, lower block: with Uð1ÞA anomaly. Last line:
experimental values from the PDG [42].

m� m� mK m�0 m� �P ma0 m� mf0 �S

400 138 496 138.0 634.8 35.3 850.4 1124.3 1257.3 16.7

500 138 496 138.0 634.8 35.3 850.4 1124.3 1267.4 18.7

600 138 496 138.0 634.8 35.3 850.4 1124.3 1282.3 21.5

700 138 496 138.0 634.8 35.3 850.4 1124.3 1304.9 25.5

800 138 496 138.0 634.8 35.3 850.4 1124.3 1341.4 31.3

900 138 496 138.0 634.8 35.3 850.4 1124.3 1408.0 40.0

1000 138 496 138.0 634.8 35.3 850.4 1124.3 1563.4 53.2

400 138 496 963.0 539.0 �5:0 1028.7 1124.3 1198.4 14.9

500 138 496 963.0 539.0 �5:0 1028.7 1124.3 1207.5 16.9

600 138 496 963.0 539.0 �5:0 1028.7 1124.3 1221.1 19.9

700 138 496 963.0 539.0 �5:0 1028.7 1124.3 1242.3 24.2

800 138 496 963.0 539.0 �5:0 1028.7 1124.3 1278.0 30.7

900 138 496 963.0 539.0 �5:0 1028.7 1124.3 1348.0 40.9

1000 138 496 963.0 539.0 �5:0 1028.7 1124.3 1545.6 57.1

400–1200 138.0 496 957.78 547.5 984.7 1414 1200–1500
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ima and one maximum of the effective potential. Because
of the explicit symmetry breaking both condensates remain
always finite in the symmetric phase. The phase transition
is mainly driven by the nonstrange condensate while the
jump in the strange condensate is negligible. Above the
transition for �>�c and below the strange Fermi surface
at � ¼ ms � 433 MeV the strange condensate stays con-
stant. The axial anomaly has almost no influence up to the
strange quark Fermi surface. Only for chemical potentials
larger than �� 433 MeV the strange condensate melts
faster if the Uð1ÞA symmetry breaking is taken into ac-
count. For large chemical potentials this difference van-
ishes again and both strange condensates will become
identical. Furthermore, the in-medium behavior of the
nonstrange condensate ��x is not modified by the anomaly.

B. The scalar-pseudoscalar meson spectrum

In the following the in-medium scalar and pseudoscalar
meson mass spectrum is analyzed. The derivation of the in-
medium masses as well as the mass formulas are collected
in Appendix B.
We start with the discussion of the mass spectrum at

nonzero temperature and vanishing quark chemical poten-
tial. The meson masses as a function of the temperature for
� ¼ 0 are shown in Figs. 3 and 4. In the left panels of the
respective figures the Uð1ÞA symmetry breaking is explic-
itly taken into account while in the right panels the break-
ing is neglected.
The masses of the pion and the � meson and also the

masses of the �0 and the a0 meson degenerate approxi-
mately at the same temperature Tc � 181 MeV. This tem-
perature behavior signals the effective restoration of chiral
SUð2Þ � SUð2Þ symmetry in the nonstrange sector via a
smooth crossover transition. The chiral partners ðK; �Þ
show a similar temperature behavior but degenerate with
the � meson at a higher temperature T � 240 MeV. At the
chiral transition T � 181 MeV the � meson becomes ligh-
ter than the a0 meson. In contrast to [34] the �0 is always
heavier than the kaon for all temperatures. Only the
f0ð1370Þ meson mass does not show a tendency to con-
verge to the � mass in the temperature region shown
because chiral symmetry in the strange sector is restored
only very slowly. The intersection point of the f0 and the �
mass coincides with the inflection point of the strange
condensate. Nevertheless, the f0 meson will degenerate
with the remaining meson octet at very large temperatures.
The mass gap in the restored phase for T > Tc between

the two sets of the chiral partners, ð�;�Þ and ða0; �0Þ, i.e.
m� ¼ m� <ma0 ¼ m�0 , is a consequence of the Uð1ÞA
breaking term. This gap is generated by an opposite sign
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FIG. 2. Similar to Fig. 1 but as a function of � for T ¼ 0.
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of the anomaly term in the scalar and pseudoscalar meson

masses, cf. Appendix B. It is basically given by
ffiffiffi
2

p
c ��y, i.e.

proportional to the anomaly term c and the strange order
parameter ��y. The nonstrange condensate ��x is already

negligible for temperatures above Tc. For higher tempera-
tures (T � 400 MeV) theUð1ÞA symmetry gets effectively
restored and the mass gap between the chiral partners will
vanish. Finally, for very large temperatures compared to
the strange quark mass the difference between the strange
and nonstrange mesons disappear and all meson masses
will degenerate.

Without Uð1ÞA symmetry breaking the mass gap be-
tween the chiral partners, ð�;�Þ and ða0; �0Þ, vanishes in
the restored phase and all four meson masses degenerate at
the same critical temperature Tc � 181 MeV coinciding
with the inflection point of the nonstrange condensate.
Above this temperature the axial symmetry is restored
but the full restoration of the Uð3Þ �Uð3Þ symmetry is
still not yet completed because the chiral partners ðK; �Þ
degenerate with the � at a higher temperature T �
240 MeV. This temperature value and the value of Tc are
not changed by the anomaly as expected since the non-
strange condensate is not influenced by the anomaly.
Interestingly, a recent mean-field study within the three-
flavor NJL model with various effective Uð1ÞA anomaly
implementations found an explicit difference for the chiral
nonstrange transition temperatures with and without ex-
plicit Uð1ÞA symmetry breaking (cf. Table III in [45]).

As for the case with anomaly, the chiral partners ð�; f0Þ
degenerate but only for temperatures around 300 MeV
because these mesons are purely strange states and chiral
symmetry in the strange sector is very slowly restored. A
mild anomaly dependence of the intersection point of the
f0 and the � meson is observed. There is no inverse mass
ordering of the � meson and the kaon at finite temperature

as found in [34]. In the vacuum the mass of the f0 increases
by about 60 MeV if the anomaly is neglected.
Without the anomaly term the �0 meson degenerates

with the pion already in the vacuum and stays degenerated
with the pion for all temperatures. Hence, in the vacuum
the mass of the �0 drops down considerably from 963 MeV
to 138 MeV. In fact, it has been shown that the mass of the

�0 must be less then
ffiffiffi
3

p
m� � 240 MeV if the Uð1ÞA

symmetry is not explicitly broken [30].
In general, one can summarize the mass spectrum in-

medium behavior in the following way: the bosonic ther-
mal contributions decrease the meson masses while the
fermionic parts increase the masses. For small tempera-
tures the quark contribution is negligible and for high
temperatures it dominates the mesonic contribution yield-
ing rising and degenerate meson masses.
All meson masses are controlled by the two explicit

symmetry breaking parameter hx and hy. They are deter-

mined by the tree-level Ward identities, Eq. (19), which
guarantee the Goldstone theorem at zero temperature: for
vanishing external parameter hx the pion mass must also
vanishes because f� is then finite. In this case, the other
symmetry breaking parameter hy generates only a finite

value for the kaon mass. Furthermore, the chiral limit can
be reached by setting all explicit symmetry breaking pa-
rameters to zero. But in order to obtain finite vacuum
expectation values for the condensates the symmetry
must be spontaneously broken. This requires a negative
m2 parameter. Later, we will use several parameter fits for
various values of the sigma meson mass which partly have
a positive m2 parameter (see Appendix A). For these
parameter sets one cannot reach the chiral limit by just
setting the explicit symmetry breaking parameters to
zero. But these parameter sets are still well suited for
fitting the physical mass point. For instance, choosing a
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m� ¼ 400 MeV the parameter fit results with or without
anomaly in a positive m2 parameter and the chiral limit
cannot be reached for this parameter set. In [34] another
strategy to investigate the chiral limit was adopted by
performing a separate extra parameter fit where an average
of the experimental mass values in the scalar octet spec-
trum together with some extrapolated quantities towards
the chiral limit as input have been used. However, all in all
the extrapolation towards the chiral limit remains question-
able for both procedures.

For the parameter set with, e.g.,m� ¼ 800 MeV we can
reach the chiral limit. For c � 0 we obtain a massless
pseudoscalar octet and a finite m�0 ¼ 767 MeV due to

the Uð1ÞA symmetry breaking. All scalar octet masses are
degenerate at 840 MeV and the mass of the sigma meson
drops down to 620 MeV. Moreover, without Uð1ÞA sym-
metry breaking all nine pseudoscalar mesons are massless
and the scalar octet masses are degenerated into 780 MeV
and m� ¼ 712 MeV.

In our approximation the Goldstone’s theorem is also
valid at finite temperature and chemical potentials, mean-
ing that in the chiral limit the masses of the Goldstone
bosons stay massless in the broken phase. Even in the
presence of quarks both Ward identities in (19) are always
fulfilled for all temperatures and quark chemical potentials
which can be shown analytically.

Another observation in the Figs. 3 and 4 is the tempera-
ture behavior of the scalar � and f0 meson around T �
325 MeV. There is a kink visible in the curves and the
meson masses seem to interchange their identities for
higher temperatures. In order to elucidate this behavior
we analyze the scalar and pseudoscalar mixing angles in
the following.

C. Flavor mixing at finite temperature

The investigation of the mixing angles of the scalar and
pseudoscalar isoscalar states provides further insights of
the axial Uð1ÞA symmetry restoration. In order to clarify
our findings some underlying definitions and relations
between different bases are given in Appendix C. Both
mixing angles, the pseudoscalar �P and the scalar one �S,
are shown in Fig. 5 as a function of temperature for � ¼ 0
with and without explicit Uð1ÞA symmetry breaking. In the
broken phase, i.e. for T < 200 MeV, a strong influence of
the anomaly on the pseudoscalar sector is found while
almost no effect is seen in the scalar sector. With anomaly
the nonstrange and strange quark states mix and generate
an pseudoscalar mixing angle �P ��5� at T ¼ 0. For
increasing temperatures the mixing angle stays almost
constant in the chirally broken phase. Around the chiral
restoration temperature Tc � 180 MeV the angle increases

smoothly towards the ideal mixing angle �P !
arctanð1= ffiffiffi

2
p Þ �þ35� corresponding to �p ¼ 90�, where

�p denotes the pseudoscalar mixing angle in the strange-

nonstrange basis (see Appendix C for details). At high

temperatures this means that the � meson becomes a
purely strange and the �0 a purely nonstrange quark system
(cf. [46]).
This is also demonstrated in Fig. 6 where the physical

�-�0 and the nonstrange-strange �NS-�S complex are
shown as a function of temperature for � ¼ 0. At T ¼ 0
the nonstrange mass of the �NS meson,m�NS

, is larger than

the strange mass m�S
since the pseudoscalar mixing angle

is larger than �p ¼ 45�, respectively �P ¼ �9:74�. For
the mixing angle of �P ��5� (�p � 49:74�) we obtain

m�NS
� 813 MeV and m�S

� 746 MeV.

At the chiral transition temperature Tc � 180 MeV the
�0 meson becomes purely nonstrange (�0 ! �NS) while
the � becomes a purely strange quark system (� ! �S). In
this temperature region the mixing angle grows to the ideal
�P ! þ35� (respectively �p ! 90�). No crossing of the
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FIG. 5. The scalar �S and pseudoscalar �P mixing angles as a
function of temperature for � ¼ 0 without and with UAð1Þ
anomaly.
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�NS and �S or anticrossing
3 of the physical �-�0 complex

is observed for all temperatures since �pðTÞ is always

above 45� [46].
Without anomaly the pseudoscalar mixing angle is al-

ready ideal for zero temperature and stays ideal for all
temperatures, i.e. �P �þ35�. This means that already at
T ¼ 0 the � and �0 mesons are ideally flavor-mixed. The
�0 is a purely light quark system and the � is a purely
strange quark system. Without anomaly the �0 degenerates
in mass with the pion. Hence, the �0 belongs to the class of
nonstrange particles. The ordering of the corresponding
nonstrange-strange masses is reversed, i.e. without anom-
aly m�S

is larger than m�NS
since m�S

¼ m� and m�NS
¼

m�0 .

In the scalar sector the mixing angle �S shows no
influence of the axial anomaly in the broken phase (see
Fig. 5). In both cases, with and without anomaly breaking,
the mixing angle is almost ideal �S �þ31� at T ¼ 0, but
the precise vacuum value depends strongly on the value for
the fitted scalar sigma meson mass in contrast to the
pseudoscalar angle which is independent of m�, see
Table II in Appendix A. For increasing m� the scalar
mixing angle �S also increases at T ¼ 0. As a conse-
quence, for largerm� the nonstrange-strange �NS-�S com-
plex and the physical � and f0ð1370Þ mesons degenerate
more and more at T ¼ 0, meaning that the � meson tends
to a pure nonstrange quark system, � ! �NS, and the f0 to
a pure strange system, f0 ! �S. For instance, we obtain
form�ðmf0Þ ¼ 400ð1257Þ MeV respectivelym�NS

ðm�S
Þ ¼

561ð1131Þ MeV and for m�ðmf0Þ ¼ 800ð1341Þ MeV

m�NS
ðm�S

Þ ¼ 804ð1276Þ MeV.

At the chiral transition �S grows again to the ideal one.
But for temperatures around T � 314 MeV in the chirally
symmetric phase the scalar mixing angle drops down to
�S ��54� (�s � 0�). Around these temperature the
masses of the physical � and f0 anticross and the ones of
the nonstrange-strange �NS-�S system cross. This is dis-
played in Fig. 7. Hence, for larger temperatures, T >
314 MeV the f0 is now a purely nonstrange quark system
and the � a purely strange state. For very large tempera-
tures, around 900 MeV, the scalar mixing angle turns back
to the ideal �S �þ35� again and a crossing and anticross-
ing of the corresponding masses takes place again. Without
anomaly the same phenomenon happens qualitatively
around some larger temperatures of the order of T �
325 MeV.

For finite quark chemical potential and vanishing tem-
perature the mixing angle shows qualitatively a similar
behavior. Around �� 350 MeV the pseudoscalar angle
�P increases towards the ideal value while without anom-
aly the angle is already ideal. In the scalar sector the angle

is nearly ideal in the broken phase and drops down to �S �
�54� around�� 500 MeVwhere again the masses of the
physical � and f0 meson anticross.
A finite temperature study of the �-�0 complex includ-

ing the QCD axial anomaly within a Dyson-Schwinger
approach and a temperature-dependent topological suscep-
tibility can also be found in [47,48]. By means of the
Witten-Veneziano relation the authors studied the interplay
between the melting of the topological susceptibility and
the chiral restoration temperature. The authors find a strong
increase of the �0 mass around the chiral restoration tem-
perature which makes the extension of the Witten-
Veneziano relation to finite temperature questionable. In
the present work a constant anomaly parameter has been
used corresponding to a constant topological susceptibility.
This means that theUð1ÞA symmetry is not restored around
the chiral critical temperature but at higher temperatures.

VI. PHASE DIAGRAM AND THE CHIRAL
CRITICAL SURFACE

The phase diagram is constructed in the following way:
for realistic pion and kaon masses (the so-called physical
point) the light condensate melts always faster with T and/
or� than the strange condensate because the strange quark
mass is heavier than the light quark mass. As the chiral
phase boundary we use the inflection point in the light
condensate.
Later on, we will also vary the meson masses and

calculate the corresponding phase diagrams. As a conse-
quence, the ordering of the light and strange condensates
can be inverted since the kaon mass can become lighter
than the pion mass. In such cases the strange condensate
drops faster than the light condensate and the chiral phase
transition is triggered by the strange condensate. This has
to be taken into account systematically, in particular, for
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3A crossing of the �NS and �S masses corresponds to an
anticrossing of the physical � and �0 masses via Eqs. (C9) and
(C10) (cf. also [47]).
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the calculation of the chiral critical surface. The faster
melting condensate has been used in order to localize the
phase boundary.

In Fig. 8 the phase diagrams in the ðT;�Þ-plane with
explicit Uð1ÞA symmetry breaking for three different val-
ues of m� are shown (lower lines correspond to m� ¼
600 MeV, next lines to m� ¼ 800 MeV and upper lines
to m� ¼ 900 MeV). For each value of m� the remaining
parameters of the model are fitted to the vacuum as de-
scribed in Sec. IV and are kept constant. Since the explicit
Uð1ÞA symmetry breaking leads only to small modifica-
tions of the phase boundaries (cf. Figs. 1 and 2), we refrain
from presenting the phase diagrams in the absence of an
explicit Uð1ÞA symmetry breaking term.

At zero chemical potential a crossover is always found
due to the explicit symmetry breaking terms. The crossover
temperature depends on the choice of the sigma meson
mass. For increasing m� the pseudocritical temperature
also increases (e.g., for m� ¼ 600, 800, 900 MeV we
found a Tc � 146, 184, 207 MeV).

Recent lattice simulations at � ¼ 0 for three quark
flavors have obtained values for the pseudocritical tem-
peratures in the range of Tc ¼ 151ð3Þð3Þ MeV [14,49] and
Tc ¼ 192ð7Þð4Þ MeV [11,50]. These results, applied to the
current study, would suggest values for the sigma mass in
between 600 and 800 MeV.

At zero temperature a first-order phase transition is
obtained (cf. Fig. 2). For increasing temperatures the
first-order transition becomes weaker and terminates in
the critical end point (CEP). How to measure this point
and what the distinctive signatures of this point are is not
yet settled. It is interesting to see that the mass of the �
meson as a function of temperature and/or chemical po-
tential through the CEP always drops below the mass of the
pion not only for the corresponding two-flavor but also for
the three-flavor calculation [22]. This is a general feature

of the L�M since the potential flattens at this point in radial
� direction. In a similar NJL calculation this is not the case
[40,51].
For m� ¼ 600 MeV the location of the CEP is at

ðTc;�cÞ ¼ ð91; 221Þ MeV and for m� ¼ 800 MeV at
(63, 327) MeV. As a consequence of the model parameters
dependence, the location of the CEP moves for increasing
m� towards the � axis. It is interesting to observe that
already for m� ¼ 900 MeV the existence of the CEP dis-
appears and the phase transition is a smooth crossover over
the entire phase diagram.
Almost no influence of the axial anomaly on the phase

boundaries and thus on the location of the CEP is seen. For
comparison, with and without the Uð1ÞA symmetry break-
ing and each for m� ¼ 600 MeV the location of the CEP
changes from ðTc;�cÞ ¼ ð91; 221Þ MeV to (89, 228) MeV.
For m� ¼ 800 MeV the changes are even smaller
ðTc;�cÞ ¼ ð63; 327Þ MeV to (63, 328) MeV.
In Ref. [52] a gauged linear sigma model with chiral

UðNfÞ �UðNfÞ symmetry without quarks within the 2PI

resummation scheme has been considered. For the two-
flavor case and neglecting the influence of the vector
mesons the opposite behavior of the chiral phase transition
as a function of m� is observed: for � ¼ 0 a crossover is
seen for a small �mass (m� ¼ 441 MeV) and a first-order
transition for a large � mass (m� ¼ 1370 MeV). If the
vector mesons are included the transition leads to a more
rapid crossover and brings one closer to the second-order
critical point. The conclusion is that the critical endpoint
moves closer to the temperature axis. Thus, the inclusion of
vector mesons should improve the agreement with lattice
QCD results since usually, in chiral models, the critical
endpoint is located at smaller temperatures and larger
chemical potentials.
For three quark flavors renormalization-group argu-

ments predict a first-order transition in the chiral limit
independent of the Uð1ÞA symmetry breaking [53]. This
behavior is displayed in Fig. 9 where the resulting phase
diagrams including the anomaly for varying pion and kaon
masses are shown for m� ¼ 800 MeV. We have chosen a
path in the ðm�;mKÞ-plane through the physical mass point
towards the chiral limit by varying the pion mass and
accordingly the kaon mass by keeping the ratio m�=mK

fixed at the value given at the physical point m	
�=m

	
K.

The pion and kaon masses are varied by changing the
explicit symmetry breaking parameters, hx and hy, while

keeping all remaining model parameters fixed at the values
obtained at the physical point. For a pion mass 1.36 times
larger than the physical one (for m� ¼ 800 MeV) the CEP
lies exactly on the�-axis, hence for pion masses above this
value the phase transition is a smooth crossover over the
entire phase diagram and no CEP exists anymore.
For a decreasing pion mass, the location of the CEP

moves towards the T-axis and already for half of the
physical pion mass the CEP hits the T-axis at � ¼ 0.
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FIG. 8. Phase diagrams with Uð1ÞA symmetry breaking for
different values of m� ¼ 600 MeV (lower line), 800 MeV,
900 MeV (upper line).
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Remarkably also for half of the physical pion mass the
CEP hits the T-axis in a similar calculation within a two-
flavor L�M within the same approximation scheme but
withoutUð1ÞA symmetry breaking and form� ¼ 600 MeV
[22]. For smaller pion masses the chiral phase transition
turns into a first-order one for all densities and conse-
quently no CEP exists any longer.

The various transition lines in the phase diagram shrink
towards the origin of the phase diagram for smaller pion
and kaon masses because the condensates decrease more
rapidly as a function of the temperature and chemical
potentials. If one rescales the temperature with the critical
temperature at � ¼ 0 and the chemical potential with the
critical chemical potential at T ¼ 0 then all the transition

lines in the phase diagram lie on top of each other for
different pion masses.
In connection with the existence of the CEP in the phase

diagram it is interesting to analyze its mass sensitivity. For
this purpose the critical surface for the chiral phase tran-
sition is evaluated in Fig. 10 as a function of the pion and
the kaon masses with (left panel) and without (right panel)
the Uð1ÞA symmetry breaking. Again the masses are tuned
by variation of only the explicit symmetry breaking pa-
rameters (see Eq. (19)) while keeping all other model
parameters fixed similar to Ref. [54]. For small kaon
masses but large pion masses the explicit symmetry break-
ing parameter for the strange direction hy in Eq. (19) can

become negative. The corresponding kaon mass, where

this happens, is given by mK ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�=2fK

p
and is shown

in both panels as a solid line.
The critical surface is defined by the value of the critical

chemical potential �c of the CEP for a given mass pair
ðm�;mKÞ. It is the surface of the second-order phase tran-
sition points displayed in a three-dimensional ð�c;m�;
mKÞ-space. For values of the chemical potential above
the chiral phase transition is of first-order while for values
below the surface the transition lies in the crossover region.
With or without anomaly the critical surface grows out
perpendicular from the ðm�;mKÞ-mass plane at � ¼ 0.
The tangent plane to the critical surface has a decreasing
slope for larger masses as expected from Fig. 8 or Fig. 9.
Thus, this model study excludes the so-called nonstandard
scenario, found in a recent lattice analysis with imaginary
chemical potentials, where the first-order region shrinks as
the chemical potential is turned on [19]. In the nonstandard
scenario the bending of the critical surface has the opposite
sign and the physical realistic mass point remains in the
crossover region for any �. In Fig. 10 the physical mass
point is denoted by an arrow. Since the critical chemical
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potential �c cannot grow arbitrarily the surface must have
a boundary and hence stops to exist for larger
ðm�;mKÞ-masses which are not shown in the Figure.

In Ref. [39] the L�Mwith quarks in a one-loop approxi-
mation, based on optimized perturbation theory, was eval-
uated and a bending of the critical surface away from the
mK-axis at m� ¼ 0 for a kaon masses greater than
400 MeV was observed. The precise value of mK for the
onset of the bending depends on the order of the used chiral
perturbation theory (PT) for the baryon mass extrapola-
tions. Thus, the unphysical bending indicates that the
validity range of the PT for the baryons, used for the
model parameter extrapolation away from the physical
point, was exceeded. As a consequence, no (tri)critical
point on the mK-axis for � ¼ 0 where the boundary of
the first-order transition region terminates can be located.

In this work no strong bending of the surface away from
the mK-axis is seen for kaon masses not larger than
600 MeV, but it also seems that it never approaches the
mK-axis at least for m� ¼ 800 MeV. On the other hand,
including the anomaly we find a critical mcrit

� � 177 MeV
where the critical surface intersects the solid line in the left
panel of Fig. 10. On this line and for m� >mcrit

� the
transition turns into a smooth crossover. On the contrary,
without anomaly (right panel in the figure), no critical pion
mass is found at � ¼ 0 at least for values below 200 MeV.
This means that the phase transition on the solid line is still
of first order similar to the findings of [54] where the
influence of the anomaly on the phase transition for van-
ishing chemical potentials within a SUð3Þ � SUð3Þ L�M
without fermions in Hartree approximation has been
investigated.

Furthermore, the effect of the Uð1ÞA anomaly on the
shape of the surface is rather marginal for a kaon mass
greater than 400 MeV (cf. both panels in Fig. 10). For

larger kaon masses the strange sector decouples from the
light sector and the chiral phase transition is basically
driven by the (light) nonstrange particles.
On the other hand, for a kaon masses smaller than

400 MeV we see a considerable influence of the anomaly
on the shape of the critical surface. Without anomaly the
region of first-order phase transitions at � ¼ 0 is reduced
which is in contrast to the results obtained with a L�M
without quarks [54]. In this reference, it is found that the
first-order transition region at � ¼ 0 grows with and with-
out anomaly for increasing sigma masses. For sigma
masses greater than 600 MeV and without anomaly the
physical point is well located within the first-order region
while it is always in the crossover region with anomaly.
Including quarks we obtain an opposite tendency: the

physical point is always in the crossover region and for
larger sigma masses the size of the first-order transition
region at � ¼ 0 decreases as can be seen from Fig. 11. In
this figure five cross sections, for m� ¼ 500 . . . 900 MeV
of the chiral critical surface with (left) and without anom-
aly (right panel), are shown as a function of the pion mass.
As a trajectory in the ðm�;mKÞ-plane a path through the
physical point towards the chiral limit has been chosen for
these figures. This path is given by fixing the pion over
kaon mass ratio to the physical one, i.e. setting mK=m� ¼
m	

K=m
	
� where the star denotes the corresponding physical

masses.
For larger m� values the chiral critical surface with

anomaly moves to smaller pion masses. This effect is
less pronounced if the anomaly is neglected (right panel).
In accordance with Fig. 8 the chiral critical surface line for
m� ¼ 900 MeV terminates before the physical point
(m�=m

	
� ¼ 1). Because of the positive m2 parameter we

cannot evaluate the chiral critical surface for arbitrary pion
and kaon masses for smaller values of m� as already
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mentioned. Nevertheless, the results for smaller sigma
masses are shown as dashed light curves in both panels
and stop at certain pion mass ratios.

It is instructive to replace in the last Fig. 11 the critical
chemical potential with the critical temperature and inves-
tigate its mass sensitivity. This leads to Fig. 12 where the
critical temperatures of the CEP’s as a function of the pion
mass similar to Fig. 11 are plotted for five different �
meson masses with (left panel) and without anomaly (right
panel). In general, the curves start at zero temperature and
grow to a certain finite value for decreasing pion masses.
For the parameter sets without spontaneous symmetry
breaking the curves with anomaly for m� ¼ 500 and
600 MeV, and without anomaly for m� ¼ 500 MeV,
show the opposite behavior. In this case, i.e. for smaller
values of m�, and large unphysical pion masses m�=m

	
� >

1, which is realized in lattice simulations, the location of
the CEP moves towards the T-axis. For decreasing pion
masses the critical temperatures decrease meaning that the
CEP moves towards the �-axis in the chiral limit.
Consequently, for these parameter sets no first-order tran-
sition occurs in the chiral limit as already mentioned.
Nevertheless, all of the curves intersect roughly at the
physical point (m�=m

	
� ¼ 1). Only the extrapolation to-

wards the chiral limit is questionable as can be seen by the
positive slope of these curves for decreasing pion masses.

VII. SUMMARY

In the present work chiral symmetry restoration in hot
and dense hadronic matter is analyzed. As an effective
realization of the spontaneous breaking of chiral symmetry
in the vacuum, the SUð3ÞL � SUð3ÞR symmetric L�M
with quarks has been used. Within this model, the grand
thermodynamic potential was evaluated in the mean-field
approximation. Six of the seven model parameters are fixed
to the low-lying pseudoscalar mass spectrum, which is

experimentally well known and to the scalar sigma meson
mass. Since the experimental situation in the scalar sector
is not very certain we have varied the value of the sigma
mass over a wide range and have investigated its conse-
quences for the physics. The remaining model parameter,
the Yukawa coupling, is determined by the nonstrange
constituent quark mass while the condensates are governed
by the PCAC relation.
At the physical mass point for various sigma masses a

smooth finite temperature chiral crossover at zero density
and a first-order transition for finite chemical potential at
zero temperature is found. The Uð1ÞA anomaly has only
little influence on the strange condensate while no modifi-
cation of the light condensate at the physical point is
observed. The pseudocritical crossover temperature de-
pends on the choice of the sigma meson mass and coin-
cides with recent lattice simulations for mass values in
between m� ¼ 600 . . . 800 MeV.
In our approximation no negative squared meson masses

are generated in the medium as is the case for the L�M
without quarks. Low-energy theorems like the Goldstone
theorem or the Ward identities are not only fulfilled in the
vacuum but also in the medium. This enables a careful
analysis of the chiral symmetry restoration pattern of the
meson nonets with and without axial anomaly. An anti-
crossing of the scalar �-f0ð1370Þ masses at higher tem-
perature is seen which is reflected in the corresponding
mixing angle investigation.
For a sigma masses below 900 MeV a CEP is found in

the phase diagram. In contrast to a similar calculation in
the NJL model at this point the sigma meson mass drops
below the pion mass. This behavior is analogous to the
findings in the two-flavor case.
The chiral critical surface in the ðm�;mKÞ-plane always

has a positive slope such that the so-called nonstandard
scenario can be excluded. In the chiral limit the expected
first-order transition at � ¼ 0 is found. A large modifica-
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tion caused by the anomaly is visible. With anomaly the
first-order region in the� ¼ 0 plane is enlarged for smaller
masses. For larger kaon masses the shape of the critical
surface becomes independent of the anomaly. Further-
more, for increasing m� the surface becomes steeper.

One drawback of the effective model used here is the
lack of confinement properties which certainly modify the
thermodynamics in the broken phase. A first step towards
an implementation of gluonic degrees of freedom which
could mimic certain confinement aspects can be achieved
by adding the Polyakov loop to the quark dynamics. Work
in this direction is in progress [55].
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APPENDIX A: PARAMETER FITS

In this appendix several used parameter fits for the linear
sigma model (L�M) with three quark flavors are collected.

As experimental input we have chosen the low-lying
pseudoscalar meson mass spectrum (m�, mK, m�), the

constituent quark mass mq and the pion and kaon decay

constant. To be more precise, for the fit with anomaly (c �
0) the summ2

� þm2
�0 is chosen as input while for c ¼ 0 the

m� has not been used as input. The experimental values,

taken from Ref. [42], are listed in the last line of Table II
for comparison. Since the chiral �-particle is a broad
resonance its mass is not known precisely. We therefore
have used different input values for m� in the range of
400–1000 MeVand have refitted the remaining parameters
of the model accordingly. It is remarkable that larger sigma
meson masses are not adjustable since m� as a function of
the quartic coupling �1 saturates around 1100 MeV.

In Table II all resulting meson masses are listed. The
upper block contains the fit without anomaly and the lower
block the fit including the anomaly. Except for the pseu-
doscalar masses, the first four/five columns in the table
respectively, all other (scalar) masses and the mixing an-
gles are predictions of the model.

In Table I the values for the six mesonic model parame-
ters of the L�Mwith and without explicitUð1ÞA symmetry
breaking are summarized. The Yukawa coupling is always
kept fixed to g� 6:5 corresponding to a constituent quark
mass of mq ¼ 300 MeV. For this Yukawa coupling the

strange constituent quark mass is predicted to be ms �
433 MeV. The decay constants, f� ¼ 92:4 MeV and
fK ¼ 113 MeV, are also kept constant for all fits. It is
interesting to realize that for small values of m� and with
Uð1ÞA symmetry breaking the mass parameter m2 changes

sign and becomes positive when fitted to realistic masses.
As a consequence spontaneous symmetry breaking is lost
in the chiral limit and all condensates will vanish in this
limit. This happens for m� 
 700 MeV. Even without
anomaly breaking (c ¼ 0) a similar phenomenon can be
seen. For this case the masses are smaller when this case
sets in, i.e. m� 
 500 MeV. This is the motivation for our
choice of m� ¼ 800 MeV. For this parameter set we can
investigate the mass sensitivity of the chiral phase transi-
tion over arbitrarily explicit symmetry breaking values
including the chiral limit. The choice m� ¼ 800 MeV for
the parameter fit without anomaly is also in agreement with
[34] where m� ¼ 600 MeV is a misprint in this reference.
For larger m� values the quartic coupling �1 increases
significantly which restricts the parameter fits form� larger
than 1000 MeV.

APPENDIX B: MESON MASSES

The scalar JP ¼ 0þ and pseudoscalar JP ¼ 0� meson
masses are defined by the second derivative with respect to
the corresponding scalar and pseudoscalar fields’s;a ¼ �a

and ’p;a ¼ �aða ¼ 0; . . . ; 8Þ of the grand potential

�ðT;�fÞ, Eq. (7), evaluated at its minimum. The mini-

mum is given by vanishing expectation values of all scalar
and pseudoscalar fields but only two of them, ��x and ��y,

are nonzero.

m2
i;ab ¼

@2�ðT;�fÞ
@’i;a@’i;b

��������min
; i ¼ s; p: (B1)

In the vacuum the contribution from the quark potential
vanishes. Hence, only the mesonic part of the potential
determines the mass matrix completely. The squared mass
matrix is diagonal and due to isospin SUð2Þ symmetry
several matrix entries are degenerate. We begin with the
scalar, JP ¼ 0þ, sector corresponding to i ¼ s. The
squared mass of the a0 meson is given by the (11) element
which is degenerate with the (22) and (33) elements.
Similar, the squared � meson mass is given by the (44)
element which is also degenerated with the (55), (66) and
(77) elements. The � and f0ð1370Þ meson masses are
obtained by diagonalizing the (00)–(88) sector of the
mass matrix introducing in this way a mixing angle �S.
Explicitly, the squared masses for scalar sector, formulated
in the nonstrange-strange basis, are

m2
a0 ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ 3�2

2
��2
x þ

ffiffiffi
2

p
c

2
��y; (B2)

m2
� ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ �2

2
ð ��2

x þ
ffiffiffi
2

p
��x ��y þ 2 ��2

yÞ

þ c

2
��x; (B3)
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m2
� ¼ m2

s;00cos
2�S þm2

s;88sin
2�S þ 2m2

s;08 sin�S cos�S;

(B4)

m2
f0
¼ m2

s;00sin
2�S þm2

s;88cos
2�S � 2m2

s;08 sin�S cos�S

(B5)

with

m2
s;00 ¼ m2 þ �1

3
ð7 ��2

x þ 4
ffiffiffi
2

p
��x ��y þ 5 ��2

yÞ

þ �2ð ��2
x þ ��2

yÞ �
ffiffiffi
2

p
c

3
ð ffiffiffi

2
p

��x þ ��yÞ;

m2
s;88 ¼ m2 þ �1

3
ð5 ��2

x � 4
ffiffiffi
2

p
��x ��y þ 7 ��2

yÞ

þ �2

�
��2
x

2
þ 2 ��2

y

�
þ

ffiffiffi
2

p
c

3

� ffiffiffi
2

p
��x �

��y

2

�
;

m2
s;08 ¼

2�1

3
ð ffiffiffi

2
p

��2
x � ��x ��y �

ffiffiffi
2

p
��2
yÞ þ

ffiffiffi
2

p
�2

�
��2
x

2
� ��2

y

�

þ c

3
ffiffiffi
2

p ð ��x �
ffiffiffi
2

p
��yÞ:

(B6)

The situation for the pseudoscalar sector (i ¼ p) is
completely analogous with the following labeling: the
squared pion mass is identified with the (11) element and
the squared kaon mass with the (44) element of the pseu-
doscalar mass matrix. Similar to the scalar case, the � and
�0 mass are obtained by diagonalizing the (00)–(88) sector
and accordingly a pseudoscalar mixing angle �P is intro-
duced. Explicitly, the squared masses for the pseudoscalar
sector are

m2
� ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ �2

2
��2
x �

ffiffiffi
2

p
c

2
��y (B7)

m2
K ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ �2

2
ð ��2

x �
ffiffiffi
2

p
��x ��y þ 2 ��2

yÞ

� c

2
��x (B8)

m2
�0 ¼ m2

p;00cos
2�P þm2

p;88sin
2�P þ 2m2

p;08 sin�P cos�P

(B9)

m2
� ¼ m2

p;00sin
2�P þm2

p;88cos
2�P � 2m2

p;08 sin�P cos�P

(B10)

with

m2
p;00 ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ �2

3
ð ��2

x þ ��2
yÞ

þ c

3
ð2 ��x þ

ffiffiffi
2

p
��yÞ

m2
p;88 ¼ m2 þ �1ð ��2

x þ ��2
yÞ þ �2

6
ð ��2

x þ 4 ��2
yÞ

� c

6
ð4 ��x �

ffiffiffi
2

p
��yÞ

m2
p;08 ¼

ffiffiffi
2

p
�2

6
ð ��2

x � 2 ��2
yÞ � c

6
ð ffiffiffi

2
p

��x � 2 ��yÞ:

Both mixing angles are given by

tan2�i ¼
2m2

i;08

m2
i;00 �m2

i;88

; i ¼ s; p: (B11)

In the medium the meson masses are further modified by
the quark contribution (8). In order to evaluate the second
derivate (B1) for the quark contribution the complete de-
pendence of all scalar and pseudoscalar meson fields,
cf. Eq. (3), in the quark masses has to be taken into
account. The resulting quark mass matrix can be diagonal-
ized. Finally, we obtain the expression

@2��qqðT;�fÞ
@’i;�@’i;�

��������min
¼ 
c

X
f¼q;s

Z d3p

ð2�Þ3
1

2Eq;f

�
�
ðnq;f þn �q;fÞ

�
m2

f;�� �
m2

f;�m
2
f;�

2E2
q;f

�

�ðbq;f þb �q;fÞ
2Eq;fT

m2
f;�m

2
f;�

�
(B12)

where we have introduced the shorthand notation m2
f;a �

@m2
f=@’i;a for the quark mass derivative with respect to the

meson fields ’i;a, the quark function

bq;fðT;�fÞ ¼ nq;fðT;�fÞð1� nq;fðT;�fÞÞ (B13)

TABLE III. Squared quark mass second derivatives with re-
spect to the meson fields evaluated at the minimum. Left column
block, the sum over two light quark flavors, denoted by index l,
and right column block only the strange quark flavor, index s.

m2
l;�m

2
l;�=g

4 m2
l;��=g

2 m2
s;�m

2
s;�=g

4 m2
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��0 ��0
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ffiffi
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��y

��2
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and correspondingly the antiquark function b �q;fðT;�fÞ ¼
bq;fðT;��fÞ. The index i distinguishes between a scalar

and pseudoscalar field which we omit in the following. In
Table III all second quark mass derivatives with respect to
the meson fields replaced by the nonvanishing vacuum
expectation values in the nonstrange-strange basis are col-
lected. Despite the SUð2Þ isospin symmetry the derivatives
are different for the up- and down-quark sector. In the
Table III, left column block, the sum over the two light
quark flavors is shown which leads to large cancellations.

APPENDIX C: ISOSCALAR MIXING

In this appendix a collection of relations describing the
mixing of isoscalar states in the pseudoscalar and scalar
multiplet is presented. The isoscalar (I ¼ 0) pseudoscalar
states in the octet-singlet ð�8; �0Þ basis are defined by

j�8i ¼ 1ffiffiffi
6

p ju �uþ d �d� 2s�si;

j�0i ¼ 1ffiffiffi
3

p ju �uþ d �dþ s�si:
(C1)

For a realistic flavor breaking in the vacuum the physical �
meson is close to the �8 and �0 to �0.

The eigenstates in the flavor nonstrange-strange
ð�NS; �SÞ basis are given by

j�NSi ¼ 1ffiffiffi
2

p ju �uþ d �di; j�Si ¼ js�si: (C2)

These states are associated to each other by a rotation with

an angle � ¼ � arctan
ffiffiffi
2

p ��54:74�

j�NSi
j�Si

� �
¼ 1ffiffiffi

3
p 1

ffiffiffi
2

p
� ffiffiffi

2
p

1

 !
j�8i
j�0i

� �
: (C3)

Diagonalization of the mass matrix in the ð�8; �0Þ basis
is achieved by the introduction of the pseudoscalar mixing
angle �P. This yields the relations

j�i
j�0i

� �
¼ cos�P � sin�P

sin�P cos�P

� � j�8i
j�0i

� �
: (C4)

For the ð�NS; �SÞ basis a similar relation with the mixing
angle �p holds

j�i
j�0i

� �
¼ cos�p � sin�p

sin�p cos�p

� � j�NSi
j�Si

� �
: (C5)

For vanishing mixing angle �p corresponding to �P ¼
� arctan

ffiffiffi
2

p ��54, 7� the � tends to a pure nonstrange
�NS and �0 to a pure strange �S. In contrast, for a mixing
angle �p ¼ 90� ð�P �þ35; 3�Þ the ordering is reversed

and � ! �S and �
0 ! �NS. The ordering transition occurs

at �p ¼ 45� (�P ��9:74�).
The diagonalization of the mass matrix in the ð�NS; �SÞ

basis leads to the masses

m2
� ¼ m2

�NS
cos2�p þm2

�S
sin2�p �m2

�S;�NS
sin2ð2�pÞ;

(C6)

m2
�0 ¼ m2

�NS
sin2�p þm2

�S
cos2�p þm2

�S;�NS
sin2ð2�pÞ;

(C7)

and to the mixing angle �p given by

tan2�p ¼ 2m2
�S;�NS

m2
�S

�m2
�NS

: (C8)

Equivalently, these expressions can be rewritten in a form
which does not contain the mixing angle explicitly

m2
�0 ¼ 1

2
ðm2

�NS
þm2

�S
þ ��NS;�S

Þ; (C9)

m2
� ¼ 1

2
ðm2

�NS
þm2

�S
� ��NS;�S

Þ; (C10)

with ��NS;�S
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

�NS
�m2

�S
Þ2 þ 4m2

�NS;�S

q
. Note, that

these expressions are numerically more stable compared to
(C6) and (C7) because possible ambiguities in the tangent
(C8) do not appear here.
The matrix elements in the ð�NS; �SÞ system are ob-

tained by a base change from the ones in the ð�8; �0Þ basis
with the result

m2
�NS

¼ 1

3
ð2m2

p;00 þm2
p;88 þ 2

ffiffiffi
2

p
m2

p;08Þ;

m2
�S

¼ 1

3
ðm2

p;00 þ 2m2
p;88 � 2

ffiffiffi
2

p
m2

p;08Þ;

m2
�S;�NS

¼ 1

3
ð ffiffiffi

2
p ðm2

p;00 �m2
p;88Þ �m2

p;08Þ:

(C11)

As a consequence, the mixing angles �p and �P are

related by

�p ¼ �P þ arctan
ffiffiffi
2

p � �P þ 54:74�: (C12)

Furthermore, supposing m� 
 m�0 one finds with (C6)

and (C7) for �p 
 45� (�P 
 �9:74�) m�NS

 m�S

while

for�p > 45� the ordering of the masses in the nonstrange-

strange system are reversed.
Scalar mesons differ from the pseudoscalar ones only in

the orbital excitation. Hence, all quoted relations can be
immediately converted to the scalar ð�; f0Þ complex with
the corresponding replacements, e.g.,

jf0i
j�i

� �
¼ cos�s � sin�s

sin�s cos�s

� � j�NSi
j�Si

� �
: (C13)

For an ideal scalar mixing angle �s ¼ 90� the � meson
is a pure nonstrange state �NS and f0 ! ��S.
Furthermore, � matches with �0 and f0 with �.
Since the mass of the f0 meson is larger than m� we

obtain for an ideal mixing �s ¼ 90� the ordering m�S
>

m�NS
.
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